Electronic Supplementary Information (ESI) for

KF·B(OH)₃: a KBBF-type material with large birefringence and

remarkable deep-ultraviolet transparency

Yang Li,^a Xinglong Chen^b and Kang Min Ok^{*a}

^aDepartment of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea ^bMaterials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States

*E-mail: kmok@sogang.ac.kr

Experimental section

Crystal growth

KHF₂ (Sigma, 99 %) and H₃BO₃ (Daejung, 99.5 %) were used as received to grow the KF·B(OH)₃. KHF₂ (5.0 g) and H₃BO₃ (1.5 g) were dissolved in 12.5 mL of distilled water in a plastic dish. The sticky samples were slowly evaporated at room temperature. The block crystals were grown for several weeks in a 60% yield based on H₃BO₃. Although crystals of KF·B(OH)₃ are water-soluble, the material slowly decomposes in water. In addition, KF·B(OH)₃ is moisture-sensitive in a humid condition at room temperature.

Powder X-ray diffraction

The PXRD data of KF·B(OH)₃ were collected via the Mini Flex 600 diffractometer using a Cu K α ((λ = 1.54406 Å) radiation with 40 kV and 15 mA at room temperature. The sample was scanned in the 2 ϑ range of 5-70° at a scan speed of 20°/min and a scan step width of 0.02°. The measured diffraction pattern of the title compound matched well with the stimulated one (**Fig. S4**).

Single-crystal X-ray diffraction

The crystal structure of KF·B(OH)₃ was determined via a Bruker D8 QUEST diffractometer with Mo K α radiation source ($\lambda = 0.71073$ Å) at Sogang University at room temperature. SAINT and SADABS programs were used for data reduction and absorption correction. OLEX2 package was used to solve and refine the structure.¹⁻³ The program PLATON was applied to validate if there is any missing higher symmetry.⁴ Crystallographic data, structure refinement information, atomic coordinates, equivalent isotropic displacement parameters, bond valence sums of all atoms except for H atoms, selected bond lengths, bond angles, and hydrogen bonds were listed in the ESI (**Tab. S1–S6**).

Energy dispersive analysis by X-ray (EDX)

EDX was conducted by a JSM-7100F Thermal field emission electron microscope with lens type ZrO/W Schottky field emission gun. Well-ground solid samples of the title compounds were attached on carbon tape and coated by Pt before the measurements. (**Fig. S5**)

IR spectroscopy

Infrared (IR) spectrum in the range of 500 to 4000 cm⁻¹ were recorded on a Thermo Scientific Nicolet iS50 FT-IR spectrometer. The ground sample was contacted on the diamond attenuated-total-reflectance crystal (**Fig. S6**).

UV-vis-NIR diffuse reflectance spectroscopy

Ultraviolet–visible–near infrared (UV–vis-NIR) diffuse-reflectance spectrum for $KF \cdot B(OH)_3$ was performed using a Lambda 1050 scan UV–vis–NIR spectrophotometer over the spectral range of 190–900 nm at room temperature. The reflection spectrum was converted to the absorbance date via the Kubelka-Munk function.⁵

Thermal analysis

Thermogravimetric analysis (TGA) was measured via a SCINCO TGA-N 1000 thermal analyzer. The ground polycrystalline sample was loaded into an alumina crucible and heated to 900 °C at a rate of 10 °C min⁻¹ under flowing air. Differential scanning calorimetry data were also obtained on a TA DSC-Q2000 from room temperature to 450 °C at a heating rate of 5 °C min⁻¹ under flowing nitrogen (**Fig. S7**).

Theoretical calculations

The CASTEP package was applied for the first-principles calculations based on densityfunctional theory.⁶ The band structure, the density of states, and the optical properties were calculated by using the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) and the on-the-fly generated (OTFG) norm-conserving pseudopotential (NCP).⁷⁻¹⁰ Plane-wave cut-off energy of 925 eV was chosen and the dense *k*-point sampling less than 0.03 Å⁻¹ was adopted. The linear optical properties were examined based on the dielectric function $\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$. The imaginary part of dielectric function ε_2 can be calculated based on the electronic structures and the real part is obtained by the Kramers–Kronig transformation, accordingly the refractive indices and the birefringence (Δn) can be calculated (**Figs. S8-S10**).

