Cu-Catalyzed Decarboxylative Annulation of *N*-Substituted Glycines with 3-Formylchromones: Synthesis of Functionalized Chromeno[2,3-*b*]pyrrol-4(1*H*)-ones

Li Chen, Yuan-Da Li, Ying Lv, Zi-Han Lu, and Sheng-Jiao Yan*

Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.

Supporting Information

Table of Contents: Figure S1. X-Ray crystal structure of 3d', ellipsoids is drawn at the 30% probability level.25 Table S1. Crystal data and structure refinement for 3d' 25

Figure S23.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3c	48
Figure S24.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3c	49
Figure S25.	¹⁹ F NMR (564 MHz, CDCl ₃) spectra of compound 3c	50
Figure S26.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3d	51
Figure S27.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3d	52
Figure S28.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3e	53
Figure S29.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3e	54
Figure S30.	¹⁹ F NMR (564 MHz, CDCl ₃) spectra of compound 3e	55
Figure S31.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3f	56
Figure S32.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3f	57
Figure S33.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3g	58
Figure S34.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3g	59
Figure S35.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3h	60
Figure S36.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3h	61
Figure S37.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3i	62
Figure S38.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3i	63
Figure S39.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3j	64
Figure S40.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3 j	65
Figure S41.	¹⁹ F NMR (470 MHz, CDCl ₃) spectra of compound 3 j	66
Figure S42.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3k	67
Figure S43.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3k	68
Figure S44.	¹⁹ F NMR (564 MHz, CDCl ₃) spectra of compound 3k	69
Figure S45.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 31	70
Figure S46.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 31	71
Figure S47.	¹⁹ F NMR (564 MHz, CDCl ₃) spectra of compound 31	72
Figure S48.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3m	73
Figure S49.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3m	74
Figure S50.	¹⁹ F NMR (564 MHz, CDCl ₃) spectra of compound 3m	75
Figure S51.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3n	76
Figure S52.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3n	77
Figure S53.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 30	78
Figure S54.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 30	79
Figure S55.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3p	80
Figure S56.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3p	81
Figure S57.	¹ H NMR (600 MHz, $CDCl_3$ + Acetone- d_6) spectra of compound 3q	82
Figure S58.	¹³ C NMR (150 MHz, CDCl ₃ + Acetone- d_6) spectra of compound 3q	83
Figure S59.	¹⁹ F NMR (564 MHz, CDCl ₃ + Acetone- d_6) spectra of compound 3q	84
Figure S60.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3r	85
Figure S61.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3r	86
Figure S62.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3s	87
Figure S63.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3s	88
Figure S64.	¹ H NMR (600 MHz, Acetone- d_6) spectra of compound 3t	89
Figure S65.	13 C NMR (150 MHz, Acetone- d_6) spectra of compound 3t	90
Figure S66.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3u	91
Figure S67.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3u	92
Figure S68.	¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3v	93
Figure S69.	¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3v	94
Figure S70.	¹ H NMR (600 MHz, CDCl ₃ +DMSO- <i>d</i> ₆) spectra of compound 3w	95

Figure S71. ¹³ C NMR (150 MHz, CDCl ₃ +DMSO- <i>d</i> ₆) spectra of compound 3 w	96
Figure S72. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3x	97
Figure S73. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3x	98
Figure S74. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3y	99
Figure S75. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3y	100
Figure S76. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3z	101
Figure S77. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3z	102
Figure S78. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3a'	103
Figure S79. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3a'	104
Figure S80. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3b '	105
Figure S81. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3b'	106
Figure S82. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3c'	107
Figure S83. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3c'	108
Figure S84. ¹⁹ F NMR (564 MHz, CDCl ₃) spectra of compound 3c'	109
Figure S85. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3d'	110
Figure S86. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3d'	111
Figure S87. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3e'	112
Figure S88. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3e'	113
Figure S89. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3f'	114
Figure S90. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3f '	115
Figure S91. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3g'	116
Figure S92. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3g'	117
Figure S93. ¹⁹ F NMR (564 MHz, CDCl ₃) spectra of compound 3g'	118
Figure S94. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3h'	119
Figure S95. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3h'	120
Figure S96. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3i'	121
Figure S97. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3i'	122
Figure S98. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3j'	123
Figure S99. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3j'	124
Figure S100. HPLC of the reaction mixture	125
Figure S101. HRMS of intermediate 1d	126
Figure S102. HRMS of intermediate 2e	127
Figure S103. HRMS of intermediate 4t	128
Figure S104. HRMS of intermediate 7t	129
Figure S105. HRMS of intermediate 8t/9t	130
Figure S106. HRMS of intermediate 11t.	131
Figure S107. HRMS of compound 3t	132
Figure S108. HPLC of the reaction mixture	133
Figure S109. HRMS of intermediate 5t-TEMPO/6t-TEMPO	134
Figure S110. HRMS of intermediate 5t-TEMPO/6t-TEMPO	135
Figure S111. ¹ H NMR (600 MHz, Acetone- d_6) spectra of intermediate 9g'	136
Figure S112. ¹³ C NMR (150 MHz, Acetone- <i>d</i> ₆) spectra of intermediate 9g'	137
Figure S113. ¹⁹ F NMR (564 MHz, Acetone- <i>d</i> ₆) spectra of intermediate 9g'	138
References and Notes	139

General Information

All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on a Bruker DRX600 or Bruker DRX500. Chemical shifts (δ) are expressed in ppm, *J* values are given in Hz, and deuterated CDCl₃ or Acetone-*d*₆/DMSO-*d*₆ was used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on a XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/Msd TOF instrument.

The materials were purchased from Adamas-beta Corporation Limited. All chemicals and solvents were used as received without further purification unless otherwise stated. Two kinds of reagents which were used in the experiment were commercially available reagents.

General Procedure for the Preparation of 2^1

$$R' \xrightarrow{||}{} NH_{2} + Br \xrightarrow{0}{} 0$$

$$(2) \text{ NaOAc, EtOH/reflux} + Br \xrightarrow{0}{} 0$$

$$(2) \text{ NaOH, THF: EtOH: H_{2}O=3:1:1} R' \xrightarrow{||}{} R' \xrightarrow{||}{} 2$$

A mixture of substituted aniline (10 mmol), ethyl bromoacetate (1.2 equiv., 12 mmol) and anhydrous sodium acetate (2 equiv., 20 mmol) in 30 mL ethanol was refluxed for about 10h until the substituted aniline disappeared. After cooling to room temperature, the precipitated salts were removed by filtration. The solvent was removed b6y rotary evaporation. After obtaining the concentrate, NaOH (3.3 equiv., 33mmol) and the concentrate (1.0 equiv., 10mmol) were dissolved in H₂O (10mL), EtOH (10mL) and THF (30mL). The reaction mixture was stirred for 3h at 50°C. The organic solvent was then removed by rotary evaporation. The residue was extracted with ethyl acetate (3×10 mL). The water layer was acidified with con. HCl until pH = 2-3 and extracted with ethyl acetate (3×20 mL). The combined organic layers were concentrated by rotary evaporation to afford product substituted *N*-phenylglycine (yields: 72-98%).

General Procedure for the Preparation of 3

Chromone-3-carboxaldehydes **1** (0.5 mmol) was charged into a round-bottom flask. Then toluene (3 mL), N-phenylglycine **2** (0.8 mmol), CuBr (15%), and DTBP (2.5 equiv.) were added to the mixture. The mixture was stirred at reflux for approximately 8-10 hours. The mixture was cooled to room temperature. Then the reaction mixture was extracted with ethyl acetate (3×15 mL), washed with water and brine, and then dried over MgSO₄. The combined organic phases were evaporated under reduced pressure to create the crude product. Finally, the products **3** were obtained in the pure form by column chromatography over silica gel using a mixture of petroleum ether/ethyl acetate (5:1-8:1, v/v) as the eluent.

The proposed mechanism of the cascade reaction

The proposed mechanism is shown in Scheme 2. First, the double bond of the substrate 3-formylchromone 1d was attacked by the amino group of *N*-phenyl glycine 2e via the Michael reaction to produce the intermediate 4t. Then the intermediate 4t oxidized by Cu (II) to lose the CO_2 and proton created the intermediate 5t by the SET mechanism. The intermediate 5t formed the intermediate 6t through the 1,2-addition of the radical to the acyl, which formed the intermediate 7t oxidized by DTBP. Then the intermediate 7t lost one molecular water to form intermediate 9t. Next, the allyl carbon of intermediate 8t was oxidized by CuBr and obtained the intermediate 10t. Finally, the intermediate 10t formed the intermediate 11t and lost one molecule of tertiary butyl alcohol to produce the final products 3t.

