Supporting Information

Regioselective peri-C-H Selenylation of Aromatic Compounds with Weakly Coordinating Ketone Groups

Bingbing Duan, ${ }^{\text {a }}$ Yao Wu, ${ }^{\text {a }}$ Yi Gao, ${ }^{\text {a }}$ Linkun Ying ${ }^{\text {a }}$, Jielin Tang, ${ }^{\text {a }}$ Shiyu Hu, ${ }^{a}$ Qiuhua Zhao*b ${ }^{\text {and }}$ Zengqiang Song*a

School of Pharmaceutical Sciences, WenzhouMedical University, Wenzhou, Zhejiang, 325035, China; e-mail: songzengqiang09@163.com
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China; e-mail: qhzhao@chem.ecnu.edu.cn

Table of Contents

General information and materials 3
General procedures for synthesis 3
Optimization of reaction conditions 4
Study on reaction mechanism 5
X-ray structure of 3a and $\mathbf{6 h}$ 11
Characterization of products $\mathbf{3 , 6}$ and $\mathbf{7}$ 15
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products $\mathbf{3}, \mathbf{6}$ and 7 32

General information and materials:

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents for chromatography were technical grade. Column chromatography was performed using silica gel Merck 60 (particle size $0.040-0.063 \mathrm{~mm}$). Solvent mixtures are understood as volume/volume
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMRwere recorded on a Bruker DRX400 (400 MHz), DRX500 (500 MHz) and DRX600 (600 MHz) spectrometer in $\mathrm{CDCl}_{3}\left(\delta=7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}, \delta=77.00 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$) and in DMSO- $d_{6}\left(\delta=2.50 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}, \delta=39.43 \mathrm{ppm}$ for $\left.{ }^{13} \mathrm{C}\right)$. Data are reported in the following order: chemical shift (δ) in ppm; multiplicities areindicated s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet); coupling constants (J)are given in Hertz (Hz). High resolution mass spectra were recorded on a LTQ Orbitrap massspectrometer coupled to an Acceka HPLC-System (HPLC column: Hypersyl GOLD, $50 \mathrm{~mm} \times 1 \mathrm{~mm}, 1.9 \mu \mathrm{~m}$). Chemical yields refer to isolated pure substances.

General procedures for synthesis

1. General procedure for the synthesis of products 3:

A mixture of chromones $1(0.2 \mathrm{mmol})$, diselenides $2(0.24 \mathrm{mmol})$, $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}$ ($10 \mathrm{~mol} \%$), $\mathrm{AgNTf}_{2}(40 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%), \mathrm{CuCl}$ (2 equiv), and chlorobenzene (2 mL), was added in a 5 mL glass tube, which was stirred at $120^{\circ} \mathrm{C}$ for $24-72 \mathrm{~h}$ in air. The reaction was stopped, and it was mixed with water and ethyl acetate. The reaction mixture was extracted three times with ethyl acetate. The combined organic layer was dried over anhydrous magnesium sulfate, and filtered. The filtrate was evaporated under a vacuum, and the residue was purified by flash column chromatography on silica gel (eluting with petroleum ether-ethyl acetate) to provide the desired product 3

2. General procedure for the synthesis of products 6:

A mixture of heteroarenes $1(0.2 \mathrm{mmol})$, diselenides $2(0.4 \mathrm{mmol})$, $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(10 \mathrm{~mol} \%)$, $\mathrm{AgNTf}_{2}(40 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%), \mathrm{CuCl}$ (2 equiv), and chlorobenzene (2 mL), was added in a 5 mL glass tube, which was stirred at $120^{\circ} \mathrm{C}$ for $24-45 \mathrm{~h}$ in air. The reaction was stopped, and it was mixed with water and ethyl acetate. The reaction mixture was extracted three times with ethyl acetate. The combined organic layer was dried over anhydrous magnesium sulfate, and filtered. The filtrate was evaporated under a vacuum, and the residue was purified by flash column chromatography on silica gel (eluting with petroleum ether-ethyl acetate) to provide the desired product 6

3. Procedure for the synthesis of product 7:

A mixture of 3a (0.2 mmol), diphenyl diselenide 2a (1.5 equiv) and PIFA (1 equiv.) in DCM (2
mL) was added in a 5 mL glass tube, which was stirred at room temperature for 0.5 h . When the reaction was completed, it was mixed with water and ethyl acetate. The reaction mixture was extracted three times with ethyl acetate. The combined organic layer was dried over anhydrous magnesium sulfate and filtered. The filtrate was evaporated under vacuum and the residue was purified by flash column chromatography on silica gel (eluting with petroleum ether-ethyl acetate) to provide the desired products 7.