Formula	KF·B(OH)₃
Formula weight	119.93
Temperature/K	297.15
Crystal system	Orthorhombic
Space group	Pbcm
a/Å	5.4454(3)
b/Å	10.6284(7)
c/Å	7.0024(4)
α/°	90
в/°	90
γ/°	90
Volume/ų, Z	405.27(4), 4
$ ho_{calc} g/cm^3$	1.966
μ/mm ⁻¹	1.192
F(000)	240.0
Crystal size/mm ³	0.156 × 0.147 × 0.042
Radiation	Μο-Κα (λ = 0.71073)
2 ϑ range for data collection/°	7.484 to 56.762
Index ranges	-7 ≤ <i>h</i> ≤ 7, -14 ≤ <i>k</i> ≤ 14, -9 ≤ <i>l</i> ≤ 9
Reflections collected	15066
Independent reflections	547 [<i>R</i> _{int} = 0.0343, <i>R</i> _{sigma} = 0.0110]
Data/restraints/parameters	547/0/40
Goodness-of-fit on F ²	1.297
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0227, wR_2 = 0.0535$
Final <i>R</i> indexes [all data]	$R_1 = 0.0253, wR_2 = 0.0546$
Largest diff. peak/hole / e Å ⁻³	0.29/-0.33

Table S1. Crystal data and structure refinement for $KF \cdot B(OH)_3$.

 $[a]R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$ and $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w F_0^4]^{1/2}$ for $F_0^2 > 2\sigma (F_0^2)$

the trac	the trace of the orthogonalized D_{ij} tensor.							
Atom	X	У	Ζ	$U_{(eq)}$	BVS			
K1	6625.1(7)	2500	0	22.97(16)	+1.05			
B1	2087(4)	4450.2(19)	2500	19.9(4)	+3.05			
01	4576(2)	4282.5(12)	2500	24.1(3)	-1.33			
02	1208(2)	5653.8(12)	2500	29.4(4)	-1.28			
03	569(2)	3434.3(12)	2500	26.4(3)	-1.25			
F1	3277.2(19)	1419.9(10)	2500	29.7(3)	-0.24			

Table S2. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters ($Å^2 \times 10^3$) and bond valence sum calculations for KF·B(OH)₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Table S3. Bond Lengths for KF·B(OH)₃.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	B1	1.367(2)	02	K1 ⁴	2.8823(11)
01	K1 ¹	2.8105(10)	02	K1 ⁵	2.8823(11)
01	K1	2.8105(10)	F1	K1 ¹	2.7760(9)
03	B1	1.360(2)	F1	K1	2.7760(9)
03	K1 ²	2.9434(11)	K1	K11	3.5012(2)
03	K1 ³	2.9434(11)	K1	K1 ⁶	3.5012(2)
02	B1	1.366(2)			

¹+X,+Y,1/2-Z; ²-1+X,+Y,1/2-Z; ³-1+X,+Y,+Z; ⁴1-X,1-Y,1/2+Z; ⁵1-X,1-Y,-Z; ⁶+X,+Y,-1/2-Z

		0	1 1-				
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
03	B1	01	119.93(17)	F1	K1	01	67.99(3)
03	B1	02	122.05(16)	F1 ⁶	K1	01	81.56(2)
02	B1	01	118.02(16)	F1 ⁶	K1	O1 ⁶	67.99(3)
01	K1	O1 ⁶	133.21(5)	F1	K1	O1 ⁶	81.56(2)
O1 ⁶	K1	O3 ⁷	152.57(4)	F1 ⁶	K1	O3 ⁷	135.62(3)
01	K1	O3 ⁸	152.57(4)	F1 ⁶	K1	O3 ⁸	104.10(2)
O1 ⁶	K1	O3 ⁸	72.05(3)	F1	K1	O3 ⁸	135.62(3)
01	K1	O3 ⁷	72.05(3)	F1	K1	O3 ⁷	104.10(2)
O1 ⁶	K1	O2 ⁹	94.70(3)	F1	K1	O2 ⁹	66.69(3)
O2 ⁹	K1	O3 ⁸	80.37(3)	F1 ⁶	K1	O2 ⁴	66.69(3)
O2 ⁹	K1	O3 ⁷	64.51(3)	F1	K1	O2 ⁴	158.98(3)
O2 ⁴	K1	O3 ⁸	64.51(3)	F1 ⁶	K1	O2 ⁹	158.98(3)
O2 ⁴	K1	O3 ⁷	80.37(3)	F1 ⁶	K1	F1	97.90(4)
O2 ⁴	К1	02 ⁹	131.66(5)				

Table S4. Bond Angles for KF·B(OH)₃.

