Supporting Information

Capturing Nonclassical C70 with Double Heptagons in Low-Pressure Combustion

Fang-Fang Xie, Zuo-Chang Chen, Min Zhang, Xiao-Ming Xie, Ling-Fang Chen, Han-Rui Tian, Shun-Liu Deng, Su-Yuan Xie and Lan-Sun Zheng

State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Contents

1. Synthesis of dihept-C ₇₀ H ₆	S2
2. Separation and purification of dihept- $C_{70}H_6$ via HPLC	S2
3. Multistage mass spectrometry	
4. Crystallographic information	
5. UV-Vis spectrum of dihept-C ₇₀ H ₆	S6
6. Theoretical calculations	S6
7. References	

1. Synthesis of dihept-C₇₀H₆

The carbon soot containing dihept- $C_{70}H_6$ was synthesized by our homemade setup in low-pressure benzene-acetylene-oxygen diffusion flame combustion.¹ The specific combustion conditions are given as follows: gas flow rate, vapoured benzene, 1.0 L/min; C₂H₂, 0.50 L/min; O₂, 1.10 L/min; chamber pressure, around 25 Torr. Approximately 2.5 g of carbon soot was produced per hour inside the combustion chamber and filter. Repeating the aforementioned synthetic experiments until 1kg carbon soot was accumulated for subsequent multi-stage HPLC separation of dihept-C₇₀H₆.

2. Separation and purification of dihept-C₇₀H₆ via HPLC

The synthesized carbon soot was extracted with toluene by ultrasonic method followed by filtration and concentration at room temperature. All the separation and purification were conducted at room temperature using toluene as the mobile phase at a 4 mL/min flow rate on a Shimadzu LC-6AD HPLC instrument. The chromatogram was monitored at 330 nm. Three HPLC columns (Cosmosil 5PBB, Cosmosil Buckyprep, and Cosmosil 5NPE, i.d. 10 × 250 mm) suitable for fullerene isolation were used here alternately. The upper right corner of each chromatogram as follows manifests the elution conditions in each isolation step of dihept- $C_{70}H_6$.

The procedure includes four stages of HPLC run for the isolation of dihept- $C_{70}H_6$, among which the last two were carried out in a recycling mode (Figure S1). First, the crude toluene extracts of carbon soot were separated into several components using a Cosmosil 5PBB column (i.d. 10 × 250 mm), and the component containing dihept- $C_{70}H_6$ with retention time in the range of 22.5~24.5 min was enriched for the next HPLC stage (Figure S1a). Second, the primarily collected samples were further isolated by a Cosmosil 5NPE column (i.d. 10 × 250 mm) eluted with toluene, and then the component with retention time ranging from 12.1 to 13.0 min was collected (Figure S1b). Finally, the subsequent recycling separation and purification were conducted under the same HPLC conditions (5PBB and Buckyprep column, i.d. 10 × 250 mm, respectively), and after several cycles of isolation, the purified dihept- $C_{70}H_6$ S1d) obtained eventually (Figure was S1c,

Figure S1. HPLC chromatograms for the separation of dihept- $C_{70}H_6$. (The areas highlighted in red shadow correspond to the collected components containing dihept- $C_{70}H_6$.)

3. Multistage mass spectrometry

The multistage mass (MS/MS) data were obtained by the Bruker HCT ion trap instrument. In the experiment, only one ion with a particular m/z value of all is captured at a time by appropriately setting the parameters of the ion trap. The MS signal of m/z 846.0 was selected and subjected to collision-induced dissociation with Argon for obtaining the MS/MS spectrum of dihept- $C_{70}H_{6}$.

4. Crystallographic information

The purified dihept- $C_{70}H_6$ was dissolved in toluene and concentrated to form a saturated solution. Slow evaporation from a mixed solution of decapyrrylcorannulene (abbreviated as DPC)² and dihept- $C_{70}H_6$ (2:1 in volume) in toluene at low temperatures provided black block co-crystals of 2DPC{dihept- $C_{70}H_6$ } suitable for single-crystal X-ray diffraction analysis. X-ray diffraction data were collected on an XtaLAB Synergy R diffractometer with Cu K α (λ = 1.54184 Å) Rigaku

X-ray source. The data were processed using CrysAlis^{Pro3.3} The structure was solved by the intrinsic phasing method and refined using full-matrix least-squares based on F² with the programs SHELXT and SHELXL-2015⁴ within OLEX2,⁵ respectively. All the non-hydrogen atoms were refined anisotropically, while the positions of all the hydrogen atoms were generated and refined using a riding model. Olex2 was used to determine the void volume and estimate the number of electrons in this void, which was found to match 1 molecule of toluene per formula unit. The contribution of this disordered solvent molecule has been removed from the intensity data. The crystallographic data for dihept-C₇₀H₆ reported in this paper have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under the deposition number CCDC 2166694. which can be obtained free of charge from www.ccdc.cam.ac.uk/data request/cif.

