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1. Experiment detail

The polymer film was formed by self-assembly between negatively charged polyacrylic acid 

(PAA) and positively charged polyallylamine hydrochloride (PAH). First, the silica substrate 

was treated by O2 plasma (CUTE-1B, Femtoscience, Yongin, Korea) for 2 min to form a 

negatively-charged surface. Then, the film was formed via a layer-by-layer dip-coating 

method. In this procedure, the PAH layer was formed by immersing the substrate in PAH 

solution (1 mg mL−1) for 10 min. Then, the substrate was rinsed three times (2, 1, and 1 min) 

with deionized water. Next, the PAA layer was adsorbed onto the substrate in the same manner 

using 1 mg mL−1 of PAA solution. The pH conditions of each solution were varied from 4 to 

11. The amount of adsorbed polymer was measured using a quartz crystal microbalance (QCM; 

QCM200, Stanford Research Systems, Sunnyvale, CA, USA). The Sauerbrey equation was 

used to convert the oscillation frequency of the crystal to the mass.
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2. Data generation

The first step in converting the experimental results to data involves selecting and defining the 

variables to be used on the small-data management (SDM) platform (Fig. S1). The independent 

variables denoted as Xi include factors that can be regulated by the researcher, such as the 

experimental conditions and intrinsic properties of the polymer. The transformed variables 

denoted as Tj are composed of factors calculated from Xi according to a theoretical 

relationship. Finally, the response variables denoted as Yk are measured values as the 

adsorption properties of polymer. In this study, the pH (X1), the number of layers (X2), and 

the molecular weight (X3) were selected as the independent variables, and the ionization (T1), 

the adhesion force (T2), and the radius of gyration (T3) were selected as the transformed 

variables. The amount of adsorbed polymer (Y1) was selected as the response variable 

influenced by the predictor variables (X, T). The second step in the data conversion process is 

that of generating the values of the variable X and T. The pH value (X1) of each polyelectrolyte 

solution (1 mg mL−1) was measured by pH meter (HI 2211, Hanna Instruments). The pH was 

controlled using 0.1 M HCl and 0.1 M NaOH solutions. The number of layer (X2) expresses 

the number of PAA/PAH bilayer on substrate, and ranges from 1 to 3. The molecular weight 

(X3) of each polyelectrolyte indicates weight average molecular weight (Mw) of PAA and 

PAH. The value of T is calculated from the results or formula demonstrated in previous studies 

(Fig. S2). The degree of ionization (T1) of polyelectrolyte is the capacity of acid/base to ionize 

itself. It was calculated by substituting the pKa value and pH of the polymers used (PAA and 

PAH) into formula (1, 2). For PAA, pKa value was assumed to be 6.5 and for PAH, pKa value 

was assumed to be 8.5.

% 𝐼𝑜𝑛𝑖𝑧𝑒𝑑 (𝑤𝑒𝑎𝑘 𝑎𝑐𝑖𝑑) =
1

1 + 10(𝑝𝐾𝑎 ‒ 𝑝𝐻)
× 100 (1)



% 𝐼𝑜𝑛𝑖𝑧𝑒𝑑 (𝑤𝑒𝑎𝑘 𝑏𝑎𝑠𝑒) =
1

1 + 10(𝑝𝐻 ‒ 𝑝𝐾𝑎)
× 100 (2)

Since the adhesion force (T2) between two polyelectrolytes is electrostatic interaction, T2 is 

directly related to the adsorption properties thereof. It was calculated from the relationship 

between the degree of ionization of PAA (T1_PAA) and that of PAH (T1_PAH) obtained from 

Cranford et al.1 Finally, the radius of gyration of polymer (T3) indicates the configurational 

properties important in the behavior of a polymer chain in solution, and it is related to the 

adsorption property. T3 calculated by substituting the molecular weight (degree of 

polymerization, N) and degree of ionization (factor that determines the value of ν) is into 

formula (3) obtained by Mintis et al.2 

𝑅𝑔~𝑁𝑣 (3)

Unlike the existing experiment analysis manner in which the number of variables are reduced 

to investigate the influence of specific variable, the SDM platform designs predictive models 

by increasing the number and types of variables. In lab-scale experiment generating small 

dataset, diversifying the experimental factors can be useful to track the effects of complex 

factors occurring in an actual experiment. So, we expects that the independent variables (X1, 

X2, X3) will be as suitable for predicting actual experimental results as or more than the 

dependent variables (T1, T2, T3) calculated assuming the ideal behavior of the polymer. 