Scheme S1. The proposed mechanism of the cascade reaction.

Furthermore, we tried to make the mixture of 1d (0.1 mmol), 2e (0.16 mmol), DTBP (0.25 mmol) and CuBr (0.015 mmol) in toluene and carried out refluxing for 1 h. Following this, we immediately injected the reaction mixture into the high-pressure liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) system. Some intermediate molecular ion peaks appeared (ESI, Figures S100-S107). The molecular ion peaks that appeared in the high-resolution mass spectrum were: HRMS (TOF ES⁺): m/z calcd. for C₁₀H₇O₃[M+H]⁺, 175.0390; found, 175.0385, which is the HRMS spectrum of 1d (SI, Figure S101); HRMS (TOF ES⁺): m/z calcd. for $C_8H_{10}NO_2 [M+H]^+$, 152.0706; found, 152.0701, which is the HRMS spectra of 2e (SI, Figure S102); HRMS (TOF ES⁺): m/z calcd. for C₁₈H₁₆NO₅ [M+H]⁺, 326.1023; found, 326.1025, which is the HRMS spectra of intermediate 4t (SI, Figure S103); HRMS (TOF ES⁺): m/z calcd. for C₁₇H₁₆NO₃ [M+H]⁺, 282.1125; found, 282.1115, which is the HRMS spectra of intermediate **7t** (ESI, Figure S104); HRMS (TOF ES⁺): m/z calcd. for C₁₇H₁₄NO₂ [M+H]⁺, 264.1019; found, 264.1013. There is the HRMS spectra of intermediate 8t/9t (SI, Figure S105); HRMS (TOF ES⁺): m/z calcd. for $C_{21}H_{21}NNaO_3$ [M+Na]⁺, 358.1414; found, 358.1409, which is the HRMS spectrum of target compound **11t** (SI, Figure S106). HRMS (TOF ES⁺): m/z calcd. for C₁₇H₁₂NO₂ $[M+H]^+$, 262.0863; found, 262.0854, which is the HRMS spectrum of target compound **3t** (SI, Figure S107).

More importantly, the mixture of 1d (0.1 mmol), 2e (0.16 mmol), DTBP (0.25 mmol), TEMPO (0.1 mmol), and CuBr (0.015 mmol) in toluene and carried out refluxing for 1 h. Following this, we immediately injected the reaction mixture into high-pressure liquid chromatography-high-resolution mass the spectrometry (HPLC-HRMS) system. Some intermediate molecular ion peaks appeared (ESI, Figures S108–S110). The molecular ion peaks that appeared in the high-resolution mass spectrum were: HRMS (TOF ES⁺): m/z calcd. for C₂₆H₃₃N₂O₄ [M+H]⁺, 437.2435; 437.2429, HRMS found, which is the spectrum of **5t-TEMPO/6t-TEMPO** (SI, Figure S109); HRMS (TOF ES^+): m/z calcd. for $C_{26}H_{32}N_2NaO_4[M+Na]^+$, 459.2254; found, 459.2261, which is the HRMS spectrum of 5t-TEMPO/6t-TEMPO (SI, Figure S110).

Based on the molecular ion peaks of intermediates **4t–9t** and **11t** (ESI, Figures S100–S110) and the control experiments (ESI, Schemes S2-S3). We believe there exists ample evidence in support of the proposed mechanism.

Control Experiments

Scheme S2. Control experiments

Chromone-3-carboxaldehydes **1d** (0.5 mmol) was charged into a round-bottom flask. Then toluene (3mL), *N*-phenylglycine **2h** (0.8 mmol), CuBr (15%), and DTBP (1.25 equiv.) were added to the mixture. The mixture was stirred at reflux for approximately 6 hours. The mixture was cooled to room temperature. Then the reaction mixture was extracted with ethyl acetate (3×15 mL), washed with water and brine, and then dried over MgSO₄. The combined organic phase was evaporated under reduced pressure to create the crude product. Finally, the product **9g'** was obtained in the pure form by column chromatography over silica gel using a mixture of petroleum ether/ethyl acetate (20:1, v/v) as the eluent.

(2-Hydroxyphenyl)(1-(4-(trifluoromethyl)phenyl)-1*H*-pyrrol-3-yl)methanone (9g')

Yellow solid (99 mg, 60%); Mp: 129.5-130.5 °C; IR (KBr): 3447, 1613, 1526, 1486, 1322, 1238, 1160, 1117, 1079, 839, 764, 716, 669 cm⁻¹; ¹H NMR (600 MHz, Acetone- d_6): $\delta = 6.92$ (s, 1H, ArH), 6.93-7.02 (m, 2H, ArH), 7.54-7.58 (m, 2H, ArH), 7.90 (d, J = 8.5 Hz, 2H, ArH), 7.98 (d, J = 8.5 Hz, 2H, ArH), 8.14-8.16 (m, 2H, ArH), 12.20 (s, 1H, ArOH); ¹³C NMR (150 MHz, Acetone- d_6): $\delta = 112.8$, 117.7, 117.8, 118.9, 118.9, 120.4, 121.1, 121.3, 124.2 (q, $J_I = 270.0$ Hz), 125.6, 127.0-127.1 (q, $J_3 = 3.0$ Hz), 127.0-127.1 (q, $J_3 = 3.0$ Hz), 127.0-127.1 (q, $J_3 = -62.9$. HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₃F₃NO₂ [(M+H)⁺], 332.0893; found, 332.0889.

Scheme S3. Control experiments

The compound **9g'** (0.2 mmol) was charged into a round-bottom flask. Then toluene (2mL), CuBr (15%), DTBP (1.25 equiv.) were added to the mixture. The mixture was stirred at reflux for approximately 3 hours. The mixture was cooled to room temperature. Then the reaction mixture was extracted with ethyl acetate (2×10 mL), washed with water and brine, and then dried over MgSO₄. The combined organic phase was evaporated under reduced pressure to create the crude product. Finally, the product **3g'** was obtained in the pure form by column chromatography over silica gel using a mixture of petroleum ether/ethyl acetate (8:1, v/v) as the eluent.

Spectroscopic Data of 2 & 3

(4-Fluorophenyl)glycine (2a)

White solid (1.58g, 93%); Mp: 138.3-139.7 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 3.78 (s, 2H, CH₂), 6.54-6.56 (m, 2H, ArH), 6.92 (t, J = 8.8 Hz, 2H, ArH); ¹³C NMR (150 MHz, DMSO- d_6): δ = 45.6, 113.4 (d, J_3 = 6.0 Hz), 113.4 (d, J_3 = 6.0 Hz), 115.6 (d, J_2 = 22.5 Hz), 115.6 (d, J_2 = 22.5 Hz), 145.4, 155.0 (d, J_1 = 229.5 Hz), 173.1; ¹⁹F NMR (564 MHz, DMSO- d_6): δ = -129.4. HRMS (TOF ES⁺): m/z calcd for C₈H₉FNO₂ [(M+H)⁺], 170.0612; found, 170.0613.

(4-Chlorophenyl)glycine (2b)

White solid (1.67g, 90%); Mp: 140.5-141.9 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 3.79 (s, 2H, ArH), 6.57 (d, J = 8.4 Hz, 2H, ArH), 7.10 (d, J = 8.4 Hz, 2H, ArH); ¹³C NMR (150 MHz, DMSO- d_6): δ = 45.1, 114.0, 114.0, 119.9, 129.0, 129.0, 147.7, 172.8. HRMS (TOF ES⁺): m/z calcd for C₈H₉ClNO₂ [(M+H)⁺], 186.0316; found, 186.0314.

(3-Fluorophenyl)glycine (2c)

Yellow solid (1.67g, 98%); Mp: 153.2-154.3 °C; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 3.82$ (s, 2H, CH₂), 6.31-6.35 (m, 2H, ArH), 6.40 (t, J = 8.3 Hz, 1H, ArH), 7.06-7.09 (m, 1H, ArH), 12.6 (s, 1H, COOH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 45.0$, 98.9 (d, $J_2 = 24.0$ Hz), 102.6 (d, $J_2 = 21.0$ Hz), 108.9, 130.6 (d, $J_3 = 10.5$ Hz), 150.8 (d, $J_3 = 10.5$ Hz), 163.9 (d, $J_1 = 237.0$ Hz), 172.8; ¹⁹F NMR (564 MHz, DMSO- d_6): $\delta = -113.4$. HRMS (TOF ES⁺): m/z calcd for C₈H₉FNO₂ [(M+H)⁺], 170.0612; found, 170.0614.

