Electronic Supplementary Information

Tetraarylphosphonium salts-catalyzed formal [3+2] cycloaddition between epoxides and trichloroacetonitrile for the synthesis of β-amino alcohol derivatives

Yasunori Toda, Ryota Shiokawa, Masaya Iwasaki, Daisuke Yamaguchi, Keisuke Kawamura, Kimiya Sukegawa, and Hiroyuki Suga

> Department of Materials Chemistry, Faculty of Engineering Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

> > E-mail: ytoda@shinshu-u.ac.jp (Y.T.)

General information	S2
Preparation of tetraarylphosphonium salts	S2
Preparation of epoxides	S5
General procedure for [3+2] reactions followed by hydrolysis	S6
Appendix	.S13
DFT studies	.S15
References	S27
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of $(4-MeOC_6H_4)_4P^+Br^-$	S28
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of TAPS D	S29
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of TAPS E	S30
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of TAPS \mathbf{F}	.S31
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of TAPS G	S32
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of TAPS H	S33
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of TAPS I	S34
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of S1	S35
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of glycidyl 1-naphthyl ether	S36
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of glycidyl 4-methoxylbenzyl ether	S37
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 4-bromobenzyl glycidyl ether	S38
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of $2a$	S39
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of $4a$	S40
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 4b	.S41
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 4c	S42
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 4d	S43
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of $4e$	S44
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 4f	
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of $4g$	
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 4h	S47
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 4i	S48
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 4j	S49
¹ H (300 MHz, DMSO- d_6) & ¹³ C{ ¹ H} NMR (75 MHz, DMSO- d_6) spectra of 4k	S50
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 21	.S51
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 41	S52
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 4m	S53
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of $4n$	S54
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 40	S55
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 2q	S56
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 4q	S57
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of 5	S58
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of S2	S59
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) spectra of S3	S60

Toda et al.	Electronic Supplementary Information
HPLC trace of 4a	
HPLC trace of 4n	
HPLC trace of 4q	
HPLC trace of 5	

General information

All reagents and solvents were commercial grade and purified prior to use when necessary. Thin layer chromatography (TLC) was performed using TLC aluminum sheets from Merck (silica gel 60 F₂₅₄, 200 µm), and flash chromatography utilized silica gel from Fuji Silysia Chemical (PSQ60B, 60 µm). Products were visualized by ultraviolet (UV) light and/or TLC stains. Melting points were measured on a Yanaco micro melting point apparatus and were not corrected. Nuclear magnetic resonance (NMR) spectra were acquired on a Bruker Fourier 300 (300 MHz). Chemical shifts are measured relative to residual solvent peaks as an internal standard set to 0.00 (¹H) for TMS and 77.0 (¹³C{¹H}) for CDCl₃. ¹³C{¹H} NMR peak assignments were confirmed by DEPT135. Data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qui = quintet, sext = sextet, sept = septet, br = broad, and m = multiplet), coupling constants (Hz), and integration. Infrared (IR) spectra were analyzed as neat films on a potassium bromide (KBr) plate. Mass spectra were recorded on a Bruker micrOTOF II mass spectrometer by the ionization method noted. A post-acquisition gain correction was applied using sodium formate (HCO₂Na) as the lock mass. X-ray diffraction data were collected at 93 K using a Bruker SMART APEX2 diffractometer [Mo K α radiation ($\lambda = 0.71073$ Å)].

Preparation of tetraarylphosphonium salts

Ph₄P⁺Br⁻ is commercially available. TAPA A-C were prepared according to the reported procedure.^{1,2}

$$MeO \longrightarrow Br + P \leftrightarrow OMe \Big)_{3} \xrightarrow{Pd_{2}(dba)_{3} (2 \text{ mol }\%)} Br + P \leftrightarrow OMe \Big)_{3} \xrightarrow{Pd_{2}(dba)_{3} (2 \text{ mol }\%)} Br + P \leftrightarrow OMe \Big)_{4}$$

(4-MeOC₆H₄)₄P⁺Br⁻. To an oven-dried test tube equipped with a stir bar was added 4-bromoanisole (188.1 mg, 1.0 mmol), tris(4-methoxyphenyl)phosphine (352.4 mg, 1.0 mmol), ethylene glycol (2.0 mL), and Pd₂(dba)₃ (18.2 mg, 20 µmol). The atmosphere was replaced with argon (×3) using a diaphragm pump. After stirring at 140 °C for 15 h, the mixture was treated with H₂O (20 mL), and the aqueous layer was extracted with CH₂Cl₂(15 mL×3). The organic layers were combined, washed with H₂O (30 mL×2), dried over Na₂SO₄, and concentrated. The crude material was triturated with THF (20 mL) to give a brownish powder (71.7 mg, 13%). R_f = 0.30 (CH₂Cl₂:MeOH = 10:1) visualized with KMnO₄; mp 249-250 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.54-7.45 (m, 8H), 7.26-7.21 (m, 8H), 3.97 (s, 12H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 164.8 (d, *J* = 2.8 Hz, C), 136.0 (d, *J* = 12.1 Hz, CH), 116.2 (d, *J* = 14.3 Hz, CH), 109.0 (d, *J* = 97.9 Hz, C), 56.1 (CH₃); ³¹P NMR (121 MHz, CDCl₃) δ 20.5; IR (KBr) 3055, 1592, 1567, 1503, 1304, 1267, 1190, 1111, 1020, 836, 804 cm⁻¹; HRMS (ESI/TOF) m/z: [M-Br]⁺ calcd for C₂₈H₂₈O₄P 459.1720, found 459.1732.

TAPS D. To an oven-dried test tube equipped with a stir bar was added 4-bromo-2,6-dimethylphenol (201.2 mg, 1.0 mmol), triphenylphosphine (394.1 mg, 1.5 mmol), ethylene glycol (0.33 mL), and Pd₂(dba)₃ (9.2 mg,

Electronic Supplementary Information

10 µmol). The atmosphere was replaced with argon (×3) using a diaphragm pump. After stirring at 140 °C for 8 h, the mixture was treated with H₂O (15 mL), and the aqueous layer was extracted with CHCl₃ (15 mL×3). The organic layers were combined, washed with H₂O (30 mL×2), dried over Na₂SO₄, and concentrated. The crude material was triturated with THF (25 mL) to give TAPS **D** as a white powder (253.2 mg, 59%, 5% of THF was included). R_f = 0.40 (CH₂Cl₂:MeOH = 10:1) visualized with KMnO₄; mp 255-256 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.91-7.85 (m, 3H), 7.77-7.71 (m, 6H), 7.63-7.55 (m, 6H), 6.99 (d, *J* = 12.9 Hz, 2H), 2.42 (s, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 161.6 (d, *J* = 3.3 Hz, C), 135.2 (d, *J* = 2.8 Hz, CH), 134.2 (d, *J* = 9.9 Hz, CH), 134.1 (d, *J* = 11.0 Hz, CH), 130.4 (d, *J* = 12.7 Hz, CH), 128.7 (d, *J* = 14.9 Hz, C), 119.1 (d, *J* = 89.7 Hz, C), 102.7 (d, *J* = 96.8 Hz, C), 18.1 (CH₃); ³¹P NMR (121 MHz, CDCl₃) δ 22.3; IR (KBr) 3386, 2988, 1587, 1483, 1437, 1306, 1278, 1204, 1118, 909, 724, 691 cm⁻¹; HRMS (ESI/TOF) m/z: [M-Br]⁺ calcd for C₂₆H₂₄OP 383.1599, found 383.1572.

TAPS E. To an oven-dried test tube equipped with a stir bar was added 4-bromo-2,6-diisopropylphenol (257.2 mg, 1.0 mmol),³ triphenylphosphine (394.1 mg, 1.5 mmol), ethylene glycol (0.33 mL), and Pd₂(dba)₃ (9.2 mg, 10 µmol). The atmosphere was replaced with argon (×3) using a diaphragm pump. After stirring at 140 °C for 8 h, the mixture was treated with H₂O (15 mL), and the aqueous layer was extracted with CHCl₃ (15 mL×3). The organic layers were combined, washed with H₂O (30 mL×2), dried over Na₂SO₄, and concentrated. The crude material was triturated with THF (25 mL) to give TAPS **E** as a white powder (397.2 mg, 76%). R_f = 0.25 (CH₂Cl₂:MeOH = 10:1) visualized with KMnO₄; mp 288-290 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.93-7.87 (m, 3H), 7.79-7.72 (m, 6H), 7.64-7.56 (m, 6H), 7.06 (d, *J* = 13.4 Hz, 2H), 3.79 (sept d, *J* = 6.8, 1.1 Hz, 2H), 1.86 (br s, 1H), 1.10 (d, *J* = 6.8 Hz, 12H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 159.1 (d, *J* = 3.3 Hz, C), 138.8 (d, *J* = 13.8 Hz, C), 135.2 (d, *J* = 2.8 Hz, CH), 133.9 (d, *J* = 10.5 Hz, CH), 130.3 (d, *J* = 12.7 Hz, CH), 129.6 (d, *J* = 11.6 Hz CH), 118.9 (d, *J* = 89.7 Hz, C), 103.2 (d, *J* = 96.3 Hz, C), 27.0 (CH), 22.5 (CH₃); ³¹P NMR (121 MHz, CDCl₃) δ 23.0; IR (KBr) 3393, 3087, 2965, 1593, 1567, 1503, 1464, 1442, 1296, 1266, 1187, 1151, 1111, 1019, 836, 804 cm⁻¹; HRMS (ESI/TOF) m/z: [M-Br]⁺ calcd for C₃₀H₃₂OP 439.2185, found 439.2203. A single crystal was grown in CH₂Cl₂/Hexane at 4 °C for X-ray crystallographic analysis.

TAPS F. To an oven-dried test tube equipped with a stir bar was added 4-bromo-2,6-di-*tert*-butylphenol (285.4 mg, 1.0 mmol), triphenylphosphine (394.1 mg, 1.5 mmol), ethylene glycol (0.33 mL), and Pd₂(dba)₃ (9.2 mg, 10 µmol). The atmosphere was replaced with argon (×3) using a diaphragm pump. After stirring at 140 °C for 8 h, the mixture was treated with H₂O (15 mL), and the aqueous layer was extracted with CHCl₃ (15 mL×3). The organic layers were combined, washed with H₂O (30 mL×2), dried over Na₂SO₄, and concentrated. The crude material was triturated with THF (25 mL) to give TAPS **F** as a white powder (342.6 mg, 63%). R_f = 0.25 (CH₂Cl₂:MeOH = 10:1) visualized with KMnO₄; mp 283-284 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.97-7.90 (m, 3H), 7.85-7.78 (m, 6H), 7.66-7.59 (m, 6H), 7.28 (d, *J* = 13.8 Hz, 2H), 1.37 (s, 18H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 160.4 (d, *J* = 3.3 Hz, C), 139.1 (d, *J* = 13.2 Hz, C), 135.6 (d, *J* = 3.3 Hz, CH), 134.2 (d, *J* = 10.5 Hz, CH), 131.5 (d, *J* = 12.7 Hz, CH), 130.7 (d, *J* = 12.7 Hz, CH), 118.4 (d, *J* = 89.7 Hz, C), 105.4 (d, *J* = 96.3 Hz, C), 34.8 (C), 29.8 (CH₃); ³¹P NMR (121 MHz, CDCl₃) δ 23.4; IR (KBr) 3429, 2951, 1442, 1427, 1150, 1106, 723, 694 cm⁻¹; HRMS (ESI/TOF) m/z: [M-Br]⁺ calcd for C₃₂H₃₆OP 467.2498, found 467.2516.

TAPS G. To an oven-dried test tube equipped with a stir bar was added 4-bromo-2,6-diisopropylphenol (257.2 mg, 1.0 mmol), tris(4-methoxyphenyl)phosphine (352.5 mg, 1.0 mmol), ethylene glycol (0.33 mL), and Pd₂(dba)₃ (18.3 mg, 20 µmol). The atmosphere was replaced with argon (×3) using a diaphragm pump. After stirring at 140 °C for 15 h, the mixture was treated with H₂O (15 mL), and the aqueous layer was extracted with CH₂Cl₂(15 mL×3). The organic layers were combined, washed with H₂O (30 mL×2), dried over Na₂SO₄, and concentrated. The crude material was triturated with EtOAc/Hexane (0.5 mL/20 mL) and THF (15 mL) to give TAPS **G** as a white powder (362.1 mg, 59%). R_f = 0.40 (CH₂Cl₂:MeOH = 10:1) visualized with KMnO₄; mp 216-217 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.50-7.41 (m, 6H), 7.21-7.16 (m, 6H), 7.06 (d, *J* = 13.3 Hz, 2H), 3.96 (s, 9H), 3.72 (sept d, *J* = 6.9, 0.9 Hz, 2H), 2.04 (br s, 1H), 1.12 (d, *J* = 6.9 Hz, 12H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 164.6 (d, *J* = 2.8 Hz, C), 158.5 (d, *J* = 3.3 Hz, C), 138.4 (d, *J* = 13.2 Hz, C), 135.9 (d, *J* = 12.1 Hz, CH), 129.3 (d, *J* = 12.1 Hz, CH), 115.9 (d, *J* = 13.8 Hz CH), 110.0 (d, *J* = 97.4 Hz, C), 105.7 (d, *J* = 97.9 Hz, C), 56.0 (CH₃), 27.0 (CH), 22.7 (CH₃); ³¹P NMR (121 MHz, CDCl₃) δ 21.0; IR (KBr) 3393, 3087, 2965, 1593, 1567, 1503, 1464, 1442, 1296, 1266, 1187, 1151, 1111, 1019, 836, 804 cm⁻¹; HRMS (ESI/TOF) m/z: [M-Br]⁺ calcd for C₃₃H₃₈O₄P 529.2502, found 529.2530.