3. Regression models

The algorithm for predicting the experimental output in the SDM platform is designed based 

on the conventional probabilistic and statistical methodologies. Among them, regression 

models and machine learning algorithms that are suitable for supervised learning and facile to 



add and delete variables are used in the platform. The platform users should design optimized 

algorithms based on theoretical and experimental knowledge about variable relationships, 

rather than intactly utilize conventional regression models as a fully automated platform. This 

is an important strategy of the SDM platform to draw conclusions consistent with scientific 

facts from small data analysis. So, we selected several regression models suitable for small data 

analysis of the adsorption property of polymer, then design the optimized algorithms of the 

predictive model.

In order to design a regression algorithm suitable for the dataset of PAA/PAH complexes, it is 

necessary to first identify the characteristics of the predictor and response variables. Hence, as 

shown schematically in Fig. S3a the characteristics of the data obtained from our experiment 

were divided into the following four major Cases: (1) a small amount of data, (2) a non-linear 

variable relationship, (3) a normal distribution, and (4) a categorical distribution. With respect 

to Case (1), the majority of manual experiments in which one dataset is created in one 

experimental cycle have the common feature that the amount of generated data is insufficient 

for machine learning. In Case (2), the relationship between, for example, the pH (X1) of the 

solvent and the properties (T1, T2) of the polymer, and that between the molecular weight (X3) 

and the amount of adsorption (Y1), are non-linear. As an example of Case (3), molecular weight 

(X3) of synthetic polymers generally display a normal distribution. Also, the measurement 

error of the adsorption amount (Y1) exhibit approximately normal distributions when 

considered as the sum of many independent  processes. Finally, as an example of Case (4), 

the data obtained from the adsorption amount (Y1) follow a categorical distribution according 

to the number of layers (X2).

As shown in Fig S3b, the next step is to select the appropriate regression model by considering 

the data characteristics. For a small dataset (Case 1) where the data are not enough to estimate 



the model structure, parametric methods may be more suitable, such as a linear model (LM) 

and a generalized linear mixed model (GLMM).3 The parametric model also performs well 

when the data follow a normal distribution (Case 2).4 On the other hand, non-parametric 

methods, such as the random forest (RF), the gradient boosting model (GBM), and the 

multivariate adaptive regression spline (MARS), are suitable for analyzing datasets that do not 

follow a probability distribution.5 Although the non-parametric method is prone to overfitting 

in small data analysis, they often show better results than parametric methods for non-linear 

data (Case 3) or categorical data (Case 4) analysis.6, 7 In addition, semi-parametric methods 

such as the generalized additive model (GAM) and the support vector machine (SVM) can be 

considered. When estimating the distribution of data that includes both linear and non-linear 

relationships of variables, the semi-parametric methods have the potential to provide a better 

performance.8 These regression algorithms are embodied by using the defined predictor 

variables, in which a different statistical function can be applied to each variable in 

consideration of the variable characteristics (Fig. S3c). For example, the adsorption properties 

of PAA/PAH complex follow a categorical distribution according to the number of layers (X2), 

so a logit link function was applied to the LM, GLMM, and GAM. In GLMM, we applied a 

random effect to pH of solution (X1), whose value may change during the experiment. We also 

implemented the GAM as an algorithm with both logit link function and random effect term 

applied. In order to automate this process, it is necessary to design automated workflow system 

according to the combination of all variables and statistical functions used for each regression 

model. Since this study is a proof-of-concept study, we confirmed the validity of the strategy 

by comparing and evaluating the performance of predictive models with fixed combination of 

statistical functions and predictor variables.



