Supporting Information

$\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ with distorted 2-uniform lattice (T13) showing unusual magnetic behaviors

Jinyang Li, Zhiying Zhao, Xing Huang, Meiyan Cui, and Zhangzhen He*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

* To whom correspondence should be addressed.

E-mail: hezz@fjirsm.ac.cn

Figure S1. The photo of grown crystals.
Figure S2. The experimental and calculated XRD patterns of $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$.
Figure S3. View of the oxygen-coordination environments for (a) Na and (b) Ba atoms in $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$.

Figure S4. Topological structure of $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ in the $a b$ plane, showing (a) twisted honeycomb structure formed by Col ions and (b) standard honeycomb lattice formed by Co2 ions.

Figure S5. The real $\left(\chi^{\prime}\right)$ and imaginary ($\chi^{\prime \prime}$) components of the ac susceptibilities for $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ measured at an oscillating field of 3 Oe with different frequencies.

Table S1. Crystal Data and Structure Refinement for $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ at 293 K .
Table S2. Atomic coordinates and equivalent isotropic displacement parameters for $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$.

Table S3. Selected bond lengths and angles for $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$.
Table S4. Anisotropic displacement parameters for $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$.
Table S5. The bond valence sum (BVS) calculation of all atoms for $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$.

Experimental details:

Synthesis. Polycrystalline sample of $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ can be prepared through a high-temperature solid-state reaction using high-purity chemicals of BaCO_{3} (99.99\%), $\mathrm{Na}_{2} \mathrm{CO}_{3}(99.9 \%), \mathrm{CoC}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (99.9\%) and $\mathrm{TeO}_{2}(99.99 \%)$ as raw materials with a molar ratio of 1:1:7:3. The raw materials were ground fully and calcined in a muffle furnace in air at $700^{\circ} \mathrm{C}$ for 50 h with several intermediate grindings. Single crystals of $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ were grown by a flux method using TeO_{2} and $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ as a mixed flux. The mixture of polycrystalline sample of $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}, \mathrm{TeO}_{2}$, and $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with a molar ratio of 1:5:0.3 was milled fully and homogenized thoroughly in an agate mortar by adding a certain amount of ethanol. The homogeneous mixture ($\sim 120 \mathrm{~g}$) was pressed and packed into a platinum crucible $\left(40 \times 40 \times 45 \mathrm{~mm}^{3}\right)$. The crucible was put into a vertical cylindrical electric furnace (height $50 \mathrm{~cm} \times \Phi 10 \mathrm{~cm}$) with a vertical temperature gradient of $10^{\circ} \mathrm{C} / \mathrm{cm}$ (the crucible was placed at the center of furnace). After the furnace was heated in air to $1050{ }^{\circ} \mathrm{C}$ and kept at $1050{ }^{\circ} \mathrm{C}$ for 12 h to ensure complete melting of the solution, the furnace was cooled slowly to $900{ }^{\circ} \mathrm{C}$ at a rate of $1{ }^{\circ} \mathrm{C} / \mathrm{h}$ while keeping at a constant temperature several times. Finally, the furnace was cooled to room temperature at a rate of $10{ }^{\circ} \mathrm{C} / \mathrm{h}$. With this procedure, the purple strip crystals of $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ can be obtained by mechanical separation from the crucible and some of strip crystals reach at the size of $2.5 \mathrm{~cm} \times 0.5 \mathrm{~cm} \times 0.3 \mathrm{~cm}$ (Figure S 1). The purity of grown crystals was checked by powder X-ray diffraction (Figure S2) performed on a Rigaku MiniFlex 600 diffractometer equipped with a diffracted monochromator set for Cu radiation with $\lambda=1.5406 \AA$, showing that the obtained and simulated patterns are coincident without redundant peaks.