TAPS H. To an oven-dried test tube equipped with a stir bar was added 4-bromo-2,6-diisopropylphenol (128.9 mg, 0.50 mmol), tris(4-fluorophenyl)phosphine (158.6 mg, 0.50 mmol), ethylene glycol (0.17 mL), and Pd₂(dba)₃ (9.2 mg, 10 µmol). The atmosphere was replaced with argon (×3) using a diaphragm pump. After stirring at 140 °C for 15 h, the mixture was treated with H₂O (15 mL), and the aqueous layer was extracted with CH₂Cl₂(15 mL×3). The organic layers were combined, washed with H₂O (30 mL×2), dried over Na₂SO₄, and concentrated. The crude material was triturated with EtOAc/Hexane (0.2 mL/15 mL) and THF (15 mL) to give TAPS **H** as a white powder (77.7 mg, 27%). R_{*f*} = 0.30 (CH₂Cl₂:MeOH = 10:1) visualized with KMnO₄; mp 245-247 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.75-7.64 (m, 6H), 7.52-7.44 (m, 6H), 7.02 (d, *J* = 13.5 Hz, 2H), 3.72 (sept d, *J* = 6.6, 1.2 Hz, 2H), 1.92 (br s, 1H), 1.11 (d, *J* = 6.6 Hz, 12H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 166.8 (dd, *J* = 261.9, 3.6 Hz, C), 159.6 (d, *J* = 3.3 Hz, C), 139.2 (d, *J* = 13.8 Hz, C), 137.1 (dd, *J* = 12.1, 9.9 Hz, CH), 129.5 (d, *J* = 12.1 Hz, CH), 118.5 (dd, *J* = 22.0, 14.3 Hz, CH), 114.7 (dd, *J* = 94.6, 3.3 Hz, C), 102.9 (d, *J* = 97.9 Hz, C), 27.1 (CH), 22.6 (CH₃); ³¹P NMR (121 MHz, CDCl₃) δ 21.7; IR (KBr) 3402, 2964, 1590, 1497, 1242, 1164, 1110, 831 cm⁻¹; HRMS (ESI/TOF) m/z: [M-Br]⁺ calcd for C₃₀H₂₉F₃O₄P 493.1903, found 493.1919.

TAPS I. To a solution of TAPS **E** (155.8 mg, 0.30 mmol) in MeOH (0.6 mL) was added 10 wt% NaOH aq (0.4 mL), and the mixture was then stirred at rt for 0.5 h. The mixture was treated with H₂O (5 mL), and the aqueous layer was extracted with CH₂Cl₂ (5 mL×3). The organic layers were combined, washed with H₂O (15 mL×2), dried over Na₂SO₄, filtered, and concentrated. The crude material was triturated with CH₂Cl₂/Hexane (1 mL/20 mL) to give betaine **S1** as a yellowish solid (110.5 mg). To an oven-dried test tube equipped with a stir bar was added **S1** (44.6 mg), PhCl (2.0 mL), MS4A (100 mg), and bromoethane (0.4 mL). The mixture

Electronic Supplementary Information

was then stirred at rt for 30 min. After stirring at 100 °C for 12 h, the resulting mixture was filtered by celite with CH₂Cl₂ (15 mL) and concentrated. The crude material was triturated with THF (5 mL) to give TAPS **I** as a white powder (36.4 mg, 66%). $R_f = 0.25$ (CHCl₃:MeOH = 30:1) visualized with KMnO₄; mp 202-203 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.98-7.92 (m, 3H), 7.87-7.80 (m, 6H), 7.68-7.60 (m, 6H), 7.21 (d, *J* = 13.2 Hz, 2H), 3.96 (q, *J* = 6.9 Hz, 2H), 3.36 (septd, *J* = 6.9, 1.5 Hz, 2H), 1.51 (t, *J* = 6.9 Hz, 3H), 1.13 (d, *J* = 6.9 Hz, 12H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 160.2 (d, *J* = 3.9 Hz, C), 145.5 (d, *J* = 13.2 Hz, C), 135.8 (d, *J* = 2.8 Hz, CH), 134.2 (d, *J* = 9.9 Hz, CH), 130.8 (d, *J* = 12.7 Hz, CH), 130.6 (d, *J* = 11.0 Hz, CH), 117.9 (d, *J* = 89.7 Hz, C), 111.8 (d, *J*_{C-P} = 91.3 Hz, C), 71.3 (CH₂), 26.9 (CH), 23.6 (CH₃), 15.8 (CH₃); ³¹P NMR (121 MHz, CDCl₃) δ 23.1; IR (KBr) 3036, 2962, 2928, 2871, 1439, 1264, 1108, 1071, 1020, 758, 725, 693 cm⁻¹; HRMS (ESI/TOF) m/z: [M-Br]⁺ calcd for C₃₂H₃₆OP 467.2498, found 467.2484.

S1. 81% (3% of CH₂Cl₂ was included); ¹H NMR (300 MHz, CDCl₃) δ 7.78-7.69 (m, 3H), 7.67-7.57 (m, 12H), 6.78 (d, *J* = 12.6 Hz, 2H), 3.53 (septd, *J* = 6.9, 0.9 Hz, 2H), 1.05 (d, *J* = 6.9 Hz, 12H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 174.9 (d, *J* = 1.7 Hz, C), 139.6 (d, *J* = 13.8 Hz, C), 134.0 (d, *J* = 9.9 Hz, CH), 133.7 (d, *J* = 3.3 Hz, CH), 129.4 (d, *J* = 12.1 Hz, CH), 128.2 (d, *J* = 12.7 Hz, CH), 123.0 (d, *J* = 89.1 Hz, C), 78.8 (d, *J* = 108.4 Hz, C), 26.6 (CH), 22.7 (CH₃); ³¹P NMR (121 MHz, CDCl₃) δ 20.8; IR (KBr) 3057, 2952, 2861, 1581, 1504, 1436, 1136, 1104, 1071, 749, 723, 693 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₃₀H₃₂OP 439.2185, found 439.2186.

Preparation of epoxides

All epoxides are commercially available or prepared according to the reported procedure except for below.¹

Glycidyl 1-naphthyl ether.⁴ To a solution of 1-naphthol (721.0 mg, 5.0 mmol) in DMF (10 mL) was added NaH (60% dispersion in mineral oil, 132.1 mg, 5.5 mmol) at 0 °C. After stirring at 0 °C for 30 min, epichlorohydrin (771 μ L, 10 mmol) was added and the reaction was allowed to warm up to rt. After stirring at rt for 12 h, the reaction was quenched with H₂O. The resulting mixture was extracted with Et₂O (30 mL×3). The organic layers were combined, washed with H₂O (40 mL×2) and brine (40 mL×1), dried over Na₂SO₄, and concentrated. Flash column chromatography (SiO₂ 50 g, Hexane:EtOAc = 10:1-4:1) yielded a yellowish oil (732.0 mg, 73%). ¹H NMR (300 MHz, CDCl₃) δ 8.33-8.27 (m, 1H), 7.82-7.76 (m, 1H), 7.52-7.43 (m, 3H), 7.35 (dd, *J* = 8.1, 7.5 Hz, 1H), 6.80 (dd, *J* = 7.5, 0.9 Hz, 1H), 4.38 (dd, *J* = 11.1, 3.3 Hz, 1H), 4.13 (dd, *J* = 11.1, 5.7 Hz, 1H), 3.48 (dddd, *J* = 5.7, 4.2, 3.3, 2.7 Hz, 1H), 2.95 (dd, *J* = 4.8, 4.2 Hz, 1H), 2.84 (dd, *J* = 4.8, 2.7 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 154.2 (C), 134.5 (C), 127.4 (CH), 126.5 (CH), 125.7 (CH), 125.6 (C), 125.3 (CH), 122.0 (CH), 120.8 (CH), 105.0 (CH), 68.9 (CH₂), 50.2 (CH), 44.7 (CH₂).

Glycidyl 4-methoxylbenzyl ether.⁵ To a solution of 4-methoxybenzyl alcohol (4.145 g, 30 mmol) and TBAB (0.485 g, 1.5 mmol, 5 mol %) in 40 wt% NaOH aq (40 mL) was added epichlorohydrin (9.41 mL, 120 mmol) at 0 °C. After stirring at 0 °C for 24 h, the resulting mixture was extracted with Et₂O (30 mL×3). The organic layers were combined, dried over Na₂SO₄, and concentrated. Flash column chromatography (SiO₂ 50 g, Hexane:EtOAc = 10:1-3:1) yielded a colorless oil (2.006 g, 34%). ¹H NMR (300 MHz, CDCl₃) δ 7.30-7.25 (m, 2H), 6.91-6.86 (m, 2H), 4.55 (d, *J* = 11.4 Hz, 1H), 4.49 (d, *J* = 11.4 Hz, 1H), 3.81 (s, 3H), 3.73 (dd, *J* =

11.4, 3.0 Hz, 1H), 3.42 (dd, J = 11.4, 5.7 Hz, 1H), 3.19 (ddt, J = 5.7, 4.2, 3.0 Hz, 1H), 2.80 (dd, J = 5.1, 4.2 Hz, 1H), 2.61 (dd, J = 5.1, 3.0 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 159.2 (C), 129.9 (C), 129.4 (CH), 113.8 (CH), 72.9 (CH₂), 70.5 (CH₂), 55.2 (CH₃), 50.8 (CH), 44.3 (CH₂).

4-Bromobenzyl glycidyl ether.⁶ To a solution of 4-bromobenzyl alcohol (5.621 g, 30 mmol) and TBAB (0.485 g, 1.5 mmol, 5 mol %) in 40 wt% NaOH aq (40 mL) was added epichlorohydrin (9.41 mL, 120 mmol) at 0 °C. After stirring at 0 °C for 24 h, the resulting mixture was extracted with Et₂O (30 mL×3). The organic layers were combined, dried over Na₂SO₄, and concentrated. Flash column chromatography (SiO₂ 50 g, Hexane:EtOAc = 8:1-5:1) yielded a colorless oil (2.411 g, 33%). ¹H NMR (300 MHz, CDCl₃) δ 7.50-7.45 (m, 2H), 7.25-7.20 (m, 2H), 4.57 (d, *J* = 12.0 Hz, 1H), 4.50 (d, *J* = 12.0 Hz, 1H), 3.79 (dd, *J* = 11.4, 2.7 Hz, 1H), 3.41 (dd, *J* = 11.4, 6.0 Hz, 1H), 3.19 (ddt, *J* = 6.0, 4.2, 2.7 Hz, 1H), 2.81 (dd, *J* = 5.1, 4.2 Hz, 1H), 2.62 (dd, *J* = 5.1, 2.7 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 136.9 (C), 131.5 (CH), 129.3 (CH), 121.6 (CH), 72.5 (CH₂), 70.9 (CH₂), 50.8 (CH), 44.1 (CH₂).

General procedure for [3+2] reactions followed by hydrolysis

To an oven-dried 10 mL test tube equipped with a stir bar was added epoxide **1** (1.5 mmol, 1.0 equiv), TAPS **E** (39.0 mg, 75 µmol, 5 mol %), PhCl (1.5 mL, 1.0 M), MS4A (150 mg), trichloroacetonitrile (182 µL, 1.8 mmol, 1.2 equiv), and 2-methyl-2-butene (159 µL, 1.5 mmol). The atmosphere was replaced with argon (×3) using a diaphragm pump. After stirring at 90 °C for 18 h, the mixture was filtered through a pad of celite with CHCl₃ (40 mL) and then the filtered solution was concentrated. The unpurified material in a 50 mL round-bottom flask was diluted with PhCl (15 mL). *p*-TsOH•H₂O (285.4 mg, 1.5 mmol) was added into the flask at rt. After stirring at rt for 3 h, the mixture was treated with satd aq NaHCO₃ (30 mL). The aqueous layer was extracted with CHCl₃ (30 mL×3). The organic layers were combined, washed with H₂O (100 mL), dried over Na₂SO₄, filtered, and concentrated. Flash column chromatography yielded β-amino alcohol **4**.

2,2,2-Trichloro-*N***-(2-hydroxy-3-phenoxypropyl)acetamide (4a).** Prepared according to the general procedure using glycidyl phenyl ether (225.4 mg, 1.5 mmol). Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 8:1-5:1) yielded a white solid (348.8 mg, 74%). $R_f = 0.25$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 75-77 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.27 (m, 3H), 7.02-6.97 (m, 1H), 6.92-6.88 (m, 2H), 4.27-4.20 (m, 1H), 4.07 (dd, *J* = 9.6, 3.9 Hz, 1H), 3.97 (dd, *J* = 9.6, 6.3 Hz, 1H), 3.75 (ddd, *J* = 14.1, 6.3, 3.9 Hz, 1H), 3.55 (ddd, *J* = 14.1, 6.6, 5.1 Hz, 1H), 2.86 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.6 (C), 158.0 (C), 129.7 (CH), 121.6 (CH), 114.5 (CH), 92.4 (C), 69.5 (CH₂), 68.6 (CH), 43.8 (CH₂); IR (KBr) 3407, 3278, 3047, 2918, 2867, 1686, 1601, 1535, 1497, 1335, 1236, 1120, 887, 822, 745, 689, 665 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₂Cl₃NNaO₃ 333.9775, found 333.9762.

