Electronic Supplementary Information

An Aryl Diimine Cobalt(I) Catalyst for Carbonyl Hydrosilylation

Anuja Sharma, ${ }^{a}$ Sangho So, ${ }^{b, c}$ Jun-Hyeong Kim, ${ }^{b, c}$ Samantha N. MacMillan, ${ }^{d}$ Mu-Hyun Baik,*, ${ }^{, b, c}$ Ryan J. Trovitch*,a
${ }^{a}$ School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
${ }^{b}$ Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
${ }^{c}$ Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
${ }^{d}$ Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States.

*e-mail: mbaik2805@kaist.ac.kr, ryan.trovitch@asu.edu

GENERAL CONSIDERATIONS

Unless otherwise stated, all synthetic manipulations were performed in an MBraun glovebox under an atmosphere of purified nitrogen. Toluene, tetrahydrofuran, diethyl ether and pentane were purchased from Oakwood Chemicals and degassed using a Pure Process Technology solvent system and were dried over $4 \AA$ molecular sieves and potassium before use. Benzene- d_{6} was purchased from Oakwood Chemicals and dried over $4 \AA$ molecular sieves and potassium before use. Chloroform- d was obtained from Oakwood Chemicals and dried over $4 \AA$ molecular sieves before use. Anhydrous CoCl_{2} was used as received from Strem Chemicals. Cobalt powder (-22 mesh) was used as received from Puratronic (Alfa Aesar). Benzaldehyde, acetophenone, diacetyl benzene, p-toluenesulfonic acid and sodium triethylborohydride were obtained from Sigma Aldrich. Phenylsilane, 4-anisaldehyde, 4-methylbenzaldehye, 4cyanobenzaldehyde, furan-2-carbaldehyde, 4-fluorobenzaldehyde, 4-chlorobenzaldehyde, 4bromobenzaldehyde, pyridine-2-carbaldehyde, thiophene-2-carbaldehyde, 3-cyclohexene-1-carbaldehyde, 2-hexenal, cinnamaldehyde, heptanal, 1-naphthaldehyde, 4-methoxyacetophenone, 4methylacetophenone, benzophenone, 4-cyanoacetophenone, 4-fluoroacetophenone, 4chloroacetophenone, 2'-(trifluoromethyl)acetophenone, 3-acetylpyridine, hexanone, cyclohexanone and diisopropylketone were acquired from Oakwood Chemicals and distilled and dried over $4 \AA$ molecular sieves before use. 3-(Diphenylphosphino)-1-propylamine was prepared according to literature procedure. ${ }^{1}$ All NMR spectra were recorded at room temperature on a Varian 400 MHz spectrometer. All ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported relative to $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ using ${ }^{1} \mathrm{H}$ (residual) and ${ }^{13} \mathrm{C}$ chemical shifts of the solvent as secondary standards. ${ }^{19}$ F NMR chemical shifts are reported relative to trifluoroacetic acid using the absolute ${ }^{1} \mathrm{H}$ NMR frequency of an internal $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ standard. ${ }^{31} \mathrm{P}$ NMR chemical shifts are reported relative to $\mathrm{H}_{3} \mathrm{PO}_{4}$ using the absolute ${ }^{1} \mathrm{H}$ NMR frequency of an internal $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ standard.

X-ray Crystallography: Low-temperature X-ray diffraction data for $\mathbf{1}$ and $\mathbf{2}$ were collected on a Rigaku XtaLAB Synergy diffractometer coupled to a Rigaku Hypix detector with $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.54184$ \AA), from a PhotonJet micro-focus X-ray source at 103 and 123 K , respectively. The diffraction images were processed and scaled using the CrysAlisPro software. ${ }^{2}$ The structures were solved through intrinsic phasing using SHELXT ${ }^{3}$ and refined against F^{2} on all data by full-matrix least squares with SHELXL ${ }^{4}$ following established refinement strategies. ${ }^{5}$ All hydrogen atoms bound to carbon were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the Ueq value of the atoms they are linked to (1.5 times for methyl groups). Details of the data quality and a summary of the residual values of the refinements are listed in Tables S1-S11.

COMPOUND CHARACTERIZATION

Preparation of ${ }^{\mathrm{Ph}}{ }^{\mathrm{PPr}}$ ADI-H. In a glovebox, a 100 mL thick-walled glass bomb was charged with $1,3-$ diacetylbenzene ($0.104 \mathrm{~g}, 0.64 \mathrm{mmol}$), p-toluenesulfonic acid ($0.004 \mathrm{~g}, 0.023 \mathrm{mmol}$) and 5 mL of toluene. After stirring the mixture for 10 min , 3-(diphenylphosphino)-1-propylamine ($0.312 \mathrm{~g}, 1.28 \mathrm{mmol}$) and 4 A molecular sieves were added. The bomb was sealed and stirred in an oil bath outside the glovebox at $120^{\circ} \mathrm{C}$ for 3 days. The reaction was subsequently cooled to room temperature, brought inside the glovebox, filtered through Celite, and the solvent was removed in vacuo. The resulting product was obtained as an orange oil in 79% yield ($0.310 \mathrm{~g}, 0.506 \mathrm{mmol}$). Anal. calcd. for $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{P}_{2}$: C, 78.41%; H , 6.91%; N, 4.57%. Found: C, 78.55%; H, 6.75%; N, $3.79 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): 8.62 (s, 1 H , phenyl), 7.93 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $7.52(\mathrm{t}, J=7.0 \mathrm{~Hz}, 8 \mathrm{H}$, phenyl), $7.23(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl), $7.08\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H}\right.$, phenyl), $3.33\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}_{2}\right), 2.26\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}_{2}\right), 2.03(\mathrm{~m}, J$ $\left.=8.0 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}_{2}\right), 1.80\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz , benzene- d_{6}): $164.10(\mathrm{~s},-\mathrm{C}=\mathrm{N}), 141.28(\mathrm{~s}$, phenyl), 139.89 (s, phenyl), 137.59 (s , phenyl), 133.30 (s , phenyl), 133.13 (s , phenyl), 128.76 (s, phenyl), 128.70 (s, phenyl), 126.76 (s, phenyl), 53.02 ($\mathrm{s},-\mathrm{CH}_{2}$), $28.02\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 26.53\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 14.93\left(\mathrm{~s},-\mathrm{CH}_{3}\right)$. ${ }^{31} \mathrm{P}$ NMR (162 MHz , benzene- d_{6}): -17.19 ($\mathrm{s}, \mathrm{Pr}_{\mathrm{PPh}}^{2}$).

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of ${ }^{\text {Ph}}{ }^{2 P P r} A D I-H$ in benzene $-d_{6}$ at $25{ }^{\circ} \mathrm{C}$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of ${ }^{\mathrm{Ph} P \mathrm{PPr}} \mathrm{ADI}-\mathrm{H}$ in benzene- d_{6} at $25{ }^{\circ} \mathrm{C}$.

Figure S3. ${ }^{31} \mathrm{P}$ NMR spectrum of ${ }^{\mathrm{Ph} P \mathrm{Pr}} \mathrm{ADI}-\mathrm{H}$ in benzene- d_{6} at $25{ }^{\circ} \mathrm{C}$.

Preparation of $\left[\left({ }^{\mathrm{Ph}_{2} \mathbf{P P r}} \mathbf{A D I}\right) \mathbf{C o C l}\right]\left[\mathbf{C o}_{2} \mathbf{C l}_{6}\right]_{0.5}$ (1). In a nitrogen-filled glovebox, a 100 mL thick-walled glass bomb was charged with $\mathrm{CoCl}_{2}(0.570 \mathrm{~g}, 4.39 \mathrm{mmol})$ and ${ }^{\mathrm{Ph}}{ }_{2} \mathrm{PPr}$ ADI-H ($\left.1.042 \mathrm{~g}, 2.19 \mathrm{mmol}\right)$ in approximately 20 mL of toluene. The mixture turned green over the next 10 min . The bomb was sealed, taken outside the glovebox, and heated in an oil bath at $80^{\circ} \mathrm{C}$. After stirring for 12 h , a green solid precipitated from the solution. The mixture was filtered and the residual solid collected on the top of the frit was washed with 10 mL of toluene to remove any unreacted ligand. The product was allowed to dry under vacuum to yield a dark green solid identified as 1 ($0.890 \mathrm{~g}, 1.024 \mathrm{mmol}, 47 \%$). Single crystals were obtained from a concentrated solution of acetone at room temperature. Anal. calcd. for $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{Cl}_{4} \mathrm{Co}_{2} \mathrm{~N}_{2} \mathrm{P}_{2}$: C, $55.13 \% ;$ H, 4.74%; N, 3.21%. Found: C, $55.52 \% ;$ H, $5.59 \% ;$ N, 3.40%. Magnetic susceptibility (Evans NMR method, $25{ }^{\circ} \mathrm{C}$): $\mu_{\text {eff }}=4.1 \mu_{\mathrm{B}} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $13.45(2388 \mathrm{~Hz}), 12.75(3971$ $\mathrm{Hz}), 7.38(6881 \mathrm{~Hz}), 7.11(38 \mathrm{~Hz}), 6.77(375 \mathrm{~Hz}), 6.18(64 \mathrm{~Hz}), 5.45(5118 \mathrm{~Hz}), 5.07(1360 \mathrm{~Hz}), 3.40$ $(134 \mathrm{~Hz}), 3.11(134 \mathrm{~Hz}), 1.47(1199 \mathrm{~Hz}), 1.18(262 \mathrm{~Hz}), 0.40(3393 \mathrm{~Hz}),-0.91(4187 \mathrm{~Hz}),-1.69(88 \mathrm{~Hz})$. ${ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) 20.13\left(\mathrm{~s}, \mathrm{Pr} P \mathrm{Ph}_{2}\right)$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in chloroform- d at $25^{\circ} \mathrm{C}$.

Figure S5. ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{1}$ in chloroform- d at $25{ }^{\circ} \mathrm{C}$.

