Supporting Information

Electrochemical selective annulative amino-ketalization and amino-oxygenation of 1,6-enynes

Xiao-Shuang Ji,^{a,1} Hang-Dong Zuo,^{a,b,1} Yi-Ting Shen,^a Wen-Juan Hao,^{*,a} Shu-Jiang Tu^{*,a} and Bo Jiang^{*,a}

^aSchool of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China; email: wjhao@jsnu.edu.cn (WJH); laotu@jsnu.edu.cn (SJT); jiangchem@jsnu.edu.cn (BJ)

^b School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, Jiangsu

¹ These authors contributed equally.

Contents

General Information	. S2
Optimization of the Reaction Conditions	. S2-S3
Synthetic Applications of 3a and 4a	S3
Control Experiments	S3
X-Ray Structure of Product 3 g	S4
Cyclic Voltammogram	S4
General Procedure for the Synthesis of Substrates 1 and 2	S4-S5
General Procedure for the Synthesis of Products 3-6	S5-S6
General Procedure for Control Experiments	. S6
Characterization Data of Compounds 3a-3ab	
Characterization Data of Compounds 4a-4f	S15-S17
Characterization Data of Compounds 5a and 6a	S17-S18
Reference	S18
Copies of ¹ H and ¹³ C NMR Spectra of Compounds 3a-3ab	. S19-S72
Copies of ¹ H and ¹³ C NMR Spectra of Compounds 4a-4f	S73-S84
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 5a and 6a	

General Information

PE refers to petroleum ether (b.p. 60-90 °C) and EA refers to ethyl acetate, as well as DCE refers to dichloroethane. All other starting materials and solvents were commercially available and were used without further purification unless otherwise stated. ¹H NMR (¹³C NMR) spectra were measured on a Bruker DPX 400 MHz spectrometer in CDCl₃ (or DMSO- d_6) with chemical shift (δ) given in ppm relative to TMS as internal standard [(s = singlet, d = doublet, m = multiplet), coupling constant (Hz)]. HRMS (APCI) was determined by using microTOF-QII HRMS/MS instrument (BRUKER). X-Ray crystallographic analysis was performed with a Siemens SMART CCD and a Siemens P4 diffractometer. The melting points were measured with digital melting point detector. CV curves were recorded using a three-electrode scheme. The working electrode was a platinum plate, A platinum wire served as counter electrode. Ag/AgCl electrode was used as the reference electrode. The working electrode was polished before recording each CV curve.

Table S1. Condition optimization for product 3a^a

Table S2. Optimization of the reaction conditions for forming 4a^a

^{*a*}Reaction conditions: Pt anode, Pt cathode, undivided cell, constant current = 10 mA, **1a** (0.2 mmol), **2a** (0.6 mmol), and ^{*n*}Bu₄NOAc (0.6 mmol), MeOH (1.5 mL), and DCE (3.5 mL) under room temperature for 4 h. ^{*b*}Isolated yield based on substrate **1a**. ^{*c*}Graphite rod (GR) electrode. ^{*d*}Volume ratio. ^{*e*}Total solvent (5.0 mL).

1	none	56
2	IPA (1.5 mL) instead of SBA	45
3	NBA (1.5 mL) instead of SBA	47
4	H ₂ O (1.5 mL) instead of SBA	23
5	1,4-dioxane instead of DCE	trace
6	Toluene instead of DCE	trace
7	DMSO instead of DCE	N.D.

^{*a*}Reaction conditions: Pt anode, Pt cathode, undivided cell, constant current = 10 mA, **1a** (0.2 mmol), **2a** (0.6 mmol), and ^{*n*}Bu₄NOAc (0.6 mmol), SBA (1.5 mL), and DCE (3.5 mL) under room temperature for 4 h. ^{*b*}Isolated yield based on substrate **1a**. ^{*c*}Total solvent (5.0 mL). SBA = *sec*-butyl alcohol, IPA = *i*-propyl alcohol, NBA = *n*-butyl alcohol.

a) Mono-desulfonation of product 3a

Scheme S1. Synthetic application of 3a and 4a

The presence of disulfonimides provides great possibilities for late-stage modifications (Scheme S1). For instance, mono-desulfonylation of compound **3a** in the presence of magnesium powder, $Ti(^{i}OPr)_{4}$ and Me₃SiCl gave sulfonamide-substituted benzofuran **5a** in 78% yield (Scheme S1a).¹ Next, mono-desulfonylation of compound **4a** in the presence of conc. H₂SO₄ afforded sulfonamide-substituted benzofuran **6a** in 70% yield (Scheme S1b).²

Scheme S2 Control experiments.

Figure S1 X-Ray structure of 3g (CCDC 2189675)

A single crystal **3g** was obtained by slowly evaporating the mixed solvent of hexane and dichloromethane (V/V = 2:1) at room temperature under the air conditions.

Figure S2. Cyclic voltammograms of the solution in DCE/MeOH (V/V 3.5/1.5) using a Pt wire working electrode, Pt disk, and Ag/AgCl (in saturated KCl solution) as counter and reference electrodes at a scan rate of 10 mV/s: (a) background; (b) "Bu₄NOAc (2 mmol/L); (c) **1a** (2 mmol/L), "Bu₄NOAc (2 mmol/L); (d) **2a** (2 mmol/L), "Bu₄NOAc (2 mmol/L); (e) **1a** (2 mmol/L), and "Bu₄NOAc (2 mmol/L).

Step 1: To a solution of 2-iodophenol (5.0 mmol) and 1,2-dibromoethane (5.0 equiv) in acetone (50 mL) was added K_2CO_3 (2.0 equiv). The resulting mixture was stirred at room temperature for 14 h and then reflux for 6 h. The reaction was quenched with water and extracted with CH_2Cl_2 . The organic layer was washed with brine, dried over Na₂SO₄, and concentrated. The crude product was purified by a silica gel column chromatography (petroleum ether (PE)/ ethyl acetate (EA) = 100:1 V/V) to give A (65~76% yields) as a colorless oil.

Step 2: To a solution of **A** (3.0 mmol) in DMSO (20 mL) was added 'BuOK (1.5 equiv). The resulting mixture was stirred at room temperature for 2 h. The reaction mixture was filtered and washed with CH₂Cl₂. The combined filtrate was concentrated and the residue was purified by a silica gel column chromatography (PE/EtOAc = 100:1 V/V) to give **B** (81~95% yields) as a yellow oil.