Crystal Structure Determination. A small crystal of $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ with a size of $0.2 \mathrm{~mm} \times 0.05 \mathrm{~mm} \times 0.05 \mathrm{~mm}$ were selected and mounted on glassy fibers for single crystal X-ray diffraction (XRD) measurements. Data collections were performed at 293 K on a Rigaku Mercury CCD diffractometer equipped with a graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA$). The data sets were corrected for Lorentz and polarization factors as well as for absorption by Multi-scan
method [1]. The crystal structure was solved using direct methods and refined by full matrix least-squares fitting on F^{2} by SHELX-14 program [2] using the Olex2 ${ }^{2}$ interface [3]. The final refined structure parameters were checked by the PLATON program [4]. Crystallographic data and structural parameters for the compound are summarized in Table S1-S4. The bond valence sum (BVS) calculation of all atoms for $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ is listed in Table S5.

Magnetic Measurement. A single crystal sample of $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ with a size of 4 $\mathrm{mm} \times 1 \mathrm{~mm} \times 1 \mathrm{~mm}$ (weight $\sim 24.1 \mathrm{mg}$) was fixed by non-magnetic tape and placed horizontally or vertically in a plastic drinking straw. Magnetic measurements of $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ were performed on a commercial Quantum Design Physical Property Measurement System (PPMS-9). The dc magnetic susceptibility was measured under an applied field of 1000 Oe from 300 to 2 K (temperature scan of 5 $\mathrm{K} / \mathrm{min}$) and the isothermal magnetization was measured at 2 K from -8 to 8 T (field scan of $0.1 \mathrm{~T} /$ step). Zero field-cooling (ZFC) and field-cooling (FC) magnetic susceptibilities were also measured at 0.1 T from 2 to 300 K . The ac susceptibilities were measured under an oscillating field of 0.3 Oe with different frequencies from 100 to 10000 Hz . Specific heat was measured at zero field from 300 K to 2 K by a relaxation method using a single crystal sample of $\sim 10.2 \mathrm{mg}(\sim 2.5 \mathrm{~mm} \times \sim 2.5 \mathrm{~mm} \times$ $\sim 0.27 \mathrm{~mm}$) with N -grease. Magnetic data corrections were estimated by using Pascal constants and background correction due to the sample holders.
[1] CrystalClear, Version 1.3.5; Rigaku Corp.: The Woodlands, TX, 1999.
[2] G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.
[3] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, A. K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
[4] A. Spek, Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7-13.

Figure S1. The photo of $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ grown crystals.

Figure S2. The experimental and calculated XRD patterns of $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$.

(a)

(b)

Figure S3. View of the oxygen-coordination environments (polyhedron) for (a) Na and (b) Ba atoms in $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$.

(a)

(b)

Figure S4. Topological structure of $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ in the $a b$ plane, showing (a) twisted honeycomb structure formed by $\mathrm{Co1}$ ions and (b) standard honeycomb lattice formed by Co2 ions.

Figure S5. (a) The real (χ^{\prime}) and (b) imaginary ($\chi^{\prime \prime}$) components of the ac susceptibilities for $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ measured at an oscillating field of 3 Oe with different frequencies.

Table S1. Crystal Data and Structure Refinement for $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$ at 293 K .

Formula	$\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$
Formula weight	1266.60
Temperature $/ \mathrm{K}$	$293(2)$
Crystal system	hexagonal
Space group	$P 6_{3} / m$
a / \AA	$9.4283(2)$
b / \AA	$9.4283(2)$
c / \AA	$9.0489(2)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	120
Volume $/ \AA^{3}$	$696.62(3)$
Z	2.00004
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}{ }^{3}$	6.039
μ / mm^{-1}	17.231
$\mathrm{~F}(000)$	1134.0
Radiation	$\mathrm{MoK}^{3}(\lambda=0.71073)$
Goodness-of-fit on F^{2}	1.178
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]^{\mathrm{a}}$	$\mathrm{R}_{1}=0.0233, \mathrm{wR}_{2}=0.0505$
Final R indexes $[$ all data $]$	$\mathrm{R}_{1}=0.0264, \mathrm{wR}_{2}=0.0514$
${ }^{\mathrm{a}} R_{1}=\sum\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\| / \sum\right\| F_{\mathrm{o}} \mid$, and $w R_{2}=\left\{\sum w\left[\left(F_{\mathrm{o}}\right)^{2}-\left(F_{\mathrm{c}}\right)^{2}\right]^{2} / \sum w\left[\left(F_{\mathrm{o}}\right)^{2}\right]^{2}\right\}^{1 / 2}$	