Preparation of $\left({ }^{\mathrm{Ph}}{ }_{2} \mathrm{PPr} \mathbf{A D I}\right) \mathbf{C o}$ (2). In a nitrogen-filled glovebox, a 20 mL scintillation vial was filled with $\mathbf{1}(0.183 \mathrm{~g}, 0.210 \mathrm{mmol})$ in approximately 5 mL of toluene and cooled in a liquid nitrogen-cooled cold well for 20 min . Another 20 mL scintillation vial containing a 1.0 M solution of $\mathrm{NaEt}_{3} \mathrm{BH}(0.9 \mathrm{~mL}, 0.882$ mmol) in toluene was also cooled in the cold well for 20 min . The cold solution of $\mathrm{NaEt}_{3} \mathrm{BH}$ was then added dropwise to the vial containing the suspension of $\mathbf{1}$ in toluene. The color changed from green to orange within 10 min . After stirring for 4 h , the reaction mixture was filtered through Celite to remove the NaCl byproduct and the solvent was removed from the filtrate under vacuum. The solid residue left was washed with pentane ($2 \times 3 \mathrm{~mL}$) and then dried to obtain $(0.063 \mathrm{~g}, 0.0934 \mathrm{mmol}, 45 \%)$ of a dark orange solid identified as $\mathbf{2}$. Single crystals were obtained from a concentrated toluene solution layered with diethyl ether at room temperature. Anal. calcd. for $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{CoN}_{2} \mathrm{P}_{2}$: $\mathrm{C}, 71.64 \% ; \mathrm{H}, 6.16 \% ; \mathrm{N}, 4.18 \%$. Found: C, $71.64 \% \mathrm{H}, 6.25 \% \mathrm{~N}, 3.45 \%{ }^{1} \mathrm{H}$ NMR (500 MHz , benzene- d_{6}): $8.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $7.50(\mathrm{q}, J=7.3 \mathrm{~Hz}, 5 \mathrm{H}$, phenyl), $7.07(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl), $7.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 5 \mathrm{H}$, phenyl), 6.81 (d, $J=3.6 \mathrm{~Hz}, 5 \mathrm{H}$, phenyl), 6.78 ($\mathrm{s}, 5 \mathrm{H}$, phenyl), $3.70\left(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 3.02(\mathrm{t}, J$ $\left.=11.2 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.27\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2}\right), 1.81\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.12\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(126 \mathrm{MHz}$, benzene $-d_{6}$): 159.42 ($\mathrm{s},-C=\mathrm{N}$), 144.00 (s , phenyl), 143.21 (s, phenyl), 138.06 (s, phenyl), 134.08 (s , phenyl), 131.40 (s, phenyl), 127.58 (s , phenyl), 121.10 (s , phenyl), 115.66 (s , phenyl), 54.48 ($\mathrm{s},-\mathrm{CH}_{2}$), $29.14\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 27.62\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 14.68\left(\mathrm{~s},-C \mathrm{H}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (162 MHz , benzene- d_{6}): $33.87(\mathrm{~s}, \mathrm{Co}-P)$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in benzene $-d_{6}$ at $25^{\circ} \mathrm{C}$.

Figure S7. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in benzene- d_{6} at $25{ }^{\circ} \mathrm{C}$.

Figure S8. ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

CRYSTALLOGRAPHIC DATA

Table S1. Crystallographic Data for $\left[\left({ }^{\mathrm{Ph}}{ }^{\mathrm{PPr}} \mathrm{ADI}\right) \mathrm{CoCl}\right]\left[\mathrm{Co}_{2} \mathrm{Cl}_{6}\right]_{0.5}$ (1) and $\left({ }^{\mathrm{Ph}}{ }^{P P r} \mathrm{ADI}\right) \mathrm{Co}(\mathbf{2})$.

	1	2
chemical formula	$\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{Cl}_{4} \mathrm{Co}_{2} \mathrm{~N}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{CoN}_{2} \mathrm{P}_{2}$
formula weight	871.35	670.62
crystal dimensions	$0.138 \times 0.068 \times 0.06$	$0.323 \times 0.135 \times 0.082$
crystal system	monoclinic	monoclinic
space group	P 1 21/n 1	P 1 21/n 1
a (A)	14.21000(10)	17.46782(6)
b (A)	15.25040(10)	20.13749(9)
c (A)	17.82880(10)	19.21388(7)
α (deg)	90	90
β (deg)	100.2250(10)	92.7683(3)
γ (deg)	90	90
$\mathrm{V}\left(\AA^{3}\right)$	3802.28(4)	6750.75(4)
Z	4	8
T (${ }^{\circ} \mathrm{C}$)	103(6)	123.00(10)
$\rho_{\text {calcd }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.522	1.320
$\mu\left(\mathrm{mm}^{-1}\right)$	10.466	5.111
reflections collected	50524	108237
data/restraints/parameters	7755/0/453	14138/0/815
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0413	0.0309
wR_{2} (all data)	0.1173	0.0827
Goodness-of-fit	1.058	1.025
Largest peak, hole (e \AA^{-3})	0.665, -0.405	0.287, -0.476

Figure S9. The molecular structure of $\mathbf{1}$ displayed at 30% probability ellipsoids. Hydrogen atoms are omitted for clarity. Atoms with labels ending in "A" were generated by symmetry to show the entire $\mathrm{Co}_{2} \mathrm{Cl}_{6}$ dianion and highlight the tetrahedral geometry about $\mathrm{Co}(2)$.

Table S2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for $\mathbf{1}$. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	Z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Co}(1)$	5128(1)	4468(1)	2946(1)	24(1)
$\mathrm{Cl}(1)$	5677(1)	4167(1)	4231(1)	33(1)
$\mathrm{P}(1)$	6006(1)	5701(1)	3167(1)	27(1)
P (2)	4343(1)	3182(1)	2937(1)	26(1)
N(1)	4084(2)	5285(1)	3045(1)	28(1)
N(2)	6023(2)	3723(1)	2499(1)	28(1)
C(1)	2862(2)	6302(2)	2346(2)	38(1)
C(2)	3599(2)	5597(2)	2412(2)	30(1)
C(3)	3883(2)	5214(2)	1735(1)	30(1)
C(4)	3468(2)	5301(2)	966(2)	36(1)
C(5)	3862(2)	4837(2)	424(2)	39(1)
C(6)	4666(2)	4304(2)	626(2)	35(1)
C(7)	5082(2)	4216(2)	1393(1)	29(1)
C(8)	5866(2)	3664(2)	1756(2)	31(1)
C(9)	6383(2)	3062(2)	1299(2)	41(1)
C(10)	4669(2)	4666(2)	1936(1)	26(1)
C(11)	3980(2)	5667(2)	3784(2)	32(1)
C(12)	4613(2)	6485(2)	3931(2)	34(1)
C(13)	5671(2)	6278(2)	3987(1)	34(1)
C(14)	7293(2)	5520(2)	3438(2)	33(1)
C(15)	7842(2)	5382(2)	2874(2)	42(1)
C(16)	8813(2)	5244(2)	3069(2)	51(1)
C(17)	9244(2)	5226(2)	3820(2)	52(1)
C(18)	8712(3)	5337(3)	4380(2)	60(1)
C(19)	7735(2)	5487(2)	4195(2)	47(1)
C(20)	5915(2)	6533(2)	2417(1)	31(1)
C(21)	5720(2)	7409(2)	2562(2)	36(1)
C(22)	5679(2)	8037(2)	1997(2)	44(1)
C(23)	5852(2)	7811(2)	1284(2)	45(1)
C(24)	6054(2)	6952(2)	1129(2)	43(1)
C(25)	6063(2)	6309(2)	1687(2)	38(1)
C(26)	6669(2)	3114(2)	2972(2)	34(1)
C(27)	6139(2)	2254(2)	3047(2)	36(1)
C(28)	5197(2)	2341(2)	3355(2)	32(1)
C(29)	3762(2)	2743(2)	2010(1)	29(1)
C(30)	4058(2)	1960(2)	1725(2)	37(1)
C(31)	3599(2)	1650(2)	1015(2)	46(1)
C(32)	2852(2)	2099(2)	590(2)	43(1)
C(33)	2552(2)	2874(2)	874(2)	41(1)
C(34)	2998(2)	3195(2)	1577(2)	36(1)
C(35)	3398(2)	3149(2)	3515(2)	30(1)
C(36)	2593(2)	3681(2)	3319(2)	37(1)
C(37)	1836(2)	3607(2)	3709(2)	42(1)
C(38)	1876(2)	3020(2)	4306(2)	40(1)
C(39)	2683(2)	2516(2)	4521(2)	36(1)
C(40)	3445(2)	2576(2)	4128(1)	33(1)
$\mathrm{Co}(2)$	4724(1)	187(1)	5837(1)	36(1)
$\mathrm{Cl}(2)$	5772(1)	95(1)	6927(1)	43(1)
$\mathrm{Cl}(3)$	5332(1)	1044(1)	4954(1)	43(1)
Cl(4)	3267(1)	563(1)	6016(1)	62(1)

Table S3. Bond lengths (\AA) determined for 1.

$\mathrm{Co}(1)-\mathrm{Cl}(1)$	2.3320(7)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.370(6)
$\mathrm{Co}(1)-\mathrm{P}(1)$	2.2521(7)	C(17)-C(18)	1.366(6)
$\mathrm{Co}(1)-\mathrm{P}(2)$	2.2545(7)	C(18)-C(19)	$1.388(5)$
$\mathrm{Co}(1)-\mathrm{N}(1)$	1.969(2)	$\mathrm{C}(20)-\mathrm{C}(21)$	1.398(4)
$\mathrm{Co}(1)-\mathrm{N}(2)$	1.975(2)	$\mathrm{C}(20)-\mathrm{C}(25)$	1.397(4)
$\mathrm{Co}(1)-\mathrm{C}(10)$	1.828(2)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.382(4)
$\mathrm{P}(1)-\mathrm{C}(13)$	1.839(3)	$\mathrm{C}(22)$-C(23)	1.381(5)
$\mathrm{P}(1)-\mathrm{C}(14)$	1.828(3)	C(23)-C(24)	$1.378(5)$
$\mathrm{P}(1)-\mathrm{C}(20)$	1.832(3)	C(24)-C(25)	1.396(4)
$\mathrm{P}(2)-\mathrm{C}(28)$	1.832(3)	C(26)-C(27)	1.530(4)
$\mathrm{P}(2)-\mathrm{C}(29)$	1.837(3)	C(27)-C(28)	1.540(4)
$\mathrm{P}(2)-\mathrm{C}(35)$	1.833(3)	C(29)-C(30)	1.393(4)
$\mathrm{N}(1)-\mathrm{C}(2)$	1.303(3)	C(29)-C(34)	1.396(4)
$\mathrm{N}(1)-\mathrm{C}(11)$	1.473(3)	$\mathrm{C}(30)-\mathrm{C}(31)$	1.398(4)
$\mathrm{N}(2)-\mathrm{C}(8)$	1.307(3)	$\mathrm{C}(31)-\mathrm{C}(32)$	1.373(5)
$\mathrm{N}(2)-\mathrm{C}(26)$	1.463(3)	C(32)-C(33)	1.382(5)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.490(4)	C(33)-C(34)	1.390(4)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.461(4)	C(35)-C(36)	1.396(4)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.400(4)	C(35)-C(40)	1.392(4)
$\mathrm{C}(3)-\mathrm{C}(10)$	1.389(4)	C(36)-C(37)	1.386(4)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.393(4)	C(37)-C(38)	1.383(4)
C(5)-C(6)	1.395(4)	C(38)-C(39)	1.377(4)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.397(4)	C(39)-C(40)	1.393(4)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.453(4)	$\mathrm{Co}(2)-\mathrm{Cl}(2)$	2.2333(8)
$\mathrm{C}(7)-\mathrm{C}(10)$	1.397(3)	$\mathrm{Co}(2)-\mathrm{Cl}(3)$	2.3269 (8)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.503(4)	$\mathrm{Co}(2)-\mathrm{Cl}(3 \mathrm{~A})$	2.3423 (8)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.532(4)	$\mathrm{Co}(2)-\mathrm{Cl}(4)$	2.2252(9)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.523(4)		
$\mathrm{C}(14)-\mathrm{C}(15)$	1.394(4)	Symmetry transformations used to generate equivalent "A" atoms: $-x+1,-y,-z+1$	
C(14)-C(19)	1.384(4)		
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.378(5)$		

Table S4. Angles $\left({ }^{\circ}\right)$ determined for 1.

