Electronic Supplementary Information

Fluoride-free synthesis of high-silica CHA-type aluminosilicates by seed-assisted aging treatment for starting gel

Ryota Osuga,^{a*} Mizuho Yabushita,^b Takeshi Matsumoto,^c Masato Sawada,^c Toshiyuki Yokoi,^c Kiyoshi Kanie,^{a,d} and Atsushi Muramatsu ^{a,d*}

- a Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- b Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- c Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- d International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan

Author information

Corresponding Authors

*E-mail; ryota.osuga.d4@tohoku.ac.jp (R. O.)

*E-mail; mura@tohoku.ac.jp (A. M.)

Table of Contents

1.	Experimen	ntal	S3
2.	Calculatio	n methods	S5
3.	Table S1	Comparison of Si/Al ratios and synthetic conditions of this work and those of	
		previous studies involving synthesis of high-silica CHA-type aluminosilicates	S6
4.	Figure S1	Building units for CHA-type frameworks	S7
5.	Figure S2	ESI-MS spectra of liquid phase of starting gels	S8
6.	Table S2	Comparison for intensity of ESI-MS spectra	S9
7.	Figure S3	XRD patterns for CHA-type aluminosilicates with different aging times	S10
8.	Figure S4	N2 adsorption-desorption isotherms for synthesized samples	S11
9.	Figure S5	²⁷ Al MAS NMR spectra and NH ₃ -TPD profiles for each sample	S12
10.	Figure S6	FT-IR spectra of SSZ-13(10) and CHA(200).	S13
11.	Figure S7	²⁹ Si MAS NMR spectra for each sample.	S14
12.	Table S3	Quantitative analysis for ²⁹ Si MAS NMR measurements	S15
13.	Table S4	Catalytic performance of CHA-type aluminosilicates in MTO reaction at initial	
		stage.	S16
14.	Supplemen	ntary references	S17

Experimental

1. Synthesis of SSZ-13.

SSZ-13(10) (**CHA**, Si/Al = 10) was synthesized via hydrothermal synthesis using a previously reported method.^{S1} NaOH (FUJIFILM Wako Pure Chemical) and Al(OH)₃ (Sigma-Aldrich) were dissolved in a 20 wt% *N*,*N*,*N*-trimethyladamantanammonium hydroxide (TMAdaOH, Sachem) aqueous solution. Amorphous silica (Cabosil-M5) was then added to the solution such that the gel composition was $1.0SiO_2$: $0.1Al(OH)_3$: 0.2TMAdaOH: 0.2NaOH: $30H_2O$. The prepared gel was hydrothermally treated at 170 °C for 5 days by tumbling at 40 rpm. The as-prepared sample was calcined at 600 °C for 6 h. The sample was then ion-exchanged using a 2.5 M NH₄NO₃ aqueous solution at 80 °C for 3 h twice to obtain the NH₄⁺-form sample, which was further converted to the H⁺-form of SSZ-13 by calcination at 600 °C for 3 h.

2. Synthesis of high-silica CHA-type aluminosilicates.

Starting gels for high-silica CHA-type aluminosilicates were prepared via the same procedure asSSZ-13(10) using TMAdaOH as an OSDA. The Si/Al molar ratio of the gels was varied in the range from 50 to 500. Before the hydrothermal treatment, SSZ-13(10) (2 wt% to SiO₂) was added to the starting gel; the gel was then stirred at room temperature for 24 h. The starting gels were hydrothermally treated at 170 °C for 2 days by tumbling at 40 rpm. Afterwards, the ion-exchange procedures were performed in the same manner as SSZ-13(10). The obtained samples were designated as CHA(*X*), where *X* is the Si/Al molar ratio in the starting gel.

3. Characterization.

The synthesized zeolites were characterized using various techniques. The crystal structure was investigated by powder X-ray diffraction (XRD; Ultima IV, Rigaku, Cu K α radiation (40 kV, 40 mA)) analysis. The Si/Al ratio was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES; SPECTRO ARCOS, AMETEK) measurements. The number of organic-structure-directing agents was determined by a thermogravimetry-differential thermal analysis (TG-DTA) measurement (RigakuThurmo plus EVO II, Rigaku). The specific surface area and micropore volume were elucidated using N₂ adsorption–desorption measurements (BELSORP-mini, MicrotracBEL) after pretreatment (BELPREP-vac III, MicrotracBEL) of the samples at 400 °C for 1 h under reduced pressure. The Brunauer–Emmett–Teller (BET) specific surface area was calculated from the adsorption data in the relative pressure (p/p_0) range from 0.01 to 0.1. The micropore volume was estimated by the *t*-plot method. Morphological observations were conducted by field-emission scanning electron microscopy (FE-SEM; S-5200, Hitachi). Electrospray ionization mass (ESI-MS) spectroscopy was performed in negative-ion