Step 3: To a solution of B (1.0 mmol) and alkyne (1.1 equiv) in triethylamine (10 mL) was added PdCl₂(PPh₃)₂

(5 mol%) and CuI (5 mol%). The resulting mixture was stirred at room temperature for $24\sim36$ h. The reaction mixture was filtered and washed with Et₂O. The combined filtrate was concentrated and the residue was purified by a silica gel column chromatography (PE/EtOAc = 100:1 V/V) and recycling preparative GPC to give **1a-1t** (68~92% yields)

General procedure for the synthesis of disulfonimides 2²

A mixture of PhSO₂Cl (5.0 mmol), PhSO₂NH₂ (1.0 equiv), DMAP (20 mol%) and Et₃N (3.0 equiv) in DCM (5 mL) was refluxed for 2 h (monitored by TLC). After cooling to room temperature, the reaction was poured into 1 mol/L HCl (10 mL), extracted with DCM, and dried over anhydrous Na₂SO₄. The solvent was evaporated to afford the product as a colorless oil, which was used in the next step without purification (80%, yields).

General procedure for the synthesis of compounds 3

In an undivided flask (10 mL) equipped with a stir bar under nitrogen conditions, 1,6-enyne **1a** (0.2 mmol, 1.0 equiv, 47 mg), dibenzenesulfonimide (**2a**, 0.6 mmol, 3.0 equiv, 178 mg), "Bu₄NOAc (0.6 mmol, 3.0 equiv, 180 mg), and mixed solvent CH₃OH/DCE (V/V = 1.5/3.5, 5.0 mL) were added. The reaction flask was equipped with Pt disk as anode and cathode ($1.0 \times 1.5 \text{ cm}^2$). The solution was stirred and electrolyzed at a constant current (10 mA) without reference electrode for 4 h at room temperature until complete consumption of **1a** as monitored by TLC analysis. After the reaction was finished, the solution was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (PE/EA = 10:1 V/V) to afford the desired product **3a** (77 mg, 65% yield).

General procedure for the synthesis of compounds 4

In an undivided flask (10 mL) equipped with a stir bar under nitrogen conditions, 1,6-enyne **1a** (0.2 mmol, 1.0 equiv, 47 mg), dibenzenesulfonimide (**2a**, 0.6 mmol, 3.0 equiv, 178 mg), "Bu₄NOAc (0.6 mmol, 3.0 equiv, 180 mg), and mixed solvent SBA/DCE (V/V = 1.5/3.5, 5.0 mL) were added. The reaction flask was equipped with Pt disk as anode and cathode ($1.0 \times 1.5 \text{ cm}^2$). The solution was stirred and electrolyzed at a constant current (10 mA) without reference electrode for 4 h at room temperature until complete consumption of **1a** as monitored by TLC analysis. After the reaction was finished, the solution was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (PE/EA = 10:1 V/V) to afford the desired product **4a** (61 mg, 56% yield).

Synthetic Application of 3a³

To a Schlenk tube were added **3a** (0.1 mmol, 1.0 equiv, 59 mg), magnesium (1.0 mmol, 10.0 equiv, 24 mg), $Ti(^{i}OPr)_{4}$ (0.2 mmol, 2.0 equiv, 57 mg), Me₃SiCl (0.3 mmol, 3.0 equiv, 33 mg) and THF (2.0 mL) the protection with argon. The resulting mixture was heated at 50 °C. After the reaction was completed, the solution was concentrated in vacuo and purified by flash chromatography on silica gel (PE/EA= 10/1 V/V) to afford the desired product **5a** (35 mg, 78% yield) as the white solid.

Synthetic Application of 4a⁴

To a 5-mL pressure tube under air conditions, 1.5 mL conc. H_2SO_4 was added into **4a** (0.05 mmol, 1.0 equiv, 27 mg) and stirred at 25 °C for 1 hour. Upon completion, the mixture was poured into water and neutralized with NaOH solid. Then the mixture was extracted by EA. The organic layer was dried over anhydrous Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally, on silica gel (PE/EA = 10/1 V/V) to afford the desired product **6a** (16 mg, 78% yield) as the white solid.

Radical-Trapping Experiment:

TEMPO as the radical trapping reagent - General procedure

In an undivided flask (10 mL) under nitrogen, 1,6-enyne **1a** (0.2 mmol, 1.0 equiv, 47 mg), dibenzenesulfonimide (**2a**, 0.6 mmol, 3.0 equiv, 178 mg), "Bu4NOAc (0.6 mmol, 3.0 equiv, 180 mg) and TEMPO (0.6 mmol, 3.0 equiv, 94 mg) in a mixed solvent of 1,2-dichloroethane (DCE) and methanol (V/V = 3.5/1.5, 5.0 mL) was stirred at 25 °C for 2 hours. The corresponding product **3a** was not detected according to TLC analysis.

Control Experiments

In a tube (10 mL) equipped with a stir bar under nitrogen, **1a** (0.2 mmol, 1.0 equiv, 47 mg), **2a** (0.6 mmol, 3.0 equiv, 178 mg), n Bu₄NOAc (0.6 mmol, 3.0 equiv, 180 mg), and mixed solvent DCE/CH₃OH (V/V = 3.5/1.5, 5.0 mL) were added and stirred at 25 °C for 4 hours. The corresponding product (**3a**) was not detected according to

TLC analysis.

Characterization data

N-((3-(Dimethoxy(p-tolyl)methyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3a)

White solid, 77 mg, 65%; m.p. 129-130 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.07 (d, J = 8.0 Hz, 4H), 7.62 – 7.57 (m, 4H), 7.50 – 7.45 (m, 4H), 7.37 (d, J = 7.6 Hz, 1H), 7.14 (d, J = 8.0 Hz, 2H), 7.11 – 7.07 (m, 1H), 7.05 – 7.01 (m, 1H), 6.96 (d, J = 8.0 Hz, 1H), 5.55 (s, 2H), 3.16 (s, 6H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.7, 148.7, 139.7, 138.0, 137.6, 133.8, 128.9, 128.7, 127.0, 126.6, 124.1, 122.9, 121.4, 118.1, 110.9, 102.1, 49.3, 45.4, 21.3. IR (KBr, v, cm⁻¹) 1606, 1363, 1265, 1084, 907, 791, 774, 745. HR-MS (ESI) m/z calcd for C₃₁H₂₉NNaO₇S₂ [M+Na]⁺ 614.1283, found 614.1265.