$\mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	85.03(3)
$\mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{P}(2)$	170.14(3)
$\mathrm{P}(2)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	85.10(2)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	99.31(6)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{P}(1)$	81.85(6)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{P}(2)$	99.87(6)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(2)$	161.70(9)
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	98.98(7)
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{P}(1)$	100.09(6)
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{P}(2)$	81.36(6)
$\mathrm{C}(10)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	177.77(8)
$\mathrm{C}(10)-\mathrm{Co}(1)-\mathrm{P}(1)$	97.19(8)
$\mathrm{C}(10)-\mathrm{Co}(1)-\mathrm{P}(2)$	92.68(8)
$\mathrm{C}(10)-\mathrm{Co}(1)-\mathrm{N}(1)$	80.87(10)
$\mathrm{C}(10)-\mathrm{Co}(1)-\mathrm{N}(2)$	80.84(10)
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{Co}(1)$	109.02(9)
$\mathrm{C}(14)-\mathrm{P}(1)-\mathrm{Co}(1)$	114.64(8)
$\mathrm{C}(14)-\mathrm{P}(1)-\mathrm{C}(13)$	104.48(13)
$\mathrm{C}(14)-\mathrm{P}(1)-\mathrm{C}(20)$	103.59(12)
$\mathrm{C}(20)-\mathrm{P}(1)-\mathrm{Co}(1)$	119.01(8)
$\mathrm{C}(20)-\mathrm{P}(1)-\mathrm{C}(13)$	104.75(12)
$\mathrm{C}(28)-\mathrm{P}(2)-\mathrm{Co}(1)$	108.37(9)
$\mathrm{C}(28)-\mathrm{P}(2)-\mathrm{C}(29)$	105.68(12)
$\mathrm{C}(28)-\mathrm{P}(2)-\mathrm{C}(35)$	104.49(12)
$\mathrm{C}(29)-\mathrm{P}(2)-\mathrm{Co}(1)$	117.79(8)
$\mathrm{C}(35)-\mathrm{P}(2)-\mathrm{Co}(1)$	115.54(8)
$\mathrm{C}(35)-\mathrm{P}(2)-\mathrm{C}(29)$	103.79(12)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{Co}(1)$	116.41(17)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(11)$	120.6(2)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{Co}(1)$	121.86(17)
$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{Co}(1)$	116.22(18)
$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(26)$	121.1(2)
$\mathrm{C}(26)-\mathrm{N}(2)-\mathrm{Co}(1)$	121.07(17)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	126.0(2)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112.8(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.1(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	129.9(3)
$\mathrm{C}(10)-\mathrm{C}(3)-\mathrm{C}(2)$	110.9(2)
$\mathrm{C}(10)-\mathrm{C}(3)-\mathrm{C}(4)$	119.2(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	118.7(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.8(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	119.6(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	130.5(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$	118.2(2)
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(8)$	111.1(2)
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	113.0(2)
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	125.4(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	121.5(2)
$\mathrm{C}(3)-\mathrm{C}(10)-\mathrm{Co}(1)$	118.85(18)
$\mathrm{C}(3)-\mathrm{C}(10)-\mathrm{C}(7)$	122.3(2)
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{Co}(1)$	118.70(19)

$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	109.0(2)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	112.7(2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{P}(1)$	116.02(18)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{P}(1)$	119.6(2)
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{P}(1)$	121.5(2)
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)$	118.8(3)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	120.3(3)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	120.3(3)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	120.1(3)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	120.4(3)
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	120.0(3)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{P}(1)$	121.2(2)
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{P}(1)$	120.5(2)
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(21)$	118.3(2)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	120.7(3)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	120.4(3)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	119.9(3)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	120.0(3)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(20)$	120.5(3)
$\mathrm{N}(2)-\mathrm{C}(26)-\mathrm{C}(27)$	109.1(2)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	115.4(2)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{P}(2)$	118.08(18)
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{P}(2)$	121.6(2)
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(34)$	118.5(2)
$\mathrm{C}(34)-\mathrm{C}(29)-\mathrm{P}(2)$	119.9(2)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	119.8(3)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$	121.5(3)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	118.9(3)
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	120.7(3)
C(33)-C(34)-C(29)	120.7(3)
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{P}(2)$	119.5(2)
$\mathrm{C}(40)-\mathrm{C}(35)-\mathrm{P}(2)$	121.4(2)
$\mathrm{C}(40)-\mathrm{C}(35)-\mathrm{C}(36)$	119.0(2)
C(37)-C(36)-C(35)	120.2(3)
C(38)-C(37)-C(36)	120.6(3)
C(39)-C(38)-C(37)	119.6(3)
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	120.5(3)
C(35)-C(40)-C(39)	120.2(3)
$\mathrm{Cl}(2)-\mathrm{Co}(2)-\mathrm{Cl}(3 \mathrm{~A})$	114.82(3)
$\mathrm{Cl}(2)-\mathrm{Co}(2)-\mathrm{Cl}(3)$	110.68(3)
$\mathrm{Cl}(3)-\mathrm{Co}(2)-\mathrm{Cl}(3 \mathrm{~A})$	91.14(3)
$\mathrm{Cl}(4)-\mathrm{Co}(2)-\mathrm{Cl}(2)$	112.68(4)
$\mathrm{Cl}(4)-\mathrm{Co}(2)-\mathrm{Cl}(3 \mathrm{~A})$	111.12(4)
$\mathrm{Cl}(4)-\mathrm{Co}(2)-\mathrm{Cl}(3)$	114.76(4)
$\mathrm{Co}(2)-\mathrm{Cl}(3)-\mathrm{Co}(2 \mathrm{~A})$	88.86(3)

[^0]Table S5. Anisotropic displacement parameters ($\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathrm{U}^{11}+\ldots \quad+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}\right]$.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Co}(1)$	29(1)	21(1)	23(1)	0 (1)	5(1)	-1(1)
$\mathrm{Cl}(1)$	43(1)	30(1)	24(1)	2(1)	2(1)	-1(1)
$\mathrm{P}(1)$	34(1)	23(1)	24(1)	-2(1)	4(1)	-3(1)
$\mathrm{P}(2)$	29(1)	22(1)	27(1)	2(1)	5(1)	$0(1)$
$\mathrm{N}(1)$	34(1)	22(1)	27(1)	1(1)	8(1)	1(1)
$\mathrm{N}(2)$	28(1)	24(1)	32(1)	-2(1)	6(1)	-2(1)
C(1)	43(2)	32(1)	40(1)	4(1)	8(1)	8(1)
C(2)	35(1)	22(1)	33(1)	2(1)	8(1)	0 (1)
C(3)	38(1)	24(1)	29(1)	2(1)	6(1)	-2(1)
C(4)	43(2)	32(1)	31(1)	6 (1)	2(1)	2(1)
C(5)	51(2)	40(2)	25(1)	3(1)	2(1)	-5(1)
C(6)	46(2)	34(1)	27(1)	-3(1)	10(1)	-5(1)
C(7)	35(1)	25(1)	27(1)	-4(1)	7(1)	-6(1)
C (8)	35(1)	26(1)	33(1)	-4(1)	10(1)	-5(1)
C(9)	44(2)	40(2)	42(2)	-7(1)	17(1)	0 (1)
$\mathrm{C}(10)$	32(1)	20(1)	26(1)	0(1)	8(1)	-5(1)
$\mathrm{C}(11)$	41(1)	30(1)	29(1)	-2(1)	12(1)	1(1)
$\mathrm{C}(12)$	49(2)	26(1)	30(1)	-3(1)	13(1)	2(1)
C (13)	46(2)	28(1)	25(1)	-4(1)	6(1)	-4(1)
C(14)	37(1)	23(1)	37(1)	-2(1)	3(1)	-3(1)
C (15)	44(2)	39(2)	44(2)	9(1)	13(1)	4(1)
C(16)	46(2)	37(2)	74(2)	15(2)	21(2)	4(1)
$\mathrm{C}(17)$	36(2)	36(2)	83(3)	-2(2)	2(2)	$0(1)$
C (18)	53(2)	60(2)	58(2)	-15(2)	-16(2)	11(2)
C(19)	46(2)	52(2)	40(2)	-9(1)	1(1)	5(1)
C(20)	34(1)	28(1)	31(1)	$0(1)$	3(1)	-6(1)
C(21)	39(1)	30(1)	41(1)	3(1)	10(1)	-2(1)
C(22)	42(2)	34(2)	56(2)	11(1)	11(1)	3(1)
C(23)	41(2)	44(2)	45(2)	18(1)	-2(1)	-9(1)
C(24)	51(2)	49(2)	28(1)	4(1)	2(1)	-19(1)
C(25)	49(2)	31(1)	32(1)	-1(1)	5(1)	-12(1)
C(26)	28(1)	35(1)	39(1)	-1(1)	4(1)	6(1)
C(27)	37(1)	28(1)	42(1)	2(1)	7(1)	7(1)
C(28)	38(1)	23(1)	34(1)	3(1)	4(1)	1(1)
C(29)	32(1)	26(1)	30(1)	3(1)	8(1)	-4(1)
C(30)	39(1)	37(1)	35(1)	-3(1)	$6(1)$	3(1)
C(31)	50(2)	47(2)	40(2)	-14(1)	9(1)	4(1)
C(32)	42(2)	51(2)	34(1)	-4(1)	5(1)	-10(1)
C(33)	39(2)	41(2)	38(1)	6 (1)	-3(1)	-5(1)
C(34)	40(1)	26(1)	38(1)	1(1)	1(1)	-3(1)
C(35)	35(1)	23(1)	31(1)	-2(1)	6(1)	-4(1)
C(36)	39(1)	32(1)	42(1)	5(1)	12(1)	1(1)
C(37)	37(2)	41(2)	50(2)	1(1)	15(1)	3(1)
C(38)	41(2)	43(2)	39(1)	-5(1)	15(1)	-6(1)
C(39)	44(2)	38(1)	28(1)	-4(1)	$9(1)$	-9(1)
$\mathrm{C}(40)$	37(1)	32(1)	28(1)	-1(1)	3(1)	-4(1)
$\mathrm{Co}(2)$	38(1)	39(1)	31(1)	3(1)	2(1)	5(1)
$\mathrm{Cl}(2)$	42(1)	50(1)	34(1)	2(1)	-2(1)	2(1)
$\mathrm{Cl}(3)$	53(1)	34(1)	38(1)	5(1)	2(1)	-3(1)
Cl(4)	44(1)	97(1)	46(1)	-1(1)	5(1)	20(1)

Table S6. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1}$.

