Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

1 Supporting Information

2 Chemical control on conversion between bicyclic and polycyclic

3 terpene by fungal bifunctional terpene synthases

- 4 Xinye Wang,^a Zhixin Wang,^a Guoliang Zhu,^a Lan Jiang,^a Weiyan Zhang,^a Yiyi Huang,^a Zhanren Cong,^a Yi-Lei
- 5 Zhao,^b Jian-He Xu,^a Tom Hsiang,^c Lixin Zhang,^a Qi Chen,^{*a} and Xueting Liu^{*a}

Table of Contents

MATERIALS AND METHODS	4
SUPPLEMENTARY TEXT	7
SUPPORTING FIGURES	13
Figure S1. The phylogenetic analysis of the reported BFTSs and the putative BFTSs discovered from	1
our in-house collection and from fungal genomes from public database	13
Figure S2. Proposed residues lining the putative catalytic pocket of BsPS.	14
Figure S3. Amino acid sequence alignments of the bifunctional terpene synthases from fungi	15
Figure S4. The structure of isolated compounds 1–5 and GC-MS profiles of crude extracts obtained	
from BsPS-WT (i), BsPS-S89L (ii), BsPS-S89A (iii), BsPS-S89C (iv), and BsPS-S89G (v)	16
Figure S5. Relative productions of BsPS variants in the TCSM libraries	17
Figure S6. HPLC analysis of the products of the WT and the variants	18
Figure S7. HR-EI-MS spectrum of 2 in MeOH	19
Figure S8. ¹ H NMR (600 MHz, C ₆ D ₆) spectrum of 2	20
Figure S9. ¹³ C NMR (150 MHz, C ₆ D ₆) spectrum of 2	20
Figure S10. HSQC NMR (600 MHz, C ₆ D ₆) spectrum of 2	21
Figure S11. ¹ H- ¹ H COSY NMR (600 MHz, C ₆ D ₆) spectrum of 2	21
Figure S12. HMBC NMR (600 MHz, C ₆ D ₆) spectrum of 2	22
Figure S13. NOESY NMR (600 MHz, C ₆ D ₆) spectrum of 2	22
Figure S14. Structure and key 2D NMR correlations of 2	23
Figure S15. HR-EI-MS spectrum of 3 in MeOH	24
Figure S16. ¹ H NMR (600 MHz, C ₆ D ₆) spectrum of 3 .	25
Figure S17. ¹³ C NMR (150 MHz, C ₆ D ₆) spectrum of 3	25
Figure S18. HSQC NMR (600 MHz, C ₆ D ₆) spectrum of 3	26
Figure S19. ¹ H- ¹ H COSY NMR (600 MHz, C ₆ D ₆) spectrum of 3	26
Figure S20. HMBC NMR (600 MHz, C ₆ D ₆) spectrum of 3	27
Figure S21. NOESY NMR (600 MHz, C ₆ D ₆) spectrum of 3	27
Figure S22. Structure and key 2D NMR correlations of 3	28
Figure S23. HR-EI-MS spectrum of 4 in MeOH	29
Figure S24. ¹ H NMR (600 MHz, C ₆ D ₆) spectrum of 4	30
Figure S25. ¹³ C NMR (150 MHz, C ₆ D ₆) spectrum of 4	30
Figure S26. HSQC NMR (600 MHz, C ₆ D ₆) spectrum of 4	31
Figure S27. ¹ H- ¹ H COSY NMR (600 MHz, C ₆ D ₆) spectrum of 4	31
Figure S28. HMBC NMR (600 MHz, C ₆ D ₆) spectrum of 4	32
Figure S29. NOESY NMR (600 MHz, C ₆ D ₆) spectrum of 4	32
Figure S30. Structure and key 2D NMR correlations of 4.	33
Figure S31. HR-EI-MS spectrum of 5 in MeOH	34
Figure S32. ¹ H NMR (600 MHz, C ₆ D ₆) spectrum of 5 .	35
Figure S33. ¹³ C NMR (150 MHz, C ₆ D ₆) spectrum of 5	35
Figure S34. HSQC NMR (600 MHz, C ₆ D ₆) spectrum of 5	36
Figure S35. ¹ H- ¹ H COSY NMR (600 MHz, C ₆ D ₆) spectrum of 5	36
Figure S36. HMBC NMR (600 MHz, C ₆ D ₆) spectrum of 5	37
Figure S37. NOESY NMR (600 MHz, C ₆ D ₆) spectrum of 5	37
Figure S38. Structure and key 2D NMR correlations of 5.	38

Figure S39. Key NOE correlations of 2–5 .	39
Figure S40. DFT-optimized structures for low-energy conformers of 2 at B3LYP/6-31G(d) level in	
methanol (PCM).	40
Figure S41. Experimental CD and computed ECD of 2	41
Figure S42. DFT-optimized structures for low-energy conformers of 3 at B3LYP/6-31G(d) level in	
methanol (PCM).	42
Figure S43. Experimental CD and computed ECD of 3	43
Figure S44. DFT-optimized structures for low-energy conformers of 4 at B3LYP/6-31G(d) level in	
methanol (PCM).	44
Figure S45. Experimental CD and computed ECD of 4	45
Figure S46. Amino acid sequence alignment of the BFTSs BsPS, 13294, 8051, sp16a and FoFS	46
Figure S47. HR-EI-MS spectrum of 1 in MeOH	47
Figure S48. ¹ H NMR (600 MHz, CDCl ₃) spectrum of 1	48
Figure S49. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of 1	48
Figure S50. Computed reaction pathways of 1–5 and potential energy profiles of the pathways	49
Figure S51. The superimposed view of IM3 in (A) BsPS-WT, (B) BsPS-S89A, (C) BsPS-S89C, and	(D)
BsPS-S89L	51
Figure S52. Snapshots of the apoprotein with Mg ²⁺ of (A) WT, (B) S89L, (C) S89A, and (D) S89C	52
Figure S53. The superimposed view of GFPP in (A) WT, (B) S89L, (C) S89A, and (D) S89C	53
Figure S54. The superimposed views of 2 (A) and IM4b (B) in S89L.	54
Figure S55. The distance statistics between F61 or W69 of the WT and mutant BsPS to C_7 and C_{10} of	f
IM3 during MD simulations	55
Figure S56. The superimposed views of IM3 in (A) S89A and (B) S89C.	56
Figure S57. The superimposed views of (A) IM3, (B) IM4c, (C) IM5c, (D) IM6c, (E) IM6c', (F) IM	17c
in S89L	57
SUPPORTING TABLES	58
Table S1. Mutants of TCSM library.	58
Table S2. Relative production of the products yielded from the TCSM variants.	59
Table S3. Pocket volumes of the WT and mutants BsPS.	62
Table S4. List of primers for libraries I, II, and III	63
Table S5. List of primers for saturation mutagenesis of S89.	66
Table S6. 1D and 2D NMR Data of 2.	67
Table S7. 1D and 2D NMR Data of 3 .	68
Table S8. 1D and 2D NMR Data of 4.	69
Table S9. 1D and 2D NMR Data of compound 5.	70
Table S10. Energy profiles of path b1 and path c calculation.	71
Table S11. Cartesian coordinates.	73
REFERENCES	89

MATERIALS AND METHODS

Materials and instruments

Oligonucleotides were synthesized by GENEWIZ (Suzhou, China). Plasmid preparation kit I (D6943-02) was purchased from Omega Bio-tek (Norcross, GA, USA). The ClonExpress II One Step Cloning Kit was purchased from Vazyme Biotech Co., Ltd. (Nanjing, China). DNA sequencing was conducted by GENEWIZ (Suzhou, China). All commercial chemicals were purchased from Sigma (Saint Louis, MO, USA), Takara (Otsu, Japan), Adamas-beta (Shanghai, China), or Sinopharm Chemical Reagent (Shanghai, China). Semipreparative HPLC was carried out using a Cosmosil Cholester column (10×250 mm, 5 µm) and ACE Excel 5 C18 column (10×250 mm, 5 µm). ¹H, ¹³C NMR, and 2D NMR spectra were recorded on a Agilent DD2 (Santa Clara, CA, USA) 600 MHz NMR spectrometer. The NMR spectra were referenced against solvent signals with resonances at $\delta_{\rm H}$ 7.16 ppm, $\delta_{\rm C}$ 128.06 ppm in C₆D₆. The CD spectra was recorded on a Chirascan circular dichroism spectrometer using MeOH as solvent. HREIMS measurements were obtained on a Waters GCT Premier mass spectrometer.

Plasmids construction

The encoding gene of the WT BsPS was inserted in *Escherichia coli/Saccharomyces cerevisiae* shuttle vectors pXW55 and expressed in *S. cerevisiae* (*SC*) BJ5464. The constructed plasmid pXW55-*wt* was used as template for TCSM at the putative active sites in the catalytic pocket. The primers used to construct BsPS-TCSM mutation library are listed in Table S3. First, one site of each library was mutated by PCR. After digestion of the PCR products with *Dpn*I to remove the WT template plasmid, 2 μ L of the reaction mixture was used to transform *E. coli* BL21 (DE3). After plating, individual colonies were picked and the plasmids were extracted and sequenced. Second, the other sites of each library were mutated simultaneously by PCR, using the sequenced plasmid from the first step as template. Then, the PCR products were treated using the same protocol as in the first step, then sequenced.

Small-scale fermentation of *S. cerevisiae* heterologously expressing the wild-type (WT) and mutant BsPS

Based on sequencing results, plasmids containing the encoding genes of wild-type (WT) and mutant BsPS were transformed into *S. cerevisiae* BJ5464. After plating, colonies were picked for protein overexpression and used to inoculate 5 mL uracil-dropout medium (20 g·L⁻¹ glucose, 5.0 g·L⁻¹ casamino acids, 0.02 g·L⁻¹ adenine, 6.7 g·L⁻¹ YNB, 0.02 g·L⁻¹ tryptophan, pH 7.5). After incubation for 48 h at 30 °C with shaking at 200 rpm, 0.5 mL of the culture was transferred to a 250 mL flask containing 50 mL YPD medium (20 g·L⁻¹ tryptone, 10 g·L⁻¹

¹ yeast extract, 20 g·L⁻¹ glucose, pH 7.5). The culture was incubated at 30 °C with shaking at 200 rpm for 72 h to express the target protein and accumulate metabolites.

Small-scale fermentation of *E. coli* heterologously expressing the WT FoFS and the mutant L89S

Plasmids containing the encoding genes of WT FoFS and the mutant L89S were transformed into *E. coli* (*EC*) BL21 (DE3). After plating, colonies were picked for protein overexpression and used to inoculate 5 mL Luria-Bertani (LB) medium (10 g·L⁻¹ trypton, 5.0 g·L⁻¹ yeast extract, 10 g·L⁻¹ NaCl, pH 7.5). After incubation for 10 h at 37 °C with shaking at 200 rpm, 1 mL of the culture was transferred to a 250 mL flask containing 50 mL autoinduction medium (10 g·L⁻¹ α-lactose, 1.0 g·L⁻¹ glucose, 5.0 g·L⁻¹ glycerol, 6.8 g·L⁻¹ KH₂PO₄, 0.25 g·L⁻¹ MgSO₄, 10 g·L⁻¹ tryptone, 5.0 g·L⁻¹ yeast extract, 7.1 g·L⁻¹ Na₂HPO₄, 0.71 g·L⁻¹ Na₂SO₄, and 2.67 g·L⁻¹ NH₄Cl, pH 7.5) supplemented with kanamycin (50 µg·mL⁻¹). After cultivation at 37 °C with shaking at 200 rpm for the first 2-3 h, the culture was incubated at 17 °C with shaking at 200 rpm for another 48 h to express the target protein and accumulate metabolites.

Extraction of cell cultures and GC-MS analysis

After fermentation, the cells were harvested by centrifugation at 5,000 g, then soaked with acetone for 30 min. After centrifugation at 5,000 g, the supernatant was separated and concentrated in vacuo. Then the residue was dissolved in EtOAc. The organic layer was evaporated in vacuo to afford crude extracts.

The crude extracts were dissolved in EtOAc (1 mg/mL) and analyzed by GC-MS with a DB-5 ms capillary column (0.25 mm \times 30.0 m, 0.25 µm film thickness; SHIMADZU) under the following conditions. GC settings: inlet pressure 110 kPa, injection volume 2 µL, temperature program: 0 min at 60 °C increasing at 25 °C min⁻¹ to 280 °C, then increasing at 10 °C min⁻¹ to 310 °C, remaining at 310 °C for 11.8 min, and carrier gas He at 1.77 mL·min⁻¹. MS settings: source temperature 200 °C, transfer line temperature 250 °C, and electron energy 0.4 kV.

Large-scale fermentation of SC-S89L and EC-L89S and purification of compounds 1-6

After enlarging the fermentation volume to 40 L, 1,100 g biomass (wet weight) of *SC*-S89L was obtained. The crude extracts of *SC*-S89L (1.5 g) were preliminarily purified by silica gel column chromatography using a hexane-CH₂Cl₂ gradient (1:0 and 1:1, v/v) to afford two fractions A and B. Fraction A was further purified by semi-preparative HPLC using ACE Excel 5 C18 column (Φ 10 × 250 mm) with a flow rate of 4.0 mL/min and a isocratic elution (100% ACN) monitored with DAD ($\lambda_1 = 210$ nm, $\lambda_2 = 254$ nm) to give **2** (1.0 mg, $t_R = 44.0$ min) and **3** (1.5 mg, $t_R = 43.0$ min). Fraction B was first separated by semi-preparative HPLC using ACE Excel 5 C18-AR column (Φ 10 × 250 mm) with a flow rate of 3.2 mL/min and a isocratic elution (100% ACN) monitored with DAD ($\lambda = 210$ nm) to afford fraction B-1, which was further purified by a COSMOSIL Cholester column (Φ 4.6 × 250 mm) under the following conditions ($\lambda = 210$ nm, 100% MeOH, 0.8 mL/min) to afford 1 (5.0 mg, $t_R = 8.5$ min), 4 (0.8 mg, $t_R = 16.5$ min), and 5 (0.5 mg, $t_R = 9.0$ min).

The fermentation volume of *EC*-L89S was 20 L, ~200 g biomass (wet weight) was obtained. The crude extracts of *EC*-L89S (0.23 g) were preliminarily purified by silica gel column chromatography using hexane and CH₂Cl₂ to afford two fractions A and B, respectively. Fraction B was purified by semi-preparative HPLC using ACE Excel 5 C18-AR column (Φ 10 × 250 mm) with a flow rate of 4.0 mL/min and a isocratic elution (ACN:H₂O = 95:5) monitored with DAD (λ_1 = 210 nm, λ_2 = 254 nm) to give **1** (2.0 mg, *t*_R = 11.9 min).

ECD Calculation details

The calculations were performed by using the density functional theory (DFT) as carried out in the Gaussian 09¹. The preliminary conformational distributions search was performed by Sybyl-X 2.0 software. All ground-state geometries were optimized at the B3LYP/6-31G(d) level. Solvent effects of methanol solution were evaluated at the same DFT level by using the SCRF/PCM method. TD-DFT at B3LYP/6-31+G(d) was employed to calculate the electronic excitation energies and rotational strengths in methanol.

Computational details for DFT mechanism calculations

The molecular geometries of the complexes were optimized using density functional theory (DFT) calculations at the M06–2X/6–31G(d,p) level. Frequency calculations were also performed at the same level of theory to identify all the stationary points as minima (zero imaginary frequencies) or transition states (one imaginary frequency), and the free energies at 298.15 K. An IRC analysis was performed to confirm that all the stationary points were smoothly connected to each other. The Gibbs free energies were calculated from the electron energies using the mPW1PW91/6–31+G(d,p) level, plus the thermal correction of the M06–2X/6-31G(d,p) level. All calculations were performed using the Gaussian 09¹ package.

Starting structures and system preparation

The initial protein structures were constructed using homology modeling method SWISS-MODEL, in which a crystal structure of *Phomopsis amygdali* fusicoccadiene synthase (PaFS, PDB ID: 5ERM) was employed as template (sequence similarity: 40.0 %). The ligands including GFPP, IMs, products, were docked into the catalytic pocket of the proteins, WT, S89L, S89C, S89A, using AutoDock Vina², respectively. Side chains of residues F61, W69, S89, L93, F196, M199, T224, and L227, were treated as flexible. The search grid box 30 × 30×30 Å³ was placed to include the substrate-binding site. The exhaustiveness was set at 32 and default options were used for the remaining parameters. The conformations of the ligands with similar binding direction in the catalytic pocket were selected for molecular dynamics simulations. Hydrogens of proteins are added with reduce utility of AmberTools 20³. Using tleap, water molecules was assigned with the TIP3P model, and protein and ions were described by the ff14SB force field, while the GAFF force field was employed to generate the force field parameters for the MD simulations. The partial atomic charges of ligands were obtained from the restrained electrostatic potential (RESP) charge based on HF/6-31G(d) calculation with Gaussian 09¹ package. And the ligands were structurally optimized with the semi-empirical method (AM1) and parameterized for the following-up molecular dynamic simulation with the antechamber program in the AMBER 20³ software package. The complexes were solvated in a truncated octahedral box of water molecules, extending 10.0 Å along each dimension with 8 Na⁺ ion added to neutralized the calculated system.