N-((3-(Dimethoxy(m-tolyl)methyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3b)

White solid, 56 mg 47%; m.p. 135-136 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.05 (d, J = 8.0 Hz, 4H), 7.61 – 7.57 (m, 2H), 7.52 (d, J = 9.2 Hz, 2H), 7.48 – 7.43 (m, 4H), 7.41 (d, J = 7.6 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H), 7.10 – 7.03 (m, 3H), 6.96 (d, J = 8.0 Hz, 1H), 5.55 (s, 2H), 3.17 (s, 6H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.7, 148.6, 140.5, 139.7, 137.8, 133.8, 129.0, 128.8, 128.7, 128.0, 127.6, 126.6, 124.2, 124.0, 122.9, 121.4, 118.2, 110.9, 102.1, 49.3, 45.5, 21.6. IR (KBr, ν , cm⁻¹) 1605, 1361, 1259, 1169, 1084, 895, 865, 800, 720. HR-MS (ESI) m/z calcd for C₃₁H₂₉NNaO₇S₂ [M+Na]⁺ 614.1283, found 614.1267.

N-((3-(Dimethoxy(o-tolyl)methyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3c)

White solid, 56 mg, 47%; m.p. 166-167 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.13 – 8.07 (m, 5H), 7.68 – 7.64 (m, 2H), 7.57 – 7.52 (m, 4H), 7.29 (d, J = 7.2 Hz, 1H), 7.26 – 7.20 (m, 2H), 7.11 – 7.05 (m, 2H), 7.01 (d, J = 6.8 Hz, 1H), 6.96 (d, J = 4.4 Hz, 1H), 5.26 (s, 2H), 3.15 (s, 6H), 2.11 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_{δ}) (δ , ppm) 153.2, 139.1, 137.7, 136.5, 135.1, 132.3, 129.9, 129.2, 128.6, 128.4, 126.1, 124.7, 123.4, 111.3, 101.2, 49.0, 20.2. IR (KBr, ν , cm⁻¹) 1601, 1362, 1084, 907, 807. HR-MS (ESI) m/z calcd for C₃₁H₂₉NNaO₇S₂ [M+Na]⁺ 614.1283, found 614.1262.

N-((3-((4-Ethylphenyl)dimethoxymethyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3d)

White solid, 42 mg, 39%; m.p. 123-124 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.07 (d, J = 8.0 Hz, 4H), 7.62 – 7.57 (m, 4H), 7.49 – 7.44 (m, 4H), 7.39 (d, J = 7.6 Hz, 1H), 7.16 (d, J = 8.0 Hz, 2H), 7.11 – 7.07 (m, 1H), 7.05 – 7.01 (m, 1H), 6.96 (d, J = 8.0 Hz, 1H), 5.55 (s, 2H), 3.17 (s, 6H), 2.64 – 2.58 (m, 2H), 1.21 – 1.17 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.7, 148.7, 144.2, 139.7, 137.8, 133.8, 128.8, 128.7, 127.6, 127.0, 126.6, 124.0, 122.8, 121.4, 118.2, 110.9, 102.2, 49.3, 45.4, 28.6, 15.4. IR (KBr, ν , cm⁻¹) 1616, 1449, 1378, 1167, 1083, 929, 801. HR-MS (ESI) m/z calcd for C₃₂H₃₁NNaO₇S₂ [M+Na]⁺ 628.1440, found 628.1419.

N-((3-((4-(tert-Butyl)phenyl)dimethoxymethyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonam ide (3e)

White solid, 65 mg, 51%; m.p. 149-150 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.05 (d, J = 8.0 Hz, 4H), 7.62 – 7.56 (m, 4H), 7.48 – 7.42 (m, 5H), 7.34 (d, J = 8.4 Hz, 2H), 7.11 – 7.07 (m, 1H), 7.06 – 7.02 (m, 1H), 6.96 (d, J = 8.0 Hz, 1H), 5.55 (s, 2H), 3.17 (s, 6H), 1.27 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.6, 151.1, 148.6, 139.6, 137.5, 133.8, 128.8, 128.7, 126.6, 125.0, 124.0, 122.8, 121.5, 118.2, 110.9, 102.2, 49.3, 45.4, 34.6, 31.4. IR (KBr, ν , cm⁻¹) 1604, 1360, 1246, 1170, 1084, 910, 800. HR-MS (ESI) m/z calcd for C₃₄H₃₅NNaO₇S₂ [M+Na]⁺ 656.1753, found 656.1729.

N-((3-([1,1'-Biphenyl]-4-yldimethoxymethyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamid e (3f)

White solid, 95 mg, 73%; m.p. 110-111 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.04 (d, J = 7.2 Hz, 4H), 7.94 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 7.6 Hz, 2H), 7.63 – 7.59 (m, 2H), 7.53 – 7.46 (m, 7H), 7.44 – 7.40 (m, 1H), 7.29 (d, J = 7.6 Hz, 2H), 7.21 – 7.17 (m, 1H), 5.34 (s, 2H), 3.49 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.7, 148.9, 140.9, 140.6, 139.7, 139.6, 133.8, 128.8, 128.7, 127.6, 127.5, 127.1, 126.8, 126.6, 124.1, 122.9, 121.4, 117.9, 111.0, 102.1, 49.4, 45.4. IR (KBr, ν , cm⁻¹) 1635, 1378, 1169, 1083, 1049, 801, 771, 750, 685. HR-MS (ESI) m/z calcd for C₃₆H₃₁NNaO₇S₂ [M+Na]⁺ 676.1440, found 676.1413.

N-((3-(Dimethoxy(phenyl)methyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3g)

White solid, 70 mg, 61%; m.p. 172-173 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.07 (d, J = 8.0 Hz, 4H), 7.71 (d, J = 7.6 Hz, 2H), 7.62 – 7.57 (m, 2H), 7.49 – 7.45 (m, 4H), 7.38 – 7.32 (m, 3H), 7.28 (d, J = 7.2 Hz, 1H), 7.12 – 7.07 (m, 1H), 7.05 – 7.01 (m, 1H), 6.97 (d, J = 8.0 Hz, 1H), 5.56 (s, 2H), 3.18 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.6, 148.8, 140.5, 139.6, 134.0, 133.8, 128.8, 128.7, 128.2, 128.1, 127.0, 126.5, 124.0, 122.8, 121.3, 117.9, 110.9, 102.0, 49.2, 45.4. IR (KBr, ν , cm⁻¹) 1601, 1363, 1169, 1084, 858, 774, 750. HR-MS (ESI) m/z calcd for C₃₀H₂₇NNaO₇S₂ [M+Na]⁺ 600.1127, found 600.1102.

N-((3-((4-Fluorophenyl)dimethoxymethyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3h)

White solid, 67 mg 56%; m.p. 129-130 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.04 (d, J = 8.0 Hz, 4H), 7.91 – 7.86 (m, 2H), 7.64 – 7.60 (m, 2H), 7.53 – 7.49 (m, 4H), 7.32 – 7.27 (m, 2H), 7.19 – 7.15 (m, 4H), 5.31 (s, 2H), 3.49 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.7, 149.0, 139.6, 136.4, 133.9, 129.1, 129.0, 128.9, 128.7, 126.4, 124.2, 123.0, 121.1, 117.7, 115.1, 114.9, 111.0, 101.7, 49.3, 45.4. IR (KBr, v, cm⁻¹) 1601, 1363, 1123, 1068, 951, 775. HR-MS (ESI) m/z calcd for C₃₀H₂₆FNNaO₇S₂ [M+Na]⁺ 618.1032, found 618.1035.