	X	y	Z	U(eq)
H(1A)	2763	6468	2845	57
H(1B)	2272	6090	2054	57
H(1C)	3076	6802	2095	57
H(4)	2940	5661	820	43
H(5)	3582	4884	-87	47
H(6)	4922	4010	252	42
H(9A)	7007	2934	1583	61
$\mathrm{H}(9 \mathrm{~B})$	6444	3340	827	61
H(9C)	6028	2527	1195	61
H(11A)	4170	5242	4188	39
H(11B)	3317	5824	3779	39
H(12A)	4421	6901	3521	41
H(12B)	4513	6758	4402	41
H(13A)	5874	5924	4439	40
H(13B)	6025	6824	4058	40
H(15)	7551	5383	2364	50
H(16)	9177	5162	2690	61
H(17)	9901	5139	3949	63
H(18)	9006	5311	4889	72
H(19)	7378	5566	4579	57
H(21)	5616	7572	3043	43
H(22)	5534	8614	2098	52
H(23)	5833	8237	909	54
H(24)	6184	6802	652	52
H(25)	6168	5726	1572	45
H(26A)	6883	3367	3472	41
H(26B)	7225	3004	2740	41
H(27A)	6563	1866	3382	43
H(27B)	6002	1976	2550	43
H(28A)	5358	2452	3898	38
H(28B)	4874	1778	3291	38
H(30)	4560	1644	2005	44
H(31)	3804	1128	828	55
H(32)	2553	1886	119	51
H(33)	2046	3183	592	49
H(34)	2786	3716	1761	43
H(36)	2564	4086	2926	44
H(37)	1296	3956	3569	50
H(38)	1361	2966	4560	48
H(39)	2720	2133	4931	44
$\underline{\mathrm{H}} 40$)	3987	2233	4277	39

Figure S10. The molecular structure of $\mathbf{2}$ displayed at 30% probability ellipsoids. Two unique molecules (A and B) were located in the asymmetric unit. Hydrogen atoms are omitted for clarity.

Table S7. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 2. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	y	Z	U(eq)
Co (1A)	4228(1)	3312(1)	2525(1)	18(1)
$\mathrm{P}(1 \mathrm{~A})$	4870(1)	4258(1)	2557(1)	20(1)
$\mathrm{P}(2 \mathrm{~A})$	3572(1)	3327(1)	1516(1)	20(1)
N(1A)	3526(1)	3687(1)	3185(1)	28(1)
$\mathrm{N}(2 \mathrm{~A})$	4924(1)	2681(1)	2121(1)	20(1)
C(1A)	2992(1)	3604(1)	4372(1)	47(1)
C(2A)	3432(1)	3354(1)	3770(1)	32(1)
C(3A)	3808(1)	2724(1)	3780(1)	31(1)
C(4A)	3798(1)	2203(1)	4266(1)	41(1)
C(5A)	4165(1)	1612(1)	4128(1)	43(1)
C(6A)	4567(1)	1520(1)	3527(1)	36(1)
C(7A)	4606(1)	2043(1)	3051(1)	26(1)
C(8A)	5005(1)	2090(1)	2416(1)	24(1)
C(9A)	5466(1)	1529(1)	2134(1)	33(1)
C(10A)	4219(1)	2643(1)	3169(1)	24(1)
C(11A)	3138(1)	4328(1)	3088(1)	36(1)
C (12A)	3675(1)	4919(1)	3181(1)	37(1)
C(13A)	4231(1)	4989(1)	2596(1)	32(1)
C(14A)	5441(1)	4410(1)	3377(1)	23(1)
C(15A)	5878(1)	4986(1)	3478(1)	28(1)
C(16A)	6243(1)	5125(1)	4119(1)	35(1)
C(17A)	6166(1)	4691(1)	4671(1)	38(1)
C(18A)	5731(1)	4118(1)	4579(1)	33(1)
C(19A)	5373(1)	3975(1)	3933(1)	26(1)
C(20A)	5542(1)	4545(1)	1917(1)	25(1)
C(21A)	6307(1)	4348(1)	1963(1)	28(1)
$\mathrm{C}(22 \mathrm{~A})$	6809(1)	4537(1)	1461(1)	35(1)
C(23A)	6551(1)	4930(1)	905(1)	43(1)
C(24A)	5794(1)	5122(1)	846(1)	48(1)
C(25A)	5291(1)	4931(1)	1345(1)	37(1)
C(26A)	5317(1)	2814(1)	1477(1)	24(1)
C(27A)	4783(1)	2768(1)	824(1)	28(1)
C(28A)	4191(1)	3332(1)	765(1)	27(1)
C(29A)	3008(1)	2572(1)	1319(1)	22(1)
C(30A)	2642(1)	2471(1)	666(1)	29(1)
C(31A)	2192(1)	1919(1)	530(1)	31(1)
C(32A)	2083(1)	1469(1)	1054(1)	42(1)
C(33A)	2453(1)	1557(1)	1705(1)	55(1)
C(34A)	2918(1)	2105(1)	1834(1)	37(1)
C(35A)	2828(1)	3941(1)	1283(1)	28(1)
C(36A)	2956(1)	4501(1)	883(1)	37(1)
C(37A)	2375(1)	4975(1)	776(1)	50(1)
C(38A)	1684(1)	4902(1)	1074(1)	54(1)
C(39A)	1551(1)	4352(1)	1480(1)	48(1)
C(40A)	2115(1)	3872(1)	1578(1)	36(1)
Co (1B)	5832(1)	8392(1)	2553(1)	16(1)
$\mathrm{P}(1 \mathrm{~B})$	5135(1)	8322(1)	1569(1)	21(1)
P (2B)	6537(1)	7482(1)	2642(1)	17(1)
N(1B)	6497(1)	9022(1)	2096(1)	20(1)
$\mathrm{N}(2 \mathrm{~B})$	5162(1)	8023(1)	3241(1)	18(1)
C(1B)	7018(1)	10183(1)	2074(1)	28(1)

C(2B)	$6585(1)$	$9616(1)$	$2382(1)$	$21(1)$
C(3B)	$6218(1)$	$9672(1)$	$3033(1)$	$19(1)$
C(4B)	$6222(1)$	$10193(1)$	$3513(1)$	$24(1)$
C(5B)	$5848(1)$	$10114(1)$	$4133(1)$	$26(1)$
C(6B)	$5450(1)$	$9531(1)$	$4276(1)$	$24(1)$
C(7B)	$5430(1)$	$9011(1)$	$3796(1)$	$20(1)$
C(8B)	$5054(1)$	$8375(1)$	$3809(1)$	$20(1)$
C(9B)	$4583(1)$	$8151(1)$	$4402(1)$	$28(1)$
C(10B)	$5826(1)$	$9076(1)$	$3173(1)$	$18(1)$
C(11B)	$6854(1)$	$8884(1)$	$1434(1)$	$24(1)$
C(12B)	$6284(1)$	$8887(1)$	$802(1)$	$29(1)$
C(13B)	$5722(1)$	$8303(1)$	$796(1)$	$30(1)$
C(14B)	$4546(1)$	$9063(1)$	$1353(1)$	$27(1)$
C(15B)	$4500(1)$	$9574(1)$	$1831(1)$	$32(1)$
C(16B)	$4075(1)$	$10145(1)$	$1670(1)$	$41(1)$
C(17B)	$3696(1)$	$10210(1)$	$1024(1)$	$46(1)$
C(18B)	$3739(1)$	$9705(1)$	$542(1)$	$48(1)$
C(19B)	$4157(1)$	$9135(1)$	$703(1)$	$39(1)$
C(20B)	$4430(1)$	$7663(1)$	$1389(1)$	$26(1)$
C(21B)	$3687(1)$	$7737(1)$	$1616(1)$	$32(1)$
C(22B)	$3167(1)$	$7213(1)$	$1562(1)$	$41(1)$
C(23B)	$3381(1)$	$6616(1)$	$1280(1)$	$48(1)$
C(24B)	$4110(1)$	$6538(1)$	$1047(1)$	$44(1)$
C(25B)	$4636(1)$	$7055(1)$	$1104(1)$	$33(1)$
C(26B)	$4817(1)$	$7357(1)$	$3182(1)$	$21(1)$
C(27B)	$5403(1)$	$6807(1)$	$3340(1)$	$23(1)$
C(28B)	$5969(1)$	$6723(1)$	$2761(1)$	$23(1)$
C(29B)	$7169(1)$	$7448(1)$	$3441(1)$	$19(1)$
C(30B)	$7243(1)$	$7999(1)$	$3872(1)$	$23(1)$
C(31B)	$7737(1)$	$7987(1)$	$4464(1)$	$27(1)$
C(32B)	$8149(1)$	$7421(1)$	$4637(1)$	$26(1)$
C(33B)	$8071(1)$	$6862(1)$	$4216(1)$	$27(1)$
C(34B)	$7588(1)$	$6876(1)$	$3620(1)$	$24(1)$
C(35B)	$7230(1)$	$7214(1)$	$2010(1)$	$21(1)$
C(36B)	$7051(1)$	$6753(1)$	$1484(1)$	$26(1)$
C(37B)	$7575(1)$	$6614(1)$	$980(1)$	$33(1)$
C(38B)	$8277(1)$	$6936(1)$	$989(1)$	$34(1)$
C(39B)	$8462(1)$	$7394(1)$	$1506(1)$	$32(1)$
C(40B)	$7944(1)$	$7528(1)$	$2014(1)$	$26(1)$

Table S8. Bond lengths (\AA) determined for 2.