The unit with DPC molecules and dihept- $C_{70}H_6$ molecules is shown in Figure S2. The toluene molecules in the unit are omitted for clarity. Crystallographic data and other details of 2DPC{dihept- $C_{70}H_6$ } are listed in Table S1.

Figure S2. Dihept- $C_{70}H_6$ molecule and two co-crystallized DPC molecules in the unit. (C grey, H cyan, N navy blue). The fused pentagons are highlighted in red, and the heptagons are highlighted in green.

	dihept-C ₇₀ H ₆				
Empirical formula	$C_{218}H_{118}N_{20}$				
formula weight	3017.32				
Temperature/K	100К				
crystal system	triclinic				
space group	P-1				
a/Å	14.8934(4)				
b/Å	17.2624(5)				
<i>c</i> /Å	30.2493(9)				
α/deg	78.553(3)				
<i>6</i> /deg	77.136(2)				
γ/deg	70.866(3)				
Volume/Å ³	7096.1(4)				
Ζ	2				
ρ _{calc} /g⋅cm⁻³	1.412				
μ/mm ⁻¹	0.652				
F (000)	3132				
Crystal size/mm ³	0.2×0.1×0.1				
Radiation	Cu Kα (λ = 1.54184)				
2ϑ range/°	5.47 to 122.338				
parameters	2231				
Index ranges	-16 ≤ h ≤ 14 -19 ≤ k ≤ 19 -34 ≤ l ≤ 34				
Reflections collected	75997				
Independent reflections	21720				
Goodness-of-fit on F ²	1.021				
Final R indexes [I>=2σ (I)]	R ₁ = 0.0809, wR ₂ = 0.2139				
Final R indexes [all data]	$R_1 = 0.1265$, $wR_2 = 0.2474$				
$R1 = \Sigma Fo - Fc / \Sigma Fo , wR2 = [\Sigma w (Fo^2 - Fc^2)^2] / \Sigma w (Fo^2)^2]^{1/2}$					

Table S1. Crystallographic data for dihept-C₇₀H₆.

5. UV-Vis spectrum of dihept-C₇₀H₆

UV-Vis spectrum was recorded on a Cary 5000 UV-Vis-NIR spectrometer in toluene. As shown in Figure S3, the UV-Vis absorption spectrum of dihept- $C_{70}H_6$ was enlarged by 5 times and 10 times respectively, making the positions of the absorption peaks clear.

Figure S3. UV–Vis spectrum of the dihept- $C_{70}H_6$ in toluene.

6. Theoretical calculations

Figure S4. Three kinds of H/Cl groups in dihept-C₇₀H₆(left) and dihept-C₇₀Cl₆(right) optimized at B3LYP/6-31G(d,p) level on Gaussian 16 program⁶.

Table S	52. T	he orbital c	om	position ar	nalysis res	sults of	both dil	ept-C ₇₀ H ₆ and	dihept-
C ₇₀ Cl ₆	are	calculated	by	Hirshfeld	method	using	build-in	sphericalized	atomic
densiti	es in	n free-states	on	Multiwfn	program ⁷	•			

Dihept-C ₇₀ H ₆	Fragment	Fragment	Dihant C. Cl	Fragment	Fragment
	C ₇₀ (%)	6H (%)	Dinept-C ₇₀ Cl ₆	C ₇₀ (%)	6Cl (%)
LUMO+1	99.006	0.994	LUMO+1	97.068	2.932
LUMO	99.556	0.444	LUMO	95.216	4.784
НОМО	98.794	1.206	НОМО	97.009	2.991
HOMO-1	98.166	1.834	HOMO-1	96.262	3.738

Figure S5. The molecular orbitals of dihept- $C_{70}H_6$ and dihept- $C_{70}Cl_6$ calculated at B3LYP/6-31G(d,p) level.