Table S2. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\frac{\mathbf{U (e q)}}{}$
$\mathrm{Co}(1)$	$3584.6(6)$	$3509.9(6)$	$4099.6(5)$	$6.30(11)$
$\mathrm{Co}(2)$	6666.67	3333.33	7500	$10.2(2)$
$\mathrm{Ba}(1)$	0	0	5000	$15.72(14)$
$\mathrm{Na}(1)$	3333.33	6666.67	$5777(3)$	$4.8(4)$
$\mathrm{Te}(1)$	$3547.7(3)$	$3435.9(4)$	7500	$3.77(9)$
$\mathrm{O}(1)$	$2825(5)$	$1120(4)$	7500	$8.6(6)$
$\mathrm{O}(2)$	$2080(3)$	$3168(3)$	$5914(3)$	$6.7(4)$
$\mathrm{O}(3)$	$4571(4)$	$5803(4)$	7500	$7.1(6)$
$\mathrm{O}(4)$	$5200(3)$	$3862(3)$	$8996(3)$	$7.5(4)$

U_{eq} is defined as $1 / 3$ of the trace of the orthogonalised U_{IJ} tensor.

Table S3. Selected bond lengths and angles for $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$.

$\mathrm{Te}(1)-\mathrm{O}(3)$	$1.939(3)$	$\mathrm{Co}(2)-\mathrm{O}(4) \# 8$	$2.164(3)$
$\mathrm{Te}(1)-\mathrm{O}(2) \# 1$	$1.920(2)$	$\mathrm{Co}(2)-\mathrm{O}(4) \# 9$	$2.164(3)$
$\mathrm{Te}(1)-\mathrm{O}(2)$	$1.920(2)$	$\mathrm{Co}(2)-\mathrm{O}(4) \# 1$	$2.164(3)$
$\mathrm{Te}(1)-\mathrm{O}(4)$	$1.948(2)$	$\mathrm{Co}(2)-\mathrm{O}(4) \# 10$	$2.164(3)$
$\mathrm{Te}(1)-\mathrm{O}(4) \# 1$	$1.948(2)$	$\mathrm{Co}(2)-\mathrm{O}(4)$	$2.164(3)$
$\mathrm{Te}(1)-\mathrm{O}(1)$	$1.935(3)$	$\mathrm{Co}(2)-\mathrm{O}(4) \# 11$	$2.164(3)$
$\mathrm{Co}(1)-\mathrm{O}(3) \# 3$	$2.101(3)$	$\mathrm{Na}(1)-\mathrm{O}(3) \# 12$	$2.325(3)$
$\mathrm{Co}(1)-\mathrm{O}(2) \# 4$	$2.115(2)$	$\mathrm{Na}(1)-\mathrm{O}(3) \# 13$	$2.325(3)$
$\mathrm{Co}(1)-\mathrm{O}(2)$	$2.087(3)$	$\mathrm{Na}(1)-\mathrm{O}(3)$	$2.325(3)$
$\mathrm{Co}(1)-\mathrm{O}(4) \# 1$	$2.212(3)$	$\mathrm{Na}(1)-\mathrm{O}(4) \# 14$	$2.334(3)$
$\mathrm{Co}(1)-\mathrm{O}(4) \# 5$	$2.150(3)$	$\mathrm{Na}(1)-\mathrm{O}(4) \# 15$	$2.334(3)$
$\mathrm{Co}(1)-\mathrm{O}(1) \# 6$	$2.123(3)$	$\mathrm{Na}(1)-\mathrm{O}(4) \# 5$	$2.334(3)$
		$\mathrm{O}(2)-\mathrm{Ba}(1)$	$2.756(2)$
$\mathrm{O}(3)-\mathrm{Te}(1)-\mathrm{O}(4)$	$82.89(11)$	$\mathrm{O}(2) \# 1-\mathrm{Te}(1)-\mathrm{O}(4) \# 1$	$174.67(11)$