(2-Chlorophenyl)glycine (2d)

White solid (1.54g, 83%); Mp: 170.8-172.0 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 3.92 (s, 2H, CH₂), 5.56 (s, 1H, NH), 6.58-6.64 (m, 2H, ArH), 7.13 (t, *J* = 7.4 Hz,

1H, ArH), 7.27 (d, J = 7.8 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 44.9$, 111.9, 117.5, 118.3, 128.4, 129.4, 144.1, 172.6. HRMS (TOF ES⁺): m/z calcd for C₈H₉ClNO₂ [(M+H)⁺], 186.0316; found, 186.0313.

p-Tolylglycine (2f)

Yellow solid (1.37g, 83%); Mp: 117.5-118.3 °C; ¹H NMR (600 MHz, DMSO-*d*₆): $\delta = 2.15$ (s, 3H, CH₃), 3.75 (s, 2H, CH₂), 6.47 (d, J = 8.0 Hz, 2H, ArH), 6.90 (d, J = 8.0 Hz, 2H, ArH); ¹³C NMR (150 MHz, DMSO-*d*₆): $\delta = 20.5$, 45.5, 112.8, 112.8, 125.1, 129.7, 129.7, 146.3, 173.2. HRMS (TOF ES⁺): m/z calcd for C₉H₁₂NO₂ [(M+H)⁺], 166.0863; found, 166.0866.

(4-Methoxyphenyl)glycine (2g)

Brown solid (1.54g, 85%); Mp: 225.1-226.0 °C; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 3.64$ (s, 3H, OCH₃), 3.73 (s, 2H, CH₂), 6.52 (d, J = 8.3 Hz, 2H, ArH), 6.72 (d, J = 8.3 Hz, 2H, ArH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 46.1$, 55.8, 113.7, 113.7, 115.0, 115.0, 142.9, 152.5, 173.4. HRMS (TOF ES⁺): m/z calcd for C₉H₁₂NO₃ [(M+H)⁺], 182.0812; found, 182.0811.

(4-(Trifluoromethyl)phenyl)glycine (2h)

White solid (1.31g, 72%); Mp: 139.9-142.3 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 3.89 (s, 2H, CH₂), 6.64 (s, 1H, NH), 6.68 (d, J = 8.6 Hz, 2H, ArH), 7.39 (d, J = 8.6 Hz, 2H, ArH), 12.7 (s, 1H, COOH); ¹³C NMR (150 MHz, DMSO- d_6): δ = 44.6, 112.1, 112.1, 116.4 (q, J_2 = 31.5 Hz), 125.8 (q, J_I = 268.5 Hz), 126.6 (q, J_3 = 4.5 Hz), 126.6 (q, J_3 = 4.5 Hz), 151.8, 172.5. HRMS (TOF ES⁺): m/z calcd for C₉H₉F₃NO₂ [(M+H)⁺], 220.0580; found, 220.0586.

6-Fluoro-1-(4-fluorophenyl)chromeno[2,3-*b*]pyrrol-4(1*H*)-one (3a)

Yellow solid (117mg, 79%); Mp: 117.4-118.2 °C; IR (KBr): 3450, 3106, 1674, 1621, 1549, 1530, 1512, 1472, 1386, 1253, 1145, 836, 784, 775, 646 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.80$ (d, J = 3.1 Hz, 1H, ArH), 6.83 (d, J = 3.4 Hz, 1H, ArH), 7.27 (t, J = 8.3 Hz, 2H, ArH), 7.31-7.34 (m, 1H, ArH), 7.42-7.44 (m, 1H, ArH), 7.55-7.57 (m, 2H, ArH), 7.99-8.00 (m, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 103.5$, 107.1, 111.8 (d, $J_2 = 24.0$ Hz), 116.7 (d, $J_2 = 22.5$ Hz), 118.9, 119.1 (d, $J_3 = 7.5$ Hz), 120.4 (d, $J_2 = 25.5$ Hz), 124.7 (d, $J_3 = 7.5$ Hz), 125.9 (d, $J_3 = 7.5$ Hz), 125.9 (d, $J_3 = 7.5$ Hz), 132.2, 148.6, 150.1, 159.3 (d, $J_1 = 244.5$ Hz), 161.9 (d, $J_1 = 247.5$ Hz), 172.3. HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₀F₂NO₂ [(M+H)⁺], 298.0674; found, 298.0668.

6-Bromo-1-(4-fluorophenyl)chromeno[2,3-b]pyrrol-4(1H)-one (3b)

Yellow solid (110mg, 62%); Mp: 173.1-173.9 °C; IR (KBr): 3503, 3114, 1658, 1607, 1527, 1460, 1397, 1334, 1298, 1230, 1127, 1021, 865, 836, 741, 684 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.85$ (s, 2H, ArH), 6.29 (t, J = 8.7 Hz, 2H, ArH), 7.36 (d, J = 8.8 Hz, 1H, ArH), 7.56-7.58 (m, 2H, ArH), 7.72-7.73 (m, 1H, ArH), 8.52 (d, J = 1.4 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 103.8$, 107.6, 116.8 (d, $J_2 = 22.5$ Hz), 116.8 (d, $J_2 = 22.5$ Hz), 117.9, 119.0, 119.3, 125.9 (d, $J_3 = 7.5$ Hz), 125.9 (d, $J_3 = 7.5$ Hz), 126.0, 129.5, 132.1, 135.5, 148.3, 152.8, 162.0 (d, $J_1 = 247.5$ Hz), 172.0, ¹⁹F NMR (564 MHz, CDCl₃): $\delta = -112.7$. HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₀BrFNO₂ [(M+H)⁺], 357.9873; found, 357.9870.

1-(4-Fluorophenyl)-6-methylchromeno[2,3-b]pyrrol-4(1H)-one (3c)

Yellow solid (92mg, 63%); Mp: 131.7-132.4 °C; IR (KBr): 3428, 3112, 2376,

1657, 1618, 1525, 1478, 1406, 1336, 1297, 1230, 1153, 1012, 944, 830, 740, 687 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 2.47 (s, 3H, CH₃), 6.83 (d, *J* = 3.4 Hz, 1H, ArH), 6.86 (d, *J* = 3.5 Hz, 1H, ArH), 7.26-7.29 (m, 2H, ArH), 7.35 (d, *J* = 8.5 Hz, 1H, ArH), 7.44-7.46 (m, 1H, ArH), 7.56-7.59 (m, 1H, ArH), 8.20 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 20.8, 103.8, 107.6, 116.6 (d, *J*₂ = 22.5 Hz), 116.6 (d, *J*₂ = 22.5 Hz), 117.1, 118.4, 125.8, 125.8 (d, *J*₃ = 9.0 Hz), 125.8 (d, *J*₃ = 9.0 Hz), 126.3, 132.4, 133.8, 134.4, 148.6, 152.3, 161.8 (d, *J*₁ = 247.5 Hz), 173.6; ¹⁹F NMR (564 MHz, CDCl₃): δ = -113.3. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₈H₁₃FNO₂ [(M+H)⁺], 294.0925; found, 294.0925.

6-Chloro-1-(4-fluorophenyl)-7-methylchromeno[2,3-b]pyrrol-4(1H)-one (3d)

Yellow solid (96mg, 59%); Mp: 128.2-128.9 °C; IR (KBr): 3432, 3119, 1658, 1619, 1521, 1385, 1385, 1298, 1230, 1154, 907, 840, 739, 666, 622 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 2.46$ (s, 3H, CH₃), 6.78-6.80 (m, 2H, ArH), 7.25-7.28 (m, 2H, ArH), 7.31 (s, 1H, ArH), 7.54-7.56 (m, 2H, ArH), 8.27 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 20.5$, 103.7, 107.3, 116.7 (d, $J_2 = 22.5$ Hz), 116.7 (d, $J_2 = 22.5$ Hz), 118.7, 119.2, 122.4, 125.8 (d, $J_3 = 7.5$ Hz), 125.8 (d, $J_3 = 7.5$ Hz), 126.4, 131.0, 132.2, 141.6, 148.3, 152.2, 161.9 (d, $J_1 = 247.5$ Hz), 172.2. HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₂ClFNO₂ [(M+H)⁺], 328.0535; found, 328.0528.