Optimization of reaction conditions

Table S1. Optimization of solvents and additives ${ }^{\text {a }}$

Entry	Solvent	Additive	Yield (\%) ${ }^{\text {b }}$	
			3a	4a
1	DMF	$\mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%)+\mathrm{CuCl}$ (2 equiv)	-	75
2	Toluene	$\mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%)+\mathrm{CuCl}$ (2 equiv)	25	-
3	TFE	$\mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%)+\mathrm{CuCl}(2$ equiv)	trace	45
4	1,4-Dioxane	$\mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%)+\mathrm{CuCl}$ (2 equiv)	trace	34
5	MeCN	$\mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%)+\mathrm{CuCl}$ (2 equiv)	-	-
6	t-AmOH	$\mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%)+\mathrm{CuCl}$ (2 equiv)	-	-
7	DMSO	$\mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%)+\mathrm{CuCl}$ (2 equiv)	-	trace
8	DCE	$\mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%)+\mathrm{CuCl}$ (2 equiv)	66	-
9	Chlorobenzene	$\mathbf{C u}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%)+\mathbf{C u C l}(2$ equiv)	70	-
10	Chlorobenzene	PivOH (50 mol\%) +CuCl (2 equiv)	-	50
11	Chlorobenzene	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(50 \mathrm{~mol} \%)+\mathrm{CuCl}$ (2 equiv)	trace	6
12	Chlorobenzene	$\mathrm{Cu}(\mathrm{OTf})_{2}(50 \mathrm{~mol} \%)+\mathrm{CuCl}$ (2 equiv)	-	60
13	Chlorobenzene	$\mathrm{CuO}(50 \mathrm{~mol} \%)+\mathrm{CuCl}$ (2 equiv)	-	34
14	Chlorobenzene	$\mathrm{KOAc}(50 \mathrm{~mol} \%)+\mathrm{CuCl}$ (2 equiv)	trace	-
15	Chlorobenzene	$\mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%)+\mathrm{CuBr}$ (2 equiv)	55	-
16	Chlorobenzene	-	-	trace
17	Chlorobenzene	$\mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%$)	63	-
18	Chlorobenzene	CuCl (2 equiv)	-	40
$19^{\text {c }}$	Chlorobenzene	$\mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%)+\mathrm{CuCl}$ (2 equiv)	-	47

${ }^{a}$ Reaction conditions: 1a $(0.2 \mathrm{mmol})$, 2a (1.2 equiv), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(10 \mathrm{~mol} \%), \operatorname{AgNTf}_{2}(40$ $\mathrm{mol} \%)$, additive in solvent (2 mL), at $120{ }^{\circ} \mathrm{C}$ in air. ${ }^{b}$ Yield refers to isolated products after column chromatograph. ${ }^{c}\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ was replaced with $\left[\mathrm{Cp} * \mathrm{IrCl}_{2}\right]_{2}$.

Table S2. Optimization of amounts of catalyst, additives and temperature ${ }^{\text {a }}$

Entry	Amount of $\mathrm{Cu}(\mathrm{OAc})_{2}$ (equiv)	Amount of CuCl (equiv)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	${\text { Yield }(\%)^{\mathrm{b}}}^{\mathbf{1}}$
$\mathbf{1}$	$\mathbf{0 . 5}$	$\mathbf{2}$	$\mathbf{1 2 0}$	$\mathbf{7 0}$
2	1	2	120	58
3	0.5	1	120	55
4	0.5	3	120	69
5	0.5	2	100	64
6^{c}	0.5	2	120	60
7^{d}	0.5	2	120	51

${ }^{\mathrm{a}}$ Reaction conditions: 1a $(0.2 \mathrm{mmol})$, 2a (1.2 equiv), $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(10 \mathrm{~mol} \%), \operatorname{AgNTf}_{2}(40$ $\mathrm{mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(\mathrm{~mol} \%), \mathrm{CuCl}$ (equiv), in chlorobenzene $(2 \mathrm{~mL})$ at $\mathrm{T}^{\circ} \mathrm{C}$ in air. ${ }^{\mathrm{b}} \mathrm{Yield}$ refers to isolated products after column chromatography. ${ }^{\mathrm{c}}\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ ($7.5 \mathrm{~mol} \%$) and AgNTf_{2} (30 $\mathrm{mol} \%$) were used. ${ }^{\mathrm{d}}$ The reaction was performed in nitrogen.

Study on reaction mechanism

1. Radical trapping experiments

Entry	Additive (4 equiv)	Recovered 1a	Yield of 3a	
1	-	8%	70%	
2	TEMPO	92%	-	
3	BHT	94%	-	
4	1,1-diphenylethylene	90%	-	Ph 8

2. Deuterium labeling experiments

A mixture of chromone 1a $(0.2 \mathrm{mmol})$, $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(10 \mathrm{~mol} \%), \operatorname{AgNTf}_{2}(40 \mathrm{~mol} \%)$, $\mathrm{Cu}(\mathrm{OAc})_{2}$ ($50 \mathrm{~mol} \%$), CuCl (2 equiv), $\mathrm{D}_{2} \mathrm{O}$ (2 equiv.) and chlorobenzene (2 mL), was added in a 5 mL glass tube, which was stirred at $120^{\circ} \mathrm{C}$ for 24 h in air. The reaction was stopped, and it was mixed with water and ethyl acetate. The reaction mixture was extracted three times with ethyl acetate. The combined organic layer was dried over anhydrous magnesium sulfate, and filtered. The filtrate was evaporated under a vacuum, and the residue was purified by flash column chromatography on silica gel (eluting with petroleum ether-ethyl acetate) to afford the recovered starting material 1aa in 95% yield. The analysis by ${ }^{1} \mathrm{H}$ NMR showed deuterium incorporation at the C5-position of 1aa.