N-((3-((4-Chlorophenyl) dimethoxymethyl) benzofuran-2-yl) methyl)-N-(phenylsulfonyl) benzenesulfonamide (3i)

White solid, 72 mg, 59%; m.p. 174-175 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.07 (d, J = 8.0 Hz, 4H), 7.67 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 7.6 Hz, 2H), 7.51 – 7.47 (m, 4H), 7.32 – 7.28 (m, 3H), 7.14 – 7.10 (m, 1H), 7.05 – 7.01 (m, 1H), 6.98 (d, J = 8.4 Hz, 1H), 5.53 (s, 2H), 3.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.7, 149.2, 139.6, 139.2, 134.2, 134.0, 131.1, 129.1, 128.9, 128.8, 128.4, 124.3, 123.0, 121.1, 111.1, 101.7, 49.4, 45.4. IR (KBr, v, cm⁻¹) 1604, 1363, 1169, 1084, 774. HR-MS (ESI) m/z calcd for C₃₀H₂₆ClNNaO₇S₂ [M+Na]⁺ 634.0737, found 634.0713.

N-((3-((3-Chlorophenyl)dimethoxymethyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3j)

White solid, 61 mg, 50%; m.p. 150-151 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.07 (d, J = 8.0 Hz, 4H), 7.76 (s, 1H), 7.64 – 7.58 (m, 3H), 7.51 – 7.47 (m, 4H), 7.33 (d, J = 7.6 Hz, 1H), 7.29 (s, 1H), 7.25 (s, 1H), 7.14 – 7.10 (m, 1H), 7.07 – 7.03 (m, 1H), 6.98 (d, J = 8.4 Hz, 1H), 5.53 (s, 2H), 3.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.7, 149.1, 142.8, 139.7, 134.2, 133.9, 129.6, 128.9, 128.7, 128.5, 127.3, 126.3, 125.5, 124.3, 123.0, 121.1, 117.3, 111.0, 101.6, 49.4, 45.4. IR (KBr, ν , cm⁻¹) 1605, 1363, 1169, 1084, 940, 857, 774, 685. HR-MS (ESI) m/z calcd for C₃₀H₂₆ClNNaO₇S₂ [M+Na]⁺ 634.0737, found 634.0741.

N-((3-((2-Chlorophenyl)dimethoxymethyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3k)

White solid, 60 mg, 49%; m.p. 129-130 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.07 (d, J = 8.0 Hz, 4H), 7.66 – 7.61 (m, 2H), 7.52 (d, J = 12.8 Hz, 5H), 7.48 (d, J = 8.8 Hz, 2H), 7.43 – 7.39 (m, 1H), 7.23 (d, J = 7.2 Hz, 1H), 7.15 – 7.11 (m, 2H), 6.86 (d, J = 7.6 Hz, 1H), 5.40 (s, 2H), 3.49 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.4, 139.7, 136.6, 133.9, 131.4, 130.3, 129.8, 128.9, 128.9, 126.4, 123.8, 122.7, 110.9, 100.7, 49.2, 46.3. IR (KBr, v, cm⁻¹) 1605, 1363, 1164, 1084, 929, 774. HR-MS (ESI) m/z calcd for C₃₀H₂₆ClNNaO₇S₂ [M+Na]⁺ 634.0737, found 634.0735.

N-((3-((4-Bromophenyl)dimethoxymethyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3l)

White soild, 102 mg, 78%; m.p. 135-136 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.06 (d, J = 8.4 Hz, 4H), 7.64 – 7.59 (m, 4H), 7.51 – 7.45 (m, 6H), 7.28 (d, J = 7.6 Hz, 1H), 7.14 – 7.09 (m, 1H), 7.05 – 7.01 (m, 1H), 6.98 (d, J = 8.4 Hz, 1H), 5.53 (s, 2H), 3.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.6, 149.1, 139.6, 139.6, 133.8, 132.0, 131.3, 129.0, 128.8, 128.6, 126.2, 124.2, 122.9, 122.4, 121.0, 117.3, 111.0, 101.7, 49.3, 45.3. IR (KBr, v, cm⁻¹) 1602, 1355, 1169, 1084, 1050, 801. HR-MS (ESI) m/z calcd for C₃₀H₂₆BrNNaO₇S₂ [M+Na]⁺ 678.0232, found 678.0202.

Methyl 4-(Dimethoxy(2-((N-(phenylsulfonyl)phenylsulfonamido)methyl)benzofuran-3-yl)methyl)benzoate (3m)

MeOOC

White solid, 41 mg, 32%; m.p. 136-137 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.06 (d, J = 8.0 Hz, 4H), 8.02 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 8.0 Hz, 2H), 7.63 – 7.59 (m, 2H), 7.50 – 7.45 (m, 4H), 7.30 (d, J = 7.6 Hz, 1H), 7.12 – 7.08 (m, 1H), 7.04 – 7.00 (m, 1H), 6.97 (d, J = 8.0 Hz, 1H), 5.55 (s, 2H), 3.88 (s, 3H), 3.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 166.9, 153.7, 149.2, 145.5, 139.6, 133.9, 130.1, 129.6, 128.9, 128.7,

127.3, 126.2, 124.3, 123.0, 121.0, 117.3, 111.1, 101.8, 52.2, 49.5, 45.4. IR (KBr, v, cm⁻¹) 1718, 1610, 1449, 1379, 1279, 1169, 1084, 931, 859. HR-MS (ESI) m/z calcd for $C_{32}H_{29}NNaO_9S_2$ [M+Na]⁺ 658.1181, found 658.1160.

N-((3-(Dimethoxy(4-(trifluoromethyl)phenyl)methyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesul fonamide (3n)

White solid, 57 mg, 44%; m.p. 135-136 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.07 (d, J = 8.0 Hz, 4H), 7.87 (d, J = 8.4 Hz, 2H), 7.64 – 7.59 (m, 4H), 7.52 – 7.47 (m, 4H), 7.28 (d, J = 8.0 Hz, 1H), 7.14 – 7.10 (m, 1H), 7.06 – 7.02 (m, 1H), 6.99 (d, J = 8.0 Hz, 1H), 5.55 (s, 2H), 3.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.7, 149.3, 144.5, 139.6, 133.9, 128.9, 128.7, 127.6, 126.1, 125.2, 124.4, 123.1, 120.9, 111.1, 101.6, 49.4, 45.3. IR (KBr, v, cm⁻¹) 1602, 1356, 1169, 1084, 930, 773. HR-MS (ESI) m/z calcd for C₃₁H₂₆F₃NNaO₇S₂ [M+Na]⁺ 668.1000, found 668.1010.