1-(4-Chlorophenyl)-6-fluorochromeno[2,3-*b*]pyrrol-4(1*H*)-one(3e)

Yellow solid (131mg, 83%); Mp: 140.5-141.7 °C; IR (KBr): 3464, 3106, 2778, 1671, 1531, 1473, 1330, 1268, 1188, 1139, 1094, 1012, 952, 867, 774, 689 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.86$ (d, J = 3.7 Hz, 1H, ArH), 6.87 (d, J = 3.6 Hz, 1H, ArH), 7.35-7.38 (m, 1H, ArH), 7.45-7.48 (m, 1H, ArH), 7.54-7.757 (m, 4H, ArH), 8.03-8.05 (m, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 103.9$, 107.3, 111.9 (d, J = 24.0 Hz), 118.6, 119.1 (d, J = 9.0 Hz), 120.5 (d, J = 25.5 Hz), 124.7 (d, J = 6.0 Hz), 125.1, 125.1, 130.0, 130.0, 133.8, 134.6, 148.5, 150.1, 159.3 (d, J = 244.5 Hz), 172.4; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = -116.4$. HRMS

6-Chloro-1-(4-chlorophenyl)chromeno[2,3-b]pyrrol-4(1H)-one (3f)

Yellow solid (127mg, 77%); Mp: 145.7-146.6 °C; IR (KBr): 3399, 3113, 1659, 1605, 1527, 1463, 1399, 1331, 1280, 1181, 1098, 1013, 829, 723, 683 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 6.84-6.87 (m, 2H, ArH), 7,42 (d, *J* = 8.8 Hz, 1H, ArH), 7.54-7.60 (m, 5H, ArH), 8.35 (s, 1H, Ar H); ¹³C NMR (150 MHz, CDCl₃): δ = 104.0, 107.7, 118.7, 119.0, 124.5, 125.1, 125.1, 126.3, 130.0, 130.0, 130.6, 132.8, 133.9, 134.6, 148.3, 152.3, 172.1. HRMS (TOF ES⁺): *m/z* calcd for C₁₇H₁₀Cl₂NO₂ [(M+H)⁺], 330.0083; found, 330.0084.

1-(4-Chlorophenyl)chromeno[2,3-*b*]pyrrol-4(1*H*)-one (3g)

Yellow solid (106mg, 72%); Mp: 158.2-159.2 °C; IR (KBr): 3411, 3128, 1667, 1612, 1542, 1524, 1508, 1493, 1459, 1257, 1234, 1175, 1093, 1009, 964, 828, 739, 690 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.85$ (d, J = 3.7 Hz, 1H, ArH), 6.87 (d, J = 3.6 Hz, 1H, ArH), 7.44 (d, J = 7.4 Hz,1H, ArH), 7.47 (d, J = 8.4 Hz,1H, ArH), 7.56 (s, 4H, ArH), 7.65 (s, 1H, ArH), 8.41 (d, J = 7.8 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 104.1$, 107.8, 117.4, 118.2, 123.3, 124.7, 125.0, 125.0, 126.8, 129.9, 129.9, 132.7, 133.6, 134.8, 148.3, 154.1, 173.4. HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₁CINO₂ [(M+H)⁺], 296.0473; found, 296.0468.

1-(4-Chlorophenyl)-6-methylchromeno[2,3-b]pyrrol-4(1H)-one (3h)

Yellow solid (108mg, 70%); Mp: 130.7-131.2 °C; IR (KBr): 3477, 3109, 1658, 1619, 1525, 1333, 1293, 1205, 1097, 1016, 946, 830, 807, 739, 689 cm⁻¹; ¹H

NMR (600 MHz, CDCl₃): δ = 2.49 (s, 3H, CH₃), 6.84 (d, *J* = 3.5 Hz, 1H, ArH), 6.86 (d, *J* = 3.4 Hz, 1H, ArH), 7.36 (d, *J* = 8.5 Hz, 1H, ArH), 7.46 (d, *J* = 8.5 Hz, 1H, ArH), 7.55 (s, 4H, ArH), 8.19 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 20.8, 104.0, 107.8, 117.1, 118.1, 123.0, 124.9, 124.9, 126.3, 130.0, 130.0, 133.5, 133.8, 134.5, 134.8, 148.5, 152.3, 173.6. HRMS (TOF ES⁺): *m/z* calcd for C₁₈H₁₃ClNO₂ [(M+H)⁺], 310.0629; found, 310.0623.

6-Chloro-1-(4-chlorophenyl)-7-methylchromeno[2,3-b]pyrrol-4(1H)-one (3i)

Yellow solid (127mg, 74%); Mp: 241.9-242.4 °C; IR (KBr): 3422, 1659, 1615, 1527, 1342, 1156, 848, 621, 573 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 2.51 (s, 3H, CH₃), 6.86 (s, 2H, ArH), 7.37 (s, 1H, ArH), 7.54-7.57 (m, 4H, ArH), 8.35 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 20.6, 104.1, 107.6, 118.4, 119.3, 122.5, 125.1, 125.1, 126.6, 130.0, 130.0, 131.2, 133.8, 134.7, 141.8, 148.3, 152.3, 172.3. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₈H₁₂Cl₂NO₂ [(M+H)⁺], 344.0240; found, 344.0236.

6-Chloro-1-(3-fluorophenyl)chromeno[2,3-b]pyrrol-4(1H)-one (3j)

Yellow solid (96mg, 61%); Mp: 155.4-156.4 °C; IR (KBr): 3442, 3117, 1659, 1610, 1527, 1461, 1400, 1327, 1283, 1204, 1126, 854, 814, 779, 683 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 6.86$ (d, J = 3.6 Hz, 1H, ArH), 6.89 (d, J = 3.6 Hz, 1H, ArH), 7.16-7.19 (m, 1H, ArH), 7.35-7.40 (m, 2H, ArH), 7.46 (d, J = 8.9 Hz, 1H, ArH), 7.53-7.61 (m, 2H, ArH), 8.36 (d, J = 2.3 Hz, 1H, ArH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 104.2$, 107.8, 111.3 (d, $J_2 = 25.0$ Hz), 115.0 (d, $J_2 = 21.3$ Hz), 118.6, 119.1, 119.3 (d, $J_4 = 3.8$ Hz), 124.5, 126.3, 130.6, 131.1 (d, $J_3 = 8.8$ Hz), 132.8, 137.4 (d, $J_3 = 10.0$ Hz), 148.3, 152.3, 163.1 (d, $J_1 = 246.3$ Hz), 172.1; ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -109.8$. HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₀FCINO₂ [(M+H)⁺], 314.0379; found, 314.0372.

1-(3-Fluorophenyl)chromeno[2,3-*b*]pyrrol-4(1*H*)-one (3k)

Yellow solid (84mg, 60%); Mp: 108.9-109.6 °C; IR (KBr): 3443, 3120, 1661, 1608, 1526, 1461, 1328, 1286, 1205, 1125, 854, 814, 777, 714, 682 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.88$ (t, J = 3.4 Hz, 1H, ArH), 6.90 (d, J = 3.5 Hz, 1H, ArH), 7.18 (t, J = 8.1 Hz, 1H, ArH), 7.38-7.50 (m, 3H, ArH), 7.53 (t, J = 7.9 Hz, 1H, ArH), 7.57 (d, J = 7.9 Hz, 1H, ArH), 7.67 (t, J = 7.3 Hz, 1H, ArH), 8.42 (d, J = 7.9 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 104.2$, 107.9, 111.2 (d, $J_2 = 25.5$ Hz), 114.7 (d, $J_2 = 21.0$ Hz), 117.4, 118.1, 119.1 (d, $J_4 = 3.0$ Hz), 123.4, 124.7, 126.8, 131.1 (d, $J_3 = 9.0$ Hz), 132.8, 137.6 (d, $J_3 = 10.5$ Hz), 148.3, 154.1, 163.1 (d, $J_1 = 246.0$ Hz), 173.4; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = -110.0$. HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₁FNO₂ [(M+H)⁺], 280.0768; found, 280.0766.