(*S*)-4a. Prepared according to the general procedure using epoxide (*S*)-1a (90.1 mg, 0.60 mmol). Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 8:1-5:1) yielded a white solid (133.1 mg, 71%). The product was determined to be 99% ee by chiral HPLC analysis (Chiralpak AD-3, Hexane:^{*i*}PrOH = 95:5, 1.0 mL/min, $t_r(mior) = 29.7 \text{ min}, t_r(major) = 34.2 \text{ min}, 220 \text{ nm}, 35 \text{ °C}$); $[\alpha]_D^{27}$ -3.9 (*c* 0.30, CHCl₃). The absolute configuration was confirmed by X-ray crystallographic analysis.

5-(Phenoxymethyl)-2-(trichloromethyl)-4,5-dihydro-1,3-oxazole (2a). $R_f = 0.40$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 53-55 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.27 (m, 2H), 7.02-6.96 (m, 1H), 6.94-6.89 (m, 2H), 5.28-5.20 (m, 1H), 4.25 (dd, J = 15.3, 9.9 Hz, 1H), 4.19 (dd, J = 10.5, 3.9 Hz, 1H), 4.13 (dd, J = 10.5, 4.2 Hz, 1H), 4.11 (dd, J = 15.3, 7.2 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.5 (C), 158.2 (C), 129.6 (CH), 121.6 (CH), 114.6 (CH), 86.4 (C), 81.4 (CH), 68.2 (CH₂), 57.1 (CH₂); IR (KBr) 2970, 1666, 1600, 1491, 1447, 1227, 1060, 1014, 872, 826, 801, 762, 659 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₀Cl₃NNaO₂ 315.9669, found 315.9661.

2,2,2-Trichloro-*N***-[2-hydroxy-3-(4-methoxyphenoxy)propyl]acetamide (4b).** Prepared according to the general procedure using glycidyl 4-methoxyphenyl ether (270.4 mg, 1.5 mmol). Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 8:1-2:1) yielded a white solid (346.4 mg, 67%). $R_f = 0.25$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 54-55 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.32 (br s, 1H), 6.87-6.80 (m, 4H), 4.25-4.16 (m, 1H), 4.02 (dd, J = 9.6, 4.2 Hz, 1H), 3.92 (dd, J = 9.6, 6.3 Hz, 1H), 3.77 (s, 3H), 3.73 (ddd, J = 13.8, 6.3, 3.9 Hz, 1H), 3.53 (ddd, J = 13.8, 6.6, 5.4 Hz, 1H), 2.90 (d, J = 4.5 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.6 (C), 154.4 (C), 152.2 (C), 115.5 (CH), 114.8 (CH), 92.4 (C), 70.4 (CH₂), 68.6 (CH), 55.7 (CH₃), 43.9 (CH₂); IR (KBr) 3456, 3391, 2939, 2839, 1684, 1512, 1231, 1032, 824, 734 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₄Cl₃NNaO₄ 363.9881, found 363.9869.

2,2,2-Trichloro-*N***-[2-hydroxy-3-(4-fluorophenoxy)propyl]acetamide** (**4c**). Prepared according to the general procedure using 4-fluorophenyl glycidyl ether (252.5 mg, 1.5 mmol). Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 8:1-2:1) yielded a yellowish oil (311.6 mg, 63%). $R_f = 0.25$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; ¹H NMR (300 MHz, CDCl₃) δ 7.28 (br s, 1H), 7.03-6.95 (m, 2H), 6.88-6.81 (m, 2H), 4.27-4.19 (m, 1H), 4.03 (dd, *J* = 9.6, 3.9 Hz, 1H), 3.93 (dd, *J* = 9.6, 6.6 Hz, 1H), 3.74 (ddd, *J* = 14.1, 6.3, 3.9 Hz, 1H), 3.54 (ddd, *J* = 14.1, 6.6, 5.4 Hz, 1H), 2.82 (d, *J* = 4.2 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.7 (C), 157.7 (d, *J* = 239.3 Hz, C), 154.2 (d, *J* = 2.2 Hz, C), 116.0 (d, *J* = 23.1 Hz, CH), 115.6 (d, *J* = 7.7 Hz, CH), 92.4 (C), 70.3 (CH₂), 68.6 (CH), 43.8 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ -122.7; IR (KBr) 3419, 3355, 2926, 1700, 1507, 1248, 1211, 825, 762 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₁Cl₃FNNaO₃ 351.9681, found 351.9670.

2,2,2-Trichloro-*N***-[2-hydroxy-3-(naphthalen-1-yloxy)propyl]acetamide (4d).** Prepared according to the general procedure using glycidyl 1-naphthyl ether (300.5 mg, 1.5 mmol). Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 8:1-2:1) yielded a white solid (368.7 mg, 68%). $R_f = 0.25$ (Hexane:EtOAc = 2:1) visualized with KMnO4; mp 77-78 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.24-8.17 (m, 1H), 7.85-7.77 (m, 1H), 7.54-7.45 (m, 3H), 7.37 (dd, *J* = 8.1, 7.8 Hz, 1H), 7.30 (br s, 1H), 6.81 (dd, *J* = 7.5, 0.6 Hz, 1H), 4.42-4.34 (m, 1H), 4.22 (dd, *J* = 9.6, 4.2 Hz, 1H), 4.14 (dd, *J* = 9.6, 6.3 Hz, 1H), 3.83 (ddd, *J* = 14.1, 6.3, 3.6 Hz, 1H), 3.63

(ddd, J = 14.1, 7.2, 5.4 Hz, 1H), 2.91 (br d, J = 4.2 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.7 (C), 153.7 (C), 134.5 (C), 127.7 (CH), 126.6 (CH), 125.7 (CH), 125.5 (CH), 125.3 (C), 121.4 (CH), 121.3 (CH), 105.1 (CH), 92.4 (C), 69.7 (CH₂), 68.9 (CH), 43.9 (CH₂); IR (KBr) 3407, 3319, 3052, 2937, 1688, 1523, 1394, 1273, 1107, 822, 769 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₅H₁₄Cl₃NNaO₃ 383.9931, found 383.9912.

2,2,2-Trichloro-*N*-**[2-hydroxy-3-(naphthalen-2-yloxy)propyl]acetamide (4e).** Prepared according to the general procedure using glycidyl 2-naphthyl ether (300.4 mg, 1.5 mmol). Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 8:1-2:1) yielded a white solid (350.6 mg, 64%). $R_f = 0.25$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 95-96 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.79-7.72 (m, 3H), 7.46 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 7.36 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 7.33-7.29 (m, 1H), 7.16-7.12 (m, 2H), 4.34-4.26 (m, 1H), 4.18 (dd, *J* = 9.6, 3.9 Hz, 1H), 4.08 (dd, *J* = 9.6, 6.6 Hz, 1H), 3.79 (ddd, *J* = 14.1, 6.3, 3.9 Hz, 1H), 3.58 (ddd, *J* = 14.1, 6.6, 5.4 Hz, 1H), 2.85 (d, *J* = 3.9 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.7 (C), 155.9 (C), 134.3 (C), 129.7 (CH), 129.3 (C), 127.7 (CH), 126.8 (CH), 126.6 (CH), 124.1 (CH), 118.3 (CH), 107.0 (CH), 92.4 (C), 69.6 (CH₂), 68.6 (CH), 43.9 (CH₂); IR (KBr) 3492, 3295, 3055, 2931, 2872, 1692, 1628, 1600, 1514, 1391, 1262, 1215, 1183, 1036, 839, 824, 749, 662 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₅H₁₄Cl₃NNaO₃ 383.9931, found 383.9939.

2,2,2-Trichloro-*N***-[2-hydroxy-3-(prop-2-en-1-yloxy)propyl]acetamide** (**4f**). Prepared according to the general procedure using allyl glycidyl ether (171.3 mg, 1.5 mmol) at 100 °C for 18 h. Flash column chromatography (SiO₂ 24 g, CH₂Cl₂-CH₂Cl₂:EtOAc = 70:1) yielded a white solid (218.8 mg, 53%). R_f = 0.35 (CH₂Cl₂:EtOAc = 2:1) visualized with KMnO₄; mp 44-45 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.31 (br s, 1H), 5.90 (ddt, *J* = 17.1, 10.5, 5.7 Hz, 1H), 5.29 (dq, *J* = 17.1, 1.5 Hz, 1H), 5.23 (dq, *J* = 10.5, 1.5 Hz, 1H), 4.05-3.97 (m, 3H), 3.64 (ddd, *J* = 13.8, 6.3, 3.9 Hz, 1H), 3.57 (dd, *J* = 9.6, 3.9 Hz, 1H), 3.45 (dd, *J* = 9.6, 6.3 Hz, 1H), 3.40 (ddd, *J* = 13.8, 6.3, 4.8 Hz, 1H), 2.72 (d, *J* = 4.5 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.4 (C), 133.9 (CH), 117.9 (CH₂), 92.5 (C), 72.5 (CH₂), 71.8 (CH₂), 68.5 (CH), 44.1 (CH₂); IR (KBr) 3422, 3278, 2852, 1687, 1676, 1535, 1430, 1333, 1229, 1119, 821, 743, 662 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₈H₁₂Cl₃NNaO₃ 297.9775, found 297.9775.

N-[3-(Benzyloxy)-2-hydroxypropyl]-2,2,2-trichloroacetamide (4g). Prepared according to the general procedure using benzyl glycidyl ether (246.4 mg, 1.5 mmol) at 100 °C for 18 h. Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 8:1-5:1) yielded a white solid (287.5 mg, 57%). $R_f = 0.40$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 45-46 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.28 (m, 6H), 4.57 (d, *J* = 11.7 Hz, 1H), 4.53 (d, *J* = 11.7 Hz, 1H), 4.04-3.97 (m, 1H), 3.62 (ddd, *J* = 13.8, 6.3, 4.2 Hz, 1H), 3.59 (dd, *J* = 9.6, 3.9 Hz, 1H), 3.49 (dd, *J* = 9.6, 6.0 Hz, 1H), 3.40 (ddd, *J* = 13.8, 6.3, 5.1 Hz, 1H), 2.79 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.4 (C), 137.2 (C), 128.6 (CH), 128.1 (CH), 127.9 (CH), 92.4 (C), 73.7 (CH₂), 71.9 (CH₂), 68.5 (CH), 44.1 (CH₂); IR (KBr) 3424, 3282, 2882, 2857, 2798, 1689, 1679, 1536, 1335, 1111, 820, 741, 697, 662 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₄Cl₃NNaO₃ 347.9931, found 347.9906.

2,2,2-Trichloro-*N*-{**2-hydroxy-3-**[(**4-methoxybenzyl)oxy]propyl}acetamide** (**4h**). Prepared according to the general procedure using glycidyl 4-methoxybenzyl ether (299.5 mg, 1.5 mmol) at 100 °C for 18 h. Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 7:1-4:1) yielded a white solid (297.4 mg, 56%). $R_f = 0.30$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 51-52 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.27-7.23 (m, 3H), 6.91-6.87 (m, 2H), 4.51 (d, *J* = 11.4 Hz, 1H), 4.47 (d, *J* = 11.4 Hz, 1H), 4.04-3.95 (m, 1H), 3.81 (s, 3H), 3.62 (ddd, *J* = 13.8, 6.3, 4.2 Hz, 1H), 3.57 (dd, *J* = 9.6, 3.9 Hz, 1H), 3.46 (dd, *J* = 9.6, 6.0 Hz, 1H), 3.39 (ddd, *J* = 13.8, 6.3, 4.8 Hz, 1H), 2.59 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.4 (C), 159.5 (C), 129.6 (CH), 129.3 (C), 114.0 (CH), 92.5 (C), 73.4 (CH₂), 71.5 (CH₂), 68.5 (CH), 55.3 (CH₃), 44.1 (CH₂); IR (KBr) 3416, 3004, 2867, 2839, 1712, 1515, 1363, 1249, 1224, 1035, 823 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₆Cl₃NNaO₄ 378.0037, found 347.0056.

N-{3-[(4-Bromobenzyl)oxy]-2-hydroxypropyl}-2,2,2-trichloroacetamide (4i). Prepared according to the general procedure using 4-bromobenzyl glycidyl ether (364.7 mg, 1.5 mmol) at 100 °C for 18 h. Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 7:1-4:1) yielded a white solid (312.0 mg, 51%). $R_f = 0.25$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 59-60 °C; ¹H NMR (300 MHz, CDCl₃) δ 7. 51-7.46 (m, 2H), 7.27 (br s, 1H), 7.22-7.18 (m, 2H), 4.52 (d, J = 12.4 Hz, 1H), 4.48 (d, J = 12.4 Hz, 1H), 4.05-3.97 (m, 1H), 3.62 (ddd, J = 13.8, 6.3, 4.2 Hz, 1H), 3.58 (dd, J = 9.6, 3.9 Hz, 1H), 3.48 (dd, J = 9.6, 6.3 Hz, 1H), 3.40 (ddd, J = 13.8, 6.6, 5.1 Hz, 1H), 2.76 (d, J = 3.6 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.4 (C), 136.3 (C), 131.7 (CH), 129.5 (CH), 122.0 (C), 92.4 (C), 72.9 (CH₂), 71.9 (CH₂), 68.6 (CH), 44.0 (CH₂); IR (KBr) 3446, 3326, 2916, 2888, 2866, 1678, 1531, 1338, 1140, 1112, 1091, 819, 801, 652 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₃BrCl₃NNaO₃ 425.9037, found 425.9033.