Dih	ept-C ₇₀ H ₆						
С	3.5737640	1.1727740	-1.3084460	С	-3.9842280	-1.1741400	-0.0951080
С	2.8338430	0.7263130	2.6877980	С	-0.8231100	1.3951060	-3.2711910
С	3.9493500	0.0000010	-0.5915000	С	-1.0006530	2.5973650	-2.5077250
С	-2.3433620	-2.9637790	-0.5250260	С	-0.6164940	-1.4266050	3.4111240
С	3.2386010	-2.3086650	-0.6104660	С	0.5989330	-0.7012590	3.6660490
С	-2.2793570	2.5816030	-1.8669720	С	2.3493730	-3.3589040	-1.1936350
С	3.5737690	-1.1727620	-1.3084670	С	1.8884190	2.9807490	1.1938830
С	3.5527480	1.1584180	1.5298070	С	2.8338440	-0.7263530	2.6877890
С	3.0864090	-2.2660650	0.8152400	С	0.0139570	3.6168610	-0.4857950
С	-2.0873920	-0.6907700	-3.2080560	С	-1.1660110	-3.4104680	0.2144060
С	0.4344230	-0.7379100	-3.2891840	С	1.3889380	2.6810000	-2.1487640
С	-2.6318740	2.2596670	1.6769530	С	0.0814550	-3.1499390	-1.8498990
С	-2.3433630	2.9637820	-0.5249860	С	1.6859100	-1.4190980	3.0631170
С	1.5866960	-1.4638310	-2.7920060	С	3.5527470	-1.1584400	1.5297910
С	1.5866950	1.4638680	-2.7919920	С	3.2385980	2.3086700	-0.6104320

С	4.0092980	-0.0000050	0.8118850	С	-2.9934220	-1.4174300	-2.3352480
С	-3.8404130	0.7236860	-1.4682200	С	-3.5754920	-0.0000140	2.0241220
С	1.1525090	-2.5323460	2.2884330	С	0.0814610	3.1499680	-1.8498620
С	-1.8194000	0.7288610	3.3876710	С	-4.1200580	-0.0000060	0.7464700
С	3.0864090	2.2660550	0.8152740	С	1.3889370	-2.6809610	-2.1487980
С	1.1525100	2.5323130	2.2884690	С	-3.2331850	-2.2647360	0.3633110
С	-0.3269210	-2.5342280	2.5009790	С	0.4344300	0.7379590	-3.2891730
С	0.5989330	0.7012060	3.6660580	С	-2.8691270	1.1700950	2.5205830
С	-1.3352370	-2.9369190	1.6187110	С	0.0139560	-3.6168530	-0.4858470
С	-3.2331830	2.2647320	0.3633420	С	-1.3352340	2.9368950	1.6187520
С	-2.9934220	1.4174670	-2.3352290	С	1.8884190	-2.9807620	1.1938410
С	1.6859110	1.4190540	3.0631380	С	-2.6318770	-2.2596910	1.6769210
С	2.3493770	3.3589110	-1.1935980	С	1.4382980	-3.8545060	0.0156690
С	2.9668130	-0.7975280	-2.6715020	С	-3.8404120	-0.7236630	-1.4682310
С	2.9668110	0.7975670	-2.6714880	С	1.4382920	3.8545040	0.0157310
С	-2.0873930	0.6908190	-3.2080490	С	-2.2793540	-2.5815750	-1.8670080
С	-2.8691280	-1.1701280	2.5205650	Н	1.5995460	-4.9169190	0.2365220
С	-1.0006570	-2.5973340	-2.5077600	Η	2.8933210	-4.1872830	-1.6639690
С	-1.8194000	-0.7289090	3.3876610	Η	3.5923390	-1.1420610	-3.5052100
С	-0.6164930	1.4265570	3.4111460	Η	3.5923470	1.1421110	-3.5051860
С	-1.1660050	3.4104630	0.2144540	Η	2.8933270	4.1873120	-1.6638900
С	-0.3269190	2.5341930	2.5010160	Η	1.5995530	4.9169160	0.2365810
С	-3.9842270	1.1741420	-0.0950930				
С	-0.8231080	-1.3950540	-3.2712130				
Dih	ent-C-cClc						