1-(3-Fluorophenyl)-6-methylchromeno[2,3-b]pyrrol-4(1H)-one (3l)

Yellow solid (92mg, 63%); Mp: 119.7-120.5 °C; IR (KBr): 3455, 3112, 1659, 1611, 1525, 1400, 1339, 1273, 1201, 1125, 1001, 889, 854, 767, 686, 644 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 2.49$ (s, 3H, CH₃), 6.87 (d, J = 3.5 Hz, 1H, ArH), 6.88 (d, J = 3.5 Hz, 1H, ArH), 7.15-7.18 (m, 1H, ArH), 7.38-7.42 (m, 3H, ArH), 7.47 (d, J = 8.3 Hz, 1H, ArH), 7.53-7.56 (m, 1H, ArH), 8.19 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 20.8$, 104.2, 107.9, 111.1 (d, $J_2 = 25.5$ Hz), 114.6 (d, $J_2 = 21.0$ Hz), 117.2, 117.9, 119.0 (d, $J_4 = 3.0$ Hz), 123.0, 126.3, 131.0 (d, $J_3 = 9.0$ Hz), 133.9, 134.5, 137.7 (d, $J_3 = 9.0$ Hz), 148.4, 152.3, 163.1 (d, $J_I = 246.0$ Hz), 173.6; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = -110.0$. HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₃FNO₂ [(M+H)⁺], 294.0925; found, 294.0920.

1-(2-Chlorophenyl)-6-fluorochromeno[2,3-b]pyrrol-4(1H)-one (3m)

Yellow solid (100mg, 64%); Mp: 88.2-89.4 °C; IR (KBr): 3447, 3106, 1666, 1519, 1477, 1282, 1189, 1139, 824, 772, 720, 685 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 6.73$ (d, J = 3.7 Hz, 1H, ArH), 6.86 (d, J = 3.7 Hz, 1H, ArH), 7.30-7.34 (m, 1H, ArH), 7.37-7.40 (m, 1H, ArH), 7.48-7.53 (m, 3H, ArH), 7.63-7.65 (m, 1H, ArH), 8.04-8.06 (m, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 103.4$, 106.6, 111.9 (d, J = 24.0 Hz), 119.1 (d, J = 7.5 Hz), 120.0, 120.3 (d, J = 25.5 Hz), 124.9, 127.9, 129.2, 130.6, 130.9, 132.0, 133.5, 149.5, 150.2, 159.3 (d, J = 243.0 Hz), 172.5; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = -116.8$. HRMS (TOF ES⁺): *m/z* calcd for C₁₇H₁₀FClNO₂ [(M+H)⁺], 314.0379; found, 314.0375.

6-Chloro-1-(2-chlorophenyl)chromeno[2,3-b]pyrrol-4(1H)-one (3n)

Yellow solid (103mg, 63%); Mp: 127.4-128.6 °C; IR (KBr): 3445, 3116, 1663, 1514, 1455, 1290, 1172, 1134, 827, 775, 712, 689 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.75$ (d, J = 2.9 Hz, 1H, ArH), 6.88 (d, J = 2.9 Hz, 1H, ArH), 7.37 (t, J = 8.8 Hz, 1H, ArH), 7.49-7.57 (m, 4H, ArH), 7.64 (t, J = 7.8 Hz, 1H, ArH), 8.55 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 103.5$, 106.9, 119.0, 120.0, 126.3, 127.9, 129.1, 129.1, 130.4, 130.6, 130.9, 132.0, 132.6, 133.4, 149.3, 152.5, 172.2. HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₀Cl₂NO₂ [(M+H)⁺], 330.0083; found, 330.0081.

1-(2-Chlorophenyl)chromeno[2,3-b]pyrrol-4(1H)-one (30)

Yellow solid (88mg, 60%); Mp: 147.6-148.6 °C; IR (KBr): 3449, 3102, 1668, 1516, 1434, 1284, 1169, 1103, 848, 766, 703, 684 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.74$ (s, 1H, ArH), 6.89 (s, 1H, ArH), 7.30-7.49 (m, 2H, ArH), 7.50-7.61 (m, 3H, ArH), 7.62-7.66 (m, 2H, ArH), 8.43 (d, J = 7.8 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 103.5$, 107.0, 117.4, 119.6, 123.5, 124.5, 126.8, 127.9, 129.2, 130.5, 130.8, 132.0, 132.5, 133.6, 149.4, 154.2, 173.5. HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₁CINO₂ [(M+H)⁺], 296.0473; found, 296.0472.

6-Chloro-1-(2-chlorophenyl)-7-methylchromeno[2,3-b]pyrrol-4(1H)-one (3p)

Yellow solid (122mg, 71%); Mp: 121.3-122.8 °C; IR (KBr): 3401, 3101, 2382, 1660, 1618, 1518, 1382, 1238, 1145, 901, 747, 633 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 3.47 (s, 3H, CH₃), 6.73 (s, 1H, ArH), 6.87 (s, 1H, ArH), 7.29 (d, *J* = 8.5 Hz, 1H, ArH), 7.48-7.53 (m, 3H, ArH), 7.64 (d, *J* = 7.4 Hz, 1H, ArH), 8.35 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 20.5, 103.5, 106.8, 119.3, 119.8, 126.5, 127.9, 129.2, 130.6, 130.8, 130.8, 131.0, 132.0, 133.5, 141.5, 149.2, 152.4, 172.4. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₈H₁₂Cl₂NO₂ [(M+H)⁺], 344.0240; found, 344.0235.

6-Fluoro-1-phenylchromeno[2,3-*b*]pyrrol-4(1*H*)-one (3q)

Yellow solid (123mg, 88%); Mp: 173.7-174.8 °C; IR (KBr): 3422, 2360, 1658, 1508, 1453, 1265, 1130, 870, 801, 763, 694 cm⁻¹; ¹H NMR (600 MHz, CDCl₃ + Acetone- d_6): $\delta = 6.73$ (d, J = 3.5 Hz, 1H, ArH), 7.13 (d, J = 3.5 Hz, 1H, ArH), 7.49-7.52 (m, 2H, ArH), 7.61-7.65 (m, 3H, ArH), 7.74 (d, J = 7.9 Hz, 2H, ArH), 7.89-7.92 (m, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃ + Acetone- d_6): $\delta = 102.8$, 107.0, 110.9 (d, $J_2 = 24.0$ Hz), 119.0, 119.2, 119.9 (d, $J_3 = 7.5$ Hz), 120.4 (d, $J_2 = 25.5$ Hz), 123.8, 124.7 (d, $J_3 = 6.0$ Hz), 127.9, 129.7, 130.0, 136.2, 148.5, 150.3, 159.2 (d, $J_1 = 241,5$ Hz), 171.5. HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₁FNO₂ [(M+H)⁺], 280.0768; found, 280.0770.

6-Chloro-1-phenylchromeno[2,3-b]pyrrol-4(1H)-one (3r)

Yellow solid (117mg, 79%); Mp: 209.3-210.4 °C; IR (KBr): 3115, 3069, 1663, 1605, 1532, 1460, 1400, 1271, 1180, 1128, 817, 738, 688, 646 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.85$ (d, J = 2.7 Hz, 1H, ArH), 6.90 (d, J = 2.8 Hz, 1H, ArH), 7.42 (d, J = 8.8 Hz, 1H, ArH), 7.48 (t, J = 4.1 Hz, 1H, ArH), 7.56-7.59 (m, 5H, ArH), 8.36 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 103.7$, 107.6,

119.0, 119.1, 123.9, 123.9, 123.9, 126.3, 128.0, 129.8, 129.8, 130.4, 132.6, 136.1, 148.4, 152.4, 172.1. HRMS (TOF ES⁺): m/z calcd for $C_{17}H_{11}CINO_2$ [(M+H)⁺], 296.0473; found, 296.0471.

6-Bromo-1-phenylchromeno[2,3-b]pyrrol-4(1H)-one (3s)

Yellow solid (137mg, 81%); Mp: 215.5-216.8 °C; IR (KBr): 3447, 3118, 2665, 1663, 1602, 1529, 1460, 1399, 1277, 1124, 1064, 860, 743, 690 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 6.84 (s, 1H, ArH), 6.89 (s, 1H, ArH), 7.36 (d, *J* = 8.6 Hz, 1H, ArH), 7.48 (s, 1H, ArH), 7.59 (s, 4H, ArH), 7.70 (s, 1H, ArH), 8.50 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 103.7, 107.6, 117.8, 119.0, 119.3, 123.9, 123.9, 124.8, 128.0, 129.4, 129.8, 129.8, 135.4, 136.1, 148.3, 152.8, 172.0. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₇H₁₁BrNO₂ [(M+H)⁺], 339.9968; found, 339.9963.