Molecular dynamic simulations

The MD simulations of the apoproteins and receptor-ligand complexes were run with the AMBER 20³ software package. We firstly imposed harmonic restraints on the protein, ligand, and Mg²⁺, keeping the waters of solvation free. For the second minimization step, the C_{α} of the protein and ligand, and Mg²⁺ have been restrained. For the last minimization step, all system was set free. The MD systems were minimized by the steepest descent minimization of 2000 steps followed the conjugate gradient minimization of 2000 steps for each step of the minimizations. Next, the complex was heated up from 0 to 300 K at constant volume in 50 ps, and relaxed the models density for another 100 ps under constant pressure without any restraints. The Particle Mesh Ewald (PME) method was employed for long-range electrostatic interactions. Finally, a production of 2 × 100 ns was calculated at 300 K at constant volume, employing the SHAKE algorithm to constrain all the covalent bonds containing hydrogen.⁴⁻⁶ The MD simulation was carried out taking advantage of the GPU acceleration of the Amber 20 PEMED package.

SUPPLEMENTARY TEXT

Design of triple-codon saturation mutagenesis (TCSM) library

We used the crystal structure of PaFS⁷ (PDB ID: 5ERM, sequence identity: 40%) as a template for homology modeling of the wild-type (WT) BsPS. The region of the catalytic pocket of the WT protein was predicted using POVME,⁸ after which 11 amino acid residues (F61, W69, S89, L93, R187, N190, F196, M199, T224, L227, and N231) were found in the putative active pocket (Figure S2). Asparagine has been reported to coordinate Mg²⁺,^{9, 10} and arginine stabilizes the bisphosphonate moiety,^{7, 10} therefore R187, N190, and N231 were excluded from the candidate list of sites for mutation experiments. Aromatic amino acids can stabilize the carbocation intermediates of terpene cyclization reactions by cation… π and C–H… π interactions.^{11, 12} Sato and co-workers considered that W164, F191, F196, and W318 in

the NfSS pocket exercise cation… π or C–H… π functions, which contributes to the carbonation transportation *via* branched routes and drives the hydride shift.¹³ Therefore, we divided the selected sites into three groups according to their spatial distribution, and included one aromatic amino acid residue into each group (Figure S2). We obtained the following three groups of amino acids: (I) F61, S89, L93; (II) W69, M199; and (III) F196, T224, L227. The substitution amino acids in each group were selected from non-polar amino acids, Phe (F) with aromatic ring, Ala (A) with minimal spatial site resistance, and Leu (L) with a high frequency of occurrence at these eight corresponding sites in the homologous proteins of BsPS (Figure S3). In addition, to provide enough space in the pocket for the bulky GFPP substrate, at most one aromatic amino acid per group was used. Thus, three TCSM libraries I–III containing 20, 8, and 20 variants, respectively, were then constructed to screen for new sesterterpene production (Figure S5).

For TCSM library I, 16 of 20 variants completely or partially lost their enzymatic activity of forming **1** and produced geranylfarnesol (GFOH) as the major product. Three variants (S89A, S89L, and F61A/S89A) were able to produce new products, along with **1** with different yields and product profiles. Remarkably, the variant S89L can catalyze the formation of these five sesterterpenes (**1**–**5**). In TCSM library II, the function of most of the variants was inactivated, while only two variants (W69A/M199A and W69L/M199F) retained their cyclization activities. This led to the production of two new products (**2** and **3**), along with **1**. Eight of 20 variants in TCSM library III were found to generate new products (**2** and **3**), of which T224L, F196A/T224A, F196L/T224F, and F196L/T224A/L227A had relatively higher yields of **2** and **3** than of **1**. We chose the variant S89L to characterize new products yielded by BsPS variants since it could produce these four new products for further large-scale fermentation and structural elucidation (using S89A as a control), as well as the computational simulations on their cyclization mechanisms.

Structural elucidation of compounds 1-5

Compound **2** was isolated as a white powder, [α]27 D 24.0 (*c* 0.035, MeOH). The molecular formula C₂₅H₄₀ was confirmed by HR-EI-MS (M⁺ at *m/z* 340.3125, calcd. for 340.3130, Figure S7), indicating 6 units of unsaturation. Combined analysis of the ¹H, ¹³C, and HSQC NMR data (Figures S8-S10; Table S6) of **2** revealed the presence of five olefinic methines ($\delta_{C/H}$ 123.4/5.39; 126.8/5.06; 129.8/5.34; 137.7/6.01; 126.9/5.48), three olefinic quaternary carbons (δ_C 134.4; 132.3; 134.2), one *sp*³ quaternary carbon (δ_C 47.3), three methines ($\delta_{C/H}$ 53.5/2.61; 52.6/1.62; 29.6/1.62), seven methylenes ($\delta_{C/H}$ 44.6/2.36&1.94; 40.9/2.27&2.02; 24.7/2.29&2.03; 40.3/2.02&1.97; 25.1/2.22&2.06; 43.5/1.48&1.35; 30.2/1.37), four methyl singlets ($\delta_{C/H}$ 15.6/1.56; 15.3/1.53; 12.6/1.72; 23.4/0.83) and two methyl doublets ($\delta_{C/H}$ 22.9/1.01; 22.4/0.94). These data showed high similarity to those of

preterpestacin I (1), except for an additional double bond of 2 replaced original O-substituted methine in 1. The ¹H-¹H COSY (Figure S11; Table S6) cross peaks revealed the presence of 4 spin systems including A: H₁ ($\delta_{\rm H}$ 2.36&1.94) to H₂ ($\delta_{\rm H}$ 5.39); B: H₄ ($\delta_{\rm H}$ 2.27&2.02) through $H_5(\delta_H 2.29\&2.03)$ to $H_6(\delta_H 5.06)$; C: $H_8(\delta_H 2.02\&1.97)$ through $H_9(\delta_H 2.22\&2.06)$ to $H_{10}(\delta_H$ 5.34); **D**: $H_{12}(\delta_{\rm H} 6.01)$ to $H_{13}(\delta_{\rm H} 5.48)$ to $H_{14}(\delta_{\rm H} 2.61)$ to $H_{18}(\delta_{\rm H} 1.62)$ to $H_{17}(\delta_{\rm H} 1.37)$ to H_{16} $(\delta_{\rm H} 1.48 \& 1.35)$, with an isopropyl unit, $H_{24}(\delta_{\rm H} 1.01)$ and $H_{25}(\delta_{\rm H} 0.94)$ through $H_{19}(\delta_{\rm H} 1.62)$ connected at H₁₈. Then, the HMBC (Figure S12; Table S6) correlations from H₂₀ ($\delta_{\rm H}$ 1.56) to C_2 (δ_C 123.4), C_3 (δ_C 134.4) and C_4 (δ_C 40.9) suggested that spin systems A and B were connected through C₃; the HMBC correlations from H₂₁ ($\delta_{\rm H}$ 1.53) to C₆ ($\delta_{\rm C}$ 126.8), C₇ ($\delta_{\rm C}$ 132.3) and C₈ ($\delta_{\rm C}$ 40.3) suggested that spin systems **B** and **C** were connected through C₇; the HMBC correlations from H₂₂ ($\delta_{\rm H}$ 1.72) to C₁₀ ($\delta_{\rm C}$ 129.8), C₁₁ ($\delta_{\rm C}$ 134.2) and C₁₂ ($\delta_{\rm C}$ 137.7) suggested that spin systems C and D were connected through C_{11} ; the HMBC correlations from H₂₃ ($\delta_{\rm H}$ 0.83) to C₁ ($\delta_{\rm C}$ 44.6), C₁₄ ($\delta_{\rm C}$ 53.5), C₁₅ ($\delta_{\rm C}$ 47.3) and C₁₆ ($\delta_{\rm C}$ 43.5) suggested that spin systems A and D were connected through C_{15} . These data showed that 2 is a 5/15 bicyclic sesterterpene. The olefinic bonds of C₂-C₃, C₆-C₇ and C₁₀-C₁₁ were all assigned as *E*configurations based on the NOESY correlations of H₂₁ to H₅, H₂₂ to H₉, and H₁ to H₂₀, respectively. Double bond at C₁₂-C₁₃ was determined to be 12,13-trans based on large coupling constant (${}^{3}J_{H12-H13} = 15.0 \text{ Hz}$). The key NOESY correlations of H₂₃ to H₂₅, H₂₃ to H_{13} , and H_1 to H_{14} indicated that the 23-CH₃ and isopropyl moiety (C₂₄-C₁₉-C₂₅) connected at C_{18} were on the same orientation of the 5-membered ring, while both H_{14} and H_1 were on the other side (Figure S13; Table S6). To determine the absolute configurations of 2, the timedependent density functional theory (TD-DFT) method was applied for the ECD calculations and simulations at the B3LYP/6-31+G(d) level. The preliminary conformational distribution search was performed by Sybyl 2.0 software. The corresponding minimum geometries were further fully optimized by using DFT at the B3LYP/6-31G(d) level as implemented in the Gaussian 09 program package. The results showed that the measured CD curve of 2 was well matched with the calculated ECD for 14R,15S,18S-2 (Figures S14, S39-S41).

Compound **3** was isolated as a white powder, $[\alpha]27 \text{ D } 83.0 (c \ 0.01, \text{ MeOH})$. The molecular formula $C_{25}H_{40}$ was determined by HR-EI-MS (M+ at *m/z* 340.3126, calcd. for 340.3130, Figure S15), indicating 6 units of unsaturation. The ¹H and ¹³C NMR data of **3** was highly similar to those of **2**, except for an exo-olefinic CH₂ of **3** ($\delta_{C/H}$ 108.2/4.91) replaced the original *sp*² methine in **2** (Figures S16 and S17; Table S7). The HMBC correlations of H₂₀ ($\delta_{H} 4.91$) to C₂ ($\delta_{C} 30.8$), C₃ ($\delta_{C} 150.4$), and C₄ ($\delta_{C} 37.7$), H₆ ($\delta_{H} 5.08$) to C₄, H₁ ($\delta_{H} 1.54/1.47$) to C₂, and H₂₃ to C₁, C₁₄ ($\delta_{C} 56.3$), C₁₅ ($\delta_{C} 46.3$), C₁₆ ($\delta_{C} 40.9$) assigned the exo-olefine group at $\Delta^{3,20}$ (Figure S20; Table S7). The left three double bonds including C₁₂-C₁₃, C₆-C₇ and C₁₀-C₁₁ were all assigned as *E*- configurations. The NOESY coupling pattern of **3** was almost the same to **2**, thus the C₆-C₇, C₁₀-C₁₁ and C₁₂-C₁₃ double-bonds were assigned as *E*-

configurations (Figure S21). The absolute configurations of **3** was determined as 14R, 15S, 18S- using the same ECD calculation methods (Figures S22, S39, S42-S43).

Compound 4 was isolated as a white powder, $[\alpha]25$ D 13.5 (c 0.022, MeOH). The molecular formula C₂₅H₄₂O was confirmed by HR-EI-MS (M⁺ at m/z 358.3240, calcd. for 358.3236, Figure S23), indicating 5 units of unsaturation. Combined analysis of the ¹H, ¹³C, and HSQC NMR data (Figures S24-S26; Table S8) of 4 revealed the presence of two olefinic quaternary carbons ($\delta_{\rm C}$ 144.1; 133.3), one O-substituted quaternary carbon ($\delta_{\rm C}$ 75.2), one sp^3 quaternary carbon ($\delta_{\rm C}$ 42.0), seven methines ($\delta_{\rm C/H}$ 49.8/2.02; 46.8/2.53; 39.2/1.92; 47.9/2.40; 51.3/1.41; 47.6/1.65; 31.8/1.54), eight methylenes ($\delta_{C/H}$ 43.6/1.81&0.80; 36.1/1.73&1.58; 25.1/1.56; 31.7/1.59; 30.1/2.18&2.06; 29.8/1.62; 41.6/1.50&1.11; 28.6/1.85&1.57), three methyl singlets ($\delta_{C/H}$ 32.6/1.28; 15.0/1.68; 19.4/0.80) and three methyl doublets ($\delta_{C/H}$ 15.7/0.95; 24.3/0.93; 22.8/0.87). These characteristics were quite similar to those of sesterfisherol, a 5/6/8/5 tetracyclic sesterterpene produced by NfSS,¹⁴ indicating they shared the same carbon backbone. Detailed analysis of 2D NMR revealed that the hydroxyl group in 4 was connected at C_4 , rather than C_{12} in sesterfisherol, based on the key HMBC correlation of H_{20} ($\delta_{\rm H}$ 1.28) to C_2 ($\delta_{\rm C}$ 49.8), C_3 ($\delta_{\rm C}$ 75.2), and C_4 ($\delta_{\rm C}$ 36.1), as well as H_{22} ($\delta_{\rm H}$ 1.68) to C_{10} $(\delta_{\rm C} 144.1), C_{11} (\delta_{\rm C} 133.3), \text{ and } C_{12} (\delta_{\rm C} 47.9)$ (Figure S28). Thus, 4 was the hydroxyl positional isomer of sesterfisherol. Further NOESY analysis established the relative configurations of 4, based on the key NOE cross peaks of H₂₅ to H₂₃, H₂₄ to H₁₃, H₁₂ to H₁₄, H₁₂ to H₆, H₂₁ to H₅, H₂₀ to H₁, and H₂ to H₂₃ (Figure S29). The absolute configurations of 4 was determined as 2R,3R,6R,7R,12R,14R,15S,18S- using the same ECD calculation methods (Figures S22, S39, S44-S45).

Compound **5** was isolated as a white powder, $[\alpha]25 \text{ D} -27$ (*c* 0.033, MeOH). The molecular formula $C_{25}H_{42}O$ was deduced by HR-EI-MS (M⁺ at *m/z* 358.3234, calcd. for 358.3236, Figure S31). Combined analysis of the ¹H, ¹³C, and HSQC NMR data (Figures S32-S34; Table S9) of **5** revealed one *O*-substituted quaternary carbon (δ_C 75.3), three *sp*³ quaternary carbons (δ_C 41.3; 30.8; 41.2), seven methines ($\delta_{C/H}$ 44.6/1.86; 46.0/2.20; 38.7/0.65; 48.1/0.62; 50.2/1.22; 47.5/1.71; 31.2/1.63), eight methylenes ($\delta_{C/H}$ 42.2/1.98&0.91; 44.2/1.69&1.51; 29.8/1.79&1.60; 34.0/1.73; 25.4/1.88&1.67; 27.2/1.74&1.66; 41.9/1.54&1.10; 28.3/1.82&1.54), three methyl singlets ($\delta_{C/H}$ 24.3/1.06; 11.9/1.16; 19.2/0.83) and three methyl doublets ($\delta_{C/H}$ 16.2/1.15; 24.6/1.02; 22.4/0.89). These characteristics were quite similar to those of aspterpenacid B, a 5-3-7-6-5 pentacyclic sesterterpenoid produced by mangrove endophytic fungus *Aspergillus terreus* H010.¹⁵ While in the 1D NMR of **5**, the resonance of carboxyl and *O*-substituted methine could not be observed, instead there are an additional methyl singlet ($\delta_{C/H}$ 11.9/1.16) and *sp*³ methine ($\delta_{C/H}$ 48.1/0.62) compared to aspterpenacid B. Detailed analysis of 2D NMR revealed **5** and aspterpenacid B shared the same carbon skeleton, except that the carboxyl connected at C_{11} of aspterpenacid B was replaced by a methyl, and the hydroxyl was substituted at C_3 in **5**, based on the key HMBC correlations of H_{22} (δ_H 1.16) to C_6 (δ_C 41.3), C_{10} (δ_C 38.7), C_{11} (δ_C 30.8), and C_{12} (δ_C 48.1); H_{20} (δ_H 1.06) to C_2 (δ_C 44.6) and C_3 (δ_C 75.3); as well as H_2 (δ_H 1.86) to C_{11} and C_3 (Figure S36). These data showed that **5** is a 5/6/7/3/5 pentacyclic sesterterpene. The NOESY analysis of **5** revealed the key cross peaks between H_7/H_5 , H_5/H_{10} , H_5/H_{12} , H_{22}/H_{23} , H_{20}/H_{12} , H_2/H_{23} , H_{23}/H_{19} , H_{23}/H_{13} , and H_{13}/H_{24} (Figures S37-S39). Since **5** shared the same stereochemistry on C_{14} , C_{15} , and C_{18} with **1** (14*R*,15*S*, and 18*S*), The absolute configurations of **5** could be deduced to be 2*R*,3*R*,6*R*,7*R*,10*R*,11*R*,12*R*,14*R*,15*S*, and 18*S* according to **5** shared the same cyclization pathway as **4**.

Compound 1 was isolated as yellow oil. The molecular formula $C_{25}H_{42}O$ was confirmed by HRESIMS ($[M - H_2O + H]^+$ at *m/z*, calcd. for 341.3208, Figure S47), indicating 5 units of unsaturation. The ¹H and ¹³C NMR data (Figures S48-S49) of 1 were same as preterpestacin I¹⁶.