Dihept-C₇₀Cl₆

Cl	-1.5373750	4.8275050	-1.4527930	С	-2.9620380	-2.4102560	-1.6061900
Cl	-5.6062980	0.5074540	1.2638710	С	1.4573540	2.1230350	-1.5892640
Cl	1.5363420	4.8277320	-1.4528500	С	-1.4577900	2.1227670	-1.5893080
Cl	-4.6642130	3.2170420	-0.0954750	С	1.1744040	-4.0440020	-2.0611120
Cl	4.6634840	3.2180820	-0.0955970	С	-1.3952980	0.2867630	-3.2142450
Cl	5.6062020	0.5084770	1.2639780	С	-2.5965090	-0.2508600	-2.6430460
С	-1.1704880	3.1007540	0.6788000	С	1.4263500	-2.8950280	2.6654190
С	-0.7261340	0.4550880	3.7609550	С	0.7011780	-1.9711180	3.4945970
С	-0.0003100	3.0701680	1.4848180	С	3.3483080	1.9899490	0.1650150
С	2.9625670	-2.4096500	-1.6061710	С	-2.9739360	0.3840640	1.9949070
С	2.3065950	2.4600390	1.1168480	С	0.7260410	0.4552400	3.7609660
С	-2.5796980	-1.6783660	-2.7317620	С	-3.6132540	-0.3935950	-0.3865770
С	1.1698640	3.1010060	0.6788130	С	3.4033630	-1.7649170	-0.3720760
С	-1.1578850	1.6581270	3.1200160	С	-2.6758210	1.6257810	-1.1316470
С	2.2656560	1.6142310	2.2696720	С	3.1510130	0.3536260	-1.5317630
С	0.6909110	-0.8373790	-3.7960000	С	1.4173660	-0.7268790	3.5132420
С	0.7365540	1.3838340	-2.6016950	С	1.1575470	1.6583690	3.1200300
С	-2.2586240	-3.7686310	0.1501220	С	-2.3070910	2.4595460	1.1168340

С	-0.0002510	2.4121330	2.7274680	С	-3.4029900	-1.7656040	-0.3720900
С	-0.7231410	-3.2275440	-3.1747600	С	-2.5321280	-2.1874000	2.0210170
С	2.5267550	-0.8030700	2.5716690	С	-1.1735480	-4.0442380	-2.0611220
С	-0.7278460	-3.9217140	2.0392100	С	1.3952520	0.2870550	-3.2142340
С	-2.2659860	1.6137560	2.2696570	С	1.4169120	-2.0592270	-3.4976110
С	-2.5265970	-0.8035890	2.5716660	С	0.0004950	-4.7568710	-0.0237070
С	2.5325790	-2.1868830	2.0210270	С	-3.1510680	0.3529940	-1.5317850
С	-0.7007760	-1.9712630	3.4945920	С	0.0004820	-4.5847570	-1.4021710
С	2.9348810	-2.6158420	0.7518190	С	2.6754660	1.6263220	-1.1316200
С	-2.2640670	-3.6273150	-1.2874230	С	2.2648340	-3.6268580	-1.2874090
С	-1.4164630	-2.0595180	-3.4976220	С	-0.7368330	1.3836990	-2.6016960
С	-1.4172180	-0.7271690	3.5132340	С	-1.1690410	-4.3944370	0.7602320
С	-3.3487190	1.9892970	0.1649850	С	3.6133450	-0.3928540	-0.3865600
С	0.8154260	3.2700370	-0.7993480	С	-2.9343320	-2.6164370	0.7518030
С	-0.8160770	3.2698010	-0.7993290	С	2.9738450	0.3846750	1.9949140
С	-0.6907130	-0.8375200	-3.7960100	С	2.2594090	-3.7681730	0.1501320
С	1.1699440	-4.3941950	0.7602350	С	3.8458660	0.5682090	0.7636690
С	2.5965980	-0.2503320	-2.6430360	С	0.7238330	-3.2273910	-3.1747570
С	0.7286490	-3.9215630	2.0392130	С	-3.8460210	0.5673990	0.7636680
С	-1.4257590	-2.8953210	2.6654150	С	2.5800710	-1.6778300	-2.7317450

7. References

1 Q. H. Weng, Q. He, T. Liu, H. Y. Huang, J. H. Chen, Z. Y. Gao, S. Y. Xie, X. Lu, R. B. Huang and L. S. Zheng, *J. Am. Chem. Soc.*, 2010, **132**, 15093–15095.

2 Y. Y. Xu, H. R. Tian, S. H. Li, Z. C. Chen, Y. R. Yao, S. S. Wang, X. Zhang, Z. Z. Zhu, S. L. Deng and Q. Zhang, *Nat. Commun.*, 2019, **10**, 485.

3 CrysAlisPro, Version 1.171.35.19., Agilent Technologies Inc., Santa Clara, CA, USA, 2011.

4 G. M. Sheldrick, *Acta Crystallogr. Sect. C*, 2015, **71**, 3–18.

5 L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. Howard and H. Puschmann, *Acta Crystallogr. Sect. A*, 2009, **42**, 339–341.

6 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.

Foresman, and D. J. Fox, *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, 2016.

7 T. Lu, F. W. Chen, J. Comput. Chem., 2012, **33**, 580–592.