A mixture of chromone $\mathbf{1 a}(0.2 \mathrm{mmol})$, diphenyl diselenide $\mathbf{2 a}$ (1.2 equiv), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ ($10 \mathrm{~mol} \%$), $\mathrm{AgNTf}_{2}(40 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%), \mathrm{CuCl}$ (2 equiv), $\mathrm{D}_{2} \mathrm{O}$ (2 equiv.) and chlorobenzene (2 mL), was added in a 5 mL glass tube, which was stirred at $120^{\circ} \mathrm{C}$ for 24 h in air. The reaction was stopped, and it was mixed with water and ethyl acetate. The reaction mixture was extracted three times with ethyl acetate. The combined organic layer was dried over anhydrous magnesium sulfate, and filtered. The filtrate was evaporated under a vacuum, and the residue was purified by flash column chromatography on silica gel (eluting with petroleum ether-ethyl acetate) to afford the recovered starting material 1aa' and the product $\mathbf{3 a}$ in 8% and 62% yields, respectively. The analysis by ${ }^{1} \mathrm{H}$ NMR showed deuterium incorporation at the C 5 -position of 19a'. The analysis by ${ }^{1} \mathrm{H}$ NMR showed no deuterium incorporation on the ring of $\mathbf{3 a}$.

3. Kinetic isotope experiment:

(a) Parallel reaction

Diphenyl diselenide 2a with chromone 1a or chromone- $d 2 \mathbf{1 a}$ respectively were performed to determine the KIE value. 1a $(0.2 \mathrm{mmol})$ or 1a' $(0.2 \mathrm{mmol})$, 2a $(0.24 \mathrm{mmol}),\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}$ ($10 \mathrm{~mol} \%$) , $\mathrm{AgNTf}_{2}(40 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%), \mathrm{CuCl}$ (2 equiv) and chlorobenzene $(2 \mathrm{~mL})$ were added in a 10 mL glass tube, which was stirred at $120^{\circ} \mathrm{C}$ for $0.5 \mathrm{~h}, 1.5 \mathrm{~h}, 2.5 \mathrm{~h}, 3.5 \mathrm{~h}, 4.5 \mathrm{~h}$ in air, respectively. Then the reaction mass in two tubes was combined and was mixed with water and dichloromethane. The reaction mixturewas extracted three times with dichloromethane. The
combined organic layer waswashed two times with a little amount of water, dried over anhydrous magnesium sulfate andfiltered. The filtrate was evaporated under vacuum and the residue was purified by flash column chromatography on silica gel (elutig with petroleum ether-ethyl acetate). The yields of 3a and 3a' were obtained by ${ }^{1} \mathrm{H}$ NMR analysis of the mixture. The KIE was determined as $\boldsymbol{k}_{\mathrm{H}} / \boldsymbol{k}_{\mathrm{D}}=9.03$.

$\mathbf{t}[\mathrm{h}]$	0.5	1.5	2.5	3.5	4.5
3a $[\%]$	30.2	33.4	37.9	40.8	43.2
3a' [\%]	2.6	3.7	4.3	4.0	4.3

(b) Competition reaction

A mixture of chromone 1a $(0.2 \mathrm{mmol})$, chromone- $d 2 \mathbf{1 a}^{\prime}(0.2 \mathrm{mmol})$, diphenyl diselenide $\mathbf{2 a}(0.48$ mmol), $\left[\mathrm{Ru}(p-c y m e n e) \mathrm{Cl}_{2}\right]_{2}(10 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}$ ($40 \mathrm{~mol} \%$), $\mathrm{Cu}(\mathrm{OAc})_{2}(50 \mathrm{~mol} \%), \mathrm{CuCl}$ (2 equiv) and chlorobenzene (4 mL), was added in a 10 mL glass tube, which was stirred at $120{ }^{\circ} \mathrm{C}$ for 12 h in air. The reaction was stopped, and it was mixed with water and ethyl acetate. The reaction mixture was extracted three times with ethyl acetate. The combined organic layer was dried over anhydrous magnesium sulfate, and filtered. The filtrate was evaporated under a vacuum, and the residue was purified by flash column chromatography on silica gel (eluting with petroleum ether-ethyl acetate). $\operatorname{KIE}\left(\boldsymbol{k}_{\mathbf{H}} / \boldsymbol{k}_{\mathbf{D}}=9.00\right)$ was determined from ${ }^{1} \mathrm{H}$ NMR.

X-ray structure of 3a

3a
(CCDC 2178078)

Figure S1. Single crystal structure of 3a

Table S3. X-ray crystallographic data of 3a

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0070 \mathrm{~A}$	Wavelength=0.71073	
Cell:	$\mathrm{a}=7.9033(5)$	$\mathrm{b}=11.9615(7)$	$\mathrm{c}=14.6472(9)$
	alpha=73.300(5)	alpha=73.300(5)	gamma=74.420(5)
Temperature:	293 K		
Volume	$1276.68(14)$	Reported	
Space group	$\mathrm{P} \quad-1$	$\mathrm{P} \quad-1$	
Hall group	$-\mathrm{P} \quad 1$	$-\mathrm{P} \quad 1$	
Moiety formula	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Se}$	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Se}$	
Sum formula	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Se}$	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Se}$	

Mr	301.19	301.19
$\mathrm{Dx}, \mathrm{g} \mathrm{cm}-3$	1.567	1.567
Z	4	4
$\mathrm{Mu}(\mathrm{mm}-1)$	2.931	2.931
F000	600.0	600.0
F000'	599.88	
h,k, lmax	$10,16,20$	$10,16,19$
Nref	6819	5792
Tmin, Tmax	$0.362,0.380$	$0.787,1.000$
Tmin' $^{\prime}$	0.335	

Correction method= \# Reported T Limits: Tmin=0.787 Tmax=1.000
AbsCorr $=$ MULTI-SCAN

Data completeness $=0.849$
Theta $(\max)=29.059$
R (reflections) $=0.0476$ (3696) $\quad w R 2$ (reflections) $=0.1093$ (5792)
$S=1.044$
Npar $=325$

Information of preparation of single crystal 3a:

3a (25 mg) with $1.2 \mathrm{~mL} N, N$-dimethylformamide in a bottle and with 0.8 mL hexane on the upper layer of N, N-dimethylformamide. Subsequently, seal with sealing film. Place the bottle at room temperature to give the single crystal 3a in 3 days.