$\mathrm{Co}(1 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})$	2.2107(4)	$\mathrm{Co}(1 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})$	2.2028(4)
$\mathrm{Co}(1 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})$	2.2043(4)	$\mathrm{Co}(1 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})$	2.2098(4)
$\mathrm{Co}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	1.9573(13)	$\mathrm{Co}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$	1.9560(12)
$\mathrm{Co}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$	$1.9446(12)$	$\mathrm{Co}(1 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})$	1.9540(11)
$\mathrm{Co}(1 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	1.8293(15)	$\mathrm{Co}(1 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	1.8225(14)
$\mathrm{P}(1 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	1.8517(16)	$\mathrm{P}(1 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	1.8447(16)
$\mathrm{P}(1 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	1.8493(15)	$\mathrm{P}(1 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	1.8479(16)
$\mathrm{P}(1 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})$	$1.8339(16)$	$\mathrm{P}(1 \mathrm{~B})-\mathrm{C}(20 \mathrm{~B})$	1.8327(15)
$\mathrm{P}(2 \mathrm{~A})-\mathrm{C}(28 \mathrm{~A})$	1.8446 (15)	$\mathrm{P}(2 \mathrm{~B})-\mathrm{C}(28 \mathrm{~B})$	1.8440(14)
$\mathrm{P}(2 \mathrm{~A})-\mathrm{C}(29 \mathrm{~A})$	1.8418(15)	$\mathrm{P}(2 \mathrm{~B})-\mathrm{C}(29 \mathrm{~B})$	1.8480(14)
$\mathrm{P}(2 \mathrm{~A})-\mathrm{C}(35 \mathrm{~A})$	1.8341(16)	$\mathrm{P}(2 \mathrm{~B})-\mathrm{C}(35 \mathrm{~B})$	1.8362(14)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	1.326 (2)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	1.3220(19)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	$1.465(2)$	N(1B)-C(11B)	1.4713(17)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	$1.3237(19)$	$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	1.3241(18)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(26 \mathrm{~A})$	1.4688(18)	$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(26 \mathrm{~B})$	1.4715(17)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	1.507(2)	$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	1.5059(19)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	1.428(3)	$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	1.4364(19)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	1.405(2)	$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	1.397 (2)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	$1.415(2)$	$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	1.4138(19)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	1.382(3)	$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	$1.395(2)$
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	1.394(3)	$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	1.399(2)
C(6A)-C(7A)	1.399(2)	$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	1.395(2)
C(7A)-C(8A)	1.438(2)	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	1.4398(19)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	1.408(2)	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	1.4168(18)
C(8A)-C(9A)	1.502(2)	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	1.5057(19)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	1.521(3)	$\mathrm{C}(11 \mathrm{~B}) \mathrm{C}(12 \mathrm{~B})$	1.532(2)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	1.528(2)	$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	1.532(2)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	1.396(2)	C(14B)-C(15B)	1.384(2)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	1.391(2)	C(14B)-C(19B)	1.401(2)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	1.388(2)	$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	1.397(2)
C(16A)-C(17A)	1.386(2)	C(16B)-C(17B)	1.383(3)
C(17A)-C(18A)	1.387(2)	C(17B)-C(18B)	1.380(3)
$\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	1.394(2)	C(18B)-C(19B)	1.386 (3)
$\mathrm{C}(20 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})$	1.393(2)	$\mathrm{C}(20 \mathrm{~B})-\mathrm{C}(21 \mathrm{~B})$	1.396 (2)
$\mathrm{C}(20 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})$	1.398(2)	$\mathrm{C}(20 \mathrm{~B})-\mathrm{C}(25 \mathrm{~B})$	1.396(2)
$\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(22 \mathrm{~A})$	1.387(2)	$\mathrm{C}(21 \mathrm{~B})-\mathrm{C}(22 \mathrm{~B})$	1.392(2)
$\mathrm{C}(22 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})$	1.387(3)	$\mathrm{C}(22 \mathrm{~B})-\mathrm{C}(23 \mathrm{~B})$	1.377(3)
$\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(24 \mathrm{~A})$	1.378(3)	$\mathrm{C}(23 \mathrm{~B})-\mathrm{C}(24 \mathrm{~B})$	1.380 (3)
$\mathrm{C}(24 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})$	1.385(3)	$\mathrm{C}(24 \mathrm{~B})-\mathrm{C}(25 \mathrm{~B})$	1.389(2)
C(26A)-C(27A)	1.529(2)	C(26B)-C(27B)	$1.528(2)$
C(27A)-C(28A)	1.535(2)	C(27B)-C(28B)	1.533(2)
C(29A)-C(30A)	1.397(2)	$\mathrm{C}(29 \mathrm{~B})-\mathrm{C}(30 \mathrm{~B})$	1.388(2)
C(29A)-C(34A)	1.379(2)	C(29B)-C(34B)	1.398(2)
$\mathrm{C}(30 \mathrm{~A})-\mathrm{C}(31 \mathrm{~A})$	1.379(2)	$\mathrm{C}(30 \mathrm{~B})-\mathrm{C}(31 \mathrm{~B})$	$1.395(2)$
$\mathrm{C}(31 \mathrm{~A})-\mathrm{C}(32 \mathrm{~A})$	1.374(2)	$\mathrm{C}(31 \mathrm{~B})-\mathrm{C}(32 \mathrm{~B})$	1.381(2)
$\mathrm{C}(32 \mathrm{~A})-\mathrm{C}(33 \mathrm{~A})$	1.392(3)	C(32B)-C(33B)	1.389(2)
$\mathrm{C}(33 \mathrm{~A})-\mathrm{C}(34 \mathrm{~A})$	1.385(2)	C(33B)-C(34B)	1.389(2)
C(35A)-C(36A)	1.390 (2)	C(35B)-C(36B)	1.397(2)
C(35A)-C(40A)	1.400(2)	C(35B)-C(40B)	1.398(2)
C(36A)-C(37A)	1.401(3)	$\mathrm{C}(36 \mathrm{~B})-\mathrm{C}(37 \mathrm{~B})$	1.391(2)
C(37A)-C(38A)	1.369(3)	C(37B)-C(38B)	1.386(3)
C(38A)-C(39A)	1.381(3)	C(38B)-C(39B)	1.383(3)
C(39A)-C(40A)	1.385(3)	C(39B)-C(40B)	1.390(2)

Table S9. Angles $\left({ }^{\circ}\right)$ determined for 2.

$\mathrm{P}(2 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})$	104.688(16)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})$	88.97(4)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})$	104.45(4)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})$	104.31(4)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})$	88.07(4)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	159.00(6)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})$	129.56(5)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})$	125.75(5)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	79.66(6)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$	79.35(6)
$\mathrm{C}(13 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})$	112.34(6)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})$	114.77(5)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	97.76(7)
$\mathrm{C}(20 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})$	126.44(5)
$\mathrm{C}(20 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	100.50(7)
$\mathrm{C}(20 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	100.55(7)
$\mathrm{C}(28 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})$	112.91(5)
$\mathrm{C}(29 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})$	114.74(5)
$\mathrm{C}(29 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})-\mathrm{C}(28 \mathrm{~A})$	99.88(7)
$\mathrm{C}(35 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})$	123.78(5)
$\mathrm{C}(35 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})-\mathrm{C}(28 \mathrm{~A})$	103.98(7)
$\mathrm{C}(35 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})-\mathrm{C}(29 \mathrm{~A})$	98.11(7)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})$	117.38(12)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	118.53(14)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})$	123.99(11)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})$	118.26(10)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(26 \mathrm{~A})$	118.58(12)
$\mathrm{C}(26 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})$	122.99(9)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	124.76(18)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	112.71(14)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	122.53(17)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	130.72(16)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	119.20(17)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	110.03(14)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	119.69(16)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	122.02(16)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	118.92(18)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	130.16(16)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	120.15(15)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	109.70(13)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	112.02(13)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	124.84(14)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	123.14(14)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})$	119.84(13)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{Co}(1 \mathrm{~A})$	120.20(11)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	119.95(14)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	113.21(13)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	113.39(14)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})$	111.21(12)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})$	121.66(11)
$\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})$	119.09(11)
$\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	118.91(14)
$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	121.02(15)
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	119.64(15)