N-((3-((4-Cyanophenyl) dimethoxymethyl) benzofuran-2-yl) methyl)-N-(phenylsulfonyl) benzenesulfonamide (3o)

White solid, 99 mg, 82%; m.p. 155-156 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.07 (d, J = 8.0 Hz, 4H), 7.86 (d, J = 8.4 Hz, 2H), 7.63 – 7.58 (m, 4H), 7.51 – 7.47 (m, 4H), 7.28 (d, J = 8.0 Hz, 1H), 7.14 – 7.10 (m, 1H), 7.06 – 7.02 (m, 1H), 6.99 (d, J = 8.4 Hz, 1H), 5.55 (s, 2H), 3.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.7, 149.4, 144.5, 139.6, 133.9, 128.9, 128.7, 127.6, 126.2, 125.2, 124.4, 123.1, 121.0, 117.2, 111.1, 101.7, 49.4, 45.4. IR (KBr, v, cm⁻¹) 2230, 1604, 1362, 1257, 1169, 1027, 839. HR-MS (ESI) m/z calcd for C₃₁H₂₆N₂NaO₇S₂ [M+Na]⁺ 625.1079, found 625.1092.

N-((3-(Dimethoxy(thiophen-2-yl)methyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (*3p*)

Yellow oil, 35 mg, 30%; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.07 (d, J = 8.0 Hz, 4H), 7.63 – 7.59 (m, 2H), 7.53 – 7.45 (m, 6H), 7.20 (d, J = 3.6 Hz, 1H), 7.15 – 7.11 (m, 1H), 7.09 – 7.05 (m, 1H), 6.99 (d, J = 8.0 Hz, 1H), 6.97 – 6.94 (m, 1H), 5.50 (s, 2H), 3.22 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.7, 149.0, 144.6, 139.7, 133.9, 128.9, 128.8, 127.1, 126.5, 126.4, 125.7, 124.3, 123.1, 121.4, 117.8, 111.0, 101.0, 49.6, 45.4. IR (KBr, ν , cm⁻¹) 1608, 1361, 1169, 1084, 907, 750, 685. HR-MS (ESI) m/z calcd for C₂₈H₂₅NNaO₇S₃ [M+Na]⁺ 606.0691, found 606.0670.

(Z)-N-((3-(1-Methoxy-2,2-dimethylpropylidene)-2,3-dihydrobenzofuran-2-yl)methyl)-N-(phenylsulfonyl)benz enesulfonamide (3r)

White solid, 36 mg, 34%; m.p. 129-130 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.12 (d, J = 8.0 Hz, 4H), 7.61 – 7.57 (m, 2H), 7.52 – 7.47 (m, 4H), 7.33 (d, J = 7.6 Hz, 1H), 7.17 – 7.13 (m, 1H), 6.96 – 6.91 (m, 2H), 5.49 – 5.44 (m, 1H), 4.15 – 4.08 (m, 1H), 4.05 – 3.99 (m, 1H), 3.27 (s, 3H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 157.3, 139.4, 133.9, 133.3, 128.9, 128.8, 122.5, 116.8, 115.8, 103.3, 75.0, 54.9, 50.6, 31.1, 28.3. IR (KBr, v, cm⁻¹) 1600, 1449, 1357, 1232, 1171, 1084, 887, 774, 721. HR-MS (ESI) m/z calcd for C₂₇H₂₉NNaO₆S₂ [M+Na]⁺ 550.1334, found 550.1351.

N-((3-(Dimethoxy(p-tolyl)methyl)-5-methylbenzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3s)

White solid, 67 mg, 55%; m.p. 130-131 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.00 (d, J = 7.6 Hz, 4H), 7.77 (d, J = 8.0 Hz, 2H), 7.62 – 7.57 (m, 2H), 7.50 – 7.46 (m, 4H), 7.30 (d, J = 7.6 Hz, 2H), 7.13 – 7.06 (m, 3H), 5.24 (s, 2H), 3.49 (s, 6H), 2.46 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 152.1, 148.8, 139.7, 137.9, 137.7, 133.8, 132.2, 128.8, 128.7, 127.0, 126.7, 125.4, 121.1, 117.8, 110.4, 102.1, 49.2, 45.5, 21.6, 21.3. IR (KBr, ν , cm⁻¹) 1607, 1378, 1255 1169, 1084, 908, 774, 720. HR-MS (ESI) m/z calcd for C₃₂H₃₁NNaO₇S₂ [M+Na]⁺ 628.1440, found 628.1419.

N-((5-Chloro-3-(dimethoxy(p-tolyl)methyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3t)

White solid, 58 mg, 46%; m.p. 129-130 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.00 (d, J = 7.6 Hz, 4H), 7.74 (d, J = 7.8 Hz, 2H), 7.63 – 7.59 (m, 2H), 7.51 – 7.46 (m, 5H), 7.32 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 1.6 Hz, 1H), 7.15 (d, J = 8.8 Hz, 1H), 5.25 (s, 2H), 3.49 (s, 6H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 152.0, 150.2, 139.6, 138.2, 137.2, 133.9, 129.0, 128.9, 128.7, 128.5, 128.0, 126.9, 124.4, 121.0, 118.0, 111.9, 101.9, 49.3, 45.3, 21.2. IR (KBr, v, cm⁻¹) 1609, 1360, 1258, 1169, 1084, 932, 774, 720. HR-MS (ESI) m/z calcd for C₃₁H₂₈ClNNaO₇S₂ [M+Na]⁺ 648.0893, found 648.0875.

N-((3-((4-Bromophenyl)dimethoxymethyl)benzofuran-2-yl)methyl)-4-methyl-N-tosylbenzenesulfonamide (3u)

White solid, 88 mg, 64%; m.p. 126-127 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.93 (d, J = 8.0 Hz, 4H), 7.61 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.0 Hz, 3H), 7.24 (s, 2H), 7.14 – 7.10 (m, 1H), 7.05 – 7.00 (m, 2H), 5.50 (s, 2H), 3.15 (s, 6H), 2.41 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.7, 149.2, 144.9, 139.7, 136.8, 131.3, 129.6, 129.4, 129.1, 128.7, 126.3, 124.2, 122.9, 122.5, 121.1, 117.3, 111.0, 101.8, 49.3, 45.2, 27.0, 21.7. IR (KBr, v, cm⁻¹) 1609, 1359, 1166, 1084, 774. HR-MS (ESI) m/z calcd for C₃₂H₃₀BrNNaO₇S₂ [M+Na]⁺ 706.0545, found 706.0523.