 $^{1}+X,+Y,1/2-Z;\ ^{2}-1+X,+Y,1/2-Z;\ ^{3}-1+X,+Y,+Z;\ ^{4}1-X,1-Y,-Z;\ ^{5}1-X,1-Y,1/2+Z;\ ^{6}+X,1/2-Y,-Z;\ ^{7}1+X,+Y,+Z;\ ^{8}1+X,1/2-Y,-Z;\ ^{9}1-X,-Y,-Z;\ ^{9}1-X,-Y,$

1/2+Y,+Z; ¹⁰+X,+Y,-1/2-Z

	,	0		()-			
D	Н	А	<i>d</i> (D-H)/Å	<i>d</i> (H-A)/Å	<i>d</i> (D-A)/Å	D-H-A/°	
01	H1	$F1^1$	0.81	1.74	2.5550(16)	178.2	
03	H3	F1	0.74	1.86	2.5996(17)	180.0	
02	H2	F1 ²	0.78	1.80	2.5744(17)	169.3	

Table S5. Hydrogen Bonds for KF·B(OH)₃.

¹1-X,1/2+Y,1/2-Z; ²-X,1/2+Y,1/2-Z

¹+X,+Y,1/2-Z; ²-1+X,+Y,+Z; ³-1+X,+Y,1/2-Z; ⁴1-X,1-Y,1/2+Z; ⁵1-X,1-Y,-Z

Table S6. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for KF·B(OH)₃.

Atom	X	У	Ζ	$U_{(eq)}$	
H1	5288.66	4955.97	2500	49(8)	
H3	1336.61	2863.02	2500	48(9)	
H2	-196.87	5793.46	2500	54(9)	

Table S7. Comparisons of the Interlayer Bonding for $K_2Be_2BO_3F$ (KBBF) and $KF \cdot B(OH)_3$ (KFBOH).

Species	Atom1	Atom2	Bonds lengths (Å)	q_1^a	q 2 ^a	F
		01	2.81	+1	-2	0.253
		01	2.811	+1	-2	0.253
		03	2.943	+1	-2	0.231
	V 1	03	2.943	+1	-2	0.231
KFBOH	KT.	02	2.882	+1	-2	0.241
		02	2.882	+1	-2	0.241
		F1	2.776	+1	-1	0.130
		F1	2.776	+1	-1	0.130
	Total					1.709
	K1	F1	2.756	+1	-1	0.132
		F1	2.756	+1	-1	0.132
VDDE		F1	2.756	+1	-1	0.132
NDDF		F1	2.756	+1	-1	0.132
		F1	2.756	+1	-1	0.132
		F1	2.756	+1	-1	0.132
	Total					0.790

 o In multiples of 1.602 × 10⁻¹⁹ C. Cations and anions are regarded as ideal point charges with respective expected valence states.

Compounds	λ _{cutoff} (nm)	BOH Groups	Band Gap (eV)	Δn	SHG (×KDP)	Refs.
			(HSE06)			
$Cs_3[B(OH)_3]_2Cl_3$	180	[B(OH) ₃]	6.31	0.057 <i>@</i> 532 nm	-	11
CsB ₃ O ₃ (OH) ₃ Cl		[B ₃ O ₃ (OH) ₃]	6.40	0.109 <i>@</i> 532 nm	-	11
$Cs[B(OH)_3][B_3O_3(OH)_3]CI$		[B ₃ O ₃ (OH) ₃] &	6.49	0.123@ 532 nm	-	11
		[B(OH) ₃]				
Rb ₃ [B(OH) ₃][B ₃ O ₃ (OH) ₃] ₂ Cl ₃	<200	[B ₃ O ₃ (OH) ₃] &	6.49	0.120 <i>@</i> 532 nm	-	11
	<200	[B(OH) ₃]				
$Na(COOH)[B(OH)_3](H_2O)_2$		[B(OH) ₃]	-	Unreported	-	12
K ₃ (COOH) ₃ [B(OH) ₃] ₂		[B(OH) ₃]			-	12
(HCOOH) ₃ [B(OH) ₃] ₂ ·3H ₂ O		[B(OH) ₃]	Uproported		0.7	12
Rb ₃ (COOH) ₃ [B(OH) ₃] ₂	228	[B(OH) ₃]	Unreported	0.09 @ 1064 nm	-	13
Cs ₃ (COOH) ₃ [B(OH) ₃] ₂	230	[B(OH) ₃]		0.10 @ 1064 nm	-	13
(NH ₄) ₃ [B(OH) ₃] ₂ (COOH) ₃	234	[B(OH) ₃]		0.156 @ 546 nm	0.6	14
KF·B(OH)₃	<190	[B(OH) ₃]	7.63	0.117 <i>@</i> 532 nm	-	This work