X-ray structure of $\mathbf{6 h}$

6h
(CCDC 2205235)

Figure S2. Single crystal structure of $\mathbf{6 h}$

Table S4. X-ray crystallographic data of $\mathbf{6 h}$

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0030 \mathrm{~A}$	Wavelength=0.71073	
Cell:	$\mathrm{a}=8.0338$ (3)	$\mathrm{b}=8.4987$ (4)	$\mathrm{c}=13.3369$ (5)
	alpha=74.087(4)	alpha=74.630(3)	gamma=81.377(4)
Temperature:	200 K		
	Calculated	Reported	
Volume	841.45(6)	841.45(6)	
Space group	P $\quad-1$	P $\quad-1$	
Hall group	-P 1	-P 1	
Moiety formula	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{2} \mathrm{Se}$	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{2} \mathrm{Se}$	
Sum formula	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{2} \mathrm{Se}$	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{2} \mathrm{Se}$	
Mr	384.32	384.32	
Dx,g cm- 3	1.517	1.517	
Z	2	2	
$\mathrm{Mu}(\mathrm{mm}-1)$	2.243	2.243	
F000	392.0	392.0	
F000 ${ }^{\prime}$	391.96		

h,k, lmax	$10,11,18$	$10,11,18$
Nref	4508	3985
Tmin, Tmax	$0.450,0.488$	$0.962,1.000$
Tmin $^{\prime}$	0.442	

Correction method= \# Reported T Limits: Tmin=0.962 Tmax=1.000
AbsCorr $=$ MULTI-SCAN

Data completeness $=0.884$
Theta $(\max)=29.101$

R (reflections) $=0.0312$ (3500) wR2 (reflections) $=0.0708$ (3985)
$\mathrm{S}=1.078 \quad$ Npar $=219$

Information of preparation of single crystal 6 h :

6h (25 mg) with $1.2 \mathrm{~mL} N, N$-dimethylformamide in a bottle and with 0.8 mL hexane on the upper layer of N, N-dimethylformamide. Subsequently, seal with sealing film. Place the bottle at $4^{\circ} \mathrm{C}$ to give the single crystal $\mathbf{6 h}$ in 3 days.

Characterization of products 3, 6 and 7

5-(Phenylselanyl)-4H-chromen-4-one (3a)

Faint Yellow solid; mp 107.1-108.2 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (20\% EtOAc in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.28-$ $7.25(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.82,158.05,154.44,140.07,137.55,132.69,129.83,129.23$, 128.92, 124.36, 122.50, 113.91, 112.88 ppm; HRMS: calc.for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 302.9924$, found: 302.9917 .

2-Methyl-5-(phenylselanyl)-4H-chromen-4-one (3b)

Faint Yellow solid; mp 142.2-142.7 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.46,165.28,158.00,139.72,137.61,132.43,129.79,129.16,129.13,124.07,121.22,113.61$, 110.44, 20.26 ppm ; HRMS: calc.for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 317.0081$, found: 317.0074.

2-Phenyl-5-(phenylselanyl)-4H-chromen-4-one (3c)

Faint Yellow solid; mp 157.4-158.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.5\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether) ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.42(\mathrm{~m}$, $3 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=6.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 179.50,162.40,157.68,139.84,137.54,132.65,131.57,131.28,129.77,129.15,128.99$,
$128.95,126.15,124.23,121.54,113.77,107.27 \mathrm{ppm} ; \mathrm{HRMS}:$ calc.for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 379.0237, found: 379.0231.

5-(Phenylselanyl)-2-(o-tolyl)-4H-chromen-4-one (3d)

Faint Yellow solid; mp 158.9-159.7 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.26(\mathrm{~m}$, $3 \mathrm{H}), 7.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.47,165.16,158.02,140.03,137.61,136.81,132.73,132.25,131.27$, $130.77,129.83,129.21,129.14,129.07,126.21,124.33,121.47,113.78,111.79,20.55 \mathrm{ppm} ;$ HRMS: calc.for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 393.0394$, found: 393.0386.

2-(2-Methoxyphenyl)-5-(phenylselanyl)-4H-chromen-4-one (3e)

Faint Yellow solid; mp 139.1-140.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether) ; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 4 \mathrm{H})$, $7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=$ $7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.02,159.89,158.06,157.95$, $139.69,137.62,132.50,132.42,129.77,129.25,129.14,129.12,123.94,121.50,120.69,120.44$, 113.75, 112.48, 111.74, 55.67 ppm ; HRMS: calc.for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 409.0343$, found: 409.0336.

2-(2-Fluorophenyl)-5-(phenylselanyl)-4H-chromen-4-one (3f)

Yellow solid; mp 115.2-116.3 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3(20 \%$ EtOAc in petroleum ether $) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.34-$ $7.20(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $179.50,160.54(\mathrm{~d}, ~ J=257.55), 157.85,157.82,140.04,137.59,132.90(\mathrm{~d}, J=9.09), 132.79$, $129.82,129.21,128.99,128.93,124.59(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 124.32,121.47,119.94(\mathrm{~d}, J=10.0 \mathrm{~Hz})$, $116.93(\mathrm{~d}, J=23.23 \mathrm{~Hz}), 113.73,112.20(\mathrm{~d}, J=11.8 \mathrm{~Hz}) \mathrm{ppm}$; HRMS: calc.for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FO}_{2} \mathrm{Se}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 397.0143$, found: 397.0136.