N-((3-((4-Bromophenyl)dimethoxymethyl)benzofuran-2-yl)methyl)-4-methoxy-N-((4-methoxyphenyl)sulfony l)benzenesulfonamide (3v)

White solid, 47 mg, 33%; m.p. 146-147 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.97 (d, J = 8.8 Hz, 4H), 7.62 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 7.2 Hz, 1H), 7.15 – 7.10 (m, 1H), 7.06 – 7.02 (m, 2H), 6.90 (d, J = 8.8 Hz, 4H), 5.48 (s, 2H), 3.84 (s, 6H), 3.14 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 163.8, 153.8, 149.4, 139.8, 131.3, 131.2, 131.0, 129.1, 126.4, 124.2, 122.9, 122.5, 121.1, 117.3, 113.9, 111.0, 101.7, 55.8, 49.3, 45.1. IR (KBr, v, cm⁻¹) 1609, 1359, 1160, 1085, 774. HR-MS (ESI) m/z calcd for C₃₂H₃₀BrNNaO₉S₂ [M+Na]⁺ 738.0443, found 738.0418.

N-((3-((4-Bromophenyl)dimethoxymethyl)benzofuran-2-yl)methyl)-4-chloro-N-((4-chlorophenyl)sulfonyl)be nzenesulfonamide (3w)

White solid, 46 mg, 32%; m.p. 154-155 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.96 (d, J = 8.4 Hz, 4H), 7.60 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz, 4H), 7.32 (d, J = 7.6 Hz, 1H), 7.19 – 7.15 (m, 1H), 7.09 – 7.05 (m, 1H), 7.00 (d, J = 8.0 Hz, 1H), 5.50 (s, 2H), 3.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.7, 148.4, 140.8, 139.6, 137.9, 131.4, 130.1, 129.2, 129.0, 126.1, 124.7, 123.2, 122.6, 121.2, 117.9,

110.9, 101.7, 49.4, 45.5. IR (KBr, v, cm⁻¹) 1617, 1356, 1281, 1168, 1085, 1047, 773. HR-MS (ESI) m/z calcd for C₃₀H₂₄Cl₂NNaO₇S₂ [M+Na]⁺ 745.9452, found 745.9468.

4-Bromo-N-((3-((4-bromophenyl)dimethoxymethyl)benzofuran-2-yl)methyl)-N-((4-bromophenyl)sulfonyl)be nzenesulfonamide (3x)

White solid, 64 mg, 39%; m.p. 117-118 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.87 (d, J = 8.0 Hz, 4H), 7.62 – 7.58 (m, 6H), 7.48 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 1H), 7.20 – 7.16 (m, 1H), 7.09 – 7.05 (m, 1H), 7.00 (d, J = 8.0 Hz, 1H), 5.50 (s, 2H), 3.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.6, 148.3, 139.6, 138.4, 132.2, 131.4, 130.1, 129.5, 128.9, 126.1, 124.8, 123.2, 122.6, 121.2, 117.9, 110.9, 101.7, 49.4, 45.6. IR (KBr, v, cm⁻¹) 1635, 1381, 1279, 1169, 1083, 773. HR-MS (ESI) m/z calcd for C₃₀H₂₄Br₃NNaO₇S₂ [M+Na]⁺ 833.8442, found 833.8449.

N-((3-((4-Bromophenyl)dimethoxymethyl)benzofuran-2-yl)methyl)-4-methyl-N-(phenylsulfonyl)benzenesulf onamide (3y)

White solid, 62 mg, 41%; m.p. 105-106 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm) 7.99 (d, J = 7.6 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H), 7.80 – 7.77 (m, 1H), 7.69 – 7.65 (m, 2H), 7.63 – 7.56 (m, 4H), 7.44 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 7.6 Hz, 1H), 7.22 (d, J = 3.6 Hz, 2H), 7.14 – 7.09 (m, 1H), 5.55 (s, 2H), 3.12 (s, 6H), 2.41 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm) 153.5, 149.7, 145.9, 140.2, 139.4, 136.3, 135.0, 131.7, 130.3, 129.8, 129.5, 128.6, 128.5, 126.2, 125.1, 123.7, 122.2, 121.1, 117.3, 111.4, 101.7, 49.6, 45.2, 21.6. IR (KBr, v, cm⁻¹) 1655, 1378, 1280, 1167, 1051, 822, 753, 550. HR-MS (ESI) m/z calcd for C₃₁H₂₈BrNNaO₇S₂ [M+Na]⁺ 692.0388, found 692.0402.

4-Bromo-N-((3-((4-bromophenyl)dimethoxymethyl)benzofuran-2-yl)methyl)-N-tosylbenzenesulfonamide (3z)

White solid, 60 mg, 40%; m.p. 110-111 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm) 7.91 (s, 3H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.62 – 7.54 (m, 5H), 7.44 (d, *J* = 7.6 Hz, 2H), 7.30 (d, *J* = 7.6 Hz, 1H), 7.23 (d, *J* = 4.0 Hz, 2H), 7.14 – 7.10 (m, 1H), 5.57 (s, 2H), 3.12 (s, 6H), 2.40 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm) 153.5, 149.4, 146.1, 140.2, 138.7, 136.1, 133.0, 131.7, 130.4, 130.3, 129.5, 129.2, 128.6, 126.1, 125.1, 123.7, 122.2, 121.2, 117.5, 111.4, 101.7, 54.9, 49.6, 45.3, 21.7. IR (KBr, *v*, cm⁻¹) 1588, 1450, 1377, 1167, 1051, 816, 750. HR-MS (ESI) m/z calcd for C₃₁H₂₇Br₂NNaO₇S₂ [M+Na]⁺ 769.9493, found 769.9504.

N-((3-((4-Bromophenyl)diethoxymethyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3aa)

White solid, 115 mg, 84%; m.p. 99-100 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.07 (d, J = 8.0 Hz, 4H), 7.65 – 7.61 (m, 4H), 7.50 (d, J = 7.6 Hz, 3H), 7.48 – 7.43 (m, 3H), 7.29 (d, J = 8.0 Hz, 1H), 7.12 – 7.07 (m, 1H), 7.03 – 6.99 (m, 1H), 6.92 (d, J = 8.4 Hz, 1H), 5.58 (s, 2H), 3.39 – 3.33 (m, 4H), 1.20 – 1.15 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.6, 148.8, 140.6, 139.7, 133.9, 131.2, 129.0, 128.9, 128.7, 126.5, 124.1, 122.9, 122.3, 121.1, 117.8, 111.0, 101.0, 57.4, 45.6, 15.2. IR (KBr, ν , cm⁻¹) 1609, 1359, 1169, 1084, 774. HR-MS (ESI) m/z calcd for C₃₂H₃₀BrNNaO₇S₂ [M+Na]⁺ 706.0545, found 706.0518.