2-Hydroxy-3-[(trichloroacetyl)amino]propyl benzoate (4j). Prepared according to the general procedure using glycidyl benzoate (267.3 mg, 1.5 mmol). Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 8:1-5:1) yielded a white solid (380.5 mg, 74%). $R_f = 0.35$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 86-87 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.07-8.04 (m, 2H), 7.63-7.57 (m, 1H), 7.49-7.43 (m, 2H), 7.39-7.35 (m, 1H, NH), 4.46 (dd, *J* = 11.7, 4.8 Hz, 1H), 4.40 (dd, *J* = 11.7, 5.4 Hz, 1H), 4.24-4.18 (m, 1H), 3.70 (ddd, *J* = 14.1, 6.6, 4.2 Hz, 1H), 3.49 (ddd, *J* = 14.1, 6.9, 5.4 Hz, 1H), 3.07 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 167.0 (C), 162.8 (C), 133.6 (CH), 129.8 (CH), 129.2 (C), 128.5 (CH), 92.3 (C), 68.7 (CH), 66.3 (CH₂), 43.7 (CH₂); IR (KBr) 3384, 3311, 2955, 1724, 1704, 1680, 1530, 1282, 1119, 820, 710 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₂Cl₃NNaO₄ 361.9724, found 361.9707.

2,2,2-Trichloro-*N*-[**3**-(**1,3-dioxo-1,3-dihydro-**2*H*-**isoindo**]-**2**-**y**])-**2**-**hydroxypropy**]**acetamide** (**4k**). Prepared according to the general procedure using glycidyl phthalimide (304.5 mg, 1.5 mmol). Flash column

Electronic Supplementary Information

chromatography (SiO₂ 24 g, Hexane:EtOAc = 8:1-2:1) yielded a white solid (345.5 mg, 63%). $R_f = 0.25$ (Hexane:EtOAc = 1:1) visualized with KMnO₄; mp 185-186 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.98 (t, *J* = 5.7 Hz, 1H), 7.90-7.81 (m, 4H), 5.30 (d, *J* = 5.4 Hz, 1H), 4.04-3.93 (m, 1H), 3.60 (dd, *J* = 13.8, 8.1 Hz, 1H), 3.51 (dd, *J* = 13.8, 4.8 Hz, 1H), 3.28 (dd, *J* = 13.8, 5.7 Hz, 1H), 3.22 (dd, *J* = 13.8, 5.7 Hz, 1H); ¹³C{¹H} NMR (75 MHz, DMSO-*d*₆) δ 168.0 (C), 161.7 (C), 134.3 (CH), 131.8 (C), 123.0 (CH), 92.8 (C), 66.0 (CH), 45.0 (CH₂), 42.1 (CH₂); IR (KBr) 3476, 3330, 2572, 2474, 1774, 1698, 1434, 1398, 1359, 1038, 840, 727 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₁Cl₃N₂NaO₄ 386.9677, found 386.9665.

2,2,2-Trichloro-*N***-(2-hydroxyhexyl)acetamide (41).** Prepared according to the general procedure using 1,2epoxyhexane (150.4 mg, 1.5 mmol) at 90 °C for 48 h. Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 8:1-5:1) yielded a white solid (106.1 mg, 33%). $R_f = 0.35$ (Hexane:EtOAc = 2:1) visualized with anisaldehyde; mp 35-36 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.17 (br s, 1H), 3.87-3.79 (m, 1H), 3.61 (ddd, J = 13.8, 6.6, 3.0 Hz, 1H), 3.23 (ddd, J = 13.8, 7.8, 4.8 Hz, 1H), 1.87 (br s, 1H), 1.56-1.23 (m, 6H), 0.94-0.90 (m, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.3 (C), 92.6 (C), 70.4 (CH), 46.7 (CH₂), 34.6 (CH₂), 27.4 (CH₂), 22.5 (CH₂), 13.9 (CH₃); IR (KBr) 3454, 3359, 2960, 2934, 2859, 1697, 1529, 1461, 1269, 1095, 823, 670 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₈H₁₄Cl₃NNaO₂ 283.9982, found 283.9978.

5-Butyl-2-(trichloromethyl)-4,5-dihydro-1,3-oxazole (2l). $R_f = 0.22$ (Hexane:EtOAc = 10:1) visualized with anisaldehyde; ¹H NMR (300 MHz, CDCl₃) δ 4.99-4.89 (m, 1H), 4.14 (dd, J = 15.0, 9.6 Hz, 1H), 3.71 (dd, J = 15.0, 7.2 Hz, 1H), 1.86-1.60 (m, 2H), 1.49-1.33 (m, 4H), 0.96-0.90 (m, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.6 (C), 86.9 (C), 84.5 (CH), 59.8 (CH₂), 34.6 (CH₂), 26.6 (CH₂), 22.4 (CH₂), 13.9 (CH₃); IR (KBr) 2959, 2933, 2873, 1716, 1660, 1516, 1467, 1332, 1233, 1116, 1014, 969, 853, 794, 657 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₈H₁₂Cl₃NNaO 265.9877, found 265.9867.

2,2,2-Trichloro-*N***-(3-bromo-2-hydroxypropyl)acetamide** (**4m**). Prepared according to the general procedure using epibromohydrin (205.5 mg, 1.5 mmol). Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 8:1-5:1) yielded a white solid (269.3 mg, 64%, 6% of **4n** was included). $R_f = 0.30$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 41-42 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.21 (br s, 1H), 4.11-4.03 (m, 1H), 3.72 (ddd, *J* = 14.1, 6.3, 3.6 Hz, 1H), 3.53 (dd, *J* = 10.5, 4.5 Hz, 1H), 3.48 (ddd, *J* = 14.1, 5.4, 1.8 Hz, 1H), 3.43 (dd, *J* = 10.5, 6.9 Hz, 1H), 2.94-2.91 (m, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.7 (C), 92.2 (C), 69.5 (CH), 44.9 (CH₂), 35.9 (CH₂); IR (KBr) 3454, 3274, 3065, 2948, 2916, 1698, 1534, 1433, 1254, 1074, 827, 667 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₅H₇BrCl₃NNaO₂ 319.8618, found 319.8612. The ratio of **4m** and **4n** was determined by HPLC analysis (COSMOSIL 5SL-II, Hexane: 'PrOH = 95:5, 1.0 mL/min, *t*_r(**4m**) = 8.8 min, *t*_r(**4n**) = 9.6 min, 220 nm, 35 °C).

2,2,2-Trichloro-*N*-(**3-chloro-2-hydroxypropyl)acetamide** (**4n**). Prepared according to the general procedure using epichlorohydrin (138.8 mg, 1.5 mmol). Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 8:1-5:1) yielded a white solid (284.0 mg, 74%). $R_f = 0.30$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 52-53 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.15 (br s, 1H), 4.11-4.04 (m, 1H), 3.74-3.64 (m, 2H), 3.55 (dd, *J* = 11.4, 6.9 Hz, 1H), 3.47 (ddd, *J* = 14.1, 7.2, 5.4 Hz, 1H), 2.73 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.8 (C), 92.2 (C), 69.9 (CH), 47.0 (CH₂), 44.2 (CH₂); IR (KBr) 3417, 3338, 2952, 1699, 1526, 1433, 1263, 1110, 823, 754, 669 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₅H₇Cl₄NNaO₂ 275.9123, found 275.9102.

HPLC analysis (Chiralpak AD-3, Hexane: PrOH = 95:5, 1.0 mL/min, $t_r(minor) = 19.0 \text{ min}, t_r(major) = 20.4 \text{ min}, 220 \text{ nm}, 35 °C$); $[\alpha]_D^{23}$ -5.3 (*c* 1.1, CHCl₃ for 28% ee).

2,2,2-Trichloro-*N*-(**3-chloro-2-hydroxy-2-methylpropyl)acetamide** (**4o**). Prepared according to the general procedure using methyl epichlorohydrin (160.0 mg, 1.5 mmol) and TAPS **E** (78.0 mg, 150 µmol, 10 mol %) at 90 °C for 48 h. Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 8:1-5:1) yielded a yellowish solid (93.3 mg, 23%). $R_f = 0.40$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 43-44 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.10 (br s, 1H), 3.57-3.53 (m, 4H), 2.55 (br s,1H), 1.353 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.8 (C), 92.4 (C), 72.3 (C), 51.5 (CH₂), 48.1 (CH₂), 23.2 (CH₃); IR (KBr) 3410, 3305, 2956, 1694, 1530, 1129, 822, 671 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₆H₉Cl₄NNaO₂ 289.9280, found 289.9278.

(*R*)-2,2,2-Trichloro-*N*-(2-hydroxy-2-phenylethyl)acetamide (4q). Prepared according to the general procedure using epoxide (*S*)-styrene oxide (72.0 mg, 0.60 mmol) at 90 °C for 48 h. Flash column chromatography (SiO₂ 24 g, Hexane:EtOAc = 8:1-5:1, CH₂Cl₂:EtOAc = 80:1-60:1) yielded a white solid (54.4 mg, 32%). The product was determined to be 91% ee by chiral HPLC analysis (Chiralpak AD-3, Hexane:^{*i*}PrOH = 95:5, 1.0 mL/min, $t_r(minor) = 22.7 \text{ min}, t_r(major) = 24.7 \text{ min}, 220 \text{ nm}, 35 °C$); [α]_D²⁵ +35.3 (*c* 1.1, CHCl₃). R_f = 0.50 (Hexane:EtOAc = 2:1) visualized with anisaldehyde; mp 59-60 °C; ¹H NMR (300

MHz, CDCl₃) δ 7.42-7.30 (m, 5H), 7.18 (br s, 1H), 4.92 (dt, J = 8.1, 3.6 Hz, 1H), 3.78 (ddd, J = 13.8, 7.2, 3.6 Hz, 1H), 3.43 (ddd, J = 13.8, 8.1, 4.5 Hz, 1H), 2.52 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.3 (C), 140.7 (C), 128.8 (CH), 128.5 (CH), 125.8 (CH), 92.5 (C), 72.5 (CH), 48.1 (CH₂); IR (KBr) 3410, 3033, 2871, 1696, 1524, 1269, 1073, 818, 700 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₀H₁₀Cl₃NNaO₂ 303.9669, found 303.9645.

5-Phenyl-2-(trichloromethyl)-4,5-dihydro-1,3-oxazole (2q). $R_f = 0.37$ (Hexane:CH₂Cl₂ = 1:1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.32 (m, 5H), 5.87 (dd, J = 10.2, 7.8 Hz, 1H), 4.53 (dd, J = 15.3, 7.8 Hz, 1H), 4.05 (dd, J = 15.3, 10.2 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.4 (C), 139.3 (C), 129.0 (CH), 128.9 (CH), 125.7 (CH), 86.6 (C), 85.0 (CH), 63.0 (CH₂); IR (KBr) 3033, 2942, 2880, 1715, 1662, 1496, 1453, 1320, 1228, 1208, 973, 845, 793, 758, 698, 656 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₁₀H₉Cl₃NO 263.9744, found 263.9736.

4-Phenyl-2-(trichloromethyl)-4,5-dihydro-1,3-oxazole (2q').⁷ ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.30 (m, 3H), 7.28-7.25 (m, 2H), 5.43 (dd, *J* = 10.2, 8.1 Hz, 1H), 5.00 (dd, *J* = 10.2, 8.4 Hz, 1H), 4.52 (dd, *J* = 8.4, 8.1 Hz, 1H).

(5S)-5-(Phenoxymethyl)-1,3-oxazolidin-2-one (5). To an oven-dried 10 mL test tube equipped with a stir bar was added (S)-glycidyl phenyl ether (1.127 g, 7.5 mmol, 1.0 equiv), TAPS E (39.2 mg, 75 µmol, 1 mol %), PhCl (1.5 mL, 5.0 M), MS4A (150 mg), trichloroacetonitrile (0.91 mL, 9.0 mmol, 1.2 equiv), and 2-methyl-2-butene (159 μ L, 1.5 mmol). The atmosphere was replaced with argon (×3) using a diaphragm pump. After stirring at 90 °C for 48 h, the mixture was filtered through a pad of celite with CHCl₃ (40 mL) and then the filtered solution was concentrated. The unpurified material in a 200 mL round-bottom flask was diluted with PhCl (75 mL). p-TsOH•H₂O (1.427 g, 7.5 mmol) was added into the flask at rt. After stirring at rt for 3 h, the mixture was treated with satd aq NaHCO₃ (90 mL). The aqueous layer was extracted with CHCl₃ (50 mL×3). The organic layers were combined, washed with H₂O (200 mL), dried over Na₂SO₄, filtered, and concentrated. Flash column chromatography (SiO₂ 45 g, Hexane:EtOAc = 5:1 - EtOAc) yielded the corresponding oxazolidinone as a white solid (0.934 g, 64%). The product was determined to be 99% ee by chiral HPLC analysis (Chiralcel OD-3, Hexane:EtOH = 80:20, 1.0 mL/min, $t_r(minor) = 10.3 \text{ min}, t_r(major) = 11.6 \text{ min}, 220$ nm, 35 °C); $[\alpha]_{D}^{23}$ +8.2 (c 0.3, CHCl₃). $R_f = 0.35$ (EtOAc) visualized with KMnO₄; mp 109-110 °C (rac); ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.26 (m, 2H), 7.02-6.96 (m, 1H), 6.93-6.89 (m, 2H), 6.16 (br s, 1H), 5.01-4.93 (m, 1H), 4.16 (dd, J = 10.5, 4.8 Hz, 1H), 4.13 (dd, J = 10.5, 5.4 Hz, 1H), 3.78 (td, J = 8.7, 0.6 Hz, 1H), 3.62 (ddd, J = 8.7, 6.3, 0.6 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 159.6 (C), 158.1 (C), 129.6 (CH), 121.6 (CH), 114.6 (CH), 74.2 (CH), 67.9 (CH₂), 42.7 (CH₂); IR (KBr) 3281, 3159, 2925, 1742, 1602, 1491, 1252, 1239, 1091, 965, 760, 734, 695 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₀H₁₁NNaO₃ 216.0631, found 216.0653.