C(16A)-C(17A)-C(18A)	$119.93(15)$
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	$120.38(15)$
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})$	$120.10(15)$
$\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})$	$120.65(12)$
$\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})$	$118.12(15)$
$\mathrm{C}(25 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})$	$121.10(12)$
$\mathrm{C}(22 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})$	$120.93(16)$
$\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(22 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})$	$119.94(17)$
$\mathrm{C}(24 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(22 \mathrm{~A})$	$119.94(17)$
$\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(24 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})$	$120.15(18)$
$\mathrm{C}(24 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})$	$120.90(17)$
$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(26 \mathrm{~A})-\mathrm{C}(27 \mathrm{~A})$	$112.88(12)$
$\mathrm{C}(26 \mathrm{~A})-\mathrm{C}(27 \mathrm{~A})-\mathrm{C}(28 \mathrm{~A})$	$113.52(12)$
$\mathrm{C}(27 \mathrm{~A})-\mathrm{C}(28 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})$	$110.83(10)$
$\mathrm{C}(30 \mathrm{~A})-\mathrm{C}(29 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})$	$121.43(12)$
$\mathrm{C}(34 \mathrm{~A})-\mathrm{C}(29 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})$	$119.68(11)$
$\mathrm{C}(34 \mathrm{~A})-\mathrm{C}(29 \mathrm{~A})-\mathrm{C}(30 \mathrm{~A})$	$118.84(14)$
$\mathrm{C}(31 \mathrm{~A})-\mathrm{C}(30 \mathrm{~A})-\mathrm{C}(29 \mathrm{~A})$	$121.28(15)$
$\mathrm{C}(32 \mathrm{~A})-\mathrm{C}(31 \mathrm{~A})-\mathrm{C}(30 \mathrm{~A})$	$119.41(15)$
$\mathrm{C}(31 \mathrm{~A})-\mathrm{C}(32 \mathrm{~A})-\mathrm{C}(33 \mathrm{~A})$	$119.97(16)$
$\mathrm{C}(34 \mathrm{~A})-\mathrm{C}(33 \mathrm{~A})-\mathrm{C}(32 \mathrm{~A})$	$120.35(17)$
$\mathrm{C}(29 \mathrm{~A})-\mathrm{C}(34 \mathrm{~A})-\mathrm{C}(33 \mathrm{~A})$	$120.08(15)$
$\mathrm{C}(36 \mathrm{~A})-\mathrm{C}(35 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})$	$123.41(13)$
$\mathrm{C}(36 \mathrm{~A})-\mathrm{C}(35 \mathrm{~A})-\mathrm{C}(40 \mathrm{~A})$	$118.33(16)$
$\mathrm{C}(40 \mathrm{~A})-\mathrm{C}(35 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})$	$117.99(13)$
$\mathrm{C}(35 \mathrm{~A})-\mathrm{C}(36 \mathrm{~A})-\mathrm{C}(37 \mathrm{~A})$	$119.92(19)$
$\mathrm{C}(38 \mathrm{~A})-\mathrm{C}(37 \mathrm{~A})-\mathrm{C}(36 \mathrm{~A})$	$120.8(2)$
$\mathrm{C}(37 \mathrm{~A})-\mathrm{C}(38 \mathrm{~A})-\mathrm{C}(39 \mathrm{~A})$	$119.88(18)$
$\mathrm{C}(38 \mathrm{~A})-\mathrm{C}(39 \mathrm{~A})-\mathrm{C}(40 \mathrm{~A})$	$119.9(2)$
$\mathrm{C}(39 \mathrm{~A})-\mathrm{C}(40 \mathrm{~A})-\mathrm{C}(35 \mathrm{~A})$	$121.15(19)$
$\mathrm{P}(1 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})$	$107.249(16)$
$\mathrm{N}(1 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})$	$88.41(4)$
$\mathrm{N}(1 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})$	$103.39(4)$
$\mathrm{N}(2 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})$	$103.42(4)$
$\mathrm{N}(2 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})$	$88.99(4)$
$\mathrm{N}(2 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$	$159.68(5)$
$\mathrm{C}(10 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})$	$126.09(4)$
$\mathrm{C}(10 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})$	$126.67(4)$
$\mathrm{C}(10 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$	$79.89(5)$
$\mathrm{C}(10 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})$	$79.79(5)$
$\mathrm{C}(13 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})$	$112.73(6)$
$\mathrm{C}(13 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	$99.30(8)$
$\mathrm{C}(14 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})$	$114.80(5)$
$\mathrm{C}(20 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})$	$123.14(5)$
$\mathrm{C}(20 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	$103.17(7)$
$\mathrm{C}(20 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	$100.38(7)$
$\mathrm{C}(28 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})$	$113.29(5)$
$\mathrm{C}(28 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})-\mathrm{C}(29 \mathrm{~B})$	$99.72(7)$
$\mathrm{C}(29 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})$	$113.81(5)$
$\mathrm{C}(35 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})$	$125.10(5)$
$\mathrm{C}(35 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})-\mathrm{C}(28 \mathrm{~B})$	$102.42(7 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})$
$\mathrm{C}(35 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})-\mathrm{C}(29 \mathrm{~B})$	$98.78(6)$
$\mathrm{C}(11 \mathrm{~B})$	$117.48(9)$

$\mathrm{C}(11 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})$	123.43(9)	$\mathrm{C}(18 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	119.52(18)
$\mathrm{C}(8 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})$	117.95(9)	C(17B)-C(18B)-C(19B)	120.37(17)
$\mathrm{C}(8 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(26 \mathrm{~B})$	118.46(11)	C(18B)-C(19B)-C(14B)	120.81(17)
$\mathrm{C}(26 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})$	123.45(9)	$\mathrm{C}(21 \mathrm{~B})-\mathrm{C}(20 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})$	119.38(13)
$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	124.98(13)	$\mathrm{C}(25 \mathrm{~B})-\mathrm{C}(20 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})$	121.67(13)
$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	112.56(12)	C(25B)-C(20B)-C(21B)	118.51(15)
$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	122.46(13)	$\mathrm{C}(22 \mathrm{~B})-\mathrm{C}(21 \mathrm{~B})-\mathrm{C}(20 \mathrm{~B})$	120.58(18)
$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	130.23(13)	$\mathrm{C}(23 \mathrm{~B})-\mathrm{C}(22 \mathrm{~B})-\mathrm{C}(21 \mathrm{~B})$	120.16(19)
$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	119.83(13)	$\mathrm{C}(22 \mathrm{~B})-\mathrm{C}(23 \mathrm{~B})-\mathrm{C}(24 \mathrm{~B})$	119.95(17)
$\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	109.91(12)	$\mathrm{C}(23 \mathrm{~B})-\mathrm{C}(24 \mathrm{~B})-\mathrm{C}(25 \mathrm{~B})$	120.43(19)
$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	119.48(14)	$\mathrm{C}(24 \mathrm{~B})-\mathrm{C}(25 \mathrm{~B})-\mathrm{C}(20 \mathrm{~B})$	120.36(18)
$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	121.37(13)	$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(26 \mathrm{~B})-\mathrm{C}(27 \mathrm{~B})$	112.17(11)
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	119.80(13)	$\mathrm{C}(26 \mathrm{~B})-\mathrm{C}(27 \mathrm{~B})-\mathrm{C}(28 \mathrm{~B})$	112.68(12)
$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	130.70(13)	$\mathrm{C}(27 \mathrm{~B})-\mathrm{C}(28 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})$	111.61(10)
$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	119.41(13)	$\mathrm{C}(30 \mathrm{~B})-\mathrm{C}(29 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})$	120.04(11)
$\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	109.89(12)	$\mathrm{C}(30 \mathrm{~B})-\mathrm{C}(29 \mathrm{~B})-\mathrm{C}(34 \mathrm{~B})$	118.63(13)
$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	112.19(12)	$\mathrm{C}(34 \mathrm{~B})-\mathrm{C}(29 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})$	121.33(11)
$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	124.69(13)	$\mathrm{C}(29 \mathrm{~B})-\mathrm{C}(30 \mathrm{~B})-\mathrm{C}(31 \mathrm{~B})$	120.59(14)
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	123.11(13)	$\mathrm{C}(32 \mathrm{~B})-\mathrm{C}(31 \mathrm{~B})-\mathrm{C}(30 \mathrm{~B})$	120.41(14)
$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})$	119.92(10)	$\mathrm{C}(31 \mathrm{~B})-\mathrm{C}(32 \mathrm{~B})-\mathrm{C}(33 \mathrm{~B})$	119.54(14)
$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	120.06(12)	$\mathrm{C}(34 \mathrm{~B})-\mathrm{C}(33 \mathrm{~B})-\mathrm{C}(32 \mathrm{~B})$	120.15(14)
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{Co}(1 \mathrm{~B})$	120.02(10)	C(33B)-C(34B)-C(29B)	120.66(14)
$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	113.44(12)	$\mathrm{C}(36 \mathrm{~B})-\mathrm{C}(35 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})$	122.86(11)
$\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	113.24(13)	$\mathrm{C}(36 \mathrm{~B})-\mathrm{C}(35 \mathrm{~B})-\mathrm{C}(40 \mathrm{~B})$	118.22(13)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})$	111.02(11)	$\mathrm{C}(40 \mathrm{~B})-\mathrm{C}(35 \mathrm{~B})-\mathrm{P}(2 \mathrm{~B})$	118.67(11)
$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})$	120.03(12)	C(37B)-C(36B)-C(35B)	120.34(15)
$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(19 \mathrm{~B})$	118.27(15)	C(38B)-C(37B)-C(36B)	120.59(16)
$\mathrm{C}(19 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{P}(1 \mathrm{~B})$	121.67(13)	C(39B)-C(38B)-C(37B)	119.76(14)
$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	120.76(16)	C(38B)-C(39B)-C(40B)	119.78(16)
C(17B)-C(16B)-C(15B)	120.26(18)	C(39B)-C(40B)-C(35B)	121.30(15)

Table S10. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots \quad+2 h k a^{*} b^{*} U^{12}\right]$.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Co}(1 \mathrm{~A})$	17(1)	22(1)	16(1)	-1(1)	2(1)	1(1)
$\mathrm{P}(1 \mathrm{~A})$	22(1)	18(1)	20(1)	-1(1)	-2(1)	3(1)
P (2A)	21(1)	22(1)	19(1)	1(1)	-1(1)	O(1)
N(1A)	19(1)	38(1)	28(1)	-9(1)	3(1)	$0(1)$
$\mathrm{N}(2 \mathrm{~A})$	18(1)	22(1)	22(1)	0(1)	1(1)	$0(1)$
C(1A)	45(1)	60(1)	36(1)	-17(1)	21(1)	-16(1)
C(2A)	24(1)	50(1)	24(1)	-10(1)	9(1)	-13(1)
C(3A)	27(1)	43(1)	22(1)	-2(1)	3(1)	-15(1)
C(4A)	43(1)	60(1)	21(1)	5(1)	4(1)	-25(1)
C(5A)	52(1)	44(1)	32(1)	16(1)	-6(1)	-21(1)
C(6A)	38(1)	34(1)	36(1)	11(1)	-10(1)	-11(1)
C(7A)	23(1)	27(1)	26(1)	5(1)	-6(1)	-6(1)
C(8A)	21(1)	22(1)	29(1)	2(1)	-3(1)	-2(1)
C(9A)	32(1)	23(1)	44(1)	0(1)	0(1)	4(1)
C(10A)	21(1)	32(1)	19(1)	2(1)	-1(1)	-9(1)
C(11A)	25(1)	49(1)	36(1)	-14(1)	2(1)	13(1)
C(12A)	37(1)	36(1)	37(1)	-13(1)	-4(1)	18(1)
C(13A)	36(1)	26(1)	32(1)	-3(1)	-7(1)	12(1)
C(14A)	25(1)	21(1)	23(1)	-2(1)	-3(1)	3(1)
C(15A)	39(1)	19(1)	25(1)	0(1)	-3(1)	-1(1)
C(16A)	47(1)	25(1)	32(1)	-4(1)	-7(1)	-7(1)
C(17A)	50(1)	38(1)	24(1)	-2(1)	-11(1)	-5(1)
C(18A)	41(1)	32(1)	26(1)	6(1)	-7(1)	-3(1)
C(19A)	27(1)	24(1)	27(1)	1(1)	-3(1)	0(1)
C(20A)	30(1)	19(1)	25(1)	0(1)	-2(1)	-4(1)
$\mathrm{C}(21 \mathrm{~A})$	30(1)	26(1)	28(1)	-3(1)	-2(1)	-2(1)
C(22A)	30(1)	38(1)	37(1)	-8(1)	2(1)	-8(1)
C(23A)	47(1)	45(1)	38(1)	7(1)	9(1)	-16(1)
C(24A)	51(1)	51(1)	42(1)	23(1)	1(1)	-7(1)
C(25A)	36(1)	38(1)	38(1)	14(1)	-3(1)	-2(1)
C(26A)	23(1)	24(1)	25(1)	-3(1)	7(1)	1(1)
C(27A)	29(1)	34(1)	21(1)	-5(1)	7(1)	-4(1)
C(28A)	28(1)	33(1)	19(1)	3(1)	1(1)	-5(1)
C(29A)	21(1)	24(1)	22(1)	-1(1)	1(1)	0(1)
C(30A)	34(1)	30(1)	23(1)	3(1)	-4(1)	-5(1)
C(31A)	34(1)	33(1)	24(1)	-2(1)	-6(1)	-4(1)
C(32A)	52(1)	34(1)	36(1)	4(1)	-14(1)	-19(1)
C(33A)	82(2)	46(1)	35(1)	17(1)	-22(1)	-36(1)
C(34A)	46(1)	40(1)	24(1)	4(1)	-9(1)	-17(1)
C(35A)	30(1)	26(1)	27(1)	-3(1)	-8(1)	4(1)
C(36A)	49(1)	28(1)	32(1)	0(1)	-10(1)	3(1)
C(37A)	75(2)	30(1)	44(1)	-1(1)	-18(1)	13(1)
C(38A)	55(1)	48(1)	58(1)	-14(1)	-25(1)	26(1)
C(39A)	32(1)	54(1)	56(1)	-21(1)	-14(1)	13(1)
C(40A)	27(1)	38(1)	42(1)	-7(1)	-7(1)	4(1)
$\mathrm{Co}(1 \mathrm{~B})$	18(1)	15(1)	14(1)	0(1)	1(1)	-3(1)
P (1B)	26(1)	21(1)	16(1)	1(1)	-3(1)	-4(1)
P (2B)	20(1)	15(1)	16(1)	-1(1)	2(1)	-2(1)
N(1B)	21(1)	20(1)	19(1)	2(1)	2(1)	-1(1)
$\mathrm{N}(2 \mathrm{~B})$	17(1)	18(1)	19(1)	1(1)	1(1)	-1(1)
C(1B)	31(1)	21(1)	31(1)	3(1)	5(1)	-5(1)