$\mathrm{O}(3)-\mathrm{Te}(1)-\mathrm{O}(4) \# 1$	$82.89(11)$	$\mathrm{O}(2)-\mathrm{Te}(1)-\mathrm{O}(1)$	$91.58(11)$
$\mathrm{O}(2) \# 1-\mathrm{Te}(1)-\mathrm{O}(3)$	$93.59(10)$	$\mathrm{O}(2) \# 1-\mathrm{Te}(1)-\mathrm{O}(1)$	$91.58(11)$
$\mathrm{O}(2)-\mathrm{Te}(1)-\mathrm{O}(3)$	$93.59(10)$	$\mathrm{O}(4)-\mathrm{Te}(1)-\mathrm{O}(4) \# 1$	$88.05(15)$
$\mathrm{O}(2)-\mathrm{Te}(1)-\mathrm{O}(2) \# 1$	$96.70(15)$	$\mathrm{O}(1)-\mathrm{Te}(1)-\mathrm{O}(3)$	$172.22(16)$
$\mathrm{O}(2)-\mathrm{Te}(1)-\mathrm{O}(4)$	$174.67(11)$	$\mathrm{O}(1)-\mathrm{Te}(1)-\mathrm{O}(4)$	$91.53(11)$
$\mathrm{O}(2) \# 1-\mathrm{Te}(1)-\mathrm{O}(4)$	$87.54(10)$	$\mathrm{O}(1)-\mathrm{Te}(1)-\mathrm{O}(4) \# 1$	$91.53(11)$
$\mathrm{O}(2)-\mathrm{Te}(1)-\mathrm{O}(4) \# 1$	$87.54(10)$	$\mathrm{O}(4) \# 8-\mathrm{Co}(2)-\mathrm{O}(4) \# 1$	$134.09(4)$
$\mathrm{O}(3) \# 3-\mathrm{Co}(1)-\mathrm{O}(2) \# 4$	$90.41(12)$	$\mathrm{O}(4) \# 1-\mathrm{Co}(2)-\mathrm{O}(4)$	$77.47(13)$
$\mathrm{O}(3) \# 3-\mathrm{Co}(1)-\mathrm{O}(4) \# 1$	$95.09(9)$	$\mathrm{O}(4) \# 10-\mathrm{Co}(2)-\mathrm{O}(4) \# 8$	$134.08(5)$
$\mathrm{O}(3) \# 3-\mathrm{Co}(1)-\mathrm{O}(4) \# 5$	$74.49(11)$	$\mathrm{O}(4) \# 8-\mathrm{Co}(2)-\mathrm{O}(4) \# 11$	$77.46(13)$
$\mathrm{O}(3) \# 3-\mathrm{Co}(1)-\mathrm{O}(1) \# 6$	$93.47(10)$	$\mathrm{O}(4) \# 10-\mathrm{Co}(2)-\mathrm{O}(4)$	$134.09(5)$
$\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(3) \# 3$	$169.67(10)$	$\mathrm{O}(4) \# 11-\mathrm{Co}(2)-\mathrm{O}(4) \# 1$	$85.00(10)$
$\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(2) \# 4$	$95.33(12)$	$\mathrm{O}(4) \# 7-\mathrm{Co}(2)-\mathrm{O}(4) \# 8$	$85.00(10)$
$\mathrm{O}(2) \# 4-\mathrm{Co}(1)-\mathrm{O}(4) \# 5$	$161.53(10)$	$\mathrm{O}(4) \# 10-\mathrm{Co}(2)-\mathrm{O}(4) \# 11$	$85.00(10)$
$\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(4) \# 5$	$98.14(10)$	$\mathrm{O}(4) \# 8-\mathrm{Co}(2)-\mathrm{O}(4)$	$85.00(10)$
$\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(4) \# 1$	$76.95(9)$	$\mathrm{O}(4) \# 11-\mathrm{Co}(2)-\mathrm{O}(4)$	$134.09(4)$
$\mathrm{O}(2) \# 4-\mathrm{Co}(1)-\mathrm{O}(4) \# 1$	$84.78(10)$	$\mathrm{O}(4) \# 10-\mathrm{Co}(2)-\mathrm{O}(4) \# 1$	$85.00(10)$
$\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(1) \# 6$	$95.16(10)$	$\mathrm{O}(4) \# 10-\mathrm{Co}(2)-\mathrm{O}(4) \# 7$	$77.46(13)$
$\mathrm{O}(2) \# 4-\mathrm{Co}(1)-\mathrm{O}(1) \# 6$	$89.51(12)$	$\mathrm{O}(4) \# 7-\mathrm{Co}(2)-\mathrm{O}(4) \# 1$	$134.09(5)$
$\mathrm{O}(4) \# 5-\mathrm{Co}(1)-\mathrm{O}(4) \# 1$	$86.03(10)$	$\mathrm{O}(4) \# 7-\mathrm{Co}(2)-\mathrm{O}(4)$	$85.00(10)$
$\mathrm{O}(1) \# 6-\mathrm{Co}(1)-\mathrm{O}(4) \# 1$	$169.74(11)$	$\mathrm{O}(4) \# 7-\mathrm{Co}(2)-\mathrm{O}(4) \# 11$	$134.08(5)$
$\mathrm{O}(1) \# 6-\mathrm{Co}(1)-\mathrm{O}(4) \# 5$	$101.74(12)$		
S			