4. Regression algorithms

Linear model: The model was designed to fit the mean response E(Y|X) to a linear function of 

X. To keep the fitted values positive, a generalized linear model with a logit link function was 

used. Specifically, log E(Y|X) was fitted to the linear function and the predicted value was 

calculated by taking an exponential function of the fitted linear model. The mean response is 

given by the following expression:

Log 𝐸(𝑌│𝑋) = 𝛽1𝑋1.𝑃𝐴𝐴 +  𝛽2𝑋1.𝑃𝐴𝐻 +  𝛽3𝑋2 + 𝛽4𝑋3.𝑃𝐴𝐴 +  𝛽5𝑋3.𝑃𝐴𝐻

Thus, the corresponding mean response function is:

𝐸(𝑌│𝑋) = 𝑒𝑥𝑝(𝛽1𝑋1.𝑃𝐴𝐴 +  𝛽2𝑋1.𝑃𝐴𝐻 +  𝛽3𝑋2 + 𝛽4𝑋3.𝑃𝐴𝐴 +  𝛽5𝑋3.𝑃𝐴𝐻)

The expressions for the model using the transformed variables T1 from the analysis are:

log 𝐸(𝑌│𝑋) = 𝛽1𝑇1.𝑃𝐴𝐴 +  𝛽2𝑇1.𝑃𝐴𝐻 +  𝛽3𝑋2 + 𝛽4𝑋3.𝑃𝐴𝐴 +  𝛽5𝑋3.𝑃𝐴𝐻

and

𝐸(𝑌│𝑋) = 𝑒𝑥𝑝(𝛽1𝑇1.𝑃𝐴𝐴 +  𝛽2𝑇1.𝑃𝐴𝐻 +  𝛽3𝑋2 + 𝛽4𝑋3.𝑃𝐴𝐴 +  𝛽5𝑋3.𝑃𝐴𝐻

The generalized linear mixed effect model (GLMM): The generalized linear mixed effect model 

combines fixed effects and mixed effects into a single model. Fixed effects are parameters that 

are regarded as constants, whereas random effects are parameters that are regarded as random 

variables. In the present work, random effects were applied with respect to the pH value of 

solution, and the model assume the random effects fell on the intercept. The mean response 

was then fitted as the following:

log 𝐸(𝑌│𝑋) = ∑𝑎𝑖𝐼(𝑋1.𝑃𝐴𝐴) +  ∑𝑎𝑗𝐼(𝑋1.𝑃𝐴𝐻) + 𝛽1𝑋2 +  𝛽2𝑋3.𝑃𝐴𝐴 +  𝛽3𝑋3.𝑃𝐴𝐻 



and 

𝐸(𝑌│𝑋) = 𝑒𝑥𝑝(∑𝑎𝑖𝐼(𝑋1.𝑃𝐴𝐴) +  ∑𝑎𝑗𝐼(𝑋1.𝑃𝐴𝐻) + 𝛽1𝑋2 +  𝛽2𝑋3.𝑃𝐴𝐴 +  𝛽3𝑋3.𝑃𝐴𝐻)

The fitted model with the transformed variables T1 is given by:

log 𝐸(𝑌│𝑋) = ∑𝑎𝑖𝐼(𝑇1.𝑃𝐴𝐴) +  ∑𝑎𝑗𝐼(𝑇1.𝑃𝐴𝐻) +  𝛽1𝑋2 +  𝛽2𝑋3.𝑃𝐴𝐴 +  𝛽3𝑋3.𝑃𝐴𝐻

and 

𝐸(𝑌│𝑋) = 𝑒𝑥𝑝(∑𝑎𝑖𝐼(𝑇1.𝑃𝐴𝐴) +  ∑𝑎𝑗𝐼(𝑇1.𝑃𝐴𝐻) +  𝛽1𝑋2 +  𝛽2𝑋3.𝑃𝐴𝐴 +  𝛽3𝑋3.𝑃𝐴𝐻)

