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Experimental section

Preparation of rose-shaped VS: microspheres: All chemicals were used directly without
further treatment. The VS, microspheres were prepared by using a simple hydrothermal method.
In a water bath, 4 mmol ammonium metavanadate (NH4VO3) was dispersed in 30 mL ultra-
pure water, 25 mmol thioacetamide (TAA) and 4 mL concentrated ammonia (NH3-H>O) were
successively added. The mixed solution was stirred vigorously for 1 h, then transferred into a
reaction kettle. After reaction at 180 °C for 8 h, the sample was washed three times with pure

water and alcohol, then dried in an oven.

Preparation of VS:@VS4 composite: Under the condition of water bath at 80 °C, 3 mmol
NH4VO; and 0.5 g polyether F127 were dispersed in 30 mL ultrapure water to obtain solution
A. Under the same conditions, 50 mmol TAA and 0.2 g VS, were dispersed in 30 mL ethylene

glycol (EG) to obtain solution B, which was added into A drop by drop and stirred for 0.5 h.
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The mixed solution was transferred to a reaction kettle and reacted at 160 °C for 12 h. After

that, the sample was collected and washed.

Characterization: The phrase of the sample was determined by using an X-ray diffractometer
(XRD, SMART APEX II Brook, copper target, Ko X-ray wavelength=1.5418 A). The
morphology was observed by field emission scanning electron microscope (SEM), Hitachi S-
8100, and transmission electron microscope (TEM, HT-7700, TecnaiG220S-Twin). A high-
resolution TEM (HRTEM) was used to observe the lattice fringes. Energy dispersive X-ray
spectroscopy (EDX) was employed for elemental mapping and studying the elemental
distribution. X-ray photoelectron spectroscopy (XPS, EscalAB250) and Raman spectroscopy
(Renishaw in Via) were used for characterization. Before measuring the specific surface area,
the sample was degassed in a vacuum at 120 °C for 6 h to remove the adsorbed water and
surface impurities. The physical adsorption isotherms were measured in nitrogen at 77 K using

an ASAP Micromeritics Tristar 2460 instrument.

First-principle computation: During DFT modeling, a plane wave basis set with an energy
cutoff of 500 eV was adopted and the Brillouin zone integration was conducted on a 2x2x2
Monkhorst-Pack k-point mesh. The cell parameter was 16.04x16.04x12.93 A for VS:@VS4

heterostructures; and all atoms were fully relaxed during the geometry optimization.

Electrochemical tests: The VS>@VS4 composite (70 wt%) and conductive carbon black (20

wt%) were mixed, grounded for 30 min, then polyvinylidene fluoride (PVDF, 10 wt%) and N-
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methylpyrrolidone (NMP, 6.54 wt%) were added. It is noted that we used the PVDF on the
basis of some reports [1,2]; however, the compatibility of PVDF in some electrolyte systems
would be not good enough, which inspired a potential research direction in future. The slurry
was coated on a carbon paper, dried in a vacuum oven at 80 °C for 24 h, and cut into 12 mm-
diameter discs. The water and oxygen values were less than 0.01 ppm in a glove box
(MIKROUNA, Super1220/750/900), which was filled with argon gas. In the 2032-typed coin
cell system, a molybdenum disc with a diameter of 20 mm and a thickness of 0.02 mm was
added to prevent the corrosion of the electrolyte on the cell shell before dropping the electrolyte.
The counter electrode was aluminum foil; and the diaphragm was glass fiber. The electrolyte
was AICl3:[EMIm]CI=1.3:1 with a n electrolyte volume/mass of 60 uL mg™'. In the voltage
range of 0.01-2.0 V, the cycling and rate-performance were explored by using a galvanostatic
method charge-discharge mode. In-situ reaction resistance was measured by constant-current
intermittent titration (GITT). Cyclic voltammetry (CV) was measured on an electrochemical
workstation (CHI660e). For the tests at different temperatures, the batteries were put in a
temperature-controlled chamber with a determined temperature. Prolonged lines were used to
connect the tester (NEWARE, CT-4008) and batteries. Before starting each test, the batteries

were putting in the low temperature chamber overnight.
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Fig. S1 (a) SEM and (b) TEM images of VS4. (¢) SEM images and (d) SAED pattern of

VS:@VS4. (e) Adsorption-desorption isothermal and pore-size distribution of VS>@VS4. XPS

spectra: (f) survey spectrum, (g) V 2p and (h) S 2p of VS,@VS..
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Fig. S2 (a) SEM images, (b,c) S and V elemental mapping, (d) EDS spectrum, and (e) line-

scanning curves of VS:@VSs.
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Fig. S3 (a) SEM image, (b,c) S and V elemental mapping, (d) EDS spectrum, and (e) line-

scanning curves of VS,.
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Fig. S4 (a) SEM image, (b,c) S and V elemental mapping, (d) EDS spectrum, and (e) line-

scanning curves of VSs.
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Fig. S5 XRD patterns of VS2@VSs after 100 cycles at 0.3 A g’
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Fig. S6 (a) Cycling performance and (b) charge-discharge curves of pure carbon paper cycling
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Fig. S7 (a) Cycling performance and (b) charge-discharge profiles of VS2@VS4 with a loading
of 2.61 mg cm? at 0.3 A g’!. (c) Cycling performance and (b) charge-discharge curves of VS,

with a loading of 2.2 mg cm2at 0.2 A g™!.
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Fig. S8 (a) Charge-discharge profiles and (b) cycling performance of VS4at 0.3 A g
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Fig. S9 Charge-discharge profiles of (a)VS2, (b)VS4, (c)VS2@VS4 at —10 °C.
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Fig. S10 (a) Rate-performance of VS», VS4 and VS,@VSs at room temperature. Charge-

discharge profiles of (b) VS2@VS4, (¢) VS, and (d) VSs. Charge-discharge profiles of (e)

VS:@VS4, (f) VS2 and (g) VS4 at —10 °C.
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Fig. S11 (a) Differential specific capacity versus voltage plots at various rates. (b) Contribution

ratio of capacitive and diffusion-control processes.
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Fig. S12 GITT time-potential distributions of (a) VS2, and (b) VSa4.
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Fig. S13 EIS spectrum of VS2@VS4 before and after cycling under 25 °C and —10 °C.
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Fig. S14 (a-d) Elemental mapping of S, V, Al and Cl, (¢) SEM image, (f) EDS spectrum, (g)

line-scanning curves, and (h) TEM image of VS,@VSa after 100 cycles at 0.3 A g™!.
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Table S1. Comparison on the cycling performance of some cathodes.

. Current density ~ Cycle Capacity
Composite R 4 Ref.
(Agh) number (mAh g™)
0-MnQO; nanofibers 0.1 100 37 3
Nanosphere-rod-like
0.2 100 122.1 4
Co0304
VOCl 0.05 100 41.5 5
Graphitized soft
0.5 1000 77.7 6
carbon
Hexagonal NiS
0.2 100 100 7
nanobelts
SnSe 0.3 100 107 8
MoS» 0.04 100 66.7 9
MoO2@Ni 0.1 100 90 10
Cu-Al 0.1 1000 82.3 11
CuxxSe 0.2 100 100 12
Co-P 0.2 400 85.1 13
Hierarchical This
0.3 500 116.5
VS:@VS4 work
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