1-Phenylchromeno[2,3-b]pyrrol-4(1H)-one (3t)

Yellow solid (106mg, 81%); Mp: 117.1-118.2 °C; IR (KBr): 3447, 3102, 1668, 1613, 1541, 1505, 1459, 1312, 1295, 1122, 1098, 1029, 904, 749, 686, 644 cm⁻¹; ¹H NMR (600 MHz, Acetone- d_6): $\delta = 6.74$ (d, J = 3.7 Hz, 1H, ArH), 7.17 (d, J = 3.7 Hz, 1H, ArH), 7.48-7.53 (m, 2H, ArH), 7.59 (d, J = 8.3 Hz, 1H, ArH), 7.65 (t, J = 8.0 Hz, 2H, ArH), 7.75 (t, J = 8.3 Hz, 1H, ArH), 7.79 (d, J = 7.9 Hz, 2H, ArH), 8.30 (d, J = 7.9 Hz, 1H, ArH); ¹³C NMR (150 MHz, Acetone- d_6): $\delta = 102.9$, 107.4, 117.7, 118.9, 123.4, 123.9, 123.9, 124.5, 126.1, 127.8, 129.7, 129.7, 132.8, 136.4, 148.2, 154.2, 172.2. HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₂NO₂ [(M+H)⁺], 262.0863; found, 262.0860.

6-Methyl-1-phenylchromeno[2,3-b]pyrrol-4(1H)-one (3u)

Yellow solid (89mg, 65%); Mp: 134.0-135.4 °C; IR (KBr): 3393, 3111, 1664, 1606, 1531, 1204, 804, 747, 695, 645 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.88$ (d, J = 4.2 Hz, 2H, ArH), 7.37 (d, J = 8.3 Hz, 1H, ArH), 7.44 (s, 1H, ArH), 7.46 (d, J = 8.3 Hz, 1H, ArH), 7.56-7.61 (m, 4H, ArH), 8.20 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 20.8$, 103.7, 107.7, 117.1, 118.4, 123.0, 123.7, 123.7, 126.3, 127.7, 129.7, 129.7, 133.7, 134.3, 136.4, 148.6, 152.4, 173.7. HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₄NO₂ [(M+H)⁺], 276.1019; found, 276.1016.

6-Methoxy-1-phenylchromeno[2,3-b]pyrrol-4(1H)-one (3v)

Yellow solid (80mg, 55%); Mp: 112.6-113.3 °C; IR (KBr): 3438, 3072, 1663, 1608, 1513, 1505, 1433, 1337, 1208, 1145, 1100, 1019, 976, 826, 735 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 3.84 (s, 3H, CH₃), 6.77 (d, *J* = 3.4 Hz, 1H, ArH), 6.79 (d, *J* = 3.4 Hz, 1H, ArH), 7.12-7.14 (m, 1H, ArH), 7.30 (d, *J* = 9.1 Hz, 1H, ArH), 7.36 (t, *J* = 7.1 Hz, 1H, ArH), 7.46-7.51 (m, 4H, ArH), 7.71 (d, *J* = 2.8 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 54.9, 102.5, 105.7, 106.4, 117.5, 117.6, 121.0, 122.7, 122.7, 122.7, 126.7, 128.7, 128.7, 135.3, 147.6, 147.7, 155.5, 172.4. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₈H₁₄NO₃ [(M+H)⁺], 292.0968; found, 292.0968.

6,8-Dichloro-1-phenylchromeno[2,3-b]pyrrol-4(1H)-one (3w)

Yellow solid (127mg, 77%); Mp: 217.4-218.5 °C; IR (KBr): 3399, 3124, 2343, 1664, 1597, 1533, 1455, 1416, 1310, 1215, 1180, 1109, 947, 871, 748, 689, 607 cm⁻¹; ¹H NMR (600 MHz, CDCl₃ + DMSO- d_6): $\delta = 6.71$ (d, J = 2.8 Hz, 1H, ArH), 6.89 (d, J = 2.5 Hz, 1H, ArH), 7.35 (t, J = 7.1 Hz, 1H, ArH), 7.47 (t, J = 7.5 Hz, 2H, ArH), 7.57 (t, J = 8.0 Hz, 3H, ArH), 8.12 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃ + DMSO- d_6): $\delta = 103.6$, 107.4, 119.1, 123.0, 123.4, 123.4, 124.8, 125.4, 127.9, 129.7, 129.7, 129.9, 132.6, 135.8, 147.7, 148.3, 171.1. HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₀Cl₂NO₂ [(M+H)⁺], 330.0083; found, 330.0081.

(6-Chloro-7-methyl-1-phenylchromeno[2,3-b]pyrrol-4(1H)-one (3x)

Yellow solid (124mg, 80%); Mp: 191.7-192.4 °C; IR (KBr): 3433, 3129, 1656, 1621, 1520, 1454, 1385, 1269, 1152, 902, 744, 685 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 2.48$ (s, 3H, CH₃), 6.84 (d, J = 3.7 Hz, 1H, ArH), 6.87 (d, J = 3.7 Hz, 1H, ArH), 7.36 (s, 1H, ArH), 7.45-7.48 (m, 1H, ArH), 7.57-7.59 (m, 4H, ArH), 8.33 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 20.6$, 103.6, 107.5, 118.7, 119.3, 122.5, 123.8, 123.8, 126.4, 127.9, 129.7, 129.7, 131.0, 136.2, 141.6, 148.3, 152.2, 172.3. HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₃ClNO₂ [(M+H)⁺], 310.0629; found, 310.0625.

6-Chloro-1-(*p*-tolyl)chromeno[2,3-*b*]pyrrol-4(1*H*)-one (3y)

Yellow solid (126 mg, 82%); Mp: 124.1-125.4 °C; IR (KBr): 3437, 3077, 1657, 1604, 1522, 1456, 1398, 1313, 1268, 1172, 1124, 972, 829, 720, 683, 650 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 2.46$ (s, 3H, CH₃), 6.80 (d, J = 3.7 Hz, 1H, ArH), 6.84 (d, J = 3.7 Hz, 1H, ArH), 7.36 (d, J = 8.2 Hz, 2H, ArH), 7.37 (d, J = 8.9 Hz, 1H, ArH), 7.44 (d, J = 8.3 Hz, 2H, ArH), 7.53-7.55 (m, 1H, ArH), 8.33 (d, J = 2.6 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 21.1$, 103.4, 107.5, 119.0, 119.1, 123.8, 123.8, 123.8, 124.5, 126.2, 130.3, 130.3, 132.6, 133.5, 138.1, 148.4, 152.4, 172.1. HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₃ClNO₂ [(M+H)⁺], 310.0629; found, 310.0625.

6-Bromo-1-(p-tolyl)chromeno[2,3-b]pyrrol-4(1H)-one (3z)

Yellow solid (141mg, 80%); Mp: 122.6-123.4 °C; IR (KBr): 3473, 3081, 1659, 1601, 1522, 1454, 1393, 1268, 1169, 1124, 1065, 972, 829, 720, 681 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 2.48 (s, 3H, CH₃), 6.84 (d, *J* = 3.6 Hz, 1H, ArH), 6.87 (d, *J* = 3.6 Hz, 1H, ArH), 7.35-7.39 (m, 3H, ArH), 7.46 (d, *J* = 8.2 Hz, 2H,

ArH), 7.70-7.72 (m, 1H, ArH), 8.53 (d, J = 2.2 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 21.1$, 103.5, 107.5, 117.8, 119.1, 119.3, 123.8, 123.8, 124.9, 129.4, 130.3, 130.3, 133.5, 135.4, 138.2, 148.4, 152.9, 172.0. HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₃BrNO₂ [(M+H)⁺], 354.0124; found, 354.0119.

6-Methyl-1-(p-tolyl)chromeno[2,3-b]pyrrol-4(1H)-one (3a')

Yellow solid (88mg, 61%); Mp: 79.4-80.6 °C; IR (KBr): 3444, 1665, 1618, 1520, 1475, 1285, 1203, 1120, 943, 809, 736, 685 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 2.37 (s, 3H, CH₃), 2.38 (s, 3H, CH₃), 6.75 (s, 2H, ArH), 7.25-7.38 (m, 6H, ArH), 8.10 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 20.8, 21.1, 103.4, 107.6, 117.1, 118.5, 123.0, 123.7, 123.7, 126.3, 130.2, 130.2, 133.6, 133.8, 134.2, 137.8, 148.6, 152.4, 173.7. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₉H₁₆NO₂ [(M+H)⁺], 290.1176; found, 290.1172.