5-(Phenylselanyl)-2-(m-tolyl)-4H-chromen-4-one (3g)

Faint Yellow solid; mp 135.2-136.1 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=$ $6.2,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=5.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.60,162.70,157.78,139.87,138.82,137.61,132.65,132.43,131.32,129.81$, 129.19, 129.09, 128.90, 126.76, 124.25, 123.43, 121.64, 113.82, 107.31, 21.48 ppm; HRMS: calc.for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 393.0394, found: 393.0386.

2-(3-Methoxyphenyl)-5-(phenylselanyl)-4H-chromen-4-one (3h)

Faint Yellow solid; mp 130.4-131.2 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $179.60,162.25,159.90,157.69,139.85,137.58,132.73,132.64,130.09,129.82,129.21,128.93$, $124.27,121.56,118.63,117.13,113.83,111.63,107.55,55.47 \mathrm{ppm} ;$ HRMS: calc.for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{Se}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 409.0343$, found: 409.0336 .

2-(3-Chlorophenyl)-5-(phenylselanyl)-4H-chromen-4-one (3i)

Faint Yellow solid; mp 105.3-106.7 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether) ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52$ $-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.35,160.87,157.69,140.14,137.59,135.24,133.18,132.89,131.53$, $130.30,129.86,129.26,128.90,126.26,124.50,124.32,121.58,113.79,107.95 \mathrm{ppm} ;$ HRMS: calc.for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClO}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 412.9848 , found: 412.9838 .

2-(4-Methoxyphenyl)-5-(phenylselanyl)-4H-chromen-4-one (3j)

Faint Yellow solid; mp 137.2-138.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.28$ $-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.73-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.53,162.50,162.41,157.66,139.75,137.62,132.51,129.79,129.16,127.94$, 124.17, 123.61, $121.56,114.43,113.73,105.94,55.50 \mathrm{ppm}$; HRMS: calc.for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{Se}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 409.0343$, found: 409.0336.

3-Methyl-5-(phenylselanyl)-4H-chromen-4-one (3k)

Faint Yellow solid; mp 161.3-162.2 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(10 \% \mathrm{EtOAc}\right.$ in petroleum ether) ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.59$,
$158.18,150.94,139.85,137.58,132.32,129.79,129.18,129.12,123.92,121.24,120.56,113.82$, 11.00 ppm ; HRMS: calc.for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 317.0081$, found: 317.0075.

3-Phenyl-5-(phenylselanyl)-4H-chromen-4-one (31)

Faint Yellow solid; mp 147.6-148.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(10 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 6 \mathrm{H})$, $7.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.61,157.85,152.23,140.82,137.60,132.61,131.38,129.85,129.24,128.99$, $128.49,128.27,125.33,124.47,122.17,113.83 \mathrm{ppm} ; \mathrm{HRMS}$: calc.for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 379.0237, found: 379.0230.

5-(Phenylselanyl)-3-(o-tolyl)-4H-chromen-4-one (3m)

Faint Yellow solid; mp 69.8-70.6 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(10 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 6 \mathrm{H}), 6.79$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.40,158.03,152.65$, $140.79,137.96,137.57,132.59,131.04,130.59,130.21,129.82,129.24,129.19,128.68,126.17$, $125.78,124.38,121.98,113.82,20.15 \mathrm{ppm}$; HRMS: calc.for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 393.0394$, found: 393.0386 .

3-(2-Fluorophenyl)-5-(phenylselanyl)-4H-chromen-4-one (3n)

Faint Yellow solid; mp 134.7-135.2 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(10 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{td}, J=7.5,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.95,160.20(\mathrm{~d}, J=248.26 \mathrm{~Hz}), 158.97,157.85,153.79(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 140.86$,
$137.60,132.73,132.12(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 130.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 129.85,129.25,129.14,124.58$, $124.05(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 122.01,119.90,118.95(\mathrm{~d}, J=14.9 \mathrm{~Hz}), 115.83(\mathrm{~d}, J=22.22 \mathrm{~Hz})$, 113.85.ppm; HRMS: calc.for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FO}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 397.0143$, found: 397.0137.

5-(Phenylselanyl)-3-(m-tolyl)-4H-chromen-4-one (3o)

Faint Yellow solid; mp 154.2-155.3 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(10 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.27(\mathrm{t}, J=8.0,1 \mathrm{H}), 7.21(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=7.8,0.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.64,157.80,152.19,140.73,138.07$, $137.58,132.54,131.26,129.82,129.69,129.26,129.20,129.05,128.38,125.99,125.41,124.39$, 122.14, 113.80, 21.47 ppm ; HRMS: calc.for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 393.0394$, found: 393.0386.

3-(3-Methoxyphenyl)-5-(phenylselanyl)-4H-chromen-4-one (3p)

Faint Yellow solid; mp 178.2-179.5 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(10 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.88(\mathrm{dd}, J=8.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.02,159.77$, 156.26, 153.56, 137.40, 136.98, 133.59, 133.40, 131.45, 129.06, 126.55, 126.47, 126.33, 125.18, $124.41,122.69,118.04,116.93,115.44,55.40 \mathrm{ppm}$; HRMS: calc.for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 409.0343, found: 409.0338 .