Electronic Supplementary Information

2-(Trichloromethyl)-5-[(trityloxy)methyl]-4,5-dihydro-1,3-oxazole (S2). To an oven-dried 10 mL test tube equipped with a stir bar was added glycidyl trityl ether (189.7 mg, 0.60 mmol), TAPS **E** (15.6 mg, 30 µmol, 5 mol %), PhCl (0.6 mL, 1.0 M), MS4A (120 mg), trichloroacetonitrile (73 µL, 0.72 mmol, 1.2 equiv), and 2-methyl-2-butene (64 µL, 0.60 mmol). The atmosphere was replaced with argon (×3) using a diaphragm pump. After stirring at 90 °C for 18 h, the mixture was filtered through a pad of celite with CHCl₃ (40 mL) and then the filtered solution was concentrated. Flash column chromatography (SiO₂ 25 g, Hexane:EtOAc = 15:1-5:1) yielded **S2** as a white solid (123.8 mg, 45%). R_f = 0.35 (Hexane:EtOAc = 10:1) visualized with KMnO4; mp 158-159 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.48-7.44 (m, 6H), 7.33-7.21 (m, 9H), 5.08-4.99 (m, 1H), 4.08 (dd, *J* = 15.0, 9.9 Hz, 1H), 3.95 (dd, *J* = 15.0, 7.5 Hz, 1H), 3.47 (dd, *J* = 10.8, 3.0 Hz, 1H), 3.17 (dd, *J* = 10.8, 4.5 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.6 (C), 143.4 (C), 128.6 (CH), 127.9 (CH), 127.2 (CH), 86.8 (C), 86.7 (C), 82.9 (CH), 64.2 (CH₂), 56.9 (CH₂); IR (KBr) 3067, 2977, 2922, 1662, 1491, 1448, 1232, 1119, 1015, 913, 851, 790, 749, 708, 647, 632 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₂₄H₂₀Cl₃NNaO₂ 482.0452, found 482.0458.

2-(Trichloromethyl)-5-[(*tert***-butyldimethylsilyloxy)methyl]-4,5-dihydro-1,3-oxazole (S3).** To an ovendried 10 mL test tube equipped with a stir bar was added *tert*-butyldimethylsilyl glycidyl ether (113.1 mg, 0.60 mmol), TAPS **E** (15.6 mg, 30 µmol, 5 mol %), PhCl (0.6 mL, 1.0 M), MS4A (120 mg), trichloroacetonitrile (73 µL, 0.72 mmol, 1.2 equiv), and 2-methyl-2-butene (64 µL, 0.60 mmol). The atmosphere was replaced with argon (×3) using a diaphragm pump. After stirring at 90 °C for 18 h, the mixture was filtered through a pad of celite with CHCl₃ (40 mL) and then the filtered solution was concentrated. Flash column chromatography (SiO₂ 25 g, Hexane:EtOAc = 40:1-10:1, Toluene:EtOAc = 100:1-50:1) yielded **S3** as a colorless oil (61.1 mg, 31%). $R_f = 0.40$ (Hexane:EtOAc = 10:1) visualized with KMnO4; ¹H NMR (300 MHz, CDCl₃) δ 4.96 (dddd, *J* = 9.6, 7.5, 3.9, 3.6 Hz, 1H), 4.09 (dd, *J* = 15.0, 9.6 Hz, 1H), 4.00 (dd, *J* = 15.0, 7.5 Hz, 1H), 3.88 (dd, *J* = 11.4, 3.6 Hz, 1H), 3.72 (dd, *J* = 11.4, 3.9 Hz, 1H), 0.89 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.6 (C), 86.7 (C), 83.8 (CH), 63.4 (CH₂), 56.4 (CH₂), 25.7 (CH₃), 18.2 (C), -5.45 (CH₃); IR (KBr) 2962, 2936, 2875, 1722, 1371, 1253, 1166, 1053, 840 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₂₀Cl₃NNaO₂Si 354.0221, found 354.0204.

Appendix

The reaction using (*S*)-epichlorohydrin (99% ee) provided the product with deteriorated optical purity, which indirectly supports the proposed mechanism.

Due to the effect of the phenyl group, lower regioselectivity (ca. 6:1) was observed in the reaction using styrene oxide.

PhO.	O + CCI ₃ CN (1.2 equi	v) catalyst v) solven 7 °C	(5 mol %) (1.0 M) C, 18 h 2a	N (PhO	OH CI 3a	HO 'Pr Br PPh ₃ PPh ₃ TAPS E
entry	catalyst	$T(^{\circ}\mathrm{C})$	solvent (1.0 M)	conv. $(\%)^a$	2a (%) ^{<i>a</i>}	3a $(\%)^a$
1	$Ph_4P^+I^-$	100	PhCl	>95	50	15
2	$Ph_4P^+Cl^-$	100	PhCl	58	43	10
3	$Ph_4P^+Br^-$	100	PhCl	>95	67	24
4	$Ph_4P^+Br^-$	80	PhCl	93	53	15
5	$Ph_4P^+Br^-$	90	PhCl	>95	69	22
$6^{b,c}$	$Ph_4P^+Br^-$	90	PhCl	>95	72	10
7	$Ph_4P^+Br^-$	90	PhCH ₃	34	21	<5
8	$Ph_4P^+Br^-$	90	PhCF ₃	>95	64	15
9	$^{n}\mathrm{Bu}_{4}\mathrm{P}^{+}\mathrm{Br}^{-}$	90	PhCl	64	33	28
10	$^{n}\mathrm{Bu}_{4}\mathrm{N}^{+}\mathrm{Br}^{-}$	90	PhCl	89	60	11
11	DMAP	90	PhCl	79	35	18
12	TAPS E	90	PhCl	>95	75	13
13 ^b	TAPS E	90	PhCl	>95	77	10
14^{c}	TAPS E	90	PhCl	>95	76	12
$15^{b,c}$	TAPS E	90	PhCl	>95	79	9

^{*a*}Estimated by ¹H NMR analysis using (CHCl₂)₂ as an internal standard. ^{*b*}MS 4A (100 mg/mmol) was added. ^{*c*}2-Methyl-2-butene was added.

Table S2. Comparison of regioselectivity⁸

	$R^1 \longrightarrow CX_3$				
	R^2 CX ₃ CN R^1 $+$ R^2 2	R ¹ +	entries 1-4 entries 5-10	entries 11-14 entri	es 15-18
entry	epoxide	CX ₃ CN	catalyst (mol %)	yield (%)	2:2'
1^a	$\mathbf{R}^1 = \mathbf{C}\mathbf{H}_2\mathbf{O}^n\mathbf{C}_6\mathbf{H}_{13}, \mathbf{R}^2 = \mathbf{H}$	X = H	HF (1000)	91	73:27
2^a	$\mathbf{R}^1 = \mathbf{C}\mathbf{H}_2\mathbf{O}^n\mathbf{C}_6\mathbf{H}_{13}, \mathbf{R}^2 = \mathbf{H}$	X = H	TfOH (100)	0	-
3 ^{<i>a</i>}	$\mathbf{R}^1 = \mathbf{C}\mathbf{H}_2\mathbf{O}^n\mathbf{C}_6\mathbf{H}_{13}, \mathbf{R}^2 = \mathbf{H}$	X = H	AlCl ₃ (100)	39	>99:1
4	$R^1 = CH_2OBn, R^2 = H$	X = Cl	TAPS E (5)	57^b	>99:1
5 ^{<i>a</i>}	$R^1 = {}^nC_6H_{13}, R^2 = H$	X = H	HF (1000)	68	27:73
6 ^{<i>a</i>}	$R^1 = {}^nC_6H_{13}, R^2 = H$	X = H	TfOH (100)	47	26:74
7^a	$R^1 = {}^nC_6H_{13}, R^2 = H$	X = H	AlCl ₃ (100)	45	48:52
8^c	$\mathbf{R}^1 = {^n\mathbf{C}_4\mathbf{H}_9, \ \mathbf{R}^2 = \mathbf{H}}$	X = Cl	TfOH (5)	0^d	-
9 ^c	$\mathbf{R}^1 = {^n\mathbf{C}_4\mathbf{H}_9, \ \mathbf{R}^2 = \mathbf{H}}$	X = Cl	$AlCl_{3}(5)$	0^d	-
10^{c}	$\mathbf{R}^1 = {^n\mathbf{C}_4\mathbf{H}_9, \ \mathbf{R}^2 = \mathbf{H}}$	X = Cl	TAPS E (5)	37^{d}	>99:1
11 ^a	$R^1 = C_6 F_5, R^2 = H$	X = H	HF (1000)	74	<1:99
12 ^{<i>a</i>}	$R^1 = C_6 F_5, R^2 = H$	X = H	TfOH (100)	67	<1:99
13 ^{<i>a</i>}	$\mathbf{R}^1 = \mathbf{C}_6 \mathbf{F}_5, \mathbf{R}^2 = \mathbf{H}$	X = H	AlCl ₃ (100)	18	<1:99
14	$\mathbf{R}^1 = \mathbf{C}_6 \mathbf{H}_5, \mathbf{R}^2 = \mathbf{H}$	X = Cl	TAPS E (5)	42^{d}	88:12
15 ^{<i>a</i>}	$\mathbf{R}^1 = {^n\mathbf{C}_4\mathbf{H}_9}, \mathbf{R}^2 = \mathbf{C}\mathbf{H}_3$	X = H	HF (1000)	0	-
16 ^{<i>a</i>}	$\mathbf{R}^1 = {}^n\mathbf{C}_4\mathbf{H}_9, \mathbf{R}^2 = \mathbf{C}\mathbf{H}_3$	X = H	TfOH (100)	45	<1:99
17 ^a	$\mathbf{R}^1 = {^n\mathbf{C}_4\mathbf{H}_9}, \mathbf{R}^2 = \mathbf{C}\mathbf{H}_3$	X = H	AlCl ₃ (100)	66	<1:99
18	$R^1 = CH_2Cl, R^2 = CH_3$	X = Cl	TAPS E (5)	23^{b}	>99:1

^{*a*}Reported by Umezawa *et al.*, see ref 9b in the main text. ^{*b*}Isolated yield of a trichloroacetylated amino alcohol after hydrolysis of oxazoline. ^{*c*}PhCl (1.0 M), 90 °C, 18 h. ^{*d*}NMR yield of oxazoline.

DFT studies

Quantum mechanical calculations were performed using Gaussian 16 (Revision B.01).⁹ All geometries were optimized using the M06-2X density functional, the 6-31G(d) basis set (C, H, N, O, P, and Cl), the LanL2DZ basis set (Br), and an ultrafine integration grid within the IEFPCM model in chlorobenzene.^{10,11} Single point energies were calculated using the M06-2X density functional, the triple-zeta valence with polarization quality def2-TZVPP basis set, and an ultrafine integration grid within the IEFPCM model in chlorobenzene.¹² The resulting energies were used to correct the energies obtained from the M06-2X/6-31G(d) + LanL2DZ optimizations. The free energy corrections were calculated at 1 atm and 298.15 K.

Figure S1. Path A: 3D view of DFT results. Relative free energies based on **INT1** are shown (kcal mol⁻¹).

Figure S2. Path B: 3D view of DFT results. Relative free energies based on INT3 are shown (kcal mol⁻¹).