mode using a TripleTOF 5600 System (AB SCIEX). ESI-MS spectra were acquired using an ion-spray voltage of -4.5 kV, curtain gas pressure of 10 psi, nebulizer gas pressure of 15 psi, interface heater temperature of 200 °C, and flow rate of 10 µL min⁻¹. High-resolution ²⁷Al and ²⁹Si MAS NMR spectra were recorded on a JEOL ECA-600 spectrometer (14.1 T) equipped with an additional 1 kW power amplifier. The chemical shifts of ²⁷Al and ²⁹Si were referenced to AlNH₄(SO₄)₂·12H₂O at -0.54 ppm and dimethylpolysiloxane at -34.12 ppm, respectively. The samples were spun at 15 kHz using a 4 mm ZrO₂ rotor. The number and strength of Brønsted acid sites were estimated using NH₃ temperature-programmed desorption (NH₃-TPD) measurements, which were performed using a BELCAT (MicrotracBEL) equipped with a quadrupole mass spectrometer (Q-MS; BELMass, MicrotracBEL). Before the measurements, each sample was pretreated at 500 °C for 30 min under He flow at 30 mL min⁻¹. The temperature range, ramp rate, and He flow rate for the TPD program were 100–700 °C, 10 °C min⁻¹, and 30 mL min⁻¹, respectively. The pretreated samples were exposed to 10.3 vol% NH₃/He gas at 100 °C for 30 min, and then physically adsorbed NH₃ was removed under flowing He (30 mL min⁻¹) at 100 °C for 30 min. Fourier transform infrared (FT-IR) spectra were obtained using a JASCO FT/IR-4600 spectrometer equipped with a mercury-cadmium-telluride detector. All spectra were collected as averages of 64 scans with a resolution of 4 cm⁻¹. Self-supporting disks of each sample (20 mm diameter, 30 mg) were placed in a quartz cell connected to a conventional closed gas-circulation system. The samples were pretreated at 450 °C for 1 h under evacuation to remove the adsorbed species, and IR spectra were recorded at 25 °C.

4. Methanol-to-olefins (MTO) reaction.

The MTO reaction was performed using a fixed-bed reactor connected to an online gas-chromatograph (GC-2014, Shimadzu) equipped with a HP-PLOT/Q capillary column and a flame ionization detector. The 50/80 mesh zeolite pellets without a binder were placed in a 6 mm quartz tubular flow reactor. The pretreatment was conducted at 500 °C for 30 min under flowing air (20 mL min⁻¹). After the pretreatment, the reactor was cooled to 350 °C and the MTO reaction was started. The pressure of methanol was set at 5 kPa with Ar gas as the carrier; the weight-to-feed ratio (*W/F*) for methanol was 68 g h mol⁻¹. The product stream was analyzed using a system that automatically injected the product into a gas chromatograph connected directly to the outlet of the reactor via a heated transfer line.

Calculation methods

1. Solid yield for synthesis.

The solid yield was calculated using:

Solid yield [%] = $\frac{Weight of the calcined zeolite}{Weight of SiO2 and Al2O3 in the starting gel} \times 100$

(Eq. S1)

2. Conversion and selectivity in MTO reaction.

The conversion and selectivity were calculated according to Eqs. S2 and S3:

Conversion of methanol [%] = $1 - \frac{Amount of methanol (in reacted gas)}{Amount of detected compounds (in reacted gas)} \times 100$

(Eq. S2)

$$Product \ selectivity \ [\%] = \frac{Amount \ of \ the \ target \ product}{Amount \ of \ detected \ products \ (in \ reacted \ gas)} \times 100$$

(Eq. S3)

•••	•	• •				
Authors	Si/Al molar	Syntheis method	Fluoride	Seed	Publication	Ref.
	ratio				year	
Zones et al.	≤ 14	Hydrothermal synthesis	Not used	Not used	1985	[S2]
Díaz-Cabañas <i>et al</i> .	∞	Hydrothermal synthesis	Used	Not used	1998	[S3]
Zhu <i>et al</i> .	≤ 67	Hydrothermal synthesis	Not used	Used	2008	[S4]
Wu et al.	≤61	Hydrothermal synthesis	Not used	Not used	2014	[S5]
Kubota <i>et al</i> .	≤ 146	Hydrothermal synthesis	Not used	Used	2016	[S6]
Zhu <i>et al</i> .	≤ 140	Acid post-treatment	-	-	2019	[S7]
Li et al.	≤ 42	Steam-assisted crystallization	Not used	Not used	2019	[S8]
Al Jabri <i>et al</i> .	≤ 182	Dry gel conversion	Used	Used	2019	[S9]
Osuga <i>et al</i> .	≤ 156	Hydrothermal synthesis	Not used	Used	This work	_

Table S1 Comparison of Si/Al ratios and synthetic conditions of this work and those of previous studies involving synthesis of high-silica **CHA**-type aluminosilicates.

Secondary Building Units

Composite Building Units

cha

Fig. S1 Building units for CHA-type frameworks.^{S10}

Fig. S2 ESI-MS spectra of liquid phase of starting gels prepared using gel with same composition as that used to prepare CHA(200): (a) with seed crystal and (b) without seed crystal. The spectra were normalized on the basis of the peak of TMAda⁺ (m/z = 194). Numbers at the chemical structures indicate their m/z.

	Normalized intensity in ESI-MS spectra ($\times 10^4$)						
Starting gels	\Diamond				Ð		
With seed crystal	6.5	7.7	4.5	1.5	1.1		
Without seed crystal	3.3	5.4	2.3	0.3	0.5		

Table S2 Comparison for intensity of ESI-MS spectra of dissolved even numbered-ring species in the starting gels.^a

^aThese values correspond to Fig. S2.

Fig. S3 XRD patterns for synthesized **CHA**-type zeolites (as-prepared) with different aging times: (a) 0, (b) 3, (c) 6, (d) 12 and (e) 24 h (CHA(300)). The Si/Al ratios were estimated by ICP-AES.

Fig. S4 N_2 adsorption-desorption isotherms for synthesized CHA-type aluminosilicates.

Fig. S5 (A) ²⁷Al MAS NMR spectra and (B) NH₃-TPD profiles for each sample.

Fig. S6 FT-IR spectra of SSZ-13(10) and CHA(200) at 25 °C.

Fig. S7 ²⁹Si MAS NMR spectra of each sample.

Sample	Integrated intensity					
Sample	Q4(0Al)	Q ⁴ (1Al)	Q ⁴ (2Al)	Q ³	Q	
SSZ-13(10)	6.50	1.95	0.41	0.26	0.05	
CHA(50)	7.82	0.80	0	0.67	0.08	
CHA(100)	8.26	0.42	0	0.72	0.08	
CHA(200)	7.55	0.13	0	0.52	0.07	
CHA(300)	7.11	0.08	0	0.46	0.06	

Table S3 Quantitative analysis for ²⁹Si MAS NMR measurements.^a

^aExamined via deconvolution of ²⁹Si MAS NMR spectrum shown in Fig. S7.

Samples	Conversion (C-atom%)	Product selectivity (C-atom%)					
		C ₂₌	C ₃₌	C ₄₌	Over C _{5s}	Paraffins	
SSZ-13(10)	>99	14	23	14	6	43	
CHA(50)	>99	34	36	14	7	9	
CHA(100)	>99	37	38	14	7	4	
CHA(200)	>99	41	38	14	5	2	
CHA(300)	>99	40	37	13	8	2	

Table S4 Catalytic performance of CHA-type aluminosilicates in MTO reaction at initial stage.

Reaction conditions: 100 mg catalyst, 5 vol% methanol in Ar gas, $W/F_{MeOH} = 68$ g h mol⁻¹, TOS = 10 min.

Supplementary references

- [S1] R. Osuga, T. Yokoi and J. N. Kondo, J. Catal., 2019, 371, 291–297.
- [S2] S. I. Zones, US Pat., 1985, 4,544,538
- [S3] M. J. Díaz-Cabañas, P. A. Barrett and M. A. Camblor, Chem. Commun., 1998, 1881–1882.
- [S4] Q. Zhu, J. N. Kondo, R. Ohnuma, Y. Kubota, M. Yamaguchi and T. Tatsumi, *Microporous Mesoporous Mater.*, 2008, 112, 153–161.
- [S5] L. Wu and E. J. M. Hensen, *Catal. Today*, 2014, 235, 160–168.
- [S6] Y. Kubota, S. Inagaki and T. Fukuoka, JP Pat., P2016-169118A, 2016.
- [S7] M. Zhu, L. Liang, H. Wang, Y. Liu, T. Wu, F. Zhang, Y. Li, I. Kumakiri, X. Chen and H. Kita, *Ind. Eng. Chem. Res.*, 2019, 58, 14037–14043.
- [S8] Y. Li, R. Liu, Q. Guo, H. Bian, A. Lan, X. Li, P. Han and T. Dou, J. Porous Mater., 2019, 26, 1879– 1888.
- [S9] H. Al Jabri, K. Miyake, K. Ono, M. Nakai, Y. Hirota, Y. Uchida, M. Miyamoto and N. Nishiyama, *Microporous Mesoporous Mater.*, 2019, 278, 322–326.
- [S10] C. Baerlocher and L. B. McCusker, Database of Zeolite Structures, http://www.izastructure.org/databases/, (accessed July 2022).