C(2B)	20(1)	19(1)	23(1)	2(1)	1(1)	-1(1)
C(3B)	18(1)	17(1)	22(1)	1(1)	-1(1)	1(1)
C(4B)	26(1)	17(1)	28(1)	-1(1)	-1(1)	0(1)
C(5B)	33(1)	20(1)	26(1)	-6(1)	1(1)	3(1)
C(6B)	28(1)	23(1)	22(1)	-2(1)	5(1)	4(1)
C(7B)	19(1)	20(1)	20(1)	1(1)	1(1)	2(1)
C(8B)	18(1)	22(1)	20(1)	1(1)	3(1)	1(1)
C(9B)	29(1)	29(1)	25(1)	-1(1)	10(1)	-3(1)
C(10B)	16(1)	19(1)	18(1)	0(1)	-2(1)	1(1)
C(11B)	29(1)	22(1)	22(1)	2(1)	8(1)	-4(1)
C(12B)	39(1)	30(1)	19(1)	2(1)	7(1)	-4(1)
C(13B)	41(1)	32(1)	18(1)	-3(1)	2(1)	-8(1)
C(14B)	30(1)	24(1)	26(1)	6(1)	-5(1)	-6(1)
C(15B)	29(1)	33(1)	31(1)	1(1)	-6(1)	2(1)
C(16B)	41(1)	34(1)	48(1)	-2(1)	-10(1)	6(1)
C(17B)	50(1)	30(1)	57(1)	14(1)	-17(1)	2(1)
C(18B)	64(1)	36(1)	42(1)	15(1)	-24(1)	-6(1)
C(19B)	55(1)	29(1)	30(1)	6(1)	-16(1)	-6(1)
C(20B)	33(1)	25(1)	20(1)	5(1)	-9(1)	-6(1)
C(21B)	33(1)	36(1)	26(1)	8(1)	-6(1)	-8(1)
C(22B)	33(1)	50(1)	38(1)	18(1)	-14(1)	-15(1)
C(23B)	51(1)	36(1)	53(1)	18(1)	-28(1)	-22(1)
C(24B)	57(1)	23(1)	50(1)	5(1)	-26(1)	-6(1)
C(25B)	39(1)	25(1)	32(1)	3(1)	-15(1)	-2(1)
C(26B)	22(1)	21(1)	22(1)	1(1)	1(1)	-6(1)
C(27B)	26(1)	18(1)	25(1)	2(1)	3(1)	-6(1)
C(28B)	25(1)	18(1)	26(1)	-1(1)	2(1)	-4(1)
C(29B)	20(1)	21(1)	18(1)	2(1)	4(1)	-2(1)
C(30B)	24(1)	23(1)	23(1)	-1(1)	-2(1)	2(1)
C(31B)	29(1)	29(1)	22(1)	-3(1)	-2(1)	-1(1)
C(32B)	22(1)	37(1)	18(1)	4(1)	0(1)	-1(1)
C(33B)	28(1)	28(1)	24(1)	7(1)	2(1)	5(1)
C(34B)	27(1)	22(1)	22(1)	1(1)	2(1)	2(1)
C(35B)	25(1)	20(1)	18(1)	2(1)	2(1)	3(1)
C(36B)	34(1)	22(1)	21(1)	0(1)	1(1)	4(1)
C(37B)	52(1)	28(1)	20(1)	1(1)	4(1)	13(1)
C(38B)	40(1)	38(1)	25(1)	11(1)	14(1)	20(1)
C(39B)	27(1)	40(1)	30(1)	12(1)	8(1)	8(1)
C(40B)	25(1)	29(1)	24(1)	2(1)	3(1)	1(1)

Table S11. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\left(\AA^{2} \times 10^{3}\right)$ for 2.

	X	y	Z	U(eq)
H(1AA)	2455	3611	4242	70
H(1AB)	3160	4044	4493	70
H(1AC)	3081	3315	4765	70
H(4A)	3547	2255	4678	49
H(5A)	4142	1266	4447	51
H(6A)	4806	1117	3443	44
H(9AA)	5998	1650	2149	50
H(9AB)	5294	1439	1661	50
H(9AC)	5400	1139	2413	50
H(11A)	2739	4363	3421	44
H(11B)	2894	4343	2624	44
H(12A)	3967	4873	3621	44
H(12B)	3372	5321	3204	44
H(13A)	4538	5386	2671	38
H(13B)	3943	5037	2154	38
H(15A)	5924	5281	3110	33
H(16A)	6538	5507	4178	42
H(17A)	6406	4783	5103	45
H(18A)	5678	3828	4951	40
H(19A)	5087	3588	3873	31
H(21A)	6484	4085	2335	34
H(22A)	7318	4401	1498	42
H(23A)	6889	5063	573	52
H(24A)	5619	5380	469	58
H(25A)	4780	5060	1298	45
H(26A)	5731	2497	1438	28
H(26B)	5541	3254	1503	28
H(27A)	4514	2347	828	33
H(27B)	5089	2776	417	33
H(28A)	3878	3279	337	32
H(28B)	4455	3755	744	32
H(30A)	2703	2782	315	35
H(31A)	1963	1852	88	37
H(32A)	1762	1106	973	50
H(33A)	2387	1247	2055	66
H(34A)	3169	2158	2268	44
H(36A)	3428	4562	686	44
H(37A)	2460	5344	498	60
H(38A)	1305	5223	1004	65
H(39A)	1084	4303	1687	58
H(40A)	2018	3499	1843	43
H(1BA)	7545	10059	2037	42
H(1BB)	6988	10566	2369	42
H(1BC)	6798	10285	1619	42
H(4B)	6472	10588	3420	29
H(5B)	5862	10457	4457	31
H(6B)	5200	9490	4690	29
H(9BA)	4065	8071	4233	42
H(9BB)	4588	8490	4754	42
H(9BC)	4797	7750	4598	42
H(11C)	7103	8453	1465	29
H(11D)	7247	9214	1364	29

H(12C)	6567	8874	380	35
H(12D)	5996	9299	800	35
H(13C)	6006	7889	789	36
H(13D)	5390	8323	378	36
H(15B)	4756	9536	2265	38
H(16B)	4045	10483	1997	49
H(17B)	3414	10591	916	55
H(18B)	3487	9748	107	58
H(19B)	4178	8797	375	47
H(21B)	3539	8139	1805	38
H(22B)	2674	7267	1716	49
H(23B)	3033	6266	1248	57
H(24B)	4250	6137	850	53
H(25B)	5129	6995	953	39
H(26C)	4595	7297	2714	26
H(26D)	4408	7323	3504	26
H(27C)	5134	6392	3403	28
H(27D)	5686	6909	3774	28
H(28C)	5688	6616	2328	28
H(28D)	6311	6356	2877	28
H(30B)	6960	8380	3765	28
H(31B)	7790	8363	4744	32
H(32B)	8477	7413	5033	31
H(33B)	8342	6477	4333	32
H(34B)	7544	6502	3337	28
H(36B)	6580	6537	1470	31
H(37B)	7453	6303	635	40
H(38B)	8622	6844	648	41
H(39B)	8932	7611	1514	38
H(40B)	8075	7832	2364	31

HYDROSILYLATION TRIALS

Hydrosilylation of benzaldehyde using $0.1 \mathbf{m o l} \% \mathrm{Co}(0)$ powder: In a glove box, a mixture of benzaldehyde ($5.19 \mathrm{~mL}, 50.90 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(6.27 \mathrm{~mL}, 50.90 \mathrm{mmol})$ was added to a 20 mL scintillation vial containing $\operatorname{Co}(0)$ powder ($3.0 \mathrm{mg}, 0.051 \mathrm{mmol}$). The resulting mixture was allowed to stir at room temperature for 2 min and then exposed to air. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed no conversion.

Hydrosilylation of benzaldehyde using $0.1 \mathbf{~ m o l} \% \mathbf{C o C l}_{2}$: In a glove box, a mixture of benzaldehyde $(2.67 \mathrm{~mL}, 26.18 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(3.22 \mathrm{~mL}, 26.18 \mathrm{mmol})$ was added to a 20 mL scintillation vial containing $\mathrm{CoCl}_{2}(3.4 \mathrm{mg}, 0.00262 \mathrm{mmol})$. The resulting mixture was allowed to stir at room temperature for 2 min and then exposed to air. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed no conversion.

Hydrosilylation of benzaldehyde using $0.1 \mathbf{~ m o l} \%\left[\left({ }^{\mathrm{Ph}_{2} \mathrm{Pr}} \mathbf{A D I}\right) \mathrm{CoCl}_{3}\right]\left[\mathrm{Co}_{2} \mathrm{Cl}_{6}\right]_{0.5}$: In a glove box, a mixture of benzaldehyde $(1.22 \mathrm{~mL}, 11.96 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(1.47 \mathrm{~mL}, 11.96 \mathrm{mmol})$ was added to a 20 mL scintillation vial containing $\left[\left({ }^{\mathrm{Ph}}{ }^{2 P r} \mathrm{ADI}\right) \mathrm{CoCl}\right]\left[\mathrm{Co}_{2} \mathrm{Cl}_{6}\right]_{0.5}(10.4 \mathrm{mg}, 0.0119 \mathrm{mmol})$. The resulting mixture was allowed to stir at room temperature for 2 min and then exposed to air. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed no conversion.

General procedure for silane screening: In the glovebox, a neat equimolar solution of silane and benzaldehyde was added to a 20 mL scintillation vial containing $0.1 \mathrm{~mol} \%$ of $\mathbf{2}$. The resulting brown solution was stirred for 2 min and then exposed to air to deactivate the catalyst. The colorless solution was then filtered through Celite directly into an NMR tube. The progress of the reaction was determined following analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Table S12. Percent conversion based on ${ }^{1} \mathrm{H}$ NMR integration of substrate against silyl ether intermediates.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of silyl ethers generated via 2-catalyzed benzaldehyde hydrosilylation using diphenylsilane in benzene- d_{6}.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of silyl ethers generated via 2-catalyzed acetophenone hydrosilylation using diphenylsilane in benzene- d_{6}.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of silyl ethers generated via 2-catalyzed benzaldehyde hydrosilylation using 1,1,3,3-tetramethyldisiloxane in benzene- d_{6}.

Hydrosilylation of benzaldehyde using $\mathbf{0 . 1} \mathbf{~ m o l \%}$ 2: In a glove box, a mixture of benzaldehyde (470 $\mu \mathrm{L}, 4.62 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(570 \mu \mathrm{~L}, 4.62 \mathrm{mmol})$ was added to a 20 mL scintillation vial containing 2 ($3.1 \mathrm{mg}, 0.00462 \mathrm{mmol}$). The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent by rotary evaporation at $25{ }^{\circ} \mathrm{C}$ yielded a colorless liquid identified as benzyl alcohol ${ }^{6}$ ($430.12 \mathrm{mg}, 4.01 \mathrm{mmol}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): 7.21 (d, 2H, phenyl), 7.14 (d, 2H, phenyl), 7.07 (d, 1H, phenyl), 4.38 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{CH}_{2}$), 3.76 (s, 1H, -OH). ${ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 141.60 (s, phenyl), 128.52 (s , phenyl), 127.41 (s , phenyl), 127.13 (s, phenyl), 64.56 (s, $C H_{2}$).

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of benzyl alcohol in benzene- d_{6}.

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum of benzyl alcohol in benzene- d_{6}.

Atom-efficient hydrosilylation of benzaldehyde using $0.1 \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of benzaldehyde ($0.47 \mathrm{~mL}, 4.62 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.19 \mathrm{~mL}, 1.52 \mathrm{mmol})$ was added to a scintillation vial containing $2(0.0031 \mathrm{~g}, 0.0046 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in benzene- d_{6}, which revealed greater than 99% conversion.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of silyl ethers generated via 2-catalyzed atom-efficient benzaldehyde hydrosilylation in benzene- d_{6}.

Hydrosilylation of 4-anisaldehyde using $\mathbf{0 . 1} \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of 4-anisaldehyde (0.39 $\mathrm{mL}, 3.28 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.4 \mathrm{~mL}, 3.28 \mathrm{mmol})$ was added to a 20 mL scintillation vial containing $\mathbf{2}$ $(2.2 \mathrm{mg}, 0.00328 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent by rotary evaporation at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 4-methoxybenzyl alcohol ${ }^{6}$ ($389 \mathrm{mg}, 2.81 \mathrm{mmol}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): $7.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $6.79(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), 4.39 ($\mathrm{s}, 2 \mathrm{H},-$ CH_{2}), $3.33\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.11(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 159.49 (s , phenyl), 133.99 (s, phenyl), 128.62 (s, phenyl), 114.06 (s, phenyl), $64.67\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 54.74\left(\mathrm{~s},-\mathrm{OCH}_{3}\right)$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-methoxybenzyl alcohol in benzene- d_{6}.

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectrum of 4-methoxybenzyl alcohol in benzene- d_{6}.

Hydrosilylation of 4-methylbenzaldehyde using $0.1 \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of 4methylbenzaldehyde ($232 \mathrm{mg}, 1.93 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.24 \mathrm{~mL}, 1.93 \mathrm{mmol})$ was added to a 20 mL scintillation vial containing $2(1.3 \mathrm{mg}, 0.00193 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent by rotary evaporation at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 4-methylbenzyl alcohol ${ }^{6}$ ($221 \mathrm{mg}, 1.81$ mmol, 93%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): 7.13 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $6.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), 4.36 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{CH}_{2}$), $2.12\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.79(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}):
139.07 (s , phenyl), 136.93 (s , phenyl), 129.36 (s , phenyl), 127.28 (s , phenyl), 64.79 ($\mathrm{s},-\mathrm{CH}_{2}$), 21.19 ($\mathrm{s},-$ CH_{3}).

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-methylbenzyl alcohol in benzene- d_{6}.

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum of 4-methylbenzyl alcohol in benzene- d_{6}.

Hydrosilylation of 4-fluorobenzaldehyde using $0.1 \mathbf{m o l} \%$ 2: In a glove box, a mixture of 4fluorobenzaldehyde ($0.27 \mathrm{~mL}, 2.68 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.33 \mathrm{~mL}, 2.68 \mathrm{mmol})$ was added to a 20 mL scintillation vial containing $2(1.8 \mathrm{mg}, 0.00268 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent by rotary evaporation at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 4-fluorobenzyl alcohol ${ }^{6}$ ($318 \mathrm{mg}, 2.52$ mmol, 94%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): $6.91(\mathrm{~m}, J=16 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $6.78(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $4.15\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): $162.52(\mathrm{~d}, \mathrm{~J}=255.5 \mathrm{~Hz}$, phenyl), 137.38 (s , phenyl), 128.75 ($\mathrm{d}, J=8.0 \mathrm{~Hz}$, phenyl), 115.33 ($\mathrm{d}, J=21.2 \mathrm{~Hz}$, phenyl), 64.12 (s, $C \mathrm{H}_{2}$). ${ }^{19}$ F NMR (376 MHz , benzene- d_{6}): -116.23 ($\mathrm{s}, \mathrm{Ph}-F$).

| 10 | 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 | -100 | -110 | -120 | -130 | -140 | -150 | -160 | -170 | -180 | -190 |
| :---: |

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-fluorobenzyl alcohol in benzene- d_{6}.

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum of 4-fluorobenzyl alcohol in benzene- d_{6}.

Figure S23. ${ }^{19}$ F NMR spectrum of 4-fluorobenzyl alcohol in benzene- d_{6}.

Hydrosilylation of 4-chlorobenzaldehyde using $0.1 \mathrm{~mol} \%$ 2: In a glove box, a mixture of 4chlorobenzaldehyde ($335 \mathrm{mg}, 2.38 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.29 \mathrm{~mL}, 2.38 \mathrm{mmol})$ was added to a 20 mL scintillation vial containing $2(1.6 \mathrm{mg}, 0.00238 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent by rotary evaporation at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 4-chlorobenzyl alcohol ${ }^{6}$ ($313 \mathrm{mg}, 2.19$ mmol, 91%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): $7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $4.14\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.77(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 140.21 (s , phenyl), 133.20 (s , phenyl), 128.69 (s, phenyl), 128.28 (s , phenyl), $64.03\left(\mathrm{~s},-\mathrm{CH}_{2}\right.$).


```
i
```


Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-chlorobenzyl alcohol in benzene- d_{6}.

Figure S25. ${ }^{13} \mathrm{C}$ NMR spectrum of 4-chlorobenzyl alcohol in benzene- d_{6}.

Hydrosilylation of 4-bromobenzaldehyde using $0.1 \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of 4-
bromobenzaldehyde ($331 \mathrm{mg}, 1.78 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.22 \mathrm{~mL}, 1.78 \mathrm{mmol})$ was added to a 20 mL scintillation vial containing $2(1.2 \mathrm{mg}, 0.00178 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent by rotary evaporation at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 4-bromobenzyl alcohol ${ }^{6}$ ($298 \mathrm{mg}, 1.59$ mmol, 89%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): 7.24 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $6.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $4.07\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.26(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 140.58 (s , phenyl), 131.59 (s, phenyl), 128.52 (s , phenyl), 121.26 (s , phenyl), 63.88 ($\mathrm{s}, \mathrm{CH}_{2}$).

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-bromobenzyl alcohol in benzene- d_{6}.

Figure S27. ${ }^{13} \mathrm{C}$ NMR spectrum of 4-bromobenzyl alcohol in benzene- d_{6}.

Hydrosilylation of 4-cyanobenzaldehyde using $0.1 \mathbf{m o l} \%$ 2: In a glove box, a 20 mL scintillation vial was charged with 4-cyanobenzaldehyde ($215 \mathrm{mg}, 1.64 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.20 \mathrm{~mL}, 1.64 \mathrm{mmol})$ and the mixture was added to another scintillation vial containing $2(1.1 \mathrm{mg}, 0.00164 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was taken in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent by rotary evaporation at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 4cyanobenzyl alcohol ${ }^{6}(192 \mathrm{mg}, 1.43 \mathrm{mmol}, 87 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): $7.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 2 H , phenyl), 6.95 ($\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $4.28\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.98(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 147.01 ($\mathrm{s},-\mathrm{CN}$), 132.02 (s, phenyl), 126.83 (s , phenyl), 119.14 (s, phenyl), 110.74 (s , phenyl), 63.63 ($\mathrm{s},-\mathrm{CH}_{2}$).

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-cyanobenzyl alcohol in benzene- d_{6}.

Figure S29. ${ }^{13} \mathrm{C}$ NMR spectrum of 4-cyanobenzyl alcohol in benzene- d_{6}.

Hydrosilylation of 1-naphthaldehyde