Detailed computed cyclization pathway of 1–5

The concerted 1,15- and 14,18-bond formation was triggered by eliminating the pyrophosphate group of GFPP (IM1) yields IM2 with a 5/15 fused ring system. A 1,5hydride shift between C_{12} and C_{19} produces **IM3**, which generates a stabilized allylic carbocation. IM3 serves as a branch point of three different cyclization routes: (i) In *Path a*, the reaction is quenched by H_2O attack on the allylic carbocation C_{10} to generate 1 (Figure S50); (ii) In *Path b1*, deprotonation occurs to form a new double bond $\Delta^{12,13}$ and leads to the formation of 2, which is further protonated to form a new carbocation of C₃ to generate IM4b. The following deprotonation produces 3. In Path b2, TS 3-4b, a "sandwich-like" delocalization in the transition-state structure involves a 1,5-proton transfer from C_{13} to the Si face of C₂ to form **IM4b** with a low activation barrier ($\Delta G^{\ddagger} = 6.24$ kcal/mol),¹⁷ which is then deprotonated to form **3**. DFT calculations confirmed this process to be both thermodynamically and kinetically favorable, while this sort of intramolecular proton transfer with a C=C π -bond acting as a base has been previously proposed in mechanisms for taxadiene¹⁸ and abietadiene¹⁹ biosynthesis; (iii) In *Path c*, the allylic carbocation in IM3 is partially stabilized with a distal $\Delta^{6,7}$ double bond. The cation $\cdots \pi$ interaction leads to the smooth formation of the D ring to give 5/12/5 tricyclic IM4c. Then, a successive transformation involving two rounds of 1,2-hydride shifts (IM4c \rightarrow IM5c \rightarrow IM6c) lead to the formation of the B ring and the tetracyclic 5/6/8/5 carbocation intermediate IM7c. Finally, H₂O attacks the carbocation C₃ of **IM7c** to quench the reaction leading to 4. In *Path* c, the possible cyclization route is divided into two sub-routes from IM5c based on the DFT calculation and leads to final products 4 (described above) and 5. The activation energy of

IM5c \rightarrow **IM6c'** via **TS_5c-6c'** ($\Delta G^{\ddagger} = 2.22$ kcal/mol) is similar to that of **IM5c** \rightarrow **IM6c** via **TS_5c-6c** ($\Delta G^{\ddagger} = 4.7$ kcal/mol) (Figure S50). The homo-allylic carbocation **IM5c** transforms to the relatively stable cyclopropyl carbocation intermediate **IM6c'** and generates the final product 5/6/7/3/5 pentacyclic terpene **5** quenching by water.

SUPPORTING FIGURES

Figure S1. The phylogenetic analysis of the reported BFTSs and the putative BFTSs discovered from our in-house collection and from fungal genomes from public database. Maximum Likelihood phylogenetic tree of TC domains of 383 putative BFTS of publicly available genomes from NCBI (220) and 430 in-house phytopathogenic fungal genomes (163). BFTS in this study are indicated by red and the reported ones cited in this study are indicated in grey. The bar represents 1 nucleotide substitutions per site.

Figure S2. Proposed residues lining the putative catalytic pocket of BsPS. The pocket areas of the WT BsPS and the variants are shown in grey mesh. Three Mg^{2+} are shown in green sphere. The view in panel B is rotated by 180° from that in panel A.

	40	50	60	70	80	90
BsPS PaFS NfSS EvQS PbTS BmTS1 BmTS2 BmTS3 AcOS EvAS EvSS FgMS PvFS EvVS AbFS PaPS FgGS PcCS PrDS CpPS CgDS	DAASRRFVQDW DRGAIRAHEDW DAATRRALRDW IEDVRKVEDQF ADVTADYLRKW DQATLESINDW NAATRKLLSDW NLASERVMQDW EVGAFRAQEDW EIDCLRCHEHW DIGCLRCQEHW DKGALRAQEDW EVAIFKAQYDW DRGAIRAHEDW NEGSLRCRTDW DRGAIRAHEDW NEGSLRCRTDW DTGCHKARSDW IADHVSVQCHI TSRPISLSFKT ALKMHESNASK DKACWEACDDF	AREMRDGRE NKHIGPC DYYLHDGLA NSEMKTSID QKAVKADNP KAVKDDGWE AGMVGDGWE AGMVGDGWE AREMRDGRE RRLVGPLP. RENVGPLP. KRLVGPLP. KRLVGPL. CPL. KRLVGPL. EKHVGPL. EKHVGPL. EKHVGPL. EXHVGPLPL. CLNGIDAVG VRSGSNKS. PDIPARARA ENATGLKLK	QSTHFSFSP GEYRGTLGPI ERALISISE TKTTADFPE ERKDLVFHG SRSGSAISK SESNSSLSE LLTINACSK QSTHFSFSP KPYAGLLGPI GVYKGGLADG GVFKGTLGPI .NFTGCLSPI LPFRGALGPI GEYRGTLGPI .RWCSCNPWI KQFKGTLGPI .EFCGCNLGPI SKFGNLNAHI YAVCCINPT AQNYLDDALI ADSVGCINPT	VGNWSSLIN RFSFISVAN RGNLGAFAN LGGNLGAFAN LGGNVCSFIN STTTLGHFVSWAN VGNWCSFIN VGNWCSFIN VGNWCSFIN VGNWSSLIN OFSFITGAN STTTLGHFVSWAN VGNWCSFIN STTTLGHFVSWAN RGNFICTUN STTTLSUN GNFTAVIN NGNFTAVIN AGNFTALYN XGNFTALYN XGNFTALYN XGNFTALYN XGNFTALYN XGNFTALYN XGNFTALYN XGNFTALYN XGNFTALYN	Image: Constraint of the second state of the second sta	YISDL YANEF YITDL RITEI QICDF YIANI YISDL YISDL YASEF YANEF YANEF YANEF YANEF YANEF YANEF YIKEY YIKEF YIKEF YIKEF YIKEF YIKEF
	100			11	0 120	
BsPS PaFS NfSS EvQS PbSS PbSS BmTS1 BmTS2 BmTS3 AcOS EvAS EvAS EvSS FgMS PvFS EvVS AbFS PaPS FgGS PcCS PrDS CpPS CgDS	GLIHDDGGEGL AFLHDDVTDHV GILHDDGYEAM TFFNDDYYDDA GFYWDDVTDSV GNIHDDATEDA GLIHDDNTEAM GLIHDDNTEAM GLIHDDNTEAM GLIHDDVTDTD GLIHDDVIDTD AFVHDDVIDTA AFLHDDITDVE AFLHDDITDVE AFLHDDVTDHV AFLHDDVTDHV AFLHDDVTDHV AFLHDDVTDHV AFLHDDVTDHV AFLHDDVTDHV AFLHDDVTDHV AFLHDDVTDHV AFLHDDVTDA AFLHDDVTAA AFMYDDVESA AFLHDDVTAA AFLHDDVTAA AFLHDDVTAA AFLHDDLVDTAA AFLHDDLVDTAA	SIEDAQA GHDTGEV GVEKILD. SVEKILD. IDDAIT. SSDLANQ EETEAWA SIEDAQA SIEDAQA SIEDAQA GKEEGDH GKEEGDH GKEEGDH SAETVAA GKEEGDH SAETVAA GKEEGDH SAETVAA GKEEGDH SAETVAA GKEEGDH SAETVAA GKEEGDH SAETVAA GKEEGDH SAETVAA GKEEGDH SAETVAA GKEEGDH SAETVAA GKEEGDH SAETVAA GKEEGDH SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV SAETVAA SHDTGEV	WEAIYAKNSS	LL YK. SLLHCMEAFVGVC	HGELCAALDPSD ENDEMMTVFLEAA EHREFGALFDPHE YNNHLRECFGGRA ITQDLALALLSEL SHAQFSTALSLDT EHKVLSAALN.GS EHGAFAAAINFHQ EHGELCAALDPSD SLDEVGHTLDQ.S QNDDLRVGFEQMI HNNDFKEAFNSMA ENNEMAAGFGSVL ENDEFLDALQQGV ENDEMMTVFLEAA DETEYRT ENDKLMGTFLAGT LNDTWRDGITEGL PESE ENKMLHQALNQSG ANKQLTEGLEEYG DFDRMPHLLRDGN VHGPLARFLGSES	ISS HTGAI QLP EDE TLG DDS PTC ISS RTG TTG NPA REG HTGAI QGT DTT DTT DTS PTC FMATP KQS
	180	190	200	210	220 230	
BsPS PaFS NfSS EvQS PbSS PbTS BmTS1 BmTS2 BmTS3 AcOS EvAS EvAS EvAS EvSS PvFS EvVS AbFS FgGS PaCS PrDS CpPS CgDS	AQTME . EYLKY FVELA. KYIPY FKSVE . EYQAY LKSLD . EYLPF NMSFE . EYTKH IESLE . EYLEF FNDIS. SYLKF FSSLK . EYMNY FKALE . QYIPY FKALE . QYIPY FKALE . QYIPY FKALE . QYIPY FKALE . EYLEY FVELA . KYIPY FVELA . KYIPY FVELA . KYIPY FNNLE . EYVDY FRNLE . EYVDY FRNLE . EYVDY FRNLE . DYLEY FPSID . DYLEF FQTLE . DYFIF FAQMDPECLDR HKTLD . SYMHV	RSDNGGMLV RSDNGGMLV RRDDFGIRA RIGNSGIEV RLSEVGARW RLSEVGARW RMSNGGMDF RNQNVGMSA RSDNGGMLV RALDVGYMI RIYDVGMLF RIYDVGMLF RIYDVGMLF RIYDVGMLF RIYDVGMF RIYDVGMF RIYDVGMF RIYDVGMF RIYDVGMF RIYDVGMF RIYDVGMF RIYDVGMF RIYDVGAAF RIYDCASYF RIYDCASYF RIVDCASYF RIVDCASYF RIVDCASYF RIVDCASYF RIVDCASYF RIVDCASYF RIVDCASYF RIVDCASYF RIVDCASYF RIVDCASYF RIVDCASYF RIVDCASYF RIVDCASYF RIVDCASYF RIVDCASYF	FWFMLQFSL WFGLVTFGM YQDMSCFGM YQDMSCFGM YQDMSCFGM FWFMVEFGM FWFMLQFGM FWAMVLFGM FWFMLQFGM WHGLVTFGC WYCLLTFAQ WYCLLTFAQ WYCLLTFAQ WYCLLTFAM WFGLVTFGL WHALIIFGC WHALIIFGL VDMLMRFGM WFGVVTFGM LIALSTFAM VEALMLFGL TALSTFAM VEALMCFSM VACKGVLGF VWSQLLFCC	GMSISEAEEALVQ GMSISEAEEALVQ AMRLSDEDKKLIF GVKLTKEEKEKLI GINLSREKKDSVA GLNIPDAELAPTF OITLTDDEIKATQ GYEPTAEEHDLVQ GMSISEAEEALVQ AITIPNEEEEAAF KITIPENELTTCF GLTISPDEAEKA GLTISPEHEIELCF GLHIPDHELELCF GLHIPDHELELCF GLHIPDHELELCF GIMLTQEEQKRIF ALTIPAEDKDEVF GMSLSPQEDDALQ GITLTPEEEKLAF DFYLTAEETAQTS VPGTTHDADMSSF DISLTDEELTGLF	2 P TI D AATE GLL 1 2 P TI D AATE GLL 1 2 E LMANAWI AV GLI V 2 P VMEP ID KAIIW 2 P VNKGLLAAALN 3 HFVNKGLLAAALN 2 HVMDAVD C ALVL 2 HVMDAVD C ALVL 2 HVMDAVD C ALVL 2 HVMDAVD C ALVL 2 HVLEP IE E GICL 2 P IIDAATE GLL 1 4 E VCRTAYVCIML 1 E LAIPAY RHMAL 1 E VCRTAYVCIML 1 E LAIPAY RHMAL 1 E VCRTAYVCIML 1 E LAIPAY RHMAL 1 E VCRTAYVCIML 2 F IVKPCYAALGL 2 F IVKPCYAALGL 5 F IVKPCYAALGL 5 F IVKPCYAALGL 5 S ITSAAYDAWVL 3 S ITSAAYDAWVL	A ND Y FS S HD Y WS C ND Y YS C ND YS C ND Y YS C ND YS

Figure S3. Amino acid sequence alignments of the bifunctional terpene synthases from fungi.

Figure S4. The structure of isolated compounds **1–5** and GC-MS profiles of crude extracts obtained from BsPS-WT (i), BsPS-S89L (ii), BsPS-S89A (iii), BsPS-S89C (iv), and BsPS-S89G (v).

Figure S5. Relative productions of BsPS variants in the TCSM libraries. The dark blue cuboids in the top row show the relative total production of cyclized terpenes (wild-type = 100%), while the other cuboids show the relative production of compounds 2–5. All data are based on peak integrals in the GC-MS.

Figure S6. HPLC analysis of the products of the WT and the variants. (A) Products 1, 4, and 5 were analyzed by HPLC on ACE Excel 5 C18-AR column (Φ 4.6 × 250 mm). (B) Products 2 and 3 were analyzed by HPLC on ACE Excel 5 C18 column (Φ 4.6 × 250 mm).

Figure S7. HR-EI-MS spectrum of 2 in MeOH.

Figure S8. ¹H NMR (600 MHz, C_6D_6) spectrum of 2.

Figure S9. 13 C NMR (150 MHz, C₆D₆) spectrum of **2**.

Figure S10. HSQC NMR (600 MHz, C_6D_6) spectrum of 2.

Figure S11. ¹H-¹H COSY NMR (600 MHz, C_6D_6) spectrum of 2.

Figure S12. HMBC NMR (600 MHz, C_6D_6) spectrum of 2.

Figure S13. NOESY NMR (600 MHz, C₆D₆) spectrum of 2.

Figure S14. Structure and key 2D NMR correlations of 2.

Figure S15. HR-EI-MS spectrum of 3 in MeOH.

Figure S16. ¹H NMR (600 MHz, C_6D_6) spectrum of 3.

Figure S17. 13 C NMR (150 MHz, C₆D₆) spectrum of 3.

Figure S18. HSQC NMR (600 MHz, C_6D_6) spectrum of 3.

Figure S19. ¹H-¹H COSY NMR (600 MHz, C_6D_6) spectrum of 3.

Figure S20. HMBC NMR (600 MHz, C_6D_6) spectrum of 3.

Figure S21. NOESY NMR (600 MHz, C₆D₆) spectrum of 3.

Figure S22. Structure and key 2D NMR correlations of **3**.

Figure S23. HR-EI-MS spectrum of 4 in MeOH.

Figure S24. ¹H NMR (600 MHz, C_6D_6) spectrum of 4.

Figure S25. 13 C NMR (150 MHz, C₆D₆) spectrum of 4.

Figure S26. HSQC NMR (600 MHz, C_6D_6) spectrum of 4.

Figure S27. ^{1}H - ^{1}H COSY NMR (600 MHz, C₆D₆) spectrum of 4.

Figure S28. HMBC NMR (600 MHz, C₆D₆) spectrum of 4.

Figure S29. NOESY NMR (600 MHz, C₆D₆) spectrum of 4.

Figure S30. Structure and key 2D NMR correlations of 4.

Figure S31. HR-EI-MS spectrum of 5 in MeOH.

Figure S32. ¹H NMR (600 MHz, C₆D₆) spectrum of 5.

Figure S33. 13 C NMR (150 MHz, C₆D₆) spectrum of 5.

Figure S34. HSQC NMR (600 MHz, C_6D_6) spectrum of 5.

Figure S35. $^{1}H^{-1}H$ COSY NMR (600 MHz, $C_{6}D_{6}$) spectrum of 5.

Figure S36. HMBC NMR (600 MHz, C₆D₆) spectrum of 5.

Figure S37. NOESY NMR (600 MHz, C₆D₆) spectrum of 5.

Figure S38. Structure and key 2D NMR correlations of 5.

Figure S39. Key NOE correlations of 2–5.

Figure S40. DFT-optimized structures for low-energy conformers of **2** at B3LYP/6-31G(d) level in methanol (PCM).

Figure S41. Experimental CD and computed ECD of 2.

Figure S42. DFT-optimized structures for low-energy conformers of **3** at B3LYP/6-31G(d) level in methanol (PCM).

Figure S43. Experimental CD and computed ECD of 3.

Figure S44. DFT-optimized structures for low-energy conformers of **4** at B3LYP/6-31G(d) level in methanol (PCM).

Figure S45. Experimental CD and computed ECD of 4.

Figure S46. Amino acid sequence alignment of the BFTSs BsPS, 13294, 8051, sp16a and FoFS. The sequence identities between BsPS and 13294, 8051, sp16a, and FoFS are 71.09%, 71.49%, 71.21%, and 53.20%, respectively.

Figure S47. HR-EI-MS spectrum of 1 in MeOH.

Figure S48. ¹H NMR (600 MHz, CDCl₃) spectrum of 1.

Figure S49. ¹³C NMR (150 MHz, CDCl₃) spectrum of 1.

Figure S50. Computed reaction pathways of 1–5 and potential energy profiles of the pathways. (A) **IM3** is the first branching point to generate 1, 2, and **IM4**, while **IM5c** is the second branching point to generate **IM6c** and **IM6c'** via **TS_5c-6c** and **TS_5c-6c'**, respectively. TS, transition state. (B) The Gibbs free energies were calculated from the

electron energies using the mPW1PW91/6–31+G(d,p) level, plus the thermal correction of the M06–2X/6–31G(d,p) level. The potential energy profile relative to **IM1** are shown in red.