Symmetry transformations used to generate equivalent atoms: \#1 $+\mathrm{x},+\mathrm{y}, 3 / 2-\mathrm{z}$; \#2 +x,+y,1/2-z; \#3 1-x,1-y,1-z; \#4 +y,-x+y,1-z; \#5 1-x,1-y,-1/2+z; \#6 -y+x,+x,1-z; \#7 $1-y,+x-y,+z ; \quad \# 8 \quad 1+y-x, 1-x,+z ; \quad \# 9 \quad 1-x, 1-y, 1 / 2+z ; \quad \# 10 \quad 1-y,+x-y, 3 / 2-z ; \quad \# 11$ $1+y-x, 1-x, 3 / 2-z ; \quad \# 12 \quad+y, 1-x+y, 1-z ; \quad \# 13 \quad+y-x, 1-x,+z ; \quad \# 14 \quad 1-y, 1+x-y,+z ; \quad \# 15$ $-y+x,+x,-1 / 2+z ; \# 16+y, 1-x+y,-1 / 2+z ;$

Table S4. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}_{11}+2 \mathrm{hka} \mathrm{b}^{*} \mathrm{U}_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$		$\mathbf{U}_{\mathbf{2 3}}$		$\mathbf{U}_{\mathbf{1 3}}$
$\mathrm{Te}(1)$	$3.97(14)$	$3.92(14)$	$3.14(14)$	0	0	$\mathbf{U}_{\mathbf{1 2}}$	
$\mathrm{Co}(1)$	$6.5(2)$	$6.1(2)$	$5.4(2)$	$0.41(15)$	$0.63(15)$	$2.44(16)$	
$\mathrm{Co}(2)$	$10.1(3)$	$10.1(3)$	$10.2(6)$	0	0	$5.06(16)$	
$\mathrm{Na}(1)$	$4.3(6)$	$4.3(6)$	$5.8(11)$	0	0	$2.2(3)$	
$\mathrm{O}(3)$	$7.2(15)$	$2.5(14)$	$10.2(17)$	0	0	$1.4(12)$	
$\mathrm{O}(2)$	$6.4(10)$	$9.5(10)$	$4.9(10)$	$-2.1(9)$	$-2.3(8)$	$4.4(9)$	
$\mathrm{O}(4)$	$6.3(10)$	$9.5(11)$	$6.2(11)$	$-0.5(9)$	$-2.7(9)$	$3.7(9)$	
$\mathrm{O}(1)$	$12.4(16)$	$3.6(14)$	$10.1(16)$	0	0	$4.1(12)$	
$\mathrm{Ba}(1)$	$7.52(15)$	$7.52(15)$	$32.1(3)$	0	0	$3.76(7)$	

Table S5. The bond valence sum (BVS) calculation of all atoms for $\mathrm{BaNa}_{2} \mathrm{Co}_{7} \mathrm{Te}_{3} \mathrm{O}_{18}$.

Atom	BVS	Valence
Ba 1	2.132	+2
Na 1	1.447	+1
Co 1	1.841	+2
Co 2	1.675	+2
Te 1	5.716	+6
O 1	1.727	-2
O 2	1.934	-2
O 3	2.094	-2
O 4	1.971	-2