N-((3-((4-Bromophenyl)dipropoxymethyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (3ab)

White solid, 77 mg, 54%; m.p. 92-93 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.04 (d, J = 8.0 Hz, 4H), 7.72 (d, J = 7.6 Hz, 2H), 7.66 – 7.61 (m, 4H), 7.55 – 7.49 (m, 4H), 7.32 – 7.26 (m, 2H), 7.20 – 7.14 (m, 2H), 5.31 (s, 2H), 3.65 – 3.57 (m, 4H), 1.63 – 1.56 (m, 4H), 0.99 – 0.90 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.5, 148.7, 140.6, 139.7, 133.9, 131.2, 128.9, 128.7, 126.5, 124.1, 122.9, 122.3, 121.1, 117.8, 111.0, 100.7, 63.3, 45.8, 23.0, 11.1. IR (KBr, ν , cm⁻¹) 1609, 1357, 1248, 1169, 1083, 934, 774, 720. HR-MS (ESI) m/z calcd for C₃₄H₃₄BrNNaO₇S₂ [M+Na]⁺ 734.0858, found 734.0830.

N-((3-(4-Methylbenzoyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (4a)

White solid, 61 mg, 56%; m.p. 172-173 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.03 (d, J = 8.0 Hz, 4H), 7.76 (d, J = 8.0 Hz, 2H), 7.63 – 7.58 (m, 2H), 7.51 – 7.46 (m, 4H), 7.32 – 7.26 (m, 3H), 7.23 (d, J = 7.6 Hz, 2H), 7.19 – 7.15 (m, 1H), 5.30 (s, 2H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 191.0, 156.5, 153.8,

144.2, 139.3, 136.2, 134.0, 129.8, 129.4, 129.0, 128.6, 126.0, 125.4, 123.9, 122.0, 119.8, 111.4, 44.1, 21.9. IR (KBr, v, cm⁻¹) 1607, 1362, 1265, 1170, 1084, 907, 774, 686. HR-MS (ESI) m/z calcd for C₂₉H₂₃NNaO₆S₂ [M+Na]⁺ 568.0864, found 568.0844.

N-((3-(3-Methylbenzoyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (4b)

White solid, 55 mg, 50%; m.p. 97-98 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.03 (d, J = 8.0 Hz, 4H), 7.69 (s, 1H), 7.63 – 7.58 (m, 3H), 7.53 – 7.47 (m, 4H), 7.45 (d, J = 7.6 Hz, 1H), 7.40 – 7.35 (m, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.19 – 7.14 (m, 1H), 5.31 (s, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 191.5, 156.8, 153.8, 139.4, 139.0, 138.6, 134.0, 129.8, 129.0, 128.6, 128.5, 126.8, 126.0, 125.4, 124.0, 122.0, 119.6, 111.4, 44.2, 21.5. IR (KBr, ν , cm⁻¹) 1608, 1367, 1265, 1170, 1084, 896, 774. HR-MS (ESI) m/z calcd for C₂₉H₂₃NNaO₆S₂ [M+Na]⁺ 568.0864, found 568.0881.

N-((3-([1,1'-Biphenyl]-4-carbonyl)benzofuran-2-yl)methyl)-*N*-(phenylsulfonyl)benzenesulfonamide (4c)

White solid, 89 mg, 73%; m.p. 199-200 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.05 (d, J = 8.0 Hz, 4H), 7.95 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 7.6 Hz, 2H), 7.67 (d, J = 8.0 Hz, 2H), 7.64 – 7.58 (m, 2H), 7.53 – 7.47 (m, 6H), 7.45 – 7.40 (m, 1H), 7.31 (d, J = 6.4 Hz, 2H), 7.26 (d, J = 3.6 Hz, 1H), 7.22 – 7.16 (m, 1H), 5.35 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 190.8, 156.8, 153.8, 146.0, 139.9, 139.4, 137.5, 134.0, 130.2, 129.1, 129.0, 128.6, 128.4, 127.4, 127.3, 126.0, 125.5, 124.0, 122.0, 119.7, 111.5, 44.1. IR (KBr, ν , cm⁻¹) 1605, 1380, 1244, 1170, 1084, 908, 800, 743. HR-MS (ESI) m/z calcd for C₃₄H₂₅NNaO₆S₂ [M+Na]⁺ 630.1021, found 630.1037.

N-((3-Benzoylbenzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (4d)

White solid, 44 mg, 41%; m.p. 190-191 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.03 (d, J = 8.0 Hz, 4H), 7.85 (d, J = 8.0 Hz, 2H), 7.65 – 7.59 (m, 3H), 7.53 – 7.47 (m, 6H), 7.29 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 7.21 – 7.14 (m, 2H), 5.31 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 191.3, 156.9, 153.7, 139.3, 138.8, 134.0, 133.2, 129.4, 128.9, 128.7, 128.6, 125.9, 125.4, 123.9, 121.9, 119.5, 111.4, 44.1. IR (KBr, ν , cm⁻¹) 1608, 1379, 1242, 1170, 1084, 904, 750, 720. HR-MS (ESI) m/z calcd for C₂₈H₂₁NNaO₆S₂ [M+Na]⁺ 554.0708, found 554.0723.

N-((3-(3-Chlorobenzoyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (4e)

White solid, 51 mg, 45%; m.p. 128-129 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.05 (d, J = 8.0 Hz, 4H), 7.84 (s, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.65 – 7.59 (m, 3H), 7.54 – 7.49 (m, 4H), 7.45 – 7.41 (m, 1H), 7.32 – 7.26 (m, 2H), 7.21 – 7.17 (m, 1H), 7.15 (d, J = 7.6 Hz, 1H), 5.32 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 189.9, 157.5, 157.5, 153.7, 140.3, 139.3, 134.1, 133.1, 130.0, 129.2, 129.0, 128.6, 127.7, 125.6, 124.1, 121.6, 111.5, 43.9. IR (KBr, ν , cm⁻¹) 1608, 1362, 1169, 1084, 774. HR-MS (ESI) m/z calcd for C₂₈H₂₀ClNNaO₆S₂ [M+Na]⁺ 588.0318, found 588.0340.