where  denotes the random effects on the intercept.𝑎𝑖,𝑗

The generalized additive model (GAM): The proposed generalized additive model (GAM) 

employs the same additive method as the linear model, thus contributing to an explanation of 

the effects of the variables included in the predictive model.9 Unlike the linear model, however, 

the GAM allows much more flexibility for each additive function. More precisely, the GAM 

fits the mean response function E(Y|X) to the sum of the smooth functions in each predictor. 

The mean response is given by the following expression:

log 𝐸(𝑌│𝑋) = ∑𝛼𝑖𝐼(𝑋1.𝑃𝐴𝐴) + ∑𝛼𝑗𝐼(𝑋1.𝑃𝐴𝐻) + 𝑠(𝑋2) + 𝑠(𝑋3.𝑃𝐴𝐴) + 𝑠(𝑋3.𝑃𝐴𝐻)

Hence, the mean response function is given by:

𝐸(𝑌│𝑋) =  𝑒𝑥𝑝(∑𝛼𝑖𝐼(𝑋1.𝑃𝐴𝐴) + ∑𝛼𝑗𝐼(𝑋1.𝑃𝐴𝐻) + 𝑠(𝑋2) + 𝑠(𝑋3.𝑃𝐴𝐴) + 𝑠(𝑋3.𝑃𝐴𝐻))

and the expressions for the model using the transformed variables from the analysis are:

log 𝐸(𝑌│𝑋) = ∑𝛼𝑖𝐼(𝑇1.𝑃𝐴𝐴) + ∑𝛼𝑗𝐼(𝑇1.𝑃𝐴𝐻) + 𝑠(𝑋2) + 𝑠(𝑋3.𝑃𝐴𝐴) + 𝑠(𝑋3.𝑃𝐴𝐻)

and



𝐸(𝑌│𝑋) =  𝑒𝑥𝑝(∑𝛼𝑖𝐼(𝑇1.𝑃𝐴𝐴) + ∑𝛼𝑗𝐼(𝑇1.𝑃𝐴𝐻) + 𝑠(𝑋2) + 𝑠(𝑋3.𝑃𝐴𝐴) + 𝑠(𝑋3.𝑃𝐴𝐻))

The random forest, decision tree, and ensemble learning methods: The random forest method10 

is an ensemble learning method applied to the decision tree method, where the latter is a simple 

and easy-to-use learning method that iteratively partitions a data set by choosing predictor 

variables and applying a partitioning rule at each node. Ensemble learning is a machine learning 

method for improving an otherwise inaccurate learning rule. In the present study, a random 

forest was constructed via an ensemble method known as bootstrap aggregation or bagging.11 

The algorithm for fitting the random forest is the following:12 

1) For b = 1 to B:

A. draw a bootstrap sample  of size N from the training data;𝑍 ∗

B. grow a random-forest tree  from the bootstrapped data by recursively repeating 𝑇𝑏

steps (i) to (iii) for each terminal node of the tree until the minimum node size 

 is reached:𝑛{𝑚𝑖𝑛}

i. select m variables at random from the p variables,

ii. pick the best variable/split-point among these, and

iii. split the node into two daughter nodes.