3-(4-Methoxyphenyl)-5-(phenylselanyl)-4H-chromen-4-one (3q)

Faint Yellow solid; mp 184.2-185.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(10 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}$, $3 \mathrm{H}), 7.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.83,159.66,157.82,151.68,140.69$, $137.59,132.49,130.15,129.82,129.30,129.20,124.89,124.34,123.65,122.10,113.98,113.81$, 55.32 ppm ; HRMS: calc.for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 409.0343$, found: 409.0335 .

3-(4-Bromophenyl)-5-(phenylselanyl)-4H-chromen-4-one (3r)

Faint Yellow solid; mp 134.7-135.2 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(10 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.42(\mathrm{~m}$, $5 \mathrm{H}), 7.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.29,157.84,152.17,140.90,137.58,132.76,131.67,130.54,130.33$, 129.89, 129.31, $129.09,124.64,124.29,122.53,122.04,113.85 \mathrm{ppm} ;$ HRMS: calc.for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{BrO}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 456.9342$, found: 456.9333.

7-Methyl-5-(phenylselanyl)-4H-chromen-4-one (3s)

Faint Yellow solid; mp 140.2-141.3 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.57,158.03,154.16,144.01$, $139.58,137.50,129.75,129.17,128.95,125.41,120.38,114.15,112.77,21.74$ ppm; HRMS: calc.for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 317.0081$, found: 317.0075.

7-Methoxy-5-(phenylselanyl)-4H-chromen-4-one (3t)

Faint Yellow solid; mp 161.1-162.9 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 3 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.64(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.96,162.91,159.44,153.92,141.62,137.55$, $129.84,129.33,128.90,116.83,112.82,112.76,97.39,55.39 \mathrm{ppm}$; HRMS: calc.for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{Se}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 333.0030$, found: 333.0022.

8-Methyl-5-(phenylselanyl)-4H-chromen-4-one (3u)

Faint Yellow solid; mp 98.2-99.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 179.07,156.34,154.29,137.54,136.37,134.01,129.72,129.15,129.06,123.77,123.08$, 122.38, 112.67, $15.25 \mathrm{ppm} ;$ HRMS: calc.for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 317.0081, found: 317.0074.

8-Chloro-5-(phenylselanyl)-4H-chromen-4-one (3v)

Faint Yellow solid; mp 102.1-103.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 178.22,154.36,153.38,138.98,137.50,132.97,129.98,129.47,128.53,124.34,123.47$, 118.63, 113.15 ppm ; HRMS: calc.for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClO}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 336.9535$, found: 336.9527.

5-(Phenylselanyl)-4H-benzo $[h]$ chromen-4-one (3w)

Faint Yellow solid; mp 137.4-138 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.56-$ $7.41(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.66$, $155.22,153.83,137.71,135.30,133.01,129.85,129.73,129.35,129.21,126.83,125.94,123.07$, 122.30, 121.61, 120.00, 114.39 ppm ; HRMS: calc.for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 353.0081, found: 353.0074 .

5-(O-Tolylselanyl)-4H-chromen-4-one (3x)

Faint Yellow solid; mp 109.3-110.4 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(20 \%\right.$ EtOAc in petroleum ether) ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.25-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=8.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.83,158.19,154.39,143.76,139.18,138.71$, $132.80,130.45,130.06,129.67,127.24,123.71,122.69,113.90,112.99,22.54 \mathrm{ppm} ; H R M S:$ calc.for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 317.0081$, found: 317.0075.

5-((2-Fluorophenyl)selanyl)-4H-chromen-4-one (3y)

Faint Yellow solid; mp 113.2-114.9 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3(20 \% \mathrm{EtOAc} \text { in petroleum ether) })^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=12.7,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.76,163.61(\mathrm{~d}, J=246.3 \mathrm{~Hz}), 158.04,154.64,139.34(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}), 138.09,132.89,132.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 125.42(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 124.08,122.64,116.01$ $(\mathrm{d}, J=24.3 \mathrm{~Hz}), 113.50(\mathrm{~d}, J=148.0 \mathrm{~Hz}) \mathrm{ppm} ;$ HRMS: calc.for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{FO}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 320.9830$, found: 320.9823 .

5-((2-Chlorophenyl)selanyl)-4H-chromen-4-one (3z)

Faint Yellow solid; mp 147.2-148.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether) ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{dd}, J=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J$ $=7.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.83,158.07$, $154.61,141.11,139.77,138.16,132.93,131.21,130.10,129.47,127.89,123.95,122.53,114.20$, 112.82 ppm ; HRMS: calc.for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClO}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 336.9535$, found: 336.9527.

5-((3-Fluorophenyl)selanyl)-4H-chromen-4-one (3aa)

Faint Yellow solid; mp 118.3-119.5 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether) ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=$ $8.0,1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.76,162.94(\mathrm{~d}, J=250.8 \mathrm{~Hz}), 158.02,154.57,139.33,133.19(\mathrm{~d}, J=3.0$ $\mathrm{Hz}), 132.85,131.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 130.62(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 124.25,124.18(\mathrm{~d}, J=21.21 \mathrm{~Hz})$, $122.46,116.45(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 114.20,112.80 \mathrm{ppm}$; HRMS: calc.for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{FO}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 320.9830, found: 320.9823 .

5-((3-Bromophenyl)selanyl)-4H-chromen-4-one (3ab)

Faint Yellow solid; mp 133.1-134.2 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether) ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=5.9 \mathrm{~Hz}$,

1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.75,158.02,154.59,139.89,139.29,136.06,132.91$, $132.38,131.25,131.01,124.32,123.36,122.45,114.24,112.82 \mathrm{ppm} ;$ HRMS: calc.for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrO}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 380.9029$, found: 380.9019 .