6,8-Dichloro-1-(*p*-tolyl)chromeno[2,3-*b*]pyrrol-4(1*H*)-one (3b')

Yellow solid (127mg, 74%); Mp: 154.4-155.4 °C; IR (KBr): 3433, 3116, 1665, 1595, 1535, 1535, 1447, 1416, 1335, 1308, 1178, 1114, 945, 871, 809, 742, 720, 653 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 2.47$ (s, 3H, CH₃), 6.84 (d, J = 3.6 Hz, 1H, ArH), 6.95 (d, J = 3.6 Hz, 1H, ArH), 7.38 (d, J = 8.0 Hz, 2H, ArH), 7.55 (d, J = 8.1 Hz, 2H, ArH), 7.68 (d, J = 2.2 Hz, 1H, ArH), 8.28 (d, J = 2.3 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 21.1$, 103.6, 107.4, 119.1, 123.0, 123.0, 123.4, 125.0, 125.5, 130.0, 130.3, 130.3, 132.6, 133.4, 137.9, 147.8, 148.4, 171.3. HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₂Cl₂NO₂ [(M+H)⁺], 344.0240; found, 344.0238.

6-Fluoro-1-(4-methoxyphenyl)chromeno[2,3-b]pyrrol-4(1H)-one (3c')

Yellow solid (122mg, 79%); Mp: 116.3-116.8 °C; IR (KBr): 3473, 3069, 1666, 1623, 1532, 1472, 1307, 1252, 1180, 1136, 1022, 884, 831, 765, 635 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 3.91 (s, 3H, CH₃), 6.82 (d, *J* = 2.5 Hz, 2H, ArH), 7.08 (d, *J* = 8.7 Hz, 2H, ArH), 7.35 (d, *J* = 7.0 Hz, 1H, ArH), 7.43-7.49 (m, 3H, ArH), 8.04-8.05 (m, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 55.6, 103.0, 107.0, 111.9 (d, *J* = 22.5 Hz), 114.9, 114.9, 119.1 (d, *J* = 9.0 Hz), 119.3, 120.3 (d, *J* = 25.5 Hz), 124.7, 125.5, 125.5, 129.0, 148.7, 150.1, 159.2 (d, *J* = 243 Hz), 159.3, 172.5; ¹⁹F NMR (564 MHz, CDCl₃): δ = -116.9. HRMS (TOF ES⁺): *m/z* calcd for C₁₈H₁₃FNO₃ [(M+H)⁺], 310.0874; found, 310.0870.

6-Chloro-1-(4-methoxyphenyl)chromeno[2,3-b]pyrrol-4(1H)-one (3d')

Yellow solid (137mg, 84%); Mp: 108.4-109.7 °C; IR (KBr): 3449, 1651, 1604, 1522, 1462, 1307, 1251, 1184, 1112, 1021, 891, 830, 720, 658 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 3.91 (s, 3H, OCH₃), 6.82 (s, 2H, ArH), 7.08 (d, *J* = 8.2 Hz, 2H, ArH), 7.40 (d, *J* = 8.8 Hz, 1H, ArH), 7.48 (d, *J* = 8.2 Hz, 2H, ArH), 7.56 (d, *J* = 8.8 Hz, 1H, ArH), 8.35 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 55.6, 103.2, 107.3, 114.9, 114.9, 119.0, 119.4, 124.5, 125.5, 125.5, 126.2, 128.9, 130.3, 132.5, 148.5, 152.4, 159.3, 172.1. HRMS (TOF ES⁺): *m/z* calcd for C₁₈H₁₃ClNO₃ [(M+H)⁺], 326.0578; found, 326.0574.

1-(4-Methoxyphenyl)chromeno[2,3-b]pyrrol-4(1H)-one (3e')

Yellow solid (99mg, 68%); Mp: 102.3-103.4 °C; IR (KBr): 3418, 3118, 1661, 1610, 1527, 1508, 1459, 1355, 1251, 1176, 1106, 1020, 955, 830, 755 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 3.92 (s, 3H, CH₃), 6.83 (d, *J* = 3.4 Hz, 1H, ArH),

6.86 (d, J = 3.4 Hz, 1H, ArH), 7.09 (d, J = 8.7 Hz, 2H, ArH), 7.42-7.47 (m, 2H, ArH), 7.50 (d, J = 8.7 Hz, 2H, ArH), 7.64 (t, J = 7.3 Hz, 1H, ArH), 8.43 (d, J = 7.8 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 55.6$, 103.2, 107.4, 114.8, 114.8, 117.4, 118.9, 123.4, 124.4, 125.5, 125.5, 126.8, 129.2, 132.5, 148.6, 154.1, 159.2, 173.5. HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₄NO₃ [(M+H)⁺], 292.0968; found, 292.0966.

1-(4-Methoxyphenyl)-6-methylchromeno[2,3-b]pyrrol-4(1H)-one (3f')

Yellow solid (111mg, 73%); Mp: 84.2-85.3 °C; IR (KBr): 3426, 1649, 1613, 1521, 1475, 1307, 1249, 1183, 1117, 1028, 835, 720, 681, 639 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 2.46$ (s, 3H, CH₃), 3.89 (s, 3H, OCH₃), 6.79 (d, J = 3.7 Hz, 1H, ArH), 6.82 (d, J = 3.7 Hz, 1H, ArH), 7.04-7.07 (m, 2H, ArH), 7.32 (d, J = 8.5 Hz, 1H, ArH), 7.40-7.42 (m, 1H, ArH), 7.45-7.48 (m, 2H, ArH), 8.18 (d, J = 1.2 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 20.8$, 55.6, 103.2, 107.4, 114.8, 114.8, 117.1, 118.8, 123.0, 125.4, 125.4, 126.3, 129.2, 133.6, 134.2, 148.7, 152.4, 159.1, 173.6. HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₆NO₃ [(M+H)⁺], 306.1125; found, 306.1121.

1-(4-(Trifluoromethyl)phenyl)chromeno[2,3-b]pyrrol-4(1H)-one (3g')

Yellow solid (118 mg, 72%); Mp: 167.8-168.9 °C; IR (KBr): 3446, 1659, 1611, 1518, 1456, 1328, 1163, 1108, 1067, 1018, 843, 764, 686 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.90$ (d, J = 3.7 Hz, 1H, ArH), 6.92 (d, J = 3.7 Hz, 1H, ArH), 7.43-7.45 (m, 1H, ArH), 7.47-7.49 (m, 1H, ArH), 7.65-7.68 (m, 1H, ArH), 7.76 (d, J = 8.4 Hz, 2H, ArH), 7.85 (d, J = 8.4 Hz, 2H, ArH), 8.40-8.41 (m, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 104.6$, 108.1, 117.4, 117.9, 123.7 (q, $J_1 = 271.5$ Hz), 123.4, 123.6, 123.6, 124.8, 126.9-127.0 (m, $J_3 = 4.5$ Hz), 126.9-127.0 (q, $J_3 = 4.5$ Hz), 127.1, 129.4-130.1 (q, $J_2 = 33.0$ Hz), 132.9, 139.2, 148.4, 154.1, 173.4; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = -62.5$. HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₁F₃NO₂ [(M+H)⁺], 330.0736; found, 330.0740.

Yellow solid (117mg, 76%); Mp: 95.6-96.1 °C; IR (KBr): 3467, 3117, 2370, 1651, 1609, 1542, 1500, 1460, 1351, 1278, 1212, 1180, 1121, 1082, 905, 822, 738, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 5.26 (s, 2H, CH₂), 6.60 (d, *J* = 3.4 Hz, 1H, ArH), 6.71 (d, *J* = 3.3 Hz, 1H, ArH), 7.24 (d, *J* = 7.2 Hz, 2H, ArH), 7.35-7.44 (m, 4H, ArH), 7.56 (t, *J* = 7.4 Hz, 1H, ArH), 8.36 (s, 1H, ArH); ¹³C NMR (125 MHz, CDCl₃): δ = 48.7, 102.8, 106.6, 118.6, 118.9, 124.6, 126.3, 127.4, 127.4, 128.4, 129.1, 129.1, 130.2, 132.4, 135.5, 149.2, 152.3, 171.9. HRMS (TOF ES⁺): *m/z* calcd for C₁₈H₁₃ClNO₂ [(M+H)⁺], 310.0629; found, 310.0623.

1-Benzylchromeno[2,3-b]pyrrol-4(1H)-one (3i')

Yellow solid (97mg, 71%); Mp: 64.4-65.1 °C; IR (KBr): 3445, 3121, 1648, 1614, 1544, 1502, 1350, 1288, 1205, 1105, 917, 869, 756, 696, 611 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 5.27 (s, 2H, CH₂), 6.59 (s, 1H, ArH), 6.74 (s, 1H, ArH), 7.25 (d, J = 7.3 Hz, 2H, ArH), 7.34-7.43 (m, 4H, ArH), 7.49 (d, J = 8.4 Hz, 1H, ArH), 7.64 (t, J = 7.6 Hz, 1H, ArH), 8.42 (d, J = 7.9 Hz, 1H, ArH); ¹³C NMR (125 MHz, CDCl₃): δ = 48.6, 102.8, 106.7, 117.2, 118.2, 123.4, 124.4, 126.9, 127.4, 127.4, 128.3, 128.9, 129.0, 132.4, 135.7, 149.3, 154.0, 173.3. HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₄NO₂ [(M+H)⁺], 276.1019; found, 276.1025.

1-Benzyl-6-methylchromeno[2,3-b]pyrrol-4(1H)-one (3j')

Yellow solid (92mg, 64%); Mp: 86.7-87.3 °C; IR (KBr): 3436, 3028, 1653, 1614, 1538, 1499, 1285, 1206, 1115, 820, 761, 701, 601 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 2.48 (s, 3H, CH₃), 5.26 (s, 2H, CH₂), 6.57 (s, 1H, ArH), 6.74 (s, 1H, ArH), 7.26 (d, *J* = 14.1 Hz, 2H, ArH), 7.37-7.44 (m, 5H, ArH), 8.20 (s, 1H, ArH),); ¹³C NMR (125 MHz, CDCl₃): δ = 20.9, 48.6, 102.8, 106.6, 117.0, 118.1, 123.0, 126.4, 127.4, 127.4, 128.3, 129.0, 129.0, 133.5, 134.2, 135.8, 149.5, 152.3, 173.5.

HRMS (TOF ES⁺): m/z calcd for $C_{19}H_{16}NO_2$ [(M+H)⁺], 290.1176; found, 290.1181.

X-ray Structure and Data² of 3d'.

Figure S1. X-Ray crystal structure of **3d**', ellipsoids is drawn at the 30% probability level.

Table 51. Crystar data ar		Ju	
Identification code	1		
Empirical formula	$C_{18}H_{12}ClNO_3$		
Formula weight	325.74		
Temperature	301(2) K		
Crystal system	Monoclinic		
Space group	P2(1)/c		
Unit cell dimensions	a = 15.6982(9) Å	$\alpha = 90$ °.	
	b = 12.4059(8) Å	$\beta = 100.261(2)$ °.	
	c = 7.6199(5) Å	$\gamma = 90$ °.	
Volume	1460.24(16) Å ³		
Z	4		
Density (calculated)	1.482g/cm^3		
Absorption coefficient	0.277 mm^{-1}		
F(000)	672		
Theta range for data collection	2.105 to 25.139 °.		
Index ranges	-18<=h<=18, -14<=k<=14, -9<=l<=9		
Reflections collected	33858		
Reflections unique	2607 [R(int) = 0.0984, R(sigma) = 0.0549]		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	2607 / 0 / 209		
Goodness-of-fit on F^2	1.091		
Final R indexes [I>=2sigma(I)]	$R_1 = 0.0437, wR_2 = 0.1133$	3	
Final R indexes (all data)	$R_1 = 0.0635, wR_2 = 0.1412$	2	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.189 and -0.248 e.Å ⁻³		

Table S1. Crystal data and structure refinement for 3d'

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cl(1)	C(1)	1.736(2)	C(7)	C(8)	1.432(3)
N(1)	C(9)	1.355(3)	C(8)	C(9)	1.372(3)
N(1)	C(11)	1.397(3)	C(8)	C(10)	1.430(3)
N(1)	C(12)	1.430(3)	C(10)	C(11)	1.343(4)
O(1)	C(9)	1.345(3)	C(10)	H(10)	0.9300
O(1)	C(4)	1.383(3)	C(11)	H(11)	0.9300
O(2)	C(7)	1.234(3)	C(12)	C(13)	1.373(3)
O(3)	C(15)	1.369(3)	C(12)	C(17)	1.382(3)
O(3)	C(18)	1.422(3)	C(13)	C(14)	1.391(3)
C(1)	C(6)	1.367(3)	C(13)	H(13)	0.9300
C(1)	C(2)	1.392(3)	C(14)	C(15)	1.375(3)
C(2)	C(3)	1.373(3)	C(14)	H(14)	0.9300
C(2)	H(2)	0.9300	C(15)	C(16)	1.384(4)
C(3)	C(4)	1.386(3)	C(16)	C(17)	1.373(4)
C(3)	H(3)	0.9300	C(16)	H(16)	0.9300
C(4)	C(5)	1.389(3)	C(17)	H(17)	0.9300
C(5)	C(6)	1.401(3)	C(18)	H(18A)	0.9600
C(5)	C(7)	1.484(3)	C(18)	H(18B)	0.9600
C(6)	H(6)	0.9300	C(18)	H(18C)	0.9600

Table S2. Bond Lengths for 3d'

Figure S3. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 2a

YUNNAN UNIVERSITY ASCEND AVIIIHD600 CLFY-04-2 Aug16-2021-chenli F19CPD DMSO

Figure S4. ¹⁹F NMR (564 MHz, DMSO- d_6) spectra of compound 2a

Figure S5. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 2b

Figure S6. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 2b

Figure S9. ¹⁹F NMR (**564** MHz, DMSO- d_6) spectra of compound **2c**

Figure S10. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 2d

T

Figure S12. ¹H NMR (**600** MHz, DMSO-*d*₆) spectra of compound **2f**

Figure S14. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 2g

Figure S15. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 2g

YUNNAN UNIVERSITY ASCEND AVIIIHD600 CLF-26-2 Aug19-2021-chenli F19CPD CDCl3

YUNNAN UNIVERSITY ASCEND AVIIIHD600 CLF-11 Aug10-2021-chenli F19CPD CDCl3

Figure S35. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3h

-0.0029

YUNNAN UNIVERSITY ASCEND AVIIIHD600 CLF-32-2 Aug21-2021-chenli F19CPD CDCl3

Figure S45. ¹H NMR (600 MHz, CDCl₃) spectra of compound 31

YUNNAN UNIVERSITY ASCEND AVIIIHD600 CLF-33-2 Aug21-2021-chenli C13CPD CDC13

Figure S47. ¹⁹F NMR (564 MHz, CDCl₃) spectra of compound 31

Figure S48. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3m

YUNNAN UNIVERSITY ASCEND AVIIIHD600 CLF-17-2 Aug09-2021-chenli F19CPD CDCl3

Figure S50. ¹⁹F NMR (564 MHz, CDCl₃) spectra of compound 3m

Figure S51. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3n

Figure S53. ¹H NMR (600 MHz, CDCl₃) spectra of compound 30

YUNNAN UNIVERSITY ASCEND AVIIIHD600 CLF-02-2 Jul07-2021-chenli F19CPD Acetone

Figure S60. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3r

S88

S90

Figure S66. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3u

Figure S82. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3c'

Figure S84. ¹⁹F NMR (564 MHz, CDCl₃) spectra of compound 3c'

S111

DEPT135

S115

YUNNAN UNIVERSITY ASCEND AVIIIHD600 CLFB-34-2 Aug04-2022-chenli F19CPD CDCl3

DEPT135

Figure S100. HPLC of the reaction mixture

Figure S101. HRMS of intermediate 1d

Figure S102. HRMS of intermediate 2e

Figure S103. HRMS of intermediate 4t

Figure S104. HRMS of intermediate 7t

Figure S105. HRMS of intermediate 8t/9t

Figure S106. HRMS of intermediate 11t

Figure S107. HRMS of compound 3t

Figure S108. HPLC of the reaction mixture

Figure S109. HRMS of intermediate 5t-TEMPO/6t-TEMPO

Figure S110. HRMS of intermediate 5t-TEMPO/6t-TEMPO

YUNNAN UNIVERSITY ASCEND AVIIIHD600 CLF-34-2-ZJT Aug05-2022-chenli F19CPD Acetone

References and Notes

- C. Zhou, M. Li, J.-W. Sun, J. Cheng and S. Sun, Photoredox-Catalyzed α-Aminomethyl Carboxylation of Styrenes with Sodium Glycinates: Synthesis of γ-Amino Acids and γ-Lactams. Org. Lett. 2021, 23, 2895.
- 2. CCDC 2181906 contains the supplementary crystallographic data for compounds **3d'**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>