N-((5-Methyl-3-(4-methylbenzoyl)benzofuran-2-yl)methyl)-N-(phenylsulfonyl)benzenesulfonamide (4f)

White solid, 66 mg, 59%; m.p. 169-170 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.00 (d, J = 8.4 Hz, 4H), 7.77 (d, J = 7.6 Hz, 2H), 7.62 – 7.57 (m, 2H), 7.50 – 7.45 (m, 4H), 7.30 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.4 Hz, 1H), 7.08 (d, J = 8.4 Hz, 2H), 5.25 (s, 2H), 2.46 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 191.0, 156.3, 152.3, 144.1, 139.4, 136.2, 134.0, 133.6, 129.8, 129.4, 128.9, 128.6, 126.7, 126.1, 121.7, 119.6, 110.9, 44.2, 21.9, 21.5. IR (KBr, v, cm⁻¹) 1608, 1363, 1169, 1084, 774. HR-MS (ESI) m/z calcd for C₃₀H₂₅NNaO₆S₂ [M+Na]⁺ 582.1021, found 582.1046.

N-((3-(Dimethoxy(p-tolyl)methyl)benzofuran-2-yl)methyl)benzenesulfonamide (5a)

White solid, 35 mg, 78%; m.p. 165-166 °C; ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm) 8.30 – 8.24 (m, 1H), 7.83 (d, *J* = 9.6 Hz, 2H), 7.59 – 7.51 (m, 3H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.19 – 7.14 (m, 1H), 7.08 (d, *J* = 8.4 Hz, 2H), 7.07 – 7.02 (m, 1H), 4.52 (d, *J* = 6.0 Hz, 2H), 2.94 (s, 6H), 2.22 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) (δ , ppm) 153.7, 151.3, 141.1, 137.9, 137.8, 132.8, 129.5, 129.1, 127.1, 126.5, 124.9, 123.3, 121.5, 118.3, 111.3, 101.9, 49.2, 21.2. IR (KBr, *v*, cm⁻¹) 1447, 1282, 1169, 1052, 750. HR-MS (ESI) m/z calcd for C₂₅H₂₅NNaO₅S [M+Na]⁺ 474.1351, found 474.1360.

N-((3-(4-Methylbenzoyl)benzofuran-2-yl)methyl)benzenesulfonamide (6a)

White solid, 14 mg, 70%; m.p. 171-172 °C; ¹H NMR (400 MHz, DMSO- d_{δ}) (δ , ppm) 8.49 – 8.44 (m, 1H), 7.65 – 7.61 (m, 4H), 7.57 – 7.49 (m, 2H), 7.46 – 7.41 (m, 2H), 7.38 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 7.6 Hz, 3H),

7.29 – 7.24 (m, 1H), 4.22 (d, J = 5.6 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) (δ , ppm) 190.4, 158.3, 153.7, 144.3, 140.5, 136.3, 132.8, 129.8, 129.7, 129.4, 126.8, 126.4, 126.0, 124.5, 121.8, 118.3, 111.9, 111.9, 39.2, 21.8. IR (KBr, v, cm⁻¹) 1644, 1449, 1332, 1170, 1093, 908, 752. HR-MS (ESI) m/z calcd for C₂₃H₁₉NNaO₄S [M+Na]⁺ 428.0932, found 428.0946.

Reference

[1] J. Sadhan, V. Ajay, K. Rahul and K. Sangit, Chem. Sci., 2017, 8, 6633.

- [2] X. Dong, R. Sang, Q. Wang, X.-Y. Tang and M. Shi, Chem. Eur. J., 2013, 19, 16910.
- [3] X. Hu, G. Zhang, L. Nie, T. Kong and A. Lei, Nat. Commun., 2019, 10, 5467.
- [4] D. Ji, X. He, Y. Xu, Z. Xu, Y. Bian, W. Liu, Q. Zhu and Y. Xu, Org. Lett., 2016, 18, 4478.

Copies of NMR Spectra ¹H spectra of compound 3a:

¹³C spectra of compound 3a:

¹H spectra of compound 3b:

¹³C spectra of compound 3b:

¹H spectra of compound 3c:

¹H spectra of compound 3d:

¹³C spectra of compound 3d:

¹H spectra of compound 3e:

¹³C spectra of compound 3e:

¹H spectra of compound 3f:

¹³C spectra of compound 3f:

¹H spectra of compound 3g:

¹³C spectra of compound 3g:

¹H spectra of compound 3h:

¹H spectra of compound 3i:

¹H spectra of compound 3j:

¹³C spectra of compound 3j:

¹H spectra of compound 3k:

¹³C spectra of compound 3k:

¹H spectra of compound 31:

¹³C spectra of compound 31:

¹H spectra of compound 3m:

¹³C spectra of compound 3m:

¹H spectra of compound 3n:

¹³C spectra of compound 3n:

¹H spectra of compound 3o:

¹³C spectra of compound 3o:

¹H spectra of compound 3p:

¹³C spectra of compound 3p:

¹H spectra of compound 3r:

¹³C spectra of compound 3r:

¹H spectra of compound 3s:

¹³C spectra of compound 3s:

¹H spectra of compound 3t:

¹³C spectra of compound 3u:

¹H spectra of compound 3v:

¹H spectra of compound 3w:

¹³C spectra of compound 3w:

¹H spectra of compound 3x:

¹³C spectra of compound 3x:

¹H spectra of compound 3y:

¹H spectra of compound 3z:

¹³C spectra of compound 3z:

¹H spectra of compound 3aa:

¹H spectra of compound 3ab:

¹H spectra of compound 4a:

-2.458

¹³C spectra of compound 4a:

¹H spectra of compound 4b:

-2.424

¹H spectra of compound 4c:

¹³C spectra of compound 4c:

¹H spectra of compound 4d:

¹³C spectra of compound 4d:

¹H spectra of compound 4e:

ဖ	9	9	0	0	2	2	б	З	9	2	ω	0	0		9	9	6	0	9	9	б	2	ω	ω
S	З	З	0	ω	4	\sim	0	σ	З		σ	S	З			σ	\sim	9	0	ω	9	Ω	З	
0	0	ω	\sim	ဖ	ဖ	ဖ	ဖ	S	S	S	4	4	4	4	က	\sim	\sim	\sim	\sim					က
œ	ω	∼.	∼.	∼.	~	∼.	∽.	∼.	∽.	∼.	∼.	∼.	∼.	∼.	∼.	∼.	∼.	∽.	∽.	∼.	∼.	~	~	ъ.
				_)	~	_			_					1

¹H spectra of compound 4f:

¹H spectra of compound 5a:

¹³C spectra of compound 5a:

¹H spectra of compound 6a:

¹³C spectra of compound 6a:

