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Experimental

1. Synthesis of SSZ-13.
    SSZ-13(10) (CHA, Si/Al = 10) was synthesized via hydrothermal synthesis using a previously reported 
method.S1 NaOH (FUJIFILM Wako Pure Chemical) and Al(OH)3 (Sigma-Aldrich) were dissolved in a 20 
wt% N,N,N-trimethyladamantanammonium hydroxide (TMAdaOH, Sachem) aqueous solution. 
Amorphous silica (Cabosil-M5) was then added to the solution such that the gel composition was 1.0SiO2 
: 0.1Al(OH)3 : 0.2TMAdaOH : 0.2NaOH : 30H2O. The prepared gel was hydrothermally treated at 170 
°C for 5 days by tumbling at 40 rpm. The as-prepared sample was calcined at 600 °C for 6 h. The sample 
was then ion-exchanged using a 2.5 M NH4NO3 aqueous solution at 80 °C for 3 h twice to obtain the 
NH4

+-form sample, which was further converted to the H+-form of SSZ-13 by calcination at 600 °C for 3 
h.

2. Synthesis of high-silica CHA-type aluminosilicates.
Starting gels for high-silica CHA-type aluminosilicates were prepared via the same procedure 

asSSZ-13(10) using TMAdaOH as an OSDA. The Si/Al molar ratio of the gels was varied in the range 
from 50 to 500. Before the hydrothermal treatment, SSZ-13(10) (2 wt% to SiO2) was added to the starting 
gel; the gel was then stirred at room temperature for 24 h. The starting gels were hydrothermally treated 
at 170 °C for 2 days by tumbling at 40 rpm. Afterwards, the ion-exchange procedures were performed in 
the same manner as SSZ-13(10). The obtained samples were designated as CHA(X), where X is the Si/Al 
molar ratio in the starting gel.

3. Characterization.
    The synthesized zeolites were characterized using various techniques. The crystal structure was 
investigated by powder X-ray diffraction (XRD; Ultima IV, Rigaku, Cu K radiation (40 kV, 40 mA)) 
analysis. The Si/Al ratio was determined by inductively coupled plasma atomic emission spectroscopy 
(ICP-AES; SPECTRO ARCOS, AMETEK) measurements. The number of organic-structure-directing 
agents was determined by a thermogravimetry-differential thermal analysis (TG-DTA) measurement 
(RigakuThurmo plus EVO II, Rigaku). The specific surface area and micropore volume were elucidated 
using N2 adsorption–desorption measurements (BELSORP-mini, MicrotracBEL) after pretreatment 
(BELPREP-vac III, MicrotracBEL) of the samples at 400 °C for 1 h under reduced pressure. The 
Brunauer–Emmett–Teller (BET) specific surface area was calculated from the adsorption data in the 
relative pressure (p/p0) range from 0.01 to 0.1. The micropore volume was estimated by the t-plot method. 
Morphological observations were conducted by field-emission scanning electron microscopy (FE-SEM; 
S-5200, Hitachi). Electrospray ionization mass (ESI-MS) spectroscopy was performed in negative-ion 
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mode using a TripleTOF 5600 System (AB SCIEX). ESI-MS spectra were acquired using an ion-spray 
voltage of −4.5 kV, curtain gas pressure of 10 psi, nebulizer gas pressure of 15 psi, interface heater 
temperature of 200 °C, and flow rate of 10 μL min−1. High-resolution 27Al and 29Si MAS NMR spectra 
were recorded on a JEOL ECA-600 spectrometer (14.1 T) equipped with an additional 1 kW power 
amplifier. The chemical shifts of 27Al and 29Si were referenced to AlNH4(SO4)2·12H2O at −0.54 ppm and 
dimethylpolysiloxane at −34.12 ppm, respectively. The samples were spun at 15 kHz using a 4 mm ZrO2 
rotor. The number and strength of Brønsted acid sites were estimated using NH3 temperature-programmed 
desorption (NH3-TPD) measurements, which were performed using a BELCAT (MicrotracBEL) equipped 
with a quadrupole mass spectrometer (Q-MS; BELMass, MicrotracBEL). Before the measurements, each 
sample was pretreated at 500 °C for 30 min under He flow at 30 mL min−1. The temperature range, ramp 
rate, and He flow rate for the TPD program were 100–700 °C, 10 °C min−1, and 30 mL min−1, respectively. 
The pretreated samples were exposed to 10.3 vol% NH3/He gas at 100 °C for 30 min, and then physically 
adsorbed NH3 was removed under flowing He (30 mL min−1) at 100 °C for 30 min. Fourier transform 
infrared (FT-IR) spectra were obtained using a JASCO FT/IR-4600 spectrometer equipped with a 
mercury-cadmium-telluride detector. All spectra were collected as averages of 64 scans with a resolution 
of 4 cm−1. Self-supporting disks of each sample (20 mm diameter, 30 mg) were placed in a quartz cell 
connected to a conventional closed gas-circulation system. The samples were pretreated at 450 °C for 1 h 
under evacuation to remove the adsorbed species, and IR spectra were recorded at 25 °C.