Figure S51. The superimposed view of **IM3** in (**A**) BsPS-WT, (**B**) BsPS-S89A, (**C**) BsPS-S89C, and (**D**) BsPS-S89L. C₇ and C₁₀ are shown in purple sphere.

Figure S52. Snapshots of the apoprotein with Mg²⁺ of (A) WT, (B) S89L, (C) S89A, and (D) S89C. The pocket areas of the WT BsPS and the variants are shown in grey mesh. The loop in which F61 and W69 are located is shown in yellow.

Figure S53. The superimposed view of GFPP in (A) WT, (B) S89L, (C) S89A, and (D) S89C. C_{14} and C_{19} are shown in purple spheres.

Figure S54. The superimposed views of 2 (A) and IM4b (B) in S89L.

Figure S55. The distance statistics between F61 or W69 of the WT and mutant BsPS to C_7 and C_{10} of **IM3** during MD simulations.

Figure S56. The superimposed views of IM3 in (A) S89A and (B) S89C.

Figure S57. The superimposed views of (A) **IM3**, (B) **IM4c**, (C) **IM5c**, (D) **IM6c**, (E) **IM6c'**, (F) **IM7c** in S89L.

1 SUPPORTING TABLES

		Ι]	Ι		III	
	F61	S89	L93	W69	M19 9	F196	T224	L227
1	/	А	А	F	А	/	А	А
2	/	А	/	F	L	/	А	/
3	/	L	А	А	А	/	L	А
4	/	L	/	А	L	/	L	/
5	А	А	А	А	F	А	А	А
6	А	А	L	L	А	А	А	/
7	А	А	F	L	L	А	А	F
8	А	L	А	L	F	А	L	А
9	А	L	/	/	/	А	L	/
10	А	L	F	/	/	А	L	F
11	А	F	А	/	/	А	F	А
12	А	F	/	/	/	А	F	/
13	L	А	А	/	/	L	А	А
14	L	А	/	/	/	L	А	/
15	L	А	F	/	/	L	А	F
16	L	L	А	/	/	L	L	А
17	L	L	/	/	/	L	L	/
18	L	L	F	/	/	L	L	F
19	L	F	А	/	/	L	F	А
20	L	F	/	/	/	L	F	/

2 Table S1. Mutants of TCSM library.

3

	Peak area of GC-MS analysis ^a					Relative production (%) ^b						
variants	1	2	3	4	5	1	2	3	4	5	total	
WT	15588259 ± 736326	0	0	0	0	100	0	0	0	0	100	
S89A/L93A	886060 ± 41022	0	0	0	0	6	0	0	0	0	6	
S89A	3613891 ± 159667	259030 ± 13052	423201 ± 15572	0	0	23	2	3	0	0	28	
S89L/L93A	0	0	0	0	0	0	0	0	0	0	0	
S89L	4470955 ± 55964	1261687 ± 74328	1901116 ± 42439	2298538 ± 62519	1452043 ± 91806	29	8	12	15	9	73	
F61A/S89A/L93A	590192 ± 66997	0	0	0	0	4	0	0	0	0	4	
F61A/S89A	2920343 ± 45365	5759736 ± 113842	6731923 ± 202901	0	0	19	37	43	0	0	99	
F61A/S89A/L93F	0	0	0	0	0	0	0	0	0	0	0	
F61A/S89L/L93A	0	0	0	0	0	0	0	0	0	0	0	
F61A/S89L	0	0	0	0	0	0	0	0	0	0	0	
F61A/S89L/L93F	0	0	0	0	0	0	0	0	0	0	0	
F61A/S89F/L93A	0	0	0	0	0	0	0	0	0	0	0	
F61A/S89F	0	0	0	0	0	0	0	0	0	0	0	
F61L/S89A/L93A	0	0	0	0	0	0	0	0	0	0	0	
F61L/S89A	3792204 ± 146377	0	0	0	0	24	0	0	0	0	24	
F61L/S89A/L93F	790369 ± 14183	0	0	0	0	5	0	0	0	0	5	
F61L/S89L/L93A	0	0	0	0	0	0	0	0	0	0	0	
F61L/S89L	0	0	0	0	0	0	0	0	0	0	0	
F61L/S89L/L93F	0	0	0	0	0	0	0	0	0	0	0	
F61L/S89F/L93A	0	0	0	0	0	0	0	0	0	0	0	
F61L/S89F	0	0	0	0	0	0	0	0	0	0	0	
W69F/M199A	0	0	0	0	0	0	0	0	0	0	0	
W69F/M199L	0	0	0	0	0	0	0	0	0	0	0	
W69A/M199A	3225288 ± 156681	1966264 ± 72910	3495998 ± 104823	0	0	21	13	22	0	0	56	
W69A/M199L	0	0	0	0	0	0	0	0	0	0	0	
W69A/M199F	0	0	0	0	0	0	0	0	0	0	0	
W69L/M199A	0	0	0	0	0	0	0	0	0	0	0	
W69L/M199L	0	0	0	0	0	0	0	0	0	0	0	
W69L/M199F	18329882 ± 1145473	13460167 ± 1068005	5661322 ± 150240	0	0	118	86	36	0	0	240	
T224A/L227A	0	0	0	0	0	0	0	0	0	0	0	
T224A	13164270 ± 275756	0	0	0	0	84	0	0	0	0	84	
T224L/L227A	0	0	0	0	0	0	0	0	0	0	0	

Table S2. Relative production of the products yielded from the TCSM variants. The calculation was based on GC-MS analysis.

T224L	1734138 ± 148681	1776050 ± 85111	1756408 ± 153843	0	0	11	11	11	0	0	34
F196A/T224A/L227A	0	0	0	0	0	0	0	0	0	0	0
F196A/T224A	0	9538649 ± 455310	7989119 ± 82961	0	0	0	61	51	0	0	112
F196A/T224A/L227F	0	0	0	0	0	0	0	0	0	0	0
F196A/T224L/L227A	0	0	0	0	0	0	0	0	0	0	0
F196A/T224L	0	0	0	0	0	0	0	0	0	0	0
F196A/T224L/L227F	0	0	0	0	0	0	0	0	0	0	0
F196A/T224F/L227A	0	0	0	0	0	0	0	0	0	0	0
F196A/T224F	0	0	0	0	0	0	0	0	0	0	0
F196L/T224A/L227A	3570046 ± 128800	15234702 ± 226055	14114576 ± 1260820	0	0	23	98	91	0	0	211
F196L/T224A	9085322 ± 195749	0	0	0	0	58	0	0	0	0	58
F196L/T224A/L227F	3469182 ± 169144	3090473 ± 106310	5270674 ± 203186	0	0	22	20	34	0	0	76
F196L/T224L/L227A	1808767 ± 155977	1148520 ± 45592	1506789 ± 36870	0	0	12	7	10	0	0	29
F196L/T224L	28437407 ± 994025	4601904 ± 119711	6935954 ± 269469	0	0	182	30	44	0	0	256
F196L/T224L/L227F	0	927366 ± 6394	2053561 ± 74591	0	0	0	6	13	0	0	19
F196L/T224F/L227A	0	0	0	0	0	0	0	0	0	0	0
F196L/T224F	0	8642326 ± 335379	7164416 ± 125886	0	0	0	55	46	0	0	101

1 ^{*a*} The peak area values are the mean of triple measurements.

2 ^bThe values are the relative productions of the mean peak area.

3		
4		
5		
6		
7		
8		
9		df
10		
11		

apoprotein	volume (Å ³)
WT	10 ± 5.1
S89A	147 ± 25.3
S89C	35 ± 13.2
S89L	126 ± 29.6

1 Table S3. Pocket volumes of the WT and mutants BsPS.

Libraries			Primers					
		F61A-F	5'-GCCGAGAACAGTCTACTCATGCCTCATTCTCACCAGTGGGAAAC-3'					
	First-site mutation	F61L-F	5'-GCCGAGAACAGTCTACTCATCTTTCATTCTCACCAGTGGGAAAC-3'					
		F61-R	5'-GAGTAGACTGTTCTCGGCCATCTCTCATCTCTCTG-3'					
		S89F-F	5'-TGGGGGGTCTTGGCGTATCTCTTCGACTTGGGCTTGATTCATGATGAC-3'					
		S89L-F	5'-TGGGGGGTCTTGGCGTATCTCCTTGACTTGGGCTTGATTCATGATGAC-3'					
T		S89A-F	5'-TGGGGGGTCTTGGCGTATCTCGCCGACTTGGGCTTGATTCATGATGAC-3'					
1		S89F/L93A-F	5'-TGGGGGGTCTTGGCGTATCTCTTCGACTTGGGCGCCATTCATGATGAC-3'					
	Second-site(s)	S89L/L93A-F	5'-TGGGGGGTCTTGGCGTATCTCCTTGACTTGGGCGCCATTCATGATGAC-3'					
	mutution	S89L/L93F-F	5'-TGGGGGGTCTTGGCGTATCTCCTTGACTTGGGCTTCATTCA					
		S89A/L93A-F	5'-TGGGGGGTCTTGGCGTATCTCGCCGACTTGGGCGCCATTCATGATGAC-3'					
		S89A/L93F-F	5'-TGGGGGGTCTTGGCGTATCTCGCCGACTTGGGCTTCATTCA					
		S89/L93-R	5'-ACCTCTCAGGGATCGCTTCAGGATAGATCAAGGACGACCAG-3'					
		W69F-F	5'-TCACCAGTGGGAAACTTCTCGTCCTTGATCTATCC-3'					
	First-site	W69L-F	5'-TCACCAGTGGGAAACCTTTCGTCCTTGATCTATCC-3'					
	mutation	W69A-F	5'-TCACCAGTGGGAAACGCCTCGTCCTTGATCTATCC-3'					
н		W69-R	5'-GAATGAGAAATGAGTAGACTGTTCTCGGCCATCTC-3'					
11		M199F-F	5'-CTAGTCTTCTGGCCGTTCCTGCAGTTCAGCCTCGGAATG-3'					
	Second-site	M199L-F	5'-CTAGTCTTCTGGCCGCTTCTGCAGTTCAGCCTCGGAATG-3'					
	mutation	M199A-F	5'-CTAGTCTTCTGGCCGGCCCTGCAGTTCAGCCTCGGAATG-3'					
		M199-R	5'-CATTCCACCATTGTCGCTTCGATATTTCAAATATTC-3'					
	First-site	F196L-F	5'-ACAATGGTGGAATGCTAGTCCTTTGGCCGATGCTGCAG-3'					
III	mutation	F196A-F	5'-ACAATGGTGGAATGCTAGTCGCCTGGCCGATGCTGCAG-3'					

1 Table S4. List of primers for libraries I, II, and III.

	F196-R	5'-CGCTTCGATATTTCAAATATTCTTCCATAGTCTGCGCTTCCTT-3'
	T224F-F	5'-AGCCAATTATTGACGCAGCATTCGAAGGACTTCTCCTAGCAAATGAT-3'
	T224L-F	5'-AGCCAATTATTGACGCAGCACTTGAAGGACTTCTCCTAGCAAATGAT-3'
	T224A-F	5'-AGCCAATTATTGACGCAGCAGCCGAAGGACTTCTCCTAGCAAATGAT-3'
	T224F/L227A-F	5'-AGCCAATTATTGACGCAGCATTCGAAGGAGCCCTCCTAGCAAATGAT-3'
Second-site(s) mutation	T224L/L227F-F	5'-AGCCAATTATTGACGCAGCACTTGAAGGATTCCTCCTAGCAAATGAT-3'
	T224L/L227A-F	5'-AGCCAATTATTGACGCAGCACTTGAAGGAGCCCTCCTAGCAAATGAT-3'
	T224A/L227F-F	5'-AGCCAATTATTGACGCAGCAGCCGAAGGATTCCTCCTAGCAAATGAT-3'
	T224A/L227A-F	5'-AGCCAATTATTGACGCAGCAGCCGAAGGAGCCCTCCTAGCAAATGAT-3'
	T224/L227-R	5'-GTACGAGCGCTTCTTCTGCTTCCGATATGGACATTCCGAGG-3'

	Mutants	Primers
	S89G	5'-TGGGGGTCTTGGCGTATCTCGGGGACTTGGGCTTGATTCATG-3'
	S89V	5'-TGGGGGTCTTGGCGTATCTCGTGGACTTGGGCTTGATTCATG-3'
	S89I	5'-TGGGGGTCTTGGCGTATCTCATTGACTTGGGCTTGATTCATG-3'
	S89M	5'-TGGGGGTCTTGGCGTATCTCATGGACTTGGGCTTGATTCATG-3'
	S89W	5'-TGGGGGTCTTGGCGTATCTCTGGGACTTGGGCTTGATTCATG-3'
	S89P	5'-TGGGGGTCTTGGCGTATCTCCCGGACTTGGGCTTGATTCATG-3'
	S89T	5'-TGGGGGTCTTGGCGTATCTCACCGACTTGGGCTTGATTCATG-3'
Formand	S89C	5'-TGGGGGTCTTGGCGTATCTCTGCGACTTGGGCTTGATTCATG-3'
Forward	S89Y	5'-TGGGGGTCTTGGCGTATCTCTATGACTTGGGCTTGATTCATG-3'
	S89N	5'-TGGGGGTCTTGGCGTATCTCAACGACTTGGGCTTGATTCATG-3'
	S89Q	5'-TGGGGGTCTTGGCGTATCTCCAAGACTTGGGCTTGATTCATG-3'
	S89D	5'-TGGGGGTCTTGGCGTATCTCGATGACTTGGGCTTGATTCATG-3'
	S89E	5'-TGGGGGTCTTGGCGTATCTCGAAGACTTGGGCTTGATTCATG-3'
	S89K	5'-TGGGGGTCTTGGCGTATCTCAAGGACTTGGGCTTGATTCATG-3'
	S89R	5'-TGGGGGTCTTGGCGTATCTCCGAGACTTGGGCTTGATTCATG-3'
	S89H	5'-TGGGGGTCTTGGCGTATCTCCATGACTTGGGCTTGATTCATG-3'
Reverse	S89	5'-ACCTCTCAGGGATCGCTTCAGGATAGATCAAGGACGACCAG-3'

 Table S5. List of primers for saturation mutagenesis of S89.

Pos.	$\delta_{\mathrm{H}^{\mathrm{a}}}$ mult (J in Hz)	$\delta_{ m C}{}^{ m b}$	$\frac{\text{COSY}}{(^{1}\text{H}-^{1}\text{H})}$	HMBC $(^{1}\text{H} - ^{13}\text{C})$	NOSEY $(^{1}H - ^{1}H)$
1a	2.36. m		(11 11)	(11 0)	(11 11)
1b	1.94. m	44.6, CH ₂	2		14, 20, 23
2	5.39. m	123.4. CH	1		4b
3)	134.4, C			
4a	2.27, m		-		2
4b	2.02, m	$40.9, CH_2$	5		2
5a	2.29, m	24.7. CH	1.6		21
5b	2.03, m	24.7, CH ₂	4, 6		21
6	5.06	126.8, CH	5		
7		132.3, C			
8a	2.02, m	40.2 CH	0	0	
8b	1.97, m	$40.5, CH_2$	9	9	
9a	2.22, m	25.1 CH.	8 10		22
9b	2.06, m	$25.1, CH_2$	8, 10		
10	5.34, m	129.8, CH	9		
11		134.2, C			
12	6.01, d (15.0)	137.7, CH	13	10, 11, 14, 22	
13	5.48, m	126.9, CH	12, 14	11	23
14	2.61, t (9.5)	53.5, CH	13, 18		1b
15		47.3, C			
16a	1.48, d (5.8)	43.5 CH	17		
16b	1.35, m	$45.5, C11_2$	17		
17	1.37, m	30.2, CH ₂	18		23, 25
18	1.62, m	52.6, CH	14, 17, 19		
19	1.62, m	29.6, CH	18, 24, 25		
20	1.56, s	15.6, CH ₃		2, 3, 4	1a
21	1.53, s	15.3, CH ₃		6, 7, 8	5b
22	1.72, s	12.6, CH ₃		10, 11, 12	9a
23	0.83, s	23.4, CH ₃		1, 14, 15, 16	1, 13, 17, 25
24	1.01, d (6.1)	22.9, CH ₃	19	18, 19, 25	
25	0.94, d (5.9)	22.4, CH ₃	19	18, 19, 24	17, 23
aRecorde	ed at 600 MHz in C ₆ D	6•			
^b Recorde	ed at 150 MHz in C_6D	6•			

Table S6. 1D and 2D NMR Data of **2**.