 Table S8. Properties of reported [B(OH)₃]-containing Cocrystal.

Fig. S1 (a) Structures of $KF \cdot B(OH)_3$. K-F and K-O bonds were omitted to show the layer clearly; (b) Hydrogen bonds between F^- and $[B(OH)_3]$.

Fig. S2 Distance and dihedral angle between adjacent $[F \cdot B(OH)_3]^-$ layers in $KF \cdot B(OH)_3$.

Fig. S3 The dihedral angle of $[B(OH)_3]$ in $Cs_3[B(OH)_3]_2Cl_3$.

Fig. S4 Experimental and calculated PXRD patterns for $KF \cdot B(OH)_3$. Inset: the photo of an as-grown crystal of $KF \cdot B(OH)_3$. Each division represents 1 mm.

10µm

Fig. S5 SEM-EDX spectra for $KF \cdot B(OH)_3$.

Fig. S6 IR spectrum of $KF \cdot B(OH)_3$.

Fig. S7 TGA and DSC diagrams of KF·B(OH)₃.

The first weight loss in the TGA diagram should be attributed to the decomposition of $B(OH)_3$ to release water molecules (observed, 22.5%; calculated 24.2%). Similar decomposition process has been observed before from other $B(OH)_3$ -containing crystals (*Angew. Chem. Int. Ed.* **2022**, *61*, e2022050.). Also, to find an accurate decomposition temperature, we measured the differential scanning calorimetry (DSC) data for KF·B(OH)_3. As seen in the DSC curve, the decomposition temperature is ca. 100 °C.

Fig. S8 Band structure of KF·B(OH)₃.

Fig. S9 Density of states for KF·B(OH)₃.

Fig. S10 (a) Electron difference density and (b) Electron localization function diagram of $KF \cdot B(OH)_3$.

References

- 1. Saint, version 7.60A Bruker Analytical X-Ray Instruments, Inc., Madison, WI, 2008.
- 2. Bruker Suite, Bruker AXS Inc., Madison, USA, 2008.
- 3. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, 42, 339–341.
- 4. L. Spek, Acta Crystallogr. Sect. D., 2009, 65, 148–155.
- 5. J. Tauc, Mater. Res. Bull., 1970, 5, 721–729.
- 6. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, *Zeitschrift fur Krist.*, 2005, **220**, 567–570.
- 7. W. Wang, H. Fan and Y. Ye, *Polymer (Guildf).*, 2010, **51**, 3575–3581.
- 8. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868.
- 9. K. Liu, H. Fan, P. Ren and C. Yang, J. Alloys Compd., 2011, 509, 1901–1905.
- 10. J. S. Lin, A. Qteish, M. C. Payne and V. Heine, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1993, **47**, 4174.
- 11. J. H. Jiao, M. Cheng, R. Yang, Y. C. Yan, M. Zhang, F. F. Zhang, Z. H. Yang and S. L. Pan, *Angew. Chemie Int. Ed.*, DOI:10.1002/anie.202205060.
- 12. F. F. He, Q. Wang, M. J. Liu, L. Huang, D. J. Gao, J. Bi and G. H. Zou, *Cryst. Growth Des.*, 2018, **18**, 4756–4765.
- 13. Y. Q. Guo, D. Zhang, T. Zheng, L. Huang, D. J. Gao, J. Bi and G. H. Zou, *Cryst. Growth Des.*, 2021, **21**, 5976–5982.
- 14. Y. L. Deng, L. Wang, Y. W. Ge, L. Huang, D. J. Gao, J. Bi and G. H. Zou, *Chem. Commun.*, 2020, **56**, 9982–9985.