INT1

Optimization: IEFPCM(PhCl)-M06-2X/6-31G(d) + LanL2DZ

E(RM062X) = -2985.03173632 Hartree

Thermal correction to Gibbs Free Energy = 0.405293 Hartree

Sum of electronic and thermal Free Energies = -2984.626444 Hartree

The lowest frequency = 18.8447 cm^{-1}

Number of imaginary frequencies = 0

Single-point calculation: IEFPCM(PhCl)-M06-2X/def2-TZVPP

E(RM062X) = -5546.75156560 Hartree

Р	-0.3617081175	2.3041559379	-0.4565433394
С	-1.9673942467	2.9605376135	0.0481877422
С	-4.4051137054	4.0721556132	0.7943000478
С	-2.1243997935	3.4997524553	1.3328688623
С	-3.0306001744	2.9765726204	-0.8588044648
С	-4.2495476958	3.533881164	-0.4802125234
С	-3.3441666977	4.0561286047	1.7002006184
Η	-1.3015005219	3.4801612966	2.0427336277
С	-0.5900841859	1.2820939273	-1.9195377717
С	-1.0918915428	-0.2758705269	-4.1601379548
С	-0.456059465	1.8406657688	-3.1948382609
С	-0.9811819161	-0.0510824854	-1.7596870057
С	-1.23561959	-0.8243734437	-2.8869655432
С	-0.7040053141	1.0531254318	-4.3144826308
Η	-0.1490408486	2.8749575489	-3.3153449334
Η	-1.0855414463	-0.4899337219	-0.7706928372
Η	-1.5450892215	-1.8578880404	-2.7710206938
Η	-0.5884766887	1.4775711109	-5.305761002
Η	-1.2812290701	-0.8877311608	-5.036022492
С	0.2875913992	1.3268506439	0.9154439138
С	1.283575851	-0.2037519703	3.0120512045
С	-0.5978159434	0.6569416776	1.7713933415
С	1.6706443277	1.2148886844	1.0968033812
С	2.1620044573	0.4492089558	2.1501428063
С	-0.0938855168	-0.1075446666	2.8189365277
Η	-1.6717360896	0.7303359632	1.6261986643
Η	2.3625267823	1.697946074	0.4153366469
Η	3.2338484049	0.3600047555	2.2893907396
Η	-0.7785253398	-0.6268870813	3.482372221
Η	1.6731343609	-0.7963048123	3.8337111713
С	0.7377260784	3.6804174026	-0.8453022941
С	2.4792757394	5.7714857576	-1.4072685169
С	0.4098855349	4.9821169529	-0.4490618157
С	1.9307992807	3.4215983294	-1.534129441
С	2.7983803805	4.4747426125	-1.8069110107
С	1.2868603807	6.0249356202	-0.7324534139
Η	-0.5215073705	5.187702148	0.0681586151
Η	2.1891906257	2.4089895657	-1.8506942354
Η	3.7244127376	4.2747727945	-2.3355243613
Η	1.0344247112	7.0351389055	-0.4285467479
Η	3.1594572495	6.5884116807	-1.6260180532
Η	-2.9112346916	2.5535322229	-1.8515006729
Η	-3.4679558989	4.4727116438	2.6938857701
Η	-5.3568257373	4.5036989617	1.0863835359

Η	-5.076572771	3.542626665 -1.1818267248
Ν	-1.7911840568	-2.2934640875 0.8062562834
С	-1.4133160496	-3.1334608151 1.5027223588
Br	3.1625061594	0.0307348202 -2.1076202752
С	-1.0553882072	-4.186547986 2.4628685037
Cl	-0.8149885882	-5.7199797206 1.6099030354
Cl	0.3993400013	-3.7170331123 3.3594501658
Cl	-2.4268596267	-4.3435934908 3.6003917985
0	1.0569403787	-3.5761412896 0.3923488118
С	1.3565171755	-2.219054264 0.0516938793
Η	2.4113564719	-1.9634636423 0.0058473856
Η	0.7044190041	-1.4770606514 0.5099154073
С	0.8135583852	-3.1404433195 -0.9463933104
Η	-0.2501214995	-3.0574095337 -1.1734806348
С	1.682018658	-3.7334288985 -2.0187684584
Η	1.3610847277	-4.7496166515 -2.2678816497
Η	1.630996966	-3.1151491443 -2.9193150585
Η	2.7226620592	-3.7613998143 -1.6848582392

TS1

Optimization: IEFPCM(PhCl)-M06-2X/6-31G(d) + LanL2DZ

E(RM062X) = -2984.98914613 Hartree

Thermal correction to Gibbs Free Energy = 0.405231 Hartree

Sum of electronic and thermal Free Energies = -2984.583915 Hartree

The lowest frequency = $-568.9710 \text{ cm}^{-1}$

Number of imaginary frequencies = 1

Single-point calculation: IEFPCM(PhCl)-M06-2X/def2-TZVPP

E(RM062X) = -5546.70289312 Hartree

· · ·	/		
Ρ	-3.228547387	5.9114971747	5.2692378717
С	-4.7993534276	6.6230096648	5.806803485
С	-7.1773524989	7.8175857778	6.6104083447
С	-4.9374388491	7.0831688143	7.1229947107
С	-5.851202544	6.7578997421	4.8957760172
С	-7.0402557817	7.3564004588	5.3033616576
С	-6.1280647399	7.6823165501	7.5192281116
Η	-4.1236996241	6.9687047313	7.8339098793
С	-3.5192653505	4.9052410537	3.806643004
С	-4.1059260681	3.3818323021	1.5621447159
С	-3.4169090874	5.4794089925	2.5344755623
С	-3.9167668836	3.5744699819	3.962410186
С	-4.2156195003	2.8202956649	2.8325142859
С	-3.7064724589	4.7088337545	1.412945262
Η	-3.1040322295	6.512557539	2.4163868966
Η	-3.9898561117	3.096618998	4.937151206
Η	-4.5298233044	1.7884038799	2.9555316384
Η	-3.6176380974	5.1454962231	0.4240475399
Η	-4.3302136644	2.7845254799	0.6842828296
С	-2.5827687623	4.933165816	6.6392582153
С	-1.6109904532	3.3879655456	8.7353525527
С	-3.4565102252	4.1067184836	7.3593962161
С	-1.2231283633	4.9830422416	6.9655798652
С	-0.743164923	4.2100443108	8.0184467826
С	-2.9638378482	3.3319021684	8.4042725557

$n \in \mathcal{U} \cup \mathcal{U}$	
-4.5118165878	4.0551324506 7.1059576729
-0.5425034141	5.6116133188 6.4018670761
0.3104774348	4.2474267462 8.272849782
-3.6371716248	2.6769689768 8.9482037632
-1.2314225035	2.7827668582 9.5521946946
-2.0852025957	7.2427853769 4.8547449132
-0.2793075229	9.2632529776 4.2442612495
-2.3557638975	8.5567517666 5.2495460083
-0.9140137164	6.9349601154 4.1473978442
-0.0136337105	7.9523463048 3.8490654604
-1.4469041893	9.565233328 4.9411617319
-3.2682553951	8.7962530142 5.7862713197
-0.7070528374	5.9092671849 3.8432109547
0.8949719293	7.7185026246 3.3047122177
-1.6551524242	10.5860177823 5.2429204174
0.4256560556	10.0527949312 4.0048782874
-5.7474922841	6.3909693645 3.8791886104
-6.2385825677	8.0371994682 8.5381339705
-8.1069751244	8.2802379895 6.9252030888
-7.8598705039	7.455934954 4.6000863675
-4.3026839735	1.2193130221 6.1740649772
-3.5557953927	0.4547423845 6.703222113
-0.1342576046	3.2525664197 3.9299212027
-3.5848642768	-0.4702564574 7.9061863636
-3.4721960199	-2.1787201402 7.3819401487
-2.2375244961	-0.1273848416 9.0374498272
-5.1189316664	-0.2400531387 8.7779228176
-2.0149077794	0.1285447077 6.1643937385
-1.1709109812	1.611841756 5.6106508113
-0.1865382186	1.4459087041 6.0254447763
-1.7979707678	2.3964175092 6.0163002507
-1.8036728529	0.5670576547 4.8206574971
-2.7435142474	0.8784743807 4.3588307885
-0.9710241768	-0.3808584101 4.001728997
-1.5352764254	-1.2944913028 3.7970752776
-0.7062302615	0.0954917297 3.0543518118
-0.0526072859	-0.6433200604 4.533684389
	-4.5118165878 -0.5425034141 0.3104774348 -3.6371716248 -1.2314225035 -2.0852025957 -0.2793075229 -2.3557638975 -0.9140137164 -0.0136337105 -1.4469041893 -3.2682553951 -0.7070528374 0.8949719293 -1.6551524242 0.4256560556 -5.7474922841 -6.2385825677 -8.1069751244 -7.8598705039 -4.3026839735 -3.5557953927 -0.1342576046 -3.5848642768 -3.4721960199 -2.2375244961 -5.1189316664 -2.0149077794 -1.1709109812 -0.1865382186 -1.7979707678 -1.8036728529 -2.7435142474 -0.9710241768 -1.5352764254 -0.7062302615 -0.0526072859

INT2

Optimization: IEFPCM (PhCl) - M06 - 2X/6 - 31G(d) + LanL2DZ

E(RM062X) = -2985.02420107 Hartree

Thermal correction to Gibbs Free Energy = 0.409763 Hartree Sum of electronic and thermal Free Energies = -2984.614438 Hartree The lowest frequency = 18.0449 cm^{-1} Number of imaginary frequencies = 0Single-point calculation: IEFPCM(PhCl)-M06-2X/def2-TZVPP E(RM062X) = -5546.75156560 Hartree Ρ -0.4540294681 2.3164176143 -0.4605817962 С -2.0165772003 3.0263736318 0.097235194 С -4.3811449335 4.2199700481 0.9369874632 С -2.1462870639 3.4544786583 1.4247815171 С -3.0698205725 3.1910192656 -0.807459542

C -4.2522408252 3.7891994511 -0.3815075634

С	-3.3307035986	4.0539193875	1.8390666594
Η	-1.3319131865	3.3138551483	2.1300507859
С	-0.7455416636	1.3156709933	-1.9282520157
С	-1.3258628811	-0.188518477	-4.1891481677
С	-0.6791994002	1.9121867012	-3.1949588058
С	-1.1020903437	-0.028892235	-1.7854999657
С	-1.395756401	-0.7713618768	-2.9265269654
C	-0.9671886865	1.1527508178	-4.3238888223
Н	-0.3999824743	2.9563590712	-3.3023214496
Н	-1.1472178271	-0.5484740816	-0.8247285243
Н	-1.6743299501	-1.8142559957	-2.8101279277
Н	-0.9099135068	1.6084237299	-5.3066246981
Н	-1.5494210094	-0.7776285803	-5.0728849248
С	0.2270792348	1.3491795154	0.8981535123
Ċ	1.2509017503	-0.192710936	2.9711770909
Ċ	-0.6095715433	0.4579725921	1.5817589987
Ċ	1.5767502083	1.4720213763	1.2536817045
Ċ	2.0828034841	0.6986028081	2.2927937275
Ċ	-0.0899525644	-0.3144517461	2.6158278929
Н	-1.6504394937	0.3317122947	1.2993629633
Н	2.2274352127	2.161813147	0.7263826201
Н	3.1278347075	0.7897639103	2.5689073723
Н	-0.7331589156	-1.0286570605	3.1188043874
Н	1.6517807559	-0.8039989521	3.7734497947
С	0.6879127189	3.6463578738	-0.8880290799
С	2.5115775723	5.6539699772	-1.4958115256
С	0.4474846548	4.9546934195	-0.4596211512
С	1.8403856211	3.3400555467	-1.6258074789
С	2.7501841594	4.3479142979	-1.9243685029
С	1.3642618813	5.9568829812	-0.7672337543
Н	-0.4490429327	5.1942007575	0.1035887525
Н	2.021804386	2.321775476 -1	1.9620075
Н	3.6427902966	4.1139934624	-2.4943275718
Н	1.1777818039	6.9737309454	-0.4393258751
Н	3.2225163462	6.4381459479	-1.73456696
Н	-2.9729309135	2.8458235507	-1.8323602574
Н	-3.4356886073	4.3837478061	2.8669162148
Н	-5.3062078641	4.681888892	1.2659378468
Η	-5.0738085071	3.9114484762	-1.0788482605
Ν	-1.412500121	-2.2594302248	0.4124835579
С	-0.6908016035	-3.153102319	0.8208787934
Br	2.5015623468	-0.5821177143	-1.7359497778
С	-0.8946634393	-4.0223743256	2.1075314529
Cl	-1.008879148	-5.7771280604	1.7113521192
Cl	0.4880022938	-3.8091329244	3.2555779968
Cl	-2.3835064364	-3.5489898427	2.9536556424
0	0.5413714501	-3.675863299	0.3026517147
С	1.7330079088	-1.7479679595	-0.2702896902
Η	2.5827406648	-1.9984390632	0.3647327759
Η	1.021651439	-1.10896613 0.	2489744961
С	1.0456123942	-2.9891865177	-0.8232106241
Н	0.2145801379	-2.6721094799	-1.4640662213
С	1.9796904189	-3.9379371438	-1.5526393272