4. Methanol-to-olefins (MTO) reaction.
     The MTO reaction was performed using a fixed-bed reactor connected to an online gas-chromatograph 
(GC-2014, Shimadzu) equipped with a HP-PLOT/Q capillary column and a flame ionization detector. The 
50/80 mesh zeolite pellets without a binder were placed in a 6 mm quartz tubular flow reactor. The 
pretreatment was conducted at 500 °C for 30 min under flowing air (20 mL min−1). After the pretreatment, 
the reactor was cooled to 350 °C and the MTO reaction was started. The pressure of methanol was set at 
5 kPa with Ar gas as the carrier; the weight-to-feed ratio (W/F) for methanol was 68 g h mol−1. The product 
stream was analyzed using a system that automatically injected the product into a gas chromatograph 
connected directly to the outlet of the reactor via a heated transfer line.
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Calculation methods

1. Solid yield for synthesis.
The solid yield was calculated using:

𝑆𝑜𝑙𝑖𝑑 𝑦𝑖𝑒𝑙𝑑 [%] =  
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑙𝑐𝑖𝑛𝑒𝑑 𝑧𝑒𝑜𝑙𝑖𝑡𝑒

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑆𝑖𝑂2 𝑎𝑛𝑑 𝐴𝑙2𝑂3 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑔𝑒𝑙  
× 100

(Eq. S1)

2. Conversion and selectivity in MTO reaction.
The conversion and selectivity were calculated according to Eqs. S2 and S3:

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 [%] = 1 ‒  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 (𝑖𝑛 𝑟𝑒𝑎𝑐𝑡𝑒𝑑 𝑔𝑎𝑠)

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠 (𝑖𝑛 𝑟𝑒𝑎𝑐𝑡𝑒𝑑 𝑔𝑎𝑠) 
× 100

(Eq. S2)

𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 [%]  =  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝑖𝑛 𝑟𝑒𝑎𝑐𝑡𝑒𝑑 𝑔𝑎𝑠) 
× 100

(Eq. S3)
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Table S1 Comparison of Si/Al ratios and synthetic conditions of this work and those of previous studies 
involving synthesis of high-silica CHA-type aluminosilicates.

Authors Si/Al molar 
ratio

Syntheis method Fluoride Seed Publication 
year

Ref.

Zones et al. ≤ 14 Hydrothermal synthesis Not used Not used 1985 [S2]
Díaz-Cabañas et al. ∞ Hydrothermal synthesis Used Not used 1998 [S3]
Zhu et al. ≤ 67 Hydrothermal synthesis Not used Used 2008 [S4]
Wu et al. ≤ 61 Hydrothermal synthesis Not used Not used 2014 [S5]
Kubota et al. ≤ 146 Hydrothermal synthesis Not used Used 2016 [S6]
Zhu et al. ≤ 140 Acid post-treatment – – 2019 [S7]
Li et al. ≤ 42 Steam-assisted crystallization Not used Not used 2019 [S8]
Al Jabri et al. ≤ 182 Dry gel conversion Used Used 2019 [S9]
Osuga et al. ≤ 156 Hydrothermal synthesis Not used Used This work
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Fig. S1 Building units for CHA-type frameworks.S10
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Fig. S2 ESI-MS spectra of liquid phase of starting gels prepared using gel with same composition as that 
used to prepare CHA(200): (a) with seed crystal and (b) without seed crystal. The spectra were normalized 
on the basis of the peak of TMAda+ (m/z = 194). Numbers at the chemical structures indicate their m/z.
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Table S2 Comparison for intensity of ESI-MS spectra of dissolved even numbered-ring species in the starting gels.a

Normalized intensity in ESI-MS spectra (×104)

Starting gels

With seed crystal 6.5 7.7 4.5 1.5 1.1

Without seed crystal 3.3 5.4 2.3 0.3 0.5

aThese values correspond to Fig. S2.
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Fig. S3 XRD patterns for synthesized CHA-type zeolites (as-prepared) with different aging times: (a) 0, 
(b) 3, (c) 6, (d) 12 and (e) 24 h (CHA(300)). The Si/Al ratios were estimated by ICP-AES.
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Fig. S4 N2 adsorption–desorption isotherms for synthesized CHA-type aluminosilicates.
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Fig. S5 (A) 27Al MAS NMR spectra and (B) NH3-TPD profiles for each sample.
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Fig. S6 FT-IR spectra of SSZ-13(10) and CHA(200) at 25 °C.
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Fig. S7 29Si MAS NMR spectra of each sample.



S15

Table S3 Quantitative analysis for 29Si MAS NMR measurements.a

Integrated intensity
Sample

Q4(0Al) Q4(1Al) Q4(2Al) Q3
Q3/Q4

SSZ-13(10) 6.50 1.95 0.41 0.26 0.05

CHA(50) 7.82 0.80 0 0.67 0.08

CHA(100) 8.26 0.42 0 0.72 0.08

CHA(200) 7.55 0.13 0 0.52 0.07

CHA(300) 7.11 0.08 0 0.46 0.06

aExamined via deconvolution of 29Si MAS NMR spectrum shown in Fig. S7.
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Table S4 Catalytic performance of CHA-type aluminosilicates in MTO reaction at initial stage.

Product selectivity (C-atom%)
Samples Conversion

(C-atom%) C2= C3= C4= Over C5s Paraffins

SSZ-13(10) >99 14 23 14 6 43

CHA(50) >99 34 36 14 7 9

CHA(100) >99 37 38 14 7 4

CHA(200) >99 41 38 14 5 2

CHA(300) >99 40 37 13 8 2

Reaction conditions: 100 mg catalyst, 5 vol% methanol in Ar gas, W/FMeOH = 68 g h mol-1, TOS = 10 min.
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