Pos.	$\delta_{\mathrm{H}}{}^{\mathrm{a}}$ mult (J in Hz)	$\delta_{ m C}{}^{ m b}$	$COSY (^{1}H - ^{1}H)$	HMBC $(^{1}H - ^{13}C)$	NOSEY (¹ H – ¹ H)
1a	1.54, m	40.2 CH	2	2	14, 18
1b	1.47, m	$40.2, CH_2$	Z	Z	
2a	2.14, m	30.8 CH.	1		
2b	1.82, m	$50.8, C11_2$	1		
3		150.4, C			
4	2.10, brs	37.7, CH ₂	5		
5	2.10, brs	25.7, CH ₂	4, 6		21
6	5.08, brs	126.6, CH	5	4, 5	
7		133.1, C			
8a	2.07, m	20.5 CH	0	6	
8b	1.99, m	$59.5, CH_2$	9	0	
9a	2.31, m	25 1 CH	<u>8</u> 10		22
9b	1.99, m	$23.1, CH_2$	8, 10		
10	5.13, dd (11.9, 3.4)	131.4, CH	9	8, 9, 12	
11		133.6, C			
12	6.05, d (15.5)	138.0, CH	13	10	
13	5.58, dd (15.5, 10.8)	126.6, CH	12, 14	11	23, 24
14	2.36, t (10.8)	56.3, CH	13, 18	12, 13, 15, 18, 19	la
15		46.3, C			
16a	1.36, m	40.0 CH	17		
16b	1.31, m	$40.9, C\Pi_2$	1/		
17a	1.70, m	20.0 CH	16 10		13, 25
17b	1.50, m	$28.9, CH_2$	16, 18		
18	1.79, m	49.9, CH	14, 17, 19		1b
19	1.66, m	31.0, CH	18, 24, 25		
20	4.91, d (3.4)	108.2, CH ₂		2, 3, 4	
21	1.40, s	15.2, CH ₃		6, 7, 8	5
22	1.68, s	12.5, CH ₃		10, 11, 12	9a
23	0.80, s	20.7, CH ₃		1, 14, 15, 16	13, 17b
24	1.02, d (6.2)	24.2, CH ₃	19	18, 19, 25	13
25	0.90, d (6.2)	21.8, CH ₃	19	18, 19, 24	17b
aRecorde	ed at 600 MHz in C_6D_6 .				
^b Recorde	ed at 150 MHz in C_6D_6 .				

Table S7. 1D and 2D NMR Data of **3**.

Pos.	$\delta_{\mathrm{H}^{\mathrm{a}}}$ mult (J in Hz)	$\delta_{ m C}{}^{ m b}$	COSY (¹ H – ¹ H)	HMBC (¹ H – ¹³ C)	NOSEY (¹ H – ¹ H)
1a	1.81, m	43.6 CH ₂	2		
1b	0.80, m	15.0, 0112	2		
2	2.02, m	49.8, CH	1		23
3		75.2, C			
4a	1.73, m	36.1 CH ₂			
4b	1.58, m	50.1, 0112			
5	1.56, m	$25.1, CH_2$	6	4	21
6	2.53, m	46.8, CH	5		12
7	1.92, m	39.2, CH	8, 21		
8	1.59, m	31.7, CH ₂	7, 9	10	
9a	2.18, dd (15.7, 9.1);	30.1 CH	8		
9b	2.06, m	50.1, CH2	0		
10		144.1, C			
11		133.3, C			
12	2.40, m	47.9, CH	13	10	6, 14
13	1.62, m	$29.8, \mathrm{CH}_2$	12, 14	12	24
14	1.41, m	51.3, CH	13, 18		12
15		42.0, C			
16a	1.50, m;	41.6 CH	17		
16b	1.11, dd (20.0, 11.1)	+1.0, CH ₂	17		
17a	1.85, m;	28.6 CH	16		
17b	1.57, m	20.0, 0112	10		
18	1.65, m	47.6, CH	14, 19	14, 16	
19	1.54, m	31.8, CH	18, 24, 25		23
20	1.28, s	32.6, CH ₃		2, 3, 4	
21	0.95, d (6.9)	15.7, CH ₃	7	6, 7, 8	
22	1.68, s	15.0, CH ₃		10, 11, 12	
23	0.80, s	19.4, CH ₃		1, 14, 15, 16	2, 25
24	0.93, d (6.3)	$24.3, CH_3$	19	18, 19, 25	13
25	0.87, d (6.5)	22.8, CH ₃	19	18, 19, 24	23
aRecorde	d at 600 MHz in C_6D_6 .				
^b Recorde	d at 150 MHz in C_6D_6 .				

Table S8. 1D and 2D NMR Data of 4.

Pos.	$\delta_{\mathrm{H}^{\mathrm{a}}}$ mult (J in Hz)	$\delta_{\mathrm{C}}{}^{b}$	COSY (¹ H – ¹ H)	HMBC (¹ H – ¹³ C)	NOESY (¹ H – ¹ H)
1a	1.98, m	42.2 CH	2		
1b	0.91, m	$42.2, CH_2$	Z		
2	1.86, m	44.6, CH	1, 12	3, 11	23
3		75.3, C			12
4a	1.69, m	44.2 CH	5		
4b	1.51, m	44.2, CH ₂	5		
5a	1.79, m	29.8 CH	Δ		12, 21
5b	1.60, m	29.0, CH ₂	т		
6		41.3, C			
7	2.20, m	46.0, CH	21		5a
8	1.73, m	34.0, CH ₂			
9a	1.88, m	25.4 CH	10		
9b	1.67, m	23.4, 0112	10		
10	0.65, d (5.3)	38.7, CH	9	5, 7, 8, 9	5b
11		30.8, C			
12	0.62, m	48.1, CH	2, 13	2, 11, 13	5a, 14, 20
13a	1.74, m	27.2 CH ₂	12 14		23, 24
13b	1.66, m	27.2, 0112	12, 11		
14	1.22, m	50.2, CH	13		12
15		41.2, C			
16a	1.54, m	41.9 CH2	17		
16b	1.10, m	11.9, 0112	17		
17a	1.82, m	28.3 CH ₂	16	14 16 18	
17b	1.54, m	$20.5, 011_2$	10	11, 10, 10	
18	1.71, m	47.5, CH	19		
19	1.63, m	31.2, CH	18, 24, 25		23
20	1.06, s	$24.3, CH_3$		2, 3	12
21	1.15, d (7.1)	16.2, CH ₃	7	6, 7, 8	
22	1.16, s	11.9, CH ₃		6, 10, 11, 12	23
23	0.83, s	19.2, CH ₃		1, 14, 15, 16	2, 13b, 19, 22
24	1.02, d (6.1)	24.6, CH ₃	19	18, 19, 25	13a, 13b
25	0.89, d (6.7)	22.4, CH ₃	19	18, 19, 24	
aRecord	ed at 600 MHz in C_6D	6.			
^b Record	ed at 150 MHz in C_6D) ₆ .			

Table S9. 1D and 2D NMR Data of compound 5.

Table S10. Energy profiles of *path b1* and *path c* calculation.

		ath h1			nath c				
-	<i>p</i>				pun c				
	Total Energy	Thermal correction to	Imaginamy Frag		Total Energy	Thermal correction to	o Imaginary Freq		
	Total Energy	Gibbs Free Energy	inaginary rieq		Total Energy	Gibbs Free Energy			
IM1	-976.872415	0.548202	none	IM1	-976.872415	0.548202	none		
TS_1-2	-976.865255	0.547719	-97.55	TS_1-2	-976.865255	0.547719	-97.55		
IM2	-976.891067	0.553047	none	IM2	-976.891067	0.553047	none		
TS_2-3	-976.88933	0.55549	-114.25	TS_2-3	-976.88933	0.55549	-114.25		
IM3	-976.903642	0.554584	none	IM3	-976.903642	0.554584	none		
TS_3-4b	-976.890603	0.551486	-942.95	TS_3-4c	-976.893917	0.556114	-173.11		
IM4b	-976.898197	0.553714	none	IM4c	-976.912583	0.555223	none		
				TS_4c-5c	-976.908266	0.556038	-314.35		
				IM5c	-976.913934	0.555554	none		
				TS_5c-6c'	-976.920234	0.565382	-118.95		
				IM6c'	-976.925806	0.565378	none		

_	path c					
_	Total Enormy	Thermal correction to	Imaginary Freq			
	Total Energy	Gibbs Free Energy				
IM1	-976.872415	0.548202	none			
TS_1-2	-976.865255	0.547719	-97.55			
IM2	-976.891067	0.553047	none			
TS_2-3	-976.88933	0.55549	-114.25			
IM3	-976.903642	0.554584	none			
TS_3-4c	-976.893917	0.556114	-173.11			
IM4c	-976.912583	0.555223	none			
TS_4c-5c	-976.908266	0.556038	-314.35			
IM5c	-976.913934	0.555554	none			
TS_5c-6c	-976.907925	0.557034	-421.11			
IM6c	-976.939673	0.560111	none			
TS_6c-7c	-976.935818	0.563824	-104.81			
IM7c	-976.937609	0.564837	none			

Table S11. Cartesian coordinates.

IM1				TS_1-2				IM2			
С	-4.5562	-0.09833	-0.33201	С	-4.43646	0.076872	-0.42484	С	-3.37883	0.057515	-0.57958
С	-4.66101	-1.39175	0.42353	С	-4.61108	-1.25072	0.258033	С	-4.27852	-0.97171	0.208078
С	-3.46729	-2.37335	0.079995	С	-3.46808	-2.24148	-0.09125	С	-3.45319	-2.25805	0.146859
С	-2.25524	-1.60768	0.388992	С	-2.15502	-1.62096	0.30258	С	-2.00931	-1.82329	0.431777
С	-0.4475	-2.14615	-1.096	С	-0.70603	-2.54436	-0.61745	С	-1.01681	-2.89633	-0.08337
С	0.762223	-2.24245	-0.22546	С	0.606778	-2.55481	0.047744	С	0.430773	-2.70744	0.286484
С	-0.2436	1.078403	-1.53182	С	-0.34899	1.346501	-1.34396	С	-0.63223	1.664327	-0.90564
С	-0.80062	0.332756	-0.31034	С	-0.53098	0.288024	-0.24294	С	-0.80631	0.468093	0.037662
С	-1.49745	-0.97766	-0.67331	С	-1.50087	-0.79634	-0.60831	С	-1.88205	-0.5142	-0.39722
С	0.713933	2.147421	-1.05754	С	0.689927	2.33321	-0.86128	С	0.568224	2.481329	-0.49573
С	2.026045	1.918327	-1.15869	С	1.971337	2.108631	-1.16342	С	1.738991	2.244179	-1.09204
С	4.087533	-0.02895	0.172282	С	3.952434	-0.09728	-0.11144	С	3.679779	-0.16005	-0.48855
С	4.388583	-1.50549	0.266989	С	4.244928	-1.5812	-0.12095	С	3.945244	-1.64326	-0.58789
С	3.140602	-2.40266	0.399331	С	3.064273	-2.50695	0.23355	С	2.880484	-2.56179	0.038138
С	2.044448	-2.15688	-0.61688	С	1.787283	-2.29664	-0.54922	С	1.473914	-2.4772	-0.5238
С	3.643897	0.759663	1.155933	С	3.664012	0.652535	0.957851	С	3.801421	0.59015	0.6127
С	3.32758	2.227893	0.953918	С	3.410308	2.144119	0.883578	С	3.573345	2.085568	0.641229
С	3.134715	2.693251	-0.49989	С	3.16951	2.74564	-0.51191	С	3.085029	2.755398	-0.6525
С	0.09399	3.337478	-0.37534	С	0.197049	3.41508	0.061492	С	0.369039	3.417935	0.665945
С	2.50027	-1.95547	-2.03484	С	1.936064	-1.89686	-1.98765	С	1.364275	-2.23423	-2.00431
С	3.421651	0.270127	2.563077	С	3.5901	0.088831	2.35389	С	4.204802	0.023111	1.950076
С	-4.3612	1.128403	0.16979	С	-4.15983	1.259752	0.141033	С	-3.63764	1.398865	-0.101
С	-4.22374	2.314458	-0.74699	С	-4.01192	2.501985	-0.69673	С	-4.29202	2.376553	-0.98899
С	-4.27079	1.470584	1.634052	С	-4.00407	1.499452	1.619666	С	-3.36763	1.811517	1.28474
С	-1.88498	-1.40303	1.794819	С	-1.81187	-1.58565	1.76119	С	-1.80414	-1.61423	1.936106
---	----------	----------	----------	---	----------	----------	----------	---	----------	----------	----------
Н	2.31945	1.010911	-1.68296	Н	2.171545	1.306223	-1.87229	Н	1.726666	1.553115	-1.93404
Н	-2.14398	-0.86731	-1.55096	Н	-1.94142	-0.7389	-1.60331	Н	-1.63502	-0.80668	-1.42625
Н	-4.63176	-0.19508	-1.41567	Н	-4.54507	0.052357	-1.51053	Н	-3.64156	0.002813	-1.63862
Н	-5.56602	-1.93936	0.144083	Н	-5.54494	-1.71925	-0.06893	Н	-5.26069	-1.04929	-0.26249
Н	-4.69175	-1.24289	1.504774	Н	-4.6823	-1.14474	1.343166	Н	-4.42486	-0.65485	1.244257
Н	-3.56036	-3.26453	0.706222	Н	-3.62396	-3.19081	0.43064	Н	-3.81943	-3.00586	0.856379
Н	-3.51715	-2.63638	-0.97962	Н	-3.47928	-2.43528	-1.16976	Н	-3.52214	-2.68937	-0.85925
Н	-0.98588	-3.09933	-1.1519	Н	-1.32544	-3.3972	-0.329	Н	-1.34416	-3.85341	0.346126
Н	-0.19042	-1.87773	-2.12144	Н	-0.70488	-2.52532	-1.70577	Н	-1.14268	-2.99408	-1.16684
Н	0.588969	-2.4829	0.823232	Н	0.617208	-2.87347	1.087317	Н	0.656724	-2.86924	1.340924
Н	0.296237	0.375533	-2.17727	Н	-0.00746	0.855981	-2.26318	Н	-0.50615	1.294229	-1.93026
Н	0.033623	0.133428	0.372023	Н	0.454364	-0.13493	-0.00257	Н	0.141346	-0.086	0.052214
Н	-1.51936	0.976014	0.212721	Н	-0.89025	0.763381	0.678733	Н	-0.95994	0.810326	1.067372
Н	4.95652	-1.80859	-0.618	Н	4.624487	-1.85559	-1.11004	Н	4.072413	-1.90846	-1.64246
Н	5.038086	-1.71885	1.123087	Н	5.055339	-1.81493	0.579178	Н	4.901424	-1.88351	-0.10925
Н	3.463216	-3.44861	0.302776	Н	3.387195	-3.54244	0.056398	Н	3.223272	-3.59647	-0.10443
Н	2.717596	-2.29663	1.40381	Н	2.8349	-2.43576	1.301369	Н	2.839853	-2.39793	1.120386
Н	4.245939	0.420749	-0.80533	Н	4.024598	0.397933	-1.07699	Н	3.405783	0.331305	-1.41868
Н	4.110118	2.827324	1.438743	Н	4.250667	2.657915	1.369951	Н	4.510452	2.563685	0.957594
Н	2.400774	2.449021	1.503246	Н	2.530661	2.364766	1.505921	Н	2.853263	2.301366	1.444449
Н	2.919157	3.765761	-0.49455	Н	3.030384	3.825528	-0.40201	Н	3.046117	3.837264	-0.48353
Н	4.06651	2.572992	-1.06138	Н	4.057534	2.615125	-1.13781	Н	3.819814	2.596399	-1.44734
Н	-0.62433	3.827773	-1.04275	Н	-0.50869	4.066411	-0.46705	Н	-0.45577	4.112427	0.459557
Н	0.836177	4.079673	-0.07825	Н	1.005756	4.039418	0.444003	Н	1.257085	4.016914	0.873911
Н	-0.45602	3.045135	0.528361	Н	-0.339	3.001392	0.925192	Н	0.119505	2.876758	1.588307
Н	1.688744	-1.80245	-2.74718	Н	0.991572	-1.82499	-2.52893	Н	0.342372	-2.31267	-2.37861

Н	3.068556	-2.83416	-2.36142	Н	2.574217	-2.61692	-2.51149	Н	1.983579	-2.94546	-2.56198
Н	3.179258	-1.10121	-2.10422	Н	2.435997	-0.92572	-2.05038	Н	1.738145	-1.23235	-2.24888
Н	3.886645	-0.69939	2.75258	Н	4.08026	-0.88294	2.442585	Н	4.596613	-0.9928	1.87806
Н	3.825501	0.986355	3.286221	Н	4.062585	0.770848	3.067893	Н	4.972734	0.648883	2.416839
Н	2.3481	0.181958	2.775353	Н	2.545486	-0.02397	2.67186	Н	3.350199	0.007617	2.63734
Н	-1.07537	1.496501	-2.11491	Н	-1.30954	1.830547	-1.55976	Н	-1.53831	2.297671	-0.91312
Н	-4.28975	2.02936	-1.79881	Н	-4.03755	2.282802	-1.76646	Н	-3.93947	2.289156	-2.01938
Н	-3.26131	2.814867	-0.5809	Н	-3.07085	3.015607	-0.46459	Н	-4.23459	3.40328	-0.62612
Н	-5.00228	3.055917	-0.54001	Н	-4.81608	3.211148	-0.4727	Н	-5.3562	2.080867	-1.00396
Н	-4.40596	0.619589	2.304382	Н	-4.25857	0.637722	2.238602	Н	-3.06025	1.001655	1.941777
Н	-3.30703	1.946037	1.857213	Н	-2.97633	1.807565	1.852484	Н	-2.56289	2.563611	1.236105
Н	-5.03826	2.209332	1.887028	Н	-4.6477	2.328336	1.931479	Н	-4.23708	2.345073	1.688121
Н	-2.28604	-0.401	2.03518	Н	-2.48858	-0.86285	2.231819	Н	-2.56915	-0.97221	2.385493
Н	-0.80434	-1.31165	1.928892	Н	-0.79031	-1.25295	1.945508	Н	-0.8258	-1.18112	2.155857
Н	-2.327	-2.12982	2.476028	Н	-1.97957	-2.55649	2.233815	Н	-1.86108	-2.57933	2.449252
TS_2-3				IM3				TS_3-4b			
С	-3.09249	0.275931	-0.63978	С	3.74771	-0.40974	-0.69827	С	3.433657	-0.53038	-0.70136
С	-4.21408	-0.50323	0.116503	С	4.60116	0.832064	-0.33483	С	4.541651	0.506957	-0.37583
С	-3.66538	-1.93204	0.160873	С	3.627829	2.017637	-0.35099	С	3.838143	1.876294	-0.33509
С	-2.18499	-1.76761	0.54676	С	2.302917	1.442912	0.185638	С	2.457448	1.564752	0.262638
С	-1.3462	-2.99778	0.125258	С	1.113726	2.342866	-0.19794	С	1.382245	2.616817	-0.04255
С	0.13363	-2.8714	0.385208	С	-0.21939	1.987034	0.413213	С	-0.00322	2.195433	0.437995
С	-0.49727	1.578053	-0.59786	С	-0.09514	-0.79499	-0.77625	С	-0.04466	-1.02073	-0.82023
С	-0.65306	0.339162	0.259316	С	1.211912	-0.91015	-0.10162	С	0.882679	-0.4343	0.013847