Tod	a et al.		
Η	1.4314487698	-4.8385435662	-1.8393791215
Η	2.3901559628	-3.4731361578	-2.4523528067
Η	2.8072561116	-4.2312527033	-0.8985482823
	1		
TS2			
Opt	imization: IEFP	CM(PhCl)-M06-	2X/6-31G(d) + LanL2DZ
E(R	M062X) = -2985.	01641394 Hartree	8
The	rmal correction to	Gibbs Free Energy	gy = 0.410021 Hartree
Sun	of electronic and	thermal Free End	ergies = -2984.606393 Hartree
The	lowest frequency	$= -318.6370 \text{ cm}^{-1}$	1
Nun	nber of imaginary	frequencies = 1	
Sing	gle-point calculat	ion: IEFPCM(P	hCl)-M06-2X/def2-1ZVPP
E(R	M062X) = -5546.	7313468/ Hartree	
P	1.3567654462	1.7610543143	0.0350615667
C	-0.2392117664	2.3721697067	0.6150520206
C	-2.659098222	3.4138421853	1.4990578985
C	-0.3349648614	2.9114659959	1.9046690469
C	-1.3536515755	2.3495923546	-0.2288363752
C	-2.5634546096	2.8724773712	0.2191203085
C	-1.5474901295	3.4342250982	2.3409/21246
H	0.5287242925	2.9166588537	2.5640549051
C	1.09/6250425	0.5896200843	-1.3094596763
C	0.5324504615	-1.1884348454	-3.3/0121901/
C	0.91011/394/	1.0/186/5/49	-2.6123310541
C	1.0140947721	-0.//932/6/5	-1.0420092693
C	0.7254798059	-1.665464/949	-2.0/61535813
C	0.6280334027	0.1//31/4354	-3.0388801331
H	0.9906075257	2.1341/45495	-2.823663247
H	1.182/093125	-1.1/9310618/	-0.0468/31146
H	0.6/0/425/05	-2.7255535243	-1.8492044559
H	0.48/543363/	0.546/951091	-4.64894/3/36
H	0.3133351232	-1.8814888829	-4.1/584/95/5
C	2.1/80331413	0.9009810/40	1.4229903729
C	5.44200/8/21 1 4490966094	-0.42/0080930	3.404UIU//94 2.1060541114
C	1.4489800084	0.0484206901	2.1909341114

E(R	M062X) = -5546.	73134687 Hartre	e
Р	1.3567654462	1.7610543143	0.0350615667
С	-0.2392117664	2.3721697067	0.6150520206
С	-2.659098222	3.4138421853	1.4990578985
С	-0.3349648614	2.9114659959	1.9046690469
С	-1.3536515755	2.3495923546	-0.2288363752
С	-2.5634546096	2.8724773712	0.2191203085
С	-1.5474901295	3.4342250982	2.3409721246
Η	0.5287242925	2.9166588537	2.5640549051
С	1.0976250425	0.5896200843	-1.3094596763
С	0.5324504615	-1.1884348454	-3.3701219017
С	0.9101173947	1.0718675749	-2.6123310541
С	1.0140947721	-0.779327675	-1.0420092693
С	0.7254798059	-1.6654647949	-2.0761535813
С	0.6280334027	0.1773174354	-3.6388801331
Η	0.9906075257	2.1341745495	-2.825663247
Η	1.1827093125	-1.1793106187	-0.0468731146
Η	0.6707425705	-2.7255533243	-1.8492044559
Η	0.4875433637	0.5467951091	-4.6489473736
Η	0.3133351232	-1.8814888829	-4.1758479575
С	2.1780551413	0.9669816746	1.4229963729
С	3.4420078721	-0.4276680956	3.4640107794
С	1.4489866084	0.0484206901	2.1969541114
С	3.5284564721	1.2054928739	1.6874413602
С	4.1538231575	0.5084969234	2.7203792038
С	2.0890286743	-0.6571075401	3.2057854944
Η	0.3939490265	-0.1259561182	2.0013716625
Η	4.0935241281	1.9125659285	1.0890435029
Η	5.2044416997	0.684823923	2.9240961536
Η	1.5449217306	-1.4058467736	3.7711492288
Η	3.9413477939	-0.9995757958	4.238443572
С	2.3401301178	3.1368832369	-0.5850154335
С	3.9224388735	5.2265347391	-1.5017413437
С	1.9989728808	4.4547195669	-0.2661480493
С	3.4696844048	2.8596007253	-1.3677565641
С	4.2595905573	3.910896708	-1.8199363191
С	2.7957916234	5.4983315738	-0.7290307259
Η	1.1180783313	4.6681636307	0.3311743379
Η	3.7313998272	1.8323896878	-1.613357
Η	5.1364056148	3.7013397715	-2.4229643235
Η	2.5328076031	6.5225050753	-0.487726977

Н	4.5399355035	6.0432953792	-1.8610490392
Η	-1.2831638723	1.9189743208	-1.2229950807
Η	-1.6254677384	3.8503504983	3.3394574481
Η	-3.6050415994	3.8169370726	1.845489346
Η	-3.4314192839	2.8503939307	-0.4307771669
Ν	3.1557649884	-3.4119914777	2.213078832
С	2.1932360565	-3.672809537	1.5013135602
Br	4.9480744213	-0.7055606511	-1.1228296125
С	0.8098665604	-4.2286303941	1.9289658355
Cl	-0.4943845207	-3.0497874109	1.4981121263
Cl	0.4467775112	-5.7809617337	1.0976332096
Cl	0.7518517573	-4.4967933979	3.6806664772
0	2.0849423594	-3.4890952467	0.0994296754
С	4.042023906	-2.0934691059	0.3717800079
Н	4.9505673454	-2.3391637195	0.9008371051
Н	3.405771495	-1.3702368432	0.8636363999
С	3.3532469038	-3.1654870376	-0.4602420099
Н	3.1054637017	-2.748608951	-1.4384450895
С	4.2252634158	-4.4004718665	-0.6361857379
Η	3.7010919498	-5.1425862098	-1.2435626624
Η	5.1584977232	-4.1301351828	-1.1404801373
Η	4.458788518	-4.8337538634	0.3391892285

P **Optimization: IEFPCM(PhCl)-M06-2X/6-31G(d) + LanL2DZ** E(RM062X) = -2985.11112386 Hartree Thermal correction to Gibbs Free Energy = 0.412511 Hartree Sum of electronic and thermal Free Energies = -2984.698613 Hartree The lowest frequency = 17.6350 cm^{-1} Number of imaginary frequencies = 0Single-point calculation: IEFPCM(PhCl)-M06-2X/def2-TZVPP E(RM062X) = -5546.82171128 Hartree Р -0.630334252 2.0698959881 -0.292357658 С -2.1987449477 2.8026123589 0.2128735861 С -4.5724627972 4.0321744995 0.9714753478 С -2.2752421748 3.4678315623 1.4441752374 С -3.3086018861 2.7501135514 -0.6350380712 С -4.4958517996 3.3673848899 -0.2499034988С -3.4646100932 4.0832045082 1.8177993966 Η -1.414502238 3.4986202699 2.1069690292 С -0.9160109155 0.8689403735 -1.606111123 С -1.4280294506 -0.9845962449 -3.6106428588 С -0.978628678 1.2908410912 -2.9404893872С -1.105665682 -0.4754609375 -1.2760695689 С -1.3579582503 -1.4022245957 -2.2833200217 С -1.2404458916 0.3586172151 -3.9387409324Η -0.81374541022.3333733581 -3.1976416288 Η -0.8131402476 -1.0333955605 -0.246983686 Η -1.4806586557 -2.448119199 -2.0215036749 Η -1.2857637326 0.6787335973 -4.973982681 Η -1.6204385948 -1.708349547 -4.3959465617 С 0.089352427 1.235850006 1.1335290822 С 1.1847481541 -0.2139904624 3.2393232687 S21

С	-0.7540274442	0.5602666873	2.0287065287
С	1.4778267227	1.1883919843	1.2937319494
С	2.0182718173	0.4619478314	2.3521580649
С	-0.2008794095	-0.1624136478	3.0792147525
Н	-1.8335276972	0.5959207734	1.9062927346
Н	2.1520901463	1.6757818916	0.5966893094
Н	3.0971018679	0.4212757104	2.462509259
Н	-0.851422594	-0.6903440093	3.7690141352
Н	1.6113344698	-0.7936504306	4.0514418496
С	0.4637662715	3.350538516	-0.9239751486
С	2.2229127198	5.2805098144	-1.8649088684
С	0.1580439173	4.7052526608	-0.7543328821
С	1.6418940107	2.957608961	-1.5722053144
С	2.5246492587	3.9294750368	-2.0293669794
С	1.042238482	5.6676459183	-1.2327011113
Н	-0.7595406807	5.008353163	-0.259964831
Н	1.9036559288	1.908285808	-1.6968271983
Н	3.4486870104	3.6179928232	-2.5045502276
Η	0.8085813059	6.7195532752	-1.1086464102
Η	2.9114944451	6.0362060823	-2.2288790965
Η	-3.2510978621	2.2267366901	-1.5845833896
Η	-3.5280303541	4.5977507107	2.7704126826
Η	-5.5000499165	4.510115554	1.2688864987
Η	-5.3602124276	3.324192961	-0.9035424124
Ν	1.7701087194	-2.9806033536	1.7889768299
С	0.6324310145	-3.1245123047	1.2625246317
Br	4.1378017822	0.4057978739	-1.0099315337
С	-0.5690906121	-3.7494689716	1.9437426923
Cl	-2.0370023843	-2.7904543307	7 1.6015946624
Cl	-0.7875359921	-5.3885567589	9 1.2645197881
Cl	-0.3250297456	-3.8525364925	5 3.6908671649
0	0.4220286058	-2.7884855613	-0.0211282279
С	2.6265469519	-2.4593887778	0.7113050489
Н	3.369759439	-3.2243340574	0.4561334761
Н	3.1605563969	-1.5619833037	1.0283351657
С	1.6721986081	-2.1625148903	-0.4626670198
Η	1.4787409575	-1.087326375	-0.5405136173
С	2.081417661	-2.7348604955	-1.7977465038
Η	1.3206738747	-2.5350902745	-2.5577565351
Η	3.0157098955	-2.2545870535	-2.1009138514
Η	2.2353452584	-3.8156074435	-1.7186773712

INT3 Optimization: IEFPCM(PhCl)-M06-2X/6-31G(d) + LanL2DZ E(RM062X) = -2985.02453126 Hartree Thermal correction to Gibbs Free Energy = 0.404058 Hartree Sum of electronic and thermal Free Energies = -2984.620473 Hartree The lowest frequency = 15.3063 cm⁻¹ Number of imaginary frequencies = 0 **Single-point calculation: IEFPCM(PhCl)-M06-2X/def2-TZVPP**

E(RM062X) = -5546.74639708 Hartree

Р	-0.0366750291	0.7433312428	-1.913164834
С	-1.7003698416	0.5785283909	-1.2350097256
С	-4.2262303963	0.3500518668	-0.0916618172
Ċ	-1.9195893297	-0.3476872163	-0.2041407456
C	-2.7479561716	1.3776301235	-1.7012550332
C	-4 0113930455	1 2582593603	-1 1249002604
C	-3 1829841115	-0.4564966783	0 3646475765
н	-1 1084429176	-0.9842426735	0.1425627225
C	-0 1153945825	1 5858036118	-3 507063161
C	-0.333272213	2 0105320802	-5.9/115/2863
C	-0.333272213 -0.2483741537	2.9109920092	-3 5317446872
C	0.08206718/2	2.9809900007	-5.5517440872 1 6000530302
C	-0.10108557/15	1 5252/23/66	-5.0155008020
C	0.1919033743	2 6292270991	-5.9155098029
С П	-0.301130213	2 5404579205	-4./310090001
п	-0.2333933424	5.5494578505	-2.0030391095
п	0.0575991592	-0.2220050254	-4.082120031
H	-0.1605153319	0.9621283036	-0.84182509
H	-0.4635548536	4./1//968161	-4.7735088792
H	-0.415/09622	3.42/4345582	-6.8915536959
C	0.6458395886	-0.90801/1599	-2.11033/8686
C	1.6910949463	-3.4546330623	-2.4593660187
C	-0.1/621268/8	-1.9332751972	-2.6065684242
C	1.9761322654	-1.1582065257	-1.7707398681
C	2.4946015157	-2.440025927	-1.9500182667
С	0.3535186038	-3.2044409066	-2.7830965232
Η	-1.2206713855	-1.7415646349	-2.8385637768
Η	2.6002864568	-0.3994536812	-1.3087726648
Η	3.5159044524	-2.6376826091	-1.6439967476
Η	-0.2755126847	-4.0026916542	-3.1621697308
Н	2.0967901895	-4.4528855171	-2.5889108106
С	0.98646203 1	.735861431 -0.8	3159048919
C	2.6181067549	3.2214749403	0.871081245
С	0.6270230791	1.9071941409	0.5224750648
С	2.1682766175	2.3032712173	-1.3140989365
С	2.9819682591	3.0410800839	-0.4640786369
С	1.4466946628	2.6547100126	1.3633815681
Η	-0.2805564549	1.4631949463	0.9184588836
Η	2.4475930665	2.1727832346	-2.3561805016
Η	3.9001805429	3.4759095597	-0.8432254974
Η	1.1695869731	2.7736917911	2.4051642554
Η	3.2584057066	3.7981562937	1.5301031776
Η	-2.5864170735	2.0835222201	-2.5098849991
Η	-3.3524220942	-1.1667756013	1.1672939174
Η	-5.2067465843	0.2693116768	0.364393881
Η	-4.8253986663	1.8778706685	-1.4851408752
Ν	0.592641349	-0.0652395134	2.9576112975
С	0.6572695021	-1.1947989626	2.7276901622
Br	3.8054878184	-0.9416638683	1.2288796744
С	0.5746997563	-2.6480219649	2.526888631
Cl	-1.0501999468	-3.1469171458	3.101847693
Cl	0.7361018813	-3.049293266	0.8095299199
Cl	1.8204091016	-3.4599416794	3.485044854
0	-3.6476820084	1.72595707 2	.691156589