2) Output the ensemble of trees {𝑇𝑏}𝐵
1

To make a prediction at a new point x, the following regression and classification steps are 

applied:



Regression: 
𝑓 𝐵

𝑟𝑓(𝑥) =
1
𝐵

 ∑𝑇_𝑏(𝑥)

Classification: let  be the class prediction of the bth random-forest tree. 𝐶𝑏(𝑥)

Then: 𝐶
𝐵
𝑟𝑓(𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {𝐶𝑏(𝑥)}𝐵

1

Gradient boosting: Boosting is another ensemble method for updating a weak learning rule into 

a stronger one.13-15 AdaBoost proposed a method called gradient boosting, which is a gradient 

descent method in function space. Usually, a tree model is chosen as a basis weak learner. The 

algorithm for gradient tree boosting is the following:

1) initialize: ;𝑓0 = arg 𝑚𝑖𝑛 ∑𝐿(𝑦𝑖,𝛾)

2) for m = 1 to M:

A. for i = 1, 2, …, N, compute

    at ;𝑟𝑖𝑚 =  ‒ [∂𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) / ∂𝑓(𝑥𝑖)]  𝑓 = 𝑓{𝑚 ‒ 1} 

B. fit a regression tree to the targets  to give terminal regions ;𝑟𝑖𝑚 𝑅𝑗𝑚 , 𝑗 = 1, 2, …, 𝐽𝑚

C. for j = 1, 2, …, , compute𝐽𝑚

, where the summation ranges over ;𝛾𝑗𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑𝐿(𝑦𝑖, 𝑓{𝑚 ‒ 1}(𝑥𝑖) +  𝛾) 𝑥𝑖 ∈ 𝑅𝑗𝑚

D. update: .𝑓𝑚(𝑥) = 𝑓{𝑚 ‒ 1}(𝑥) + ∑𝛾𝑗𝑚𝐼(𝑥 ∈ 𝑅𝑗𝑚)

Output: .�̂�(𝑥) = 𝑓𝑀(𝑥)



Multivariate adaptive regression splines (MARS): Multivariate adaptive regression splines 

(MARS) is an adaptive regression method for constructing a stepwise additive model 

consisting of splines and the product of two splines.16 The model fitting strategy of MARS is 

similar to that of a forward stepwise linear regression, but uses the functions constructed from

 where , {(𝑋𝑗 ‒ 𝑡) + , (𝑡 ‒ 𝑋𝑗) + } 𝑡 ∈ {𝑥1𝑗, 𝑥2𝑗,…𝑥𝑁𝑗} 𝑎𝑛𝑑 𝑗 = 1, 2, …, 𝑝

where p is the number of predictors, and pairwise products of the above function (which are 

also functions). Thus, the fitted model has the form:

𝑓(𝑋) =  𝛽0 + ∑𝛽𝑚ℎ𝑚(𝑋),

where each  is a basic function of the type described above. ℎ𝑚

The support vector machine (SVM): The support vector machine is a method for discriminating 

the predictor space by fitting an affine linear hyperplane onto the predictor space. Among all 

possible hyperplanes, the one that generates the maximal margin is selected. A fundamental 

strategy for fitting the support vector machine model is given by the following:

 subject to ,
arg min

1
2

|𝑤|2
|𝑦𝑖 ‒ 𝑤𝑇𝑥𝑖 ‒ 𝛽0| ≤ 𝜖

Where,  is a pre-determined rate of error. 𝜖
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7. Figures

Fig. S1. The predictor variables are composed of controllable factors (independent variables, 

X), including experimental conditions, and calculable factors (transformed variables, T); 

response variable (Y1) is selected as property of the polymer complexes measured in the 

experiment.



Fig. S2. The transformed variables T1, T2, T3 are obtained from the X-T relationships 

established using theoretical formulas.



Fig. S3. Schematic diagrams showing three preparatory works for regression analysis: (a) 

determining characteristics of the dataset; (b) screening suitable regression models; (c) 

designing regression algorithm. The data distribution is divided into four major Cases and three 

types of regression methods are considered according to their specific characteristics. The 

regression algorithm is embodied by applying regression model and function to predictor 

variables individually.



Fig. S4. Comparisons of the regression model performance via the in-sample root mean square 

error (RMSE) with different variable combinations.



Fig. S5. Comparisons of the regression model performance via the leave-one-out cross-

validation (LOOCV) with different variable combinations.



Fig. S6. Comparisons of the regression model performance via heatmapping of the regression 

model with different variable combinations.