2.267336 0.092665 -0.57346

С

2.104831 0.274527

С

С

-1.76212 -0.53203 -0.29004

-0.51325

С	0.666301	2.429447	-0.21823	С	-1.23702	-1.53633	-0.47028	C	-1.19624	-1.77628	-0.40188
С	1.737967	2.351478	-1.01961	С	-2.23657	-1.45205	-1.42288	C	-2.17589	-1.91862	-1.3269
С	3.36904	-0.29495	-0.59767	С	-4.07208	0.370642	-0.26791	C	-3.86082	0.421901	-0.44813
С	3.560818	-1.78442	-0.77472	С	-4.01269	1.787015	0.230466	C	-3.77812	1.906605	-0.20647
С	2.563394	-2.70946	-0.04999	С	-2.64715	2.151521	0.833348	C	-2.48671	2.356721	0.499543
С	1.115972	-2.66491	-0.50453	С	-1.44818	2.182981	-0.10124	C	-1.18844	2.282488	-0.26102
С	3.802532	0.432201	0.440585	С	-4.44138	-0.71653	0.421086	C	-4.26298	-0.49679	0.438025
С	3.707552	1.94086	0.540894	С	-4.36315	-2.10706	-0.1713	C	-4.31078	-1.97704	0.127281
С	3.147761	2.729604	-0.65594	С	-3.51843	-2.20779	-1.45827	C	-3.56388	-2.45551	-1.13132
С	0.64178	3.093174	1.131265	С	-1.33818	-2.39343	0.761	C	-1.30575	-2.23256	1.027858
С	0.901964	-2.47356	-1.98224	С	-1.70776	2.637577	-1.51118	C	-1.24424	2.304056	-1.75016
С	4.487666	-0.17937	1.637243	С	-4.97271	-0.68983	1.828945	C	-4.74069	-0.16834	1.829218
С	-3.09416	1.72816	-0.33719	С	4.155998	-1.71015	0.021905	C	3.561365	-1.89851	-0.00411
С	-3.5527	2.665768	-1.40167	С	5.595675	-2.07132	-0.35818	C	4.81903	-2.60824	-0.51458
С	-3.20445	2.201214	1.072697	С	4.011874	-1.70776	1.544816	C	3.573065	-1.88479	1.526308
С	-2.05331	-1.54265	2.057296	С	2.402524	1.311938	1.711398	C	2.58331	1.38281	1.78184
Η	1.598579	1.872023	-1.98789	Н	-2.02894	-0.80762	-2.27738	Н	-1.94683	-1.56925	-2.33446
Н	-1.41412	-0.90293	-1.2622	Н	1.982463	0.365153	-1.60004	Н	1.831645	0.621236	-1.52231
Н	-3.26866	0.165984	-1.71382	Н	3.906382	-0.62322	-1.76246	Н	3.489842	-0.7609	-1.77194
Н	-5.17352	-0.41443	-0.39861	Н	5.432486	0.971115	-1.02911	Н	5.349246	0.483926	-1.11041
Н	-4.34186	-0.12104	1.132182	Н	5.043206	0.718403	0.660207	Н	4.998396	0.291897	0.595441
Η	-4.21972	-2.5659	0.858787	Н	3.976624	2.870565	0.239193	Н	4.389951	2.623848	0.242257
Н	-3.74251	-2.38702	-0.8344	Н	3.478352	2.369279	-1.38026	Н	3.715832	2.267228	-1.35325
Η	-1.72609	-3.86661	0.678337	Н	1.354203	3.361646	0.141893	Н	1.618639	3.556058	0.472637
Н	-1.54186	-3.19825	-0.93343	Н	1.053745	2.401853	-1.29092	Н	1.377406	2.83692	-1.11437
Н	0.434554	-2.99991	1.425473	Н	-0.18503	1.713754	1.46888	Н	-0.11509	2.176139	1.52403
Н	-0.47398	1.313492	-1.66211	Н	-0.13174	-0.17407	-1.67277	Н	0.025069	-0.79142	-1.88628

Н	0.291008	-0.22014	0.230225	Н	1.072158	-0.91633	0.985784	Н	0.042695	0.765925	0.123194
Н	-0.81485	0.618814	1.305922	Н	1.532526	-1.94512	-0.33296	Н	0.878465	-0.73795	1.059852
Н	3.544354	-2.0117	-1.84562	Н	-4.24973	2.470605	-0.59106	Н	-3.886	2.441674	-1.15517
Н	4.563335	-2.06411	-0.43561	Н	-4.7775	1.958165	0.992574	Н	-4.61439	2.239839	0.413706
Н	2.917266	-3.73847	-0.20505	Н	-2.73658	3.162587	1.254999	Н	-2.58654	3.422721	0.759182
Н	2.607451	-2.52543	1.029134	Н	-2.43461	1.484193	1.676972	Н	-2.3753	1.8309	1.455758
Н	2.895151	0.222676	-1.42888	Н	-3.77567	0.245532	-1.31012	Н	-3.56955	0.085807	-1.44161
Н	4.717967	2.319212	0.745479	Н	-5.37059	-2.47899	-0.39343	Н	-5.36215	-2.27542	0.025352
Н	3.130312	2.185463	1.442535	Н	-3.96803	-2.78649	0.589554	Н	-3.95323	-2.51694	1.009723
Н	3.200801	3.797409	-0.41052	Н	-3.27016	-3.26574	-1.63488	Н	-3.51849	-3.55327	-1.1089
Н	3.795153	2.577715	-1.52403	Н	-4.0967	-1.87649	-2.32307	Н	-4.14905	-2.20402	-2.0202
Н	-0.29308	3.648249	1.269291	Н	-0.35592	-2.61783	1.177108	Н	-0.32236	-2.47763	1.436305
Н	1.462881	3.803283	1.242072	Н	-1.83203	-3.34216	0.541465	Н	-1.92229	-3.12832	1.106781
Н	0.713384	2.366701	1.948919	Н	-1.92281	-1.8713	1.526552	Н	-1.75287	-1.45099	1.655457
Н	-0.12666	-2.65684	-2.29626	Н	-0.79812	2.72596	-2.1056	Н	-0.2619	2.308289	-2.22081
Н	1.551098	-3.14266	-2.55722	Н	-2.20195	3.61626	-1.51235	Н	-1.80811	3.17677	-2.09799
Н	1.170936	-1.44971	-2.27612	Н	-2.38999	1.951834	-2.02979	Н	-1.80098	1.421576	-2.09277
Н	4.577996	-1.26377	1.571125	Н	-5.0487	0.317644	2.236665	Н	-4.80381	0.902555	2.024476
Н	5.49304	0.238532	1.758772	Н	-5.96749	-1.14751	1.865803	Н	-5.73242	-0.6011	1.998801
Н	3.937297	0.057124	2.555133	Н	-4.3334	-1.27965	2.495897	Н	-4.07604	-0.61159	2.580001
Н	-1.49781	2.14839	-0.48144	Н	3.516003	-2.51501	-0.37194	Н	2.690351	-2.49141	-0.32226
Н	-3.1537	2.400682	-2.38235	Н	5.722762	-2.11968	-1.44358	Н	4.818286	-2.69266	-1.60512
Н	-3.34911	3.711216	-1.16761	Н	5.876547	-3.04118	0.06044	Н	4.896458	-3.61513	-0.09635
Н	-4.6457	2.537134	-1.45436	Н	6.298323	-1.3271	0.030762	Н	5.719349	-2.05804	-0.22
Н	-2.71329	1.538853	1.78692	Н	2.99732	-1.47508	1.88137	Н	2.679636	-1.42969	1.963
Н	-2.85676	3.228635	1.188447	Н	4.274447	-2.69199	1.942673	Н	3.634351	-2.91039	1.900707
Н	-4.27999	2.197931	1.306261	Н	4.690598	-0.9851	2.008857	Н	4.445429	-1.35155	1.918718

Н	-2.63469	-0.68362	2.410144	Н	3.349724	0.868113	2.020599	Н	3.418792	0.73446	2.046878
Н	-1.01337	-1.38287	2.352574	Н	1.603299	0.709938	2.15472	Н	1.68485	0.959725	2.242713
Н	-2.41829	-2.42387	2.593144	Н	2.341536	2.306649	2.165422	Н	2.762627	2.356506	2.249153

IM4b				TS_3-4c				IM4c			
С	3.654513	-0.21237	-0.68274	С	3.688693	-0.34722	-0.75963	С	3.787	-0.29898	-0.63143
С	4.487593	0.991411	-0.17778	С	4.564056	0.794154	-0.19315	С	4.515916	0.762382	0.225191
С	3.513137	2.17517	-0.13414	С	3.619021	1.989745	-0.08265	С	3.543116	1.935241	0.315664
С	2.17279	1.554637	0.298148	С	2.279904	1.389127	0.384532	С	2.136784	1.304748	0.377332
С	1.00344	2.484691	-0.06081	С	1.136878	2.37899	0.111924	С	1.11216	2.406746	-0.00044
С	-0.36958	1.987006	0.43592	С	-0.2465	1.905406	0.474984	С	-0.31306	2.241118	0.442187
С	0.093738	-1.10345	-0.95436	С	-0.14933	-0.87107	-0.67474	С	-0.1351	-0.55525	-0.97245
С	1.140879	-0.76787	-0.1782	С	1.205072	-0.96902	-0.06558	С	1.263769	-0.97894	-0.64853
С	2.160326	0.25715	-0.57103	С	2.201564	0.117553	-0.51088	С	2.283433	0.1656	-0.67474
С	-1.02598	-1.96288	-0.5577	С	-1.31825	-1.3835	-0.18356	С	-1.2817	-1.04622	-0.48194
С	-2.14796	-1.91737	-1.29691	С	-2.39625	-1.45662	-1.11612	С	-2.58515	-0.55378	-1.05996
С	-4.10696	0.317752	-0.42961	С	-3.97045	0.021198	-0.75022	С	-3.55793	-0.00163	0.040291
С	-4.14584	1.819045	-0.2642	С	-3.72591	1.505633	-0.64108	С	-3.09325	1.013878	1.078187
С	-2.8605	2.362872	0.387377	С	-2.72815	1.925464	0.467781	С	-2.77186	2.3967	0.488203
С	-1.57953	2.164573	-0.32228	С	-1.38284	2.38656	-0.04203	С	-1.43543	2.49967	-0.23619
С	-4.20963	-0.57025	0.56609	С	-4.45966	-0.76904	0.255972	С	-4.34654	-1.14791	0.459061
С	-4.09144	-2.06282	0.358114	С	-4.44385	-2.25982	0.044865	С	-4.32433	-2.2027	-0.56677
С	-3.47753	-2.54742	-0.96678	С	-3.44715	-2.55272	-1.08505	С	-3.45129	-1.66344	-1.7098
С	-0.88463	-2.7709	0.705111	С	-1.4848	-1.93487	1.203183	С	-1.35724	-2.1072	0.581949
С	-1.59048	2.033744	-1.78747	С	-1.40198	3.480342	-1.08409	С	-1.49416	2.977916	-1.66217
С	-4.45598	-0.18189	2.001135	С	-4.96651	-0.25186	1.56167	С	-5.09405	-1.25321	1.717986

С	4.02903	-1.57816	-0.07022	С	4.124586	-1.75733	-0.31539	С	4.121003	-1.75604	-0.23493
С	5.433262	-1.97069	-0.53972	С	5.548715	-2.03036	-0.81232	С	5.596605	-2.03115	-0.54645
С	3.964385	-1.67788	1.456277	С	4.050012	-2.03589	1.18842	С	3.843771	-2.15243	1.219769
С	2.179362	1.293519	1.808962	С	2.36937	1.073175	1.883179	С	1.864126	0.76732	1.78458
Н	-2.10725	-1.33175	-2.21675	Н	-2.15678	-1.05058	-2.09772	Н	-2.37151	0.239115	-1.77917
Н	1.877749	0.597303	-1.57866	Н	1.845373	0.47702	-1.48717	Н	4.155055	-0.20626	-1.66073
Н	3.843921	-0.32928	-1.75611	Н	3.820594	-0.34623	-1.8487	Н	5.476681	1.051961	-0.20673
Н	5.347631	1.194484	-0.81936	Н	5.426607	1.001891	-0.83028	Н	4.727902	0.374144	1.226574
Н	4.884817	0.797623	0.823628	Н	4.957328	0.531771	0.794735	Н	3.73274	2.594365	1.169558
Н	3.836436	2.977387	0.536988	Н	3.980487	2.770715	0.593422	Н	3.610621	2.549432	-0.59221
Н	3.403714	2.607319	-1.1375	Н	3.480955	2.446953	-1.07121	Н	1.467978	3.330087	0.482216
Н	1.165751	3.465782	0.400912	Н	1.354326	3.303139	0.669666	Н	1.17737	2.595378	-1.07766
Н	0.994605	2.64425	-1.14331	Н	1.164588	2.655165	-0.94976	Н	-0.42855	1.958645	1.490631
Н	-0.52651	2.153226	1.504142	Н	-0.32948	1.153093	1.260928	Н	-3.58729	2.695667	-0.18269
Н	0.013067	-0.64479	-1.94336	Н	-0.17813	-0.44121	-1.67761	Н	-2.78676	3.11715	1.312676
Н	-0.37679	0.852388	0.298639	Н	1.142652	-1.04742	1.022028	Н	-4.37859	0.461411	-0.57439
Н	1.240008	-1.23959	0.797615	Н	1.576039	-1.95062	-0.40477	Н	-5.34073	-2.52674	-0.82641
Н	-4.3144	2.303096	-1.2302	Н	-3.38145	1.874439	-1.61077	Н	-3.87789	-3.0779	-0.06308
Н	-4.97892	2.129224	0.373001	Н	-4.69832	1.987133	-0.47784	Н	-2.84268	-2.44161	-2.17206
Н	-2.90313	3.469439	0.459585	Н	-3.17103	2.756228	1.032323	Н	-4.0899	-1.23314	-2.4869
Н	-2.75933	2.016335	1.421655	Н	-2.58485	1.106966	1.183469	Н	-0.40608	-2.23974	1.097952
Н	-3.96962	-0.05261	-1.44267	Н	-4.10251	-0.35844	-1.76289	Н	-1.64271	-3.08475	0.171523
Н	-5.08882	-2.50732	0.47346	Н	-5.44898	-2.6482	-0.15703	Н	-2.10071	-1.85414	1.355786
Н	-3.50601	-2.45924	1.196097	Н	-4.119	-2.73484	0.976175	Н	-0.53561	2.899302	-2.17682
Н	-3.37463	-3.63772	-0.90835	Н	-2.95373	-3.52089	-0.94904	Н	-1.80535	4.028441	-1.70151
Н	-4.17662	-2.35794	-1.78657	Н	-3.95195	-2.58336	-2.05357	Н	-2.2392	2.417734	-2.2414
Н	0.095127	-3.25662	0.735734	Н	-0.56577	-1.87389	1.784146	Н	-5.71558	-0.35911	1.855695