5-((4-Bromophenyl)selanyl)-4H-chromen-4-one (3ac)

Faint Yellow solid; mp 188.1-189.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ ($20 \% \mathrm{EtOAc}$ in petroleum ether) ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $178.75,158.03,154.56,139.43,139.18,133.07,132.82,127.87,124.24,124.09,122.49,114.18$, 112.84 ppm ; HRMS: calc.for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrO}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 380.9029$, found: 380.9020 .

5-((4-Fluorophenyl)selanyl)-4H-chromen-4-one (3ad)

Faint Yellow solid; mp 153.1-154.4 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.11$ $(\mathrm{m}, 3 \mathrm{H}), 6.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $178.81,163.58(\mathrm{~d}, J=249.7 \mathrm{~Hz}), 158.07,154.52,140.00,139.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 132.77,124.16$, $123.92(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 122.51,117.16(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 114.08,112.87 \mathrm{ppm}$; HRMS: calc.for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{FO}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 320.9830$, found: 320.9823 .

5-((4-Chlorophenyl)selanyl)-4H-chromen-4-one (3ae)

Faint Yellow solid; mp 127.1-128.3 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (20\% EtOAc in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=$ $11.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=7.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=5.9$
$\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 178.76,158.05,154.55,139.57,138.93,135.76$, $132.81,130.13,127.23,124.22,122.50,114.17,112.85 \mathrm{ppm}$; HRMS: calc.for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClO}_{2} \mathrm{Se}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 336.9535$, found: 336.9527.

5-((2-Fluorophenyl)selanyl)-2-phenyl-4H-chromen-4-one (3af)

Faint Yellow solid; mp 140.1-141.2 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.28$ $(\mathrm{m}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 179.55,163.65(\mathrm{~d}, J=246.44 \mathrm{~Hz}), 162.73,157.74,139.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 137.93$, $132.90,132.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 131.68,131.31,129.02,126.23,125.40(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 124.01$, $121.78,116.11(\mathrm{~d}, J=24.24 \mathrm{~Hz}), 116.01(\mathrm{~d}, J=24.24 \mathrm{~Hz}), 114.12,107.22 \mathrm{ppm}$; HRMS: calc.for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FO}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 397.0143$, found: 397.0139.

2-Phenyl-5-(m-tolylselanyl)-4H-chromen-4-one (3ag)

Faint Yellow solid; mp 136.1-137.2 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3(20 \% \mathrm{EtOAc}$ in petroleum ether $) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.56,162.43,157.75,140.09,139.65,138.10,134.54,132.68,131.60,131.39$, 129.99, 129.60, 129.00, 128.76, 126.21, 124.36, 121.61, 113.72, 107.37, 21.29 ppm; HRMS: calc.for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 393.0394$, found: 393.0386.

5-((3-Fluorophenyl)selanyl)-2-phenyl-4H-chromen-4-one (3ah)

Faint Yellow solid; mp 131.2-132.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(20 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.54-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.58,162.96(\mathrm{~d}, J=252.5 \mathrm{~Hz}), 162.70,157.74,139.18,133.24(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, $132.88,131.71,131.30,131.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 130.74(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 129.04,126.25,124.24(\mathrm{~d}$, $J=20.2 \mathrm{~Hz}), 124.20,121.59,116.43(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 114.10,107.28 \mathrm{ppm}$; HRMS: calc.for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FO}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 397.0143$, found: 397.0137.

1-(Phenylselanyl)-9H-xanthen-9-one (6a)

Yellow solid; mp 156.5-157.3 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (4\% EtOAc in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.51-$ $7.43(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=8.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (dd, $J=7.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.13,157.78,155.39,141.53$, $137.60,134.82,133.56,129.82,129.26,129.07,126.74,124.00,123.28,121.59,119.49,117.53$, 113.76 ppm ; HRMS: calc.for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 353.0081$, found: 353.0074.

1-(Phenylselanyl)acridin-9(10H)-one (6b)

Yellow solid; mp 139.1-140.5 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(50 \% \mathrm{DCM}\right.$ in petroleum ether) ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 11.78$ (brs, 1H), $8.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.36$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 177.84,142.77,140.27,139.74,137.26,133.69,132.70,130.01,129.69,129.22,125.97$, $121.33,120.32,119.51,118.22,117.03,113.35 \mathrm{ppm}$; HRMS: calc.for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NOSe}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 352.0241, found: 352.0234.

10-Methyl-1-(phenylselanyl)acridin-9(10H)-one (6c)

Yellow solid; mp 190.1-191.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(50 \% \mathrm{DCM}\right.$ in petroleum ether) ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.50-$ $7.42(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.92,144.65,142.94,142.02,137.63,133.83,132.49$, $130.86,129.69,128.94,127.87,122.46,121.49,121.16,120.28,114.51,110.68,34.34 \mathrm{ppm} ;$ HRMS: calc.for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NOSe}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 366.0397$, found: 366.0391.

1,8-Bis(phenylselanyl)-9H-xanthen-9-one (6d)

Faint Yellow solid; mp 230.2-230.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ ($30 \% \mathrm{DCM}$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.29(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.12,157.08,141.73$, 137.62, 133.56, 129.83, 129.24, 129.17, 123.37, 119.43, $113.31 \mathrm{ppm} ;$ HRMS: calc.for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Se}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 508.9559$, found: 508.9562 .