С	-2.6165072741	2.4751160421	2.0608815285
Η	-2.547395055	3.5173252545	2.3684500605
Η	-2.4970374107	2.2866294373	0.9944551757
С	-2.2995792986	1.4250156796	3.037777383
Η	-1.9530026784	0.4679947486	2.6462913132
С	-1.8802314509	1.7529802693	4.443692972
Η	-2.2710335071	1.0089180709	5.1441689757
Η	-0.7896352823	1.7529272159	4.5199011146
Η	-2.2611501897	2.7364303031	4.7328884086

TS3

Optimization: IEFPCM(PhCl)-M06-2X/6-31G(d) + LanL2DZ

E(RM062X) = -2984.94270715 Hartree

Thermal correction to Gibbs Free Energy = 0.405310 Hartree

Sum of electronic and thermal Free Energies = -2984.537397 Hartree

The lowest frequency = -656.4359 cm⁻¹

Number of imaginary frequencies = 1

Single-point calculation: IEFPCM(PhCl)-M06-2X/def2-TZVPP

E(RM062X) = -5546.66763568 Hartree

· ·	/		
P	2.7035590996	3.2917853741	0.8719530205
С	0.9766552387	3.2322371478	1.387092271
С	-1.6387015403	3.2485067818	2.32711565
С	0.5719457741	2.2808152761	2.3323000385
С	0.0733436649	4.1879429587	0.9103450249
С	-1.2344946534	4.192918167	1.385389987
С	-0.739465001	2.2919972101	2.7964732214
Η	1.2716751917	1.53290444 2	2.6960940814
С	2.8258267846	4.0147222925	-0.7798485986
С	2.9072941017	5.1623270868	-3.3118692156
С	2.8789874564	5.4085500971	-0.912251402
С	2.8220865352	3.1968469523	-1.9144244997
С	2.8629020038	3.7760567295	-3.1790009355
С	2.9158505438	5.9775562349	-2.1811548415
Η	2.8998521185	6.0445061883	-0.0316947222
Η	2.8003309234	2.1161900957	-1.8164396169
Η	2.8657778767	3.1426670226	-4.0593766964
Η	2.9581337465	7.0562826318	-2.2850531389
Η	2.9416570954	5.6093912233	-4.2998864163
С	3.3465925439	1.6087100997	0.8512256304
С	4.3393273001	-0.9843118193	0.7262207972
С	2.5489376404	0.5814203976	0.3240721863
С	4.6309947202	1.3354182231	1.3277595694
С	5.1239856743	0.0344783977	1.2588440625
С	3.050186612	-0.7130243037	0.2624975373
Η	1.5401330188	0.7878512871	-0.0235915595
Η	5.2300194643	2.11390121	1.7865052743
Η	6.1140198775	-0.1810657021	1.6456335927
Η	2.4344270402	-1.5100577299	-0.1398669891
Η	4.7253342081	-1.9975738595	0.6819543821
С	3.6258338614	4.3400862847	2.0030817931
С	5.0833382122	5.887007917	3.787536519
С	3.0370214619	4.759039118	3.1968276255
С	4.9415010267	4.7106956735	1.6863147793

С	5.6669312457	5.4805487175	2.5855390463
С	3.7742938169	5.5305840754	4.0906709376
Η	2.0190131642	4.4769513313	3.4404190086
Η	5.3916890675	4.4058159101	0.7449450577
Η	6.6864177235	5.7656528841	2.349508594
Η	3.3225436969	5.8377398278	5.0279676614
Η	5.6575550195	6.4834222502	4.4888893237
Η	0.3842180192	4.9204011997	0.1712725548
Η	-1.0581006207	1.5495216892	3.5208181136
Η	-2.6594674788	3.2543633313	2.6945577849
Η	-1.9372608117	4.9321077086	1.0168484785
Ν	2.0241256018	2.8027857347	5.300471168
С	2.6391500809	1.7949030536	5.2089538533
Br	4.9810087398	2.0026694028	4.8062468688
С	2.4257089891	0.298913379	5.3086700415
Cl	0.6661145823	0.0275483133	5.5159208597
Cl	2.9326480156	-0.5285326567	3.8187813002
Cl	3.2764570737	-0.3661504748	6.7146711946
0	-0.631351453	3.6593607229	7.7047746104
С	0.5379404978	3.3644642699	6.1374485499
Η	0.6006756116	4.4127735697	5.8723749532
Η	-0.1895368128	2.7803254069	5.5866651081
С	0.6029512319	3.1024461894	7.5997380473
Η	0.6697492351	2.0125145318	7.8106145244
С	1.7371209993	3.818307476	8.3265408706
Η	1.5845363645	3.745376942	9.4082813942
Η	2.7156707463	3.3892670492	8.0807700513
Η	1.7338450616	4.8799429012	8.0544880918

INT4

Optimization: IEFPCM(PhCl)-M06-2X/6-31G(d) + LanL2DZ

E(RM062X) = -2984.96777136 Hartree

Thermal correction to Gibbs Free Energy = 0.406059 Hartree

Sum of electronic and thermal Free Energies = -2984.561712 Hartree The lowest frequency = 20.6974 cm⁻¹

Number of imaginary frequencies = 0

Single-point calculation: IEFPCM(PhCl)-M06-2X/def2-TZVPP

E(RM062X) = -5546.69879039 Hartree

· ·	,		
Р	-0.0292898908	0.8360978073	-2.1182024993
С	-1.7711756921	0.7625135714	-1.6654405485
С	-4.4231133633	0.7382742166	-0.8383794783
С	-2.179935574	-0.1333343785	-0.6676181693
С	-2.6877157059	1.6413539638	-2.2507685234
С	-4.0152214122	1.6249111971	-1.8322760092
С	-3.5086982846	-0.1407695336	-0.2582335007
Η	-1.4688382896	-0.8245325817	-0.2203871713
С	0.1570992036	1.5811304076	-3.7520082925
С	0.3339794517	2.7613539497	-6.2622114866
С	0.1899836939	2.9774217223	-3.8639671689
С	0.2213760767	0.7767816623	-4.8943286743
С	0.3098117846	1.3728653983	-6.1486443588
С	0.2747051712	3.56274754 -5	5.1228545276
Η	0.1565167644	3.6018518533	-2.9755439637

Н	0.2127371189	-0.3053267972 -4.8081614121
Η	0.3646211587	0.7513157357 -7.0356865602
Η	0.3005576323	4.643257875 -5.2124088217
Η	0.4049215884	3.2216704373 -7.242148526
С	0.6138311845	-0.848246869 -2.1445233982
С	1.6128265668	-3.4374385 -2.3122832984
С	-0.1964388771	-1.8767718955 -2.6468317823
С	1.9169700846	-1.1183375727 -1.717579236
С	2.4127355056	-2.416007651 -1.8057745693
С	0.3083915158	-3.1695936656 -2.7298934999
Η	-1.2173752585	-1.6740482148 -2.9591020441
Η	2.5342346823	-0.3339982824 -1.2935397296
Η	3.4189801487	-2.6287165268 -1.4616658039
Η	-0.3178766526	-3.9677130329 -3.113413536
Η	2.0013709331	-4.4487711749 -2.3730973821
С	0.8552134476	1.8615821846 -0.9356406089
С	2.2579215154	3.3578054262 0.935679272
С	0.2276597507	2.2576335985 0.2461968703
С	2.1820924697	2.2358493657 -1.1991992403
С	2.8794340356	2.9801576542 -0.2572681843
С	0.9375557972	3.001890616 1.1850660124
Η	-0.8032304574	1.9841908096 0.4435967987
Η	2.6611420828	1.955728149 -2.1340063853
Η	3.9063544603	3.2689869213 -0.4530829932
Η	0.4546031243	3.2864152103 2.114454951
Η	2.8106335455	3.9334449795 1.6708282324
Η	-2.3721715653	2.3297687378 -3.0288406967
Η	-3.8285878316	-0.8352419168 0.5114390799
Η	-5.4583366172	0.7289609987 -0.5141715888
Н	-4.7294267794	2.3036491973 -2.2853818853
N	-0.5991989251	0.3036919744 2.3556848195
C	0.0497188097	-0.7154908408 2.2170822465
Br	2.0939/63/25	-0.4989822189 1.8405234667
C	-0.2926256854	-2.2033653421 2.2702454573
CI	-2.0512881001	-2.3863479032 2.4835419115
CI	0.1610038971	-3.010878765 0.7381620119
CI	0.5413653127	-2.9978903897 3.6293486059
0	-2.9883238704	1.1569263445 4.9367605728
C	-1.8254197578	0.7956302282 2.8603036662
H	-1.9511367349	1.8441241958 2.5734926246
H C	-2.6900729923	0.2053698687 2.553924463
C	-1.8260//1226	0.7585533878 4.503468598
H C	-1.54/9829942	-0.525/58454/ 4.68196842//
U H	-0.019326061	1.6008461337 4.9731442317
H	-0.3693/69033	1.5049935794 6.066896478
H	0.3395962194	1.25/4/6/693 4.5638162985
Н	-0.7783322771	2.6468351994 4.6815838887

References

(1) Toda, Y.; Komiyama, Y.; Kikuchi, A.; Suga, H. Tetraarylphosphonium Salt-Catalyzed Carbon Dioxide Fixation at Atmospheric Pressure for the Synthesis of Cyclic Carbonates. *ACS Catal.* **2016**, *6*, 6906.

(2) Toda, Y.; Gomyou, S.; Shoya, T.; Komiyama, Y.; Kikuchi, A.; Suga, H. Tetraarylphosphonium Salt-Catalyzed Synthesis of Oxazolidinones from Isocyanates and Epoxides. *Org. Lett.* **2017**, *19*, 5786.

(3) Novakova, V.; Miletin, M.; Filandrová, T.; Lenčo, J.; Růžička, A.; Zimcik, P. Role of Steric Hindrance in the Newman-Kwart Rearrangement and in the Synthesis and Photophysical Properties of Arylsulfanyl Tetrapyrazinoporphyrazines. *J. Org. Chem.* **2014**, *79*, 2082.

(4) Seth, K.; Roy, S. R.; Pipaliya, B. V.; Chakraborti, A. K. Synergistic dual activation catalysis by palladium nanoparticles for epoxide ring opening with phenols. *Chem. Commun.* **2013**, *49*, 5886.

(5) Nicolaou, K. C.; Fylaktakidou, K. C.; Monenschein, H.; Li, Y.; Weyershausen, B.; Mitchell, H. J.; Wei, H.; Guntupalli, P.; Hepworth, D.; Sugita, K. Total Synthesis of Apoptolidin: Construction of Enantiomerically Pure Fragments. *J. Am. Chem. Soc.* **2003**, *125*, 15433.

(6) Smith, A. B., III; Lin, Q.; Doughty, V. A.; Zhuang, L.; McBriar, M. D.; Kerns, J. K.; Boldi, A. M.; Murase, N.; Moser, W. H.; Brook, C. S.; Bennett, C. S.; Nakayama, K.; Sobukawa, M.; Trout, R. E. L. Spongipyran synthetic studies. Total synthesis of (+)-spongistatin 2. *Tetrahedron* **2009**, *65*, 6470.

(7) Wappes, E. A.; Nakafuku, K. M.; Nagib, D. A. Directed β C–H Amination of Alcohols via Radical Relay Chaperones. *J. Am. Chem. Soc.* **2017**, *139*, 10204.

(8) Umezawa, J.; Takahashi, O.; Furuhashi, K.; Nohira, H. Synthesis of Optically Active Oxazolines from Optically Active Epoxides. *Tetrahedron: Asymmetry* **1994**, *5*, 491.

(9) Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

(10) (a) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215. (b) Zhao, Y.; Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry. *Acc. Chem. Res.* **2008**, *41*, 157.

(11) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. *Chem. Rev.* **2005**, *105*, 2999.

(12) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297.

¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) spectra of (4-MeOC₆H₄)₄P⁺Br⁻

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of TAPS D

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of TAPS E

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of TAPS F

¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) spectra of TAPS G

¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) spectra of TAPS H

¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) spectra of TAPS I

¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) spectra of S1

¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) spectra of glycidyl 1-naphthyl ether

¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) spectra of glycidyl 4-methoxylbenzyl ether

¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) spectra of 4-bromobenzyl glycidyl ether

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 2a

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 4a

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 4b

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 4c

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 4d

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 4e

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 4f

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 4g

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 4h

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 4i

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 4j

Toda et al. ¹H (300 MHz, DMSO-d₆) & ¹³C{¹H} NMR (75 MHz, DMSO-d₆) spectra of 4k

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 2l

-0.92

6.60

1.5

2.0

2.5

3.14 1.0

0.5

¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) spectra of 4l

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 4m

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 4n

¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) spectra of 40

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 2q

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 4q

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of 5

1H (300 MHz, CDCl₃) & $^{13}C\{^1H\}$ NMR (75 MHz, CDCl₃) spectra of S2

¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) spectra of S3

HPLC trace of 4a

HPLC trace of 4n

# Peak	СН	tR (min)	Area	Height	Area%
1	3	18.975	406712	17449	36.097
2	3	20.383	720020	29030	63.903

28% ee

91% ee

HPLC trace of 4q

# Peak	CH	tR (min)	Area	Height	Area%
1	3	22.742	554979	20193	4.717
2	3	24.717	12654833	407867	95.799

HPLC trace of 5

# Peak	CH	tR (min)	Area	Height	Area%	
1	3	10.25	61688	2912	0.59	
2	3	11.6	10385183	608398	99.41	99% ee