Н	-1.64531	-3.54984	0.772471	Н	-1.80223	-2.98302	1.187298	Н	-5.70138	-2.15509	1.780422
Н	-0.9623	-2.13979	1.599468	Н	-2.25519	-1.36372	1.734873	Н	-4.37298	-1.22705	2.547751
Н	-0.60894	2.088898	-2.25185	Н	-0.58531	4.190041	-0.93785	Н	3.526428	-2.41917	-0.87805
Н	-2.28529	2.745882	-2.24266	Н	-2.33984	4.042245	-1.04753	Н	5.832499	-1.81374	-1.5922
Н	-2.02237	1.035091	-1.96976	Н	-1.30445	3.078435	-2.10009	Н	5.848849	-3.0771	-0.35152
Н	-4.7582	0.859916	2.125862	Н	-5.00498	0.836346	1.604125	Н	6.246782	-1.41204	0.081114
Н	-5.24373	-0.8094	2.42988	Н	-5.98052	-0.64447	1.709288	Н	2.804619	-2.00475	1.523542
Н	-3.55817	-0.35706	2.606484	Н	-4.37389	-0.62277	2.405041	Н	4.07885	-3.21135	1.361366
Н	3.319466	-2.30995	-0.48223	Н	3.471685	-2.48206	-0.82432	Н	4.475852	-1.59184	1.916047
Н	5.506686	-1.96803	-1.63099	Н	5.636316	-1.86359	-1.89004	Н	2.678529	0.128883	2.134431
Н	5.699651	-2.96957	-0.18456	Н	5.840727	-3.06297	-0.6033	Н	0.939052	0.179199	1.821129
Н	6.181001	-1.27121	-0.14968	Н	6.268014	-1.37495	-0.31033	Н	1.762493	1.593422	2.497373
Н	2.980541	-1.43601	1.866362	Н	3.049544	-1.89255	1.60463	Н	-2.20709	0.607205	1.581191
Н	4.204486	-2.69859	1.766876	Н	4.344347	-3.07007	1.388367	Н	-3.87378	1.127989	1.8391
Н	4.697677	-1.02082	1.935881	Н	4.739215	-1.3952	1.747856	Н	1.562785	-1.70357	-1.41955
Н	3.084318	0.771159	2.122669	Н	3.182602	0.377514	2.10353	Н	1.301694	-1.52226	0.297667
Н	1.326721	0.688056	2.13587	Н	1.450492	0.638472	2.288354	Н	2.1529	0.658307	-1.64958
Н	2.144425	2.244503	2.352089	Н	2.559042	1.99529	2.441301	Н	-0.21494	0.218937	-1.73868

TS_4c-5c				IM5c				TS_5c-6c			
С	3.815154	-0.26127	-0.6129	С	3.793246	-0.17876	-0.54835	С	3.551309	-0.08425	-0.56478
С	4.511058	0.777061	0.296989	С	4.430542	0.699653	0.548645	С	4.342494	0.188318	0.71775
С	3.524938	1.936959	0.400104	С	3.471015	1.872084	0.707571	С	3.625829	1.412344	1.272658
С	2.12358	1.291852	0.409974	С	2.057736	1.27047	0.561738	С	2.119208	1.091135	1.106155
С	1.102571	2.40015	0.037869	С	1.097924	2.440533	0.221148	С	1.338691	2.400637	0.849804
С	-0.3368	2.206589	0.419964	С	-0.37405	2.241987	0.432837	С	-0.13536	2.182938	0.718594

С	-0.1037	-0.56901	-0.96883	С	-0.12311	-0.52172	-0.9665	С	-0.22192	-1.0356	-0.23188
С	1.30731	-0.9834	-0.68779	С	1.290369	-0.93176	-0.69264	С	1.244114	-1.18106	0.050484
С	2.304826	0.181899	-0.66894	С	2.272368	0.246053	-0.59753	С	2.055693	0.125539	-0.14499
С	-1.22951	-1.08127	-0.45785	С	-1.23493	-1.04577	-0.43883	С	-1.27537	-1.34593	0.539611
С	-2.55917	-0.57345	-0.98889	С	-2.59468	-0.55537	-1.00864	С	-2.67638	-1.27015	0.008352
С	-3.44838	-0.10455	0.171264	С	-3.39941	-0.0966	0.140373	С	-3.31107	-0.23827	-0.74731
С	-3.07078	1.027354	1.091196	С	-3.17058	1.131001	0.907586	С	-2.68912	0.961959	-1.36737
С	-2.80913	2.357036	0.360229	С	-2.82697	2.381012	0.062015	С	-2.3775	2.041437	-0.26976
С	-1.43446	2.497918	-0.2844	С	-1.38328	2.515352	-0.39902	С	-0.92798	2.463653	-0.32046
С	-4.41595	-1.09986	0.455404	С	-4.51943	-1.00904	0.396616	С	-4.79289	-0.47651	-0.8163
С	-4.36296	-2.19216	-0.56551	С	-4.30311	-2.23087	-0.50898	С	-4.97375	-1.92695	-0.34071
С	-3.42982	-1.66273	-1.66749	С	-3.43311	-1.68642	-1.652	С	-3.77025	-2.17742	0.574952
С	-1.281	-2.18518	0.566876	С	-1.27034	-2.14713	0.591333	С	-1.1898	-1.86749	1.953371
С	-1.44512	3.056618	-1.68155	С	-1.23352	3.047188	-1.79889	С	-0.51487	3.175862	-1.58024
С	-5.35434	-1.13043	1.604391	С	-4.99621	-1.25527	1.825532	С	-5.433	0.55429	0.141605
С	4.160036	-1.72716	-0.25987	С	4.154633	-1.67632	-0.43364	С	3.934826	-1.35665	-1.34124
С	5.63894	-1.98173	-0.57265	С	5.630772	-1.87262	-0.79798	С	5.174372	-1.09675	-2.20301
С	3.879627	-2.16773	1.181551	С	3.89607	-2.32277	0.933031	С	4.192212	-2.57227	-0.44364
С	1.822451	0.715027	1.795897	С	1.642258	0.585054	1.866889	С	1.630217	0.445462	2.408701
Н	-2.36276	0.258155	-1.66985	Н	-2.36049	0.278814	-1.67791	Н	-2.68768	-1.51576	-1.18434
Н	4.202311	-0.12618	-1.63027	Н	4.215962	0.141187	-1.50868	Н	1.557563	0.663436	-0.96468
Н	5.48009	1.08979	-0.0987	Н	5.441319	1.019769	0.285379	Н	3.770548	0.760832	-1.23354
Н	4.699007	0.357595	1.290443	Н	4.508079	0.150831	1.49231	Н	5.407574	0.357746	0.53656
Н	3.688013	2.571128	1.278204	Н	3.588649	2.409602	1.654509	Н	4.25615	-0.65425	1.415174
Н	3.607754	2.579801	-0.48647	Н	3.63024	2.596874	-0.102	Н	3.874947	1.638867	2.313787
Н	1.432786	3.305991	0.569281	Н	1.384908	3.272094	0.882649	Н	3.893115	2.291826	0.673893
Н	1.206868	2.628852	-1.02812	Н	1.312958	2.784015	-0.79544	Н	1.535101	3.080735	1.690229

Η	-0.48022	1.859881	1.444485	Н	-0.62559	1.892441	1.436276	Н	1.749344	2.881018	-0.0438
Н	-3.58928	2.504266	-0.398	Н	-3.49721	2.406581	-0.8055	Н	-0.60661	1.69714	1.573877
Н	-2.95029	3.166591	1.084584	Н	-3.10208	3.251143	0.668039	Н	-0.41933	-0.69674	-1.25056
Н	-4.52774	0.135224	-0.34893	Н	-5.27306	-0.35371	-0.11956	Н	1.427409	-1.63098	1.027435
Н	-5.35541	-2.50286	-0.90155	Н	-5.25095	-2.64582	-0.85502	Н	1.594127	-1.90887	-0.69152
Н	-3.92784	-3.05021	-0.03215	Н	-3.79177	-3.01187	0.060448	Н	-1.7574	0.693413	-1.86688
Н	-2.81996	-2.44904	-2.11332	Н	-2.79324	-2.44339	-2.10808	Н	-3.36658	1.354989	-2.12869
Н	-4.02968	-1.21442	-2.46555	Н	-4.06522	-1.26531	-2.43986	Н	-3.04353	2.893687	-0.44432
Н	-0.30644	-2.36081	1.022435	Н	-0.30117	-2.26195	1.077305	Н	-2.61132	1.649471	0.725942
Н	-1.60398	-3.13503	0.122359	Н	-1.52383	-3.11315	0.140486	Н	-5.17446	-0.29845	-1.82612
Н	-1.97664	-1.95559	1.386991	Н	-2.00595	-1.9558	1.383492	Н	-4.93477	-2.60621	-1.19873
Н	-0.45015	3.125691	-2.12094	Н	-0.19328	3.139057	-2.1097	Н	-5.92994	-2.08047	0.161307
Н	-1.88153	4.062237	-1.68796	Н	-1.69782	4.035895	-1.88856	Н	-3.96322	-1.85573	1.604511
Н	-2.06987	2.446563	-2.34734	Н	-1.74737	2.399351	-2.52205	Н	-3.45971	-3.22255	0.609662
Н	-5.4816	-0.16257	2.088108	Н	-5.21535	-0.3338	2.367481	Н	-0.15472	-1.97357	2.272007
Н	-6.32201	-1.5446	1.316428	Н	-5.90709	-1.85506	1.798999	Н	-1.66409	-2.84829	2.050442
Н	-4.91053	-1.8161	2.339326	Н	-4.23856	-1.817	2.378248	Н	-1.68821	-1.18957	2.656244
Н	3.573277	-2.37549	-0.92467	Н	3.565456	-2.22285	-1.18195	Н	-1.04243	4.132905	-1.66186
Н	5.874979	-1.74326	-1.61376	Н	5.850932	-1.49046	-1.7989	Н	-0.77002	2.600044	-2.47826
Н	5.901187	-3.02851	-0.39599	Н	5.901514	-2.93174	-0.77221	Н	0.554504	3.380839	-1.61542
Н	6.281578	-1.36763	0.067497	Н	6.278298	-1.34896	-0.08641	Н	-5.22787	1.581479	-0.16897
Н	2.843044	-2.01636	1.492351	Н	2.888163	-2.14601	1.317725	Н	-6.51442	0.406425	0.134755
Н	4.101211	-3.23371	1.287637	Н	4.037209	-3.40504	0.862381	Н	-5.07554	0.42203	1.16722
Н	4.520052	-1.63917	1.894919	Н	4.60371	-1.95832	1.683944	Н	3.110637	-1.59391	-2.03047
Н	2.639825	0.083841	2.152305	Н	2.384899	-0.15174	2.185627	Н	4.997015	-0.29868	-2.92944
Н	0.909344	0.107422	1.793941	Н	0.681696	0.065159	1.766176	Н	5.463796	-1.99704	-2.75206
Н	1.686816	1.521127	2.525839	Н	1.541114	1.321724	2.671863	Н	6.024992	-0.80259	-1.57918

Н	-2.16551	0.694091	1.613282	Н	-2.319	0.877692	1.565149	Н	3.393832	-2.75287	0.281733
Н	-3.8429	1.161178	1.85354	Н	-4.01784	1.314951	1.57279	Н	4.30729	-3.47587	-1.04878
Н	1.611063	-1.6611	-1.49811	Н	1.603573	-1.55652	-1.53992	Н	5.120594	-2.43625	0.120325
Н	1.368045	-1.57141	0.229608	Н	1.350728	-1.57112	0.188856	Н	2.263252	-0.39852	2.702481
Н	2.179717	0.696672	-1.63301	Н	2.14477	0.817323	-1.52867	Н	0.601451	0.084425	2.338693
Н	-0.20878	0.226599	-1.70913	Н	-0.23241	0.265252	-1.71355	Н	1.670285	1.180135	3.219277

IM6c				TS_6c-7c				IM7c			
С	3.525325	-0.05126	-0.58911	С	3.527831	-0.18339	-0.9132	С	3.551023	-0.16603	-0.93871
С	4.336529	0.197261	0.687348	С	4.541001	0.632143	-0.07025	С	4.551515	0.683366	-0.10734
С	3.639464	1.418603	1.277285	С	3.730857	1.800652	0.503815	С	3.716357	1.812597	0.522157
С	2.132226	1.098201	1.149595	С	2.370009	1.168638	0.840878	С	2.373881	1.132419	0.837355
С	1.303491	2.394582	1.027034	С	1.250391	2.208036	0.991601	С	1.19837	2.097483	0.996414
С	-0.15791	2.125675	0.819357	С	-0.16291	1.673161	0.879346	С	-0.1981	1.469321	0.822905
С	-0.31239	-0.73709	-0.18688	С	-0.40625	-0.20068	-0.22954	С	-0.38845	0.027938	-0.13684
С	1.133083	-1.00981	-0.06501	С	1.016533	-0.71839	-0.23133	С	0.997749	-0.64497	-0.33314
С	2.04217	0.243212	-0.17104	С	2.122222	0.314466	-0.42408	С	2.149773	0.333169	-0.46184
С	-1.3333	-1.28922	0.575662	С	-1.39842	-0.94916	0.528816	С	-1.39558	-0.87385	0.534155
С	-2.65366	-1.17299	0.115677	С	-2.67318	-1.09654	0.07636	С	-2.63897	-1.08011	0.064706
С	-3.24779	-0.41659	-1.04947	С	-3.38707	-0.37119	-1.05357	С	-3.38587	-0.36233	-1.0565
С	-2.71267	0.957572	-1.48658	С	-3.03674	1.108627	-1.29636	С	-3.10701	1.138097	-1.27699
С	-2.33808	1.933136	-0.33993	С	-2.51611	1.873397	-0.05292	С	-2.58069	1.892996	-0.02227
С	-0.87093	2.30636	-0.30369	С	-1.0318	2.104523	-0.101	С	-1.10494	2.083825	-0.08597
С	-4.78178	-0.45363	-0.78461	С	-4.88907	-0.61578	-0.73809	С	-4.87478	-0.66444	-0.73587
С	-4.97118	-1.82874	-0.13581	С	-4.87552	-2.05588	-0.21387	С	-4.80571	-2.11791	-0.25658
С	-3.74558	-1.95493	0.773439	С	-3.63704	-2.08828	0.691898	С	-3.56778	-2.13327	0.651302

С	-1.06191	-2.14756	1.791524	С	-0.94922	-1.69241	1.767626	С	-0.91748	-1.63126	1.752875
С	-0.32751	2.910098	-1.57447	С	-0.5584	2.951196	-1.25193	С	-0.61929	2.974129	-1.17871
С	-5.28181	0.678914	0.112019	С	-5.45978	0.351013	0.301437	С	-5.46062	0.24738	0.344514
С	3.840857	-1.34695	-1.35653	С	3.814176	-1.6982	-0.98597	С	3.837362	-1.68292	-0.96795
С	5.126172	-1.17446	-2.17288	С	5.151204	-1.91814	-1.70261	С	5.171484	-1.92344	-1.68255
С	3.974828	-2.58669	-0.46565	С	3.829855	-2.45588	0.344932	С	3.852627	-2.40843	0.380234
С	1.696316	0.330998	2.40419	С	2.488013	0.34855	2.130557	С	2.519864	0.285547	2.106296
Н	-3.09609	-1.13215	-1.88105	Н	-3.17822	-0.94013	-1.97268	Н	-3.16343	-0.88942	-1.99544
Н	1.594753	0.865949	-0.95735	Н	1.77243	1.014272	-1.19738	Н	1.846532	1.083833	-1.21044
Н	3.780792	0.773327	-1.26901	Н	3.616581	0.160964	-1.95054	Н	3.640398	0.145427	-1.98619
Н	5.398275	0.36342	0.487543	Н	5.391723	0.969806	-0.66586	Н	5.368473	1.070998	-0.71953
Н	4.25994	-0.65398	1.374252	Н	4.948079	0.025179	0.744899	Н	5.011495	0.077451	0.679929
Н	3.920398	1.633293	2.312377	Н	4.203986	2.275473	1.368348	Н	4.189441	2.258305	1.402029
Н	3.886841	2.303868	0.678488	Н	3.594212	2.571795	-0.26561	Н	3.558298	2.613364	-0.21226
Н	1.443843	2.983017	1.942864	Н	1.32874	2.693749	1.972692	Н	1.206498	2.557769	1.991008
Н	1.714282	2.988636	0.205241	Н	1.401514	2.990126	0.243008	Н	1.330032	2.911861	0.279429
Н	-0.68945	1.71948	1.681327	Н	-0.59906	1.21843	1.76809	Н	-0.66245	1.157461	1.759062
Н	-0.59287	-0.14318	-1.05113	Н	-0.72529	0.140205	-1.21181	Н	-0.7363	0.288507	-1.14282
Н	1.364391	-1.6206	0.806111	Н	1.198821	-1.30075	0.669626	Н	1.177378	-1.32077	0.502136
Н	1.340534	-1.63255	-0.95392	Н	1.018332	-1.43122	-1.07044	Н	0.892493	-1.26606	-1.22949
Н	-1.87033	0.832116	-2.17226	Н	-2.31049	1.187206	-2.11101	Н	-2.40541	1.270234	-2.10564
Н	-3.50124	1.39483	-2.10673	Н	-3.9362	1.600377	-1.67524	Н	-4.03427	1.612527	-1.60681
Н	-2.9226	2.854068	-0.45378	Н	-2.96852	2.872983	-0.01932	Н	-2.99709	2.909951	-0.01272
Н	-2.62582	1.510701	0.629196	Н	-2.80072	1.373626	0.875108	Н	-2.8809	1.399004	0.901426
Н	-5.29971	-0.39308	-1.74638	Н	-5.47091	-0.52758	-1.66111	Н	-5.47407	-0.56575	-1.64715
Н	-4.95007	-2.61773	-0.89412	Н	-4.75001	-2.75805	-1.044	Н	-4.65239	-2.7852	-1.11078
Н	-5.90954	-1.91751	0.414214	Н	-5.79124	-2.3258	0.31608	Н	-5.71321	-2.43969	0.259003

Н	-3.92325	-1.46682	1.74737	Н	-3.88993	-1.76436	1.710569	Н	-3.83987	-1.86844	1.680823
Н	-3.4394	-2.97771	1.013974	Н	-3.18542	-3.08006	0.790396	Н	-3.08398	-3.11299	0.700961
Н	-0.06283	-1.98444	2.191045	Н	-0.23212	-1.1048	2.346589	Н	-0.2347	-1.02972	2.359753
Н	-1.15446	-3.21164	1.551166	Н	-0.46662	-2.64509	1.522771	Н	-0.38548	-2.55104	1.48492
Н	-1.77245	-1.92557	2.591176	Н	-1.79181	-1.9098	2.423995	Н	-1.75254	-1.91434	2.394235
Н	-1.03356	3.646602	-1.97213	Н	0.35961	2.581684	-1.71241	Н	0.321912	2.642604	-1.6189
Н	-0.18277	2.160653	-2.36265	Н	-0.34127	3.95575	-0.86787	Н	-0.42222	3.948573	-0.70795
Н	0.629306	3.409655	-1.42603	Н	-1.32349	3.056101	-2.02107	Н	-1.36897	3.125042	-1.95454
Н	-5.09429	1.661195	-0.32878	Н	-5.4159	1.392203	-0.03071	Н	-5.47315	1.299358	0.04315
Н	-6.3608	0.584875	0.256265	Н	-6.50972	0.116076	0.491871	Н	-6.49414	-0.03819	0.555024
Н	-4.81363	0.663585	1.102517	Н	-4.93093	0.283185	1.258982	Н	-4.90364	0.173846	1.285695
Н	3.029107	-1.51699	-2.08093	Н	3.031645	-2.14644	-1.61565	Н	3.048939	-2.14294	-1.58129
Н	5.037606	-0.35463	-2.89101	Н	5.173988	-1.41621	-2.67431	Н	5.186481	-1.45859	-2.67273
Н	5.360338	-2.08717	-2.72718	Н	5.334185	-2.98315	-1.86622	Н	5.360223	-2.99279	-1.8068
Н	5.975366	-0.95968	-1.51592	Н	5.980329	-1.52851	-1.10232	Н	6.001479	-1.50596	-1.10212
Н	3.136016	-2.72559	0.222322	Н	2.879004	-2.41094	0.881143	Н	2.907579	-2.33291	0.923842
Н	4.053438	-3.48783	-1.07978	Н	4.047856	-3.51168	0.161881	Н	4.050258	-3.47178	0.218876
Н	4.884914	-2.52438	0.138823	Н	4.612802	-2.08178	1.012531	Н	4.649394	-2.03419	1.031781
Н	2.297397	-0.57044	2.566277	Н	3.176503	-0.49224	2.026683	Н	3.322543	-0.44806	2.027059
Н	0.642966	0.036105	2.365331	Н	1.523771	-0.0516	2.458747	Н	1.605247	-0.25561	2.363768
Н	1.820878	0.970074	3.283292	Н	2.860258	0.988219	2.936365	Н	2.754557	0.942425	2.949554

TS_5c-6c'				IM6c'			
С	3.452229	-0.20057	-0.58988	С	3.529009	-0.16194	-0.62772
С	4.306108	0.380737	0.562174	С	4.368439	0.46026	0.522301
С	3.48834	1.559776	1.091559	С	3.50793	1.599084	1.09849

С	2.035992	1.055731	1.047995	С	2.076497	1.050503	0.994078
С	1.025411	2.218184	1.129602	С	0.977293	2.10925	1.024711
С	-0.33835	1.927825	0.550314	С	-0.38478	1.621402	0.49529
С	-0.51926	-0.07936	-0.7171	С	-0.49066	0.312259	-0.58335
С	0.846661	-0.64287	-0.47138	С	0.889624	-0.41134	-0.70632
С	2.001933	0.355342	-0.33777	С	2.105558	0.449999	-0.42409
С	-1.70257	-0.72655	-0.18112	С	-1.68367	-0.60923	-0.22288
С	-2.77798	-0.90954	-1.32208	С	-2.71804	-0.75271	-1.33014
С	-3.07637	0.022563	-0.22276	С	-3.08213	-0.00403	-0.07836
С	-3.18196	1.534602	-0.30946	С	-3.32491	1.48947	0.01822
С	-2.17975	2.300615	-1.15551	С	-2.44098	2.365044	-0.84888
С	-0.75421	2.374688	-0.67221	С	-0.96933	2.304309	-0.61137
С	-4.23359	-0.58559	0.597729	C	-4.18558	-0.80975	0.635162
С	-4.46185	-2.02326	0.07301	С	-4.30099	-2.17186	-0.08988
С	-3.65795	-2.14569	-1.24255	C	-3.53758	-2.03173	-1.4278
С	-1.44235	-1.83187	0.828947	С	-1.28358	-1.82702	0.596362
С	0.144332	3.042065	-1.67582	С	-0.15804	3.130522	-1.55701
С	-4.14368	-0.44078	2.115871	С	-4.08239	-0.88522	2.15815
С	3.662475	-1.70842	-0.84759	С	3.679782	-1.68948	-0.80575
С	5.108932	-1.936	-1.3025	С	5.117675	-1.99175	-1.24337
С	3.356717	-2.65076	0.321321	С	3.333184	-2.57373	0.396325
С	1.781807	0.089399	2.211549	С	1.825311	0.039494	2.117648
Н	-2.45973	-0.56457	-2.30167	Н	-2.50179	-0.22807	-2.25972
Н	3.790146	0.284443	-1.51369	Н	3.899755	0.253904	-1.57192
Н	5.298918	0.682754	0.221921	Н	5.340326	0.816037	0.174234
Н	4.454798	-0.35938	1.355209	Н	4.568805	-0.28309	1.300728
Н	3.789422	1.891076	2.089816	Н	3.788407	1.8757	2.118844

Н	3.59311	2.416536	0.412473	Н	3.603609	2.495754	0.472166
Н	0.891347	2.501228	2.179785	Н	0.803415	2.46103	2.047308
Н	1.449649	3.092673	0.630015	Н	1.307263	2.980618	0.451259
Н	-1.0869	1.510949	1.222377	Н	-1.09086	1.340316	1.275217
Н	-2.17834	1.917853	-2.18776	Н	-2.63101	2.188523	-1.9146
Н	-2.52517	3.337991	-1.24964	Н	-2.68341	3.428837	-0.6943
Н	-5.09724	0.011269	0.276644	Н	-5.10399	-0.25159	0.408292
Н	-5.52555	-2.19828	-0.10061	Н	-5.35064	-2.42209	-0.25985
Н	-4.15503	-2.77291	0.806145	Н	-3.89931	-2.98468	0.520452
Н	-3.07803	-3.0716	-1.30104	Н	-2.91361	-2.90546	-1.64072
Н	-4.32087	-2.13411	-2.11238	Н	-4.23587	-1.93126	-2.26304
Н	-0.93903	-1.44031	1.717935	Н	-0.72822	-1.54615	1.496286
Н	-0.81572	-2.61771	0.398096	Н	-0.66757	-2.51583	0.012039
Н	-2.35779	-2.30135	1.16682	Н	-2.15043	-2.3854	0.929759
Н	1.153087	3.239288	-1.31997	Н	0.868271	2.789783	-1.67311
Н	-0.30808	3.989319	-1.98765	Н	-0.12025	4.137227	-1.11714
Н	0.216159	2.427549	-2.58278	Н	-0.64123	3.213484	-2.53142
Н	-4.04604	0.608271	2.410864	Н	-4.07292	0.11356	2.606239
Н	-5.05671	-0.82213	2.580064	Н	-4.9454	-1.41492	2.570027
Н	-3.30126	-0.99038	2.5413	Н	-3.18222	-1.40963	2.488645
Н	3.01342	-1.99267	-1.68898	Н	3.016201	-1.98074	-1.63289
Н	5.368773	-1.29837	-2.15243	Н	5.396337	-1.41951	-2.13288
Н	5.263239	-2.9764	-1.59957	Н	5.242261	-3.05356	-1.47063
Н	5.808918	-1.71735	-0.48924	Н	5.824444	-1.73945	-0.4452
Н	2.313108	-2.62765	0.64509	Н	2.294096	-2.48412	0.724886
Н	3.576239	-3.68085	0.026963	Н	3.497653	-3.62227	0.133132
Н	3.984641	-2.42958	1.190107	Н	3.978316	-2.35929	1.254846

Н	2.352864	-0.83868	2.121391	Н	2.523215	-0.79781	2.092094
Н	0.722159	-0.1771	2.292894	Н	0.81138	-0.37073	2.086834
Н	2.06547	0.566506	3.15406	Н	1.941711	0.540076	3.083798
Н	-3.19328	1.944618	0.707486	Н	-3.25379	1.807553	1.066131
Н	-4.1762	1.741406	-0.72081	Н	-4.36021	1.684463	-0.28048
Н	1.0144	-1.28217	-1.3549	Н	0.925801	-0.84764	-1.70961
Н	0.835944	-1.29905	0.392221	Н	0.89285	-1.23852	-0.00215
Н	1.843235	1.139196	-1.08852	Н	2.075299	1.313144	-1.10438
Н	-0.62457	0.407979	-1.68209	Н	-0.6726	0.680889	-1.60817

REFERENCES

M. J. Frisch; G. W. Trucks; H. B. Schlegel; G. E. Scuseria; M. A. Robb; J. R. Cheeseman; G. Scalmani; V. Barone; G. A. Petersson; H. Nakatsuji; X. Li; M. Caricato; A. Marenich; J. Bloino; B. G. Janesko; R. Gomperts; B. Mennucci; H. P. Hratchian; J. V. Ortiz; A. F. Izmaylov; J. L. Sonnenberg; D. Williams-Young; F. Ding; F. Lipparini; F. Egidi; J. Goings; B. Peng; A. Petrone; T. Henderson; D. Ranasinghe; V. G. Zakrzewski; J. Gao; N. Rega; G. Zheng; W. Liang; M. Hada; M. Ehara; K. Toyota; R. Fukuda; J. Hasegawa; M. Ishida; T. Nakajima; Y. Honda; O. Kitao; H. Nakai; T. Vreven; K. Throssell; J. A. Montgomery; Jr., J. E. P.; F. Ogliaro; M. Bearpark; J. J. Heyd; E. Brothers; K. N. Kudin; V. N. Staroverov; T. Keith; R. Kobayashi; J. Normand; K. Raghavachari; A. Rendell; J. C. Burant; S. S. Iyengar; J. Tomasi; M. Cossi; J. M. Millam; M. Klene; C. Adamo; R. Cammi; J. W. Ochterski; R. L. Martin; K. Morokuma; O. Farkas; J. B. Foresman; Fox, D. J., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT. **2016**.

(2) Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J., AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. *J. Comput. Chem.* **2009**, *30*, 2785-2791.

(3) D.A. Case; K. Belfon; I.Y. Ben-Shalom; S.R. Brozell; D.S. Cerutti; T.E. Cheatham, I.; V.W.D. Cruzeiro;
T.A. Darden; R.E. Duke; G. Giambasu; M.K. Gilson; H. Gohlke; A.W. Goetz; R. Harris; S. Izadi; S.A.
Izmailov; K. Kasavajhala; A. Kovalenko; R. Krasny; T. Kurtzman; T.S. Lee; S. LeGrand; P. Li; C. Lin; J. Liu;
T. Luchko; R. Luo; V. Man; K.M. Merz; Y. Miao; O. Mikhailovskii; G. Monard; H. Nguyen; A. Onufriev; F.
Pan; S. Pantano; R. Qi; D.R. Roe; A. Roitberg; C. Sagui; S. Schott-Verdugo; J. Shen; C. Simmerling; N.R.
Skrynnikov; J. Smith; J. Swails; R.C. Walker; J. Wang; L. Wilson; R.M. Wolf; X. Wu; Y. Xiong; Y. Xue; York,
D. M.; Kollman, P. A., AMBER 2020, University of California, San Francisco. 2020.

(4) Chen, X.-P.; Shi, T.; Wang, X.-L.; Wang, J.; Chen, Q.; Bai, L.; Zhao, Y.-L., Theoretical Studies on the Mechanism of Thioesterase-Catalyzed Macrocyclization in Erythromycin Biosynthesis. *ACS Catal.* **2016**, *6*, 4369-4378.

(5) Shi, T.; Liu, L.; Tao, W.; Luo, S.; Fan, S.; Wang, X.-L.; Bai, L.; Zhao, Y.-L., Theoretical Studies on the Catalytic Mechanism and Substrate Diversity for Macrocyclization of Pikromycin Thioesterase. *ACS Catal.* **2018**, *8*, 4323-4332.

(6) Zhou, J.; Wang, Y.; Xu, G.; Wu, L.; Han, R.; Schwaneberg, U.; Rao, Y.; Zhao, Y.-L.; Zhou, J.; Ni, Y., Structural Insight into Enantioselective Inversion of an Alcohol Dehydrogenase Reveals a "Polar Gate" in Stereorecognition of Diaryl Ketones. *J. Am. Chem. Soc.* **2018**, *140*, 12645-12654.

(7) Chen, M.; Chou, W. K. W.; Toyomasu, T.; Cane, D. E.; Christianson, D. W., Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase. *ACS Chem. Biol.* 2016, *11*, 889-899.
(8) Wagner, J. R.; Sorensen, J.; Hensley, N.; Wong, C.; Zhu, C.; Perison, T.; Amaro, R. E., POVME 3.0: Software for Mapping Binding Pocket Flexibility. *J. Chem. Theory Comput.* 2017, *13*, 4584-4592.

(9) Liu, C.-I.; Liu, G. Y.; Song, Y.; Yin, F.; Hensler, M. E.; Jeng, W.-Y.; Nizet, V.; Wang, A. H. J.; Oldfield, E., A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. *Science* **2008**, *319*, 1391-1394.

(10) Harris, G. G.; Lombardi, P. M.; Pemberton, T. A.; Matsui, T.; Weiss, T. M.; Cole, K. E.; Köksal, M.;

Murphy, F. V.; Vedula, L. S.; Chou, W. K. W.; Cane, D. E.; Christianson, D. W., Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with αα Domain Architecture That Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence. *Biochemistry* **2015**, *54*, 7142-7155.

(11) Christianson, D. W., Structural biology and chemistry of the terpenoid cyclases. *Chem. Rev.* **2006**, *106*, 3412-3442.

(12) Hong, Y. J.; Tantillo, D. J., C-H center dot center dot center dot pi interactions as modulators of carbocation structure - implications for terpene biosynthesis. *Chem. Sci.* **2013**, *4*, 2512-2518.

(13) Sato, H.; Narita, K.; Minami, A.; Yamazaki, M.; Wang, C.; Suemune, H.; Nagano, S.; Tomita, T.; Oikawa, H.; Uchiyama, M., Theoretical Study of Sesterfisherol Biosynthesis: Computational Prediction of Key Amino Acid Residue in Terpene Synthase. *Sci. Rep.* 2018, *8*, 2473.

(14) Ye, Y.; Minami, A.; Mandi, A.; Liu, C.; Taniguchi, T.; Kuzuyama, T.; Monde, K.; Gomi, K.; Oikawa, H., Genome Mining for Sesterterpenes Using Bifunctional Terpene Synthases Reveals a Unified Intermediate of Di/Sesterterpenes. *J. Am. Chem. Soc.* **2015**, *137*, 11846-11853.

(15) Liu, Z.; Chen, Y.; Chen, S.; Liu, Y.; Lu, Y.; Chen, D.; Lin, Y.; Huang, X.; She, Z., Aspterpenacids A and B, Two Sesterterpenoids from a Mangrove Endophytic Fungus Aspergillus terreus H010. *Org. Lett.* **2016**, *18*, 1406-1409.

(16) Jiang, L.; Zhu, G.; Han, J.; Hou, C.; Zhang, X.; Wang, Z.; Yuan, W.; Lv, K.; Cong, Z.; Wang, X.; Chen, X.; Karthik, L.; Yang, H.; Wang, X.; Tan, G.; Liu, G.; Zhao, L.; Xia, X.; Liu, X.; Gao, S.; Ma, L.; Liu, M.; Ren, B.; Dai, H.; Quinn, R. J.; Hsiang, T.; Zhang, J.; Zhang, L.; Liu, X., Genome-guided investigation of anti-inflammatory sesterterpenoids with 5-15 trans-fused ring system from phytopathogenic fungi. *Appl. Microbiol. Biotechnol.* 2021, *105*, 5407-5417.

(17) Hong, Y. J.; Tantillo, D. J., Feasibility of intramolecular proton transfers in terpene biosynthesis--guiding principles. *J. Am. Chem. Soc.* **2015**, *137*, 4134-4140.

(18) Williams, D. C.; Carroll, B. J.; Jin, Q.; Rithner, C. D.; Lenger, S. R.; Floss, H. G.; Coates, R. M.; Williams, R. M.; Croteau, R., Intramolecular proton transfer in the cyclization of geranylgeranyl diphosphate to the taxadiene precursor of taxol catalyzed by recombinant taxadiene synthase. *Chem. Biol.* **2000**, *7*, 969-977.

(19) Ravn, M. M.; Peters, R. J.; Coates, R. M.; Croteau, R., Mechanism of abietadiene synthase catalysis: stereochemistry and stabilization of the cryptic pimarenyl carbocation intermediates. *J. Am. Chem. Soc.* **2002**, *124*, 6998-7006.