1,8-Bis(phenylselanyl)acridin-9(10H)-one (6e)

Yellow solid; mp 228.2-228.5 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(50 \% \mathrm{DCM}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 11.81$ (brs, 1H), $7.76-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.31,142.02$, $141.54,137.66,132.54,130.15,129.69,128.95,121.13,119.38,111.88 \mathrm{ppm}$; HRMS: calc.for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{ONSe}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 507.9719$, found: 507.9718 .

10-Methyl-1,8-bis(phenylselanyl)acridin-9(10H)-one (6f)

Yellow solid; mp 280.2-281.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.5\left(50 \% \mathrm{DCM}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.78-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 179.79, 144.11, 143.01, 137.61, 132.44, 130.86, 129.68, 128.90, 121.30, 120.36, 110.44, $35.14 \mathrm{ppm} ; H R M S:$ calc.for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{NOSe}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 521.9875 , found: 521.9859.

1-Methyl-5-(phenylselanyl)quinolin-4(1H)-one (6g)

White solid; mp 195.4-196.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4\left(4 \% \mathrm{MeOH}\right.$ in dichloromethane ether) ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 7.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.37-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{DMSO}) \delta 178.05,144.79,142.47,139.07,137.26,131.49,130.50,130.15,129.24,123.99$, 122.18, 112.81, 108.62, 40.82 ppm ; HRMS: calc.for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NOSe}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 316.0241$, found: 316.0234 .

2-Methyl-5-(phenylselanyl)-3-(propylamino)naphthalene-1,4-dione (6h)

Red solid; mp 185.2-186.7 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(10 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{dd}, J=7.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{brs}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.00$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 184.92, 182.21, 145.45, 140.05, 137.57,
$134.59,131.89,130.84,129.78,129.68,129.19,129.05,124.04,112.44,47.19,24.13,11.24$, 11.17 ppm; HRMS: calc.for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 386.0659$, found: 386.0653.

3-(Phenylamino)-8-(phenylselanyl)naphthalene-1,4-dione (6i)

Red brown solid; mp 173.7-174.5 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}=0.3$ ($10 \% \mathrm{EtOAc}$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{dd}, J=13.1,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.82($ brs, 1 H$), 7.73(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.62,180.33,143.43$, $136.65,134.66,133.25,132.80,131.36,130.45,129.57,128.52,127.97,127.06,126.82,126.66$, 124.19, 122.29, 114.21 ppm ; HRMS: calc.for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 406.03463, found: 406.0341 .

4,8-Bis(phenylselanyl)isoquinolin-1(2H)-one (6j)

White solid; mp 260.5-261.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3\left(25 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 11.84(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 162.80,140.31,140.15,138.15,137.26,132.49,131.77$, 130.14, 129.42, 128.73, 126.33, 125.79, 123.47, 123.43, $102.15 \mathrm{ppm} ;$ HRMS: calc.for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NOSe}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 457.9562$, found: 457.9555 .

3,5-Bis(phenylselanyl)-4H-chromen-4-one (7)

Faint Yellow solid; mp 126.2-127.3 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.5\left(10 \% \mathrm{EtOAc}\right.$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{dd}, \mathrm{J}=6.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-$ $7.41(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, \mathrm{J}=8.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-$ $6.74(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.40,157.93,154.66,140.83,137.47,134.02$, $132.70,129.86,129.58,129.27,128.93,128.18,127.85,124.64,120.68,117.84,113.75 \mathrm{ppm}$; HRMS: calc.for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Se}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 458.9403$, found: 458.9398 .

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products 3,6 and 7

3a
${ }^{1}$ H NMR

${ }^{13}$ C NMR

3b

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR
${ }^{13}$ C NMR
lllll
lllll
N\mp@code{O-%}
N\mp@code{O-%}
N人矢
N人矢

3d
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR
$\underbrace{\text { A }}_{1}$
No. ©
Noico
$\stackrel{\leftrightarrow}{\stackrel{0}{0}} \stackrel{+}{\stackrel{\circ}{1}}$

3e

${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

3h

${ }^{1} \mathrm{H} N \mathrm{NR}$

$\stackrel{\bar{\sigma}}{\stackrel{1}{j}}$

${ }^{13}$ C NMR

3i

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

$\stackrel{\sim}{0}$		¢	$\stackrel{\text { N }}{\text { N }}$	
$\stackrel{9}{-}$		슴		
	$\xrightarrow{-r-r-r-r-5}$			

3j

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR
$\underbrace{\infty}_{i}$

3k
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

へヘヘヘヘNへへへへへべ。
$1 / 111$

${ }^{13}$ C NMR

$\stackrel{N}{N}$

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

$\stackrel{N}{\text { No }}$
$\stackrel{\stackrel{n}{\infty}}{\stackrel{\circ}{\sim}}$

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

30
${ }^{1}$ H NMR

${ }^{13}$ C NMR

$\mathbf{3 q}$
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

3s
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1}$ H NMR

${ }^{13}$ C NMR

3w
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

3x
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

No
$\underset{N}{5}$
N
1

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

3ab
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1}$ H NMR

${ }^{13}$ C NMR

${ }^{1}$ H NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H} N \mathrm{NR}$

${ }^{13}$ C NMR

6b

${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

$6 \mathbf{e}$
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

$\stackrel{\infty}{\stackrel{\infty}{\infty}}$

${ }^{13}$ C NMR

$6 g$
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

6h
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

$6 \mathbf{i}$
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

6j
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

7

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

```
|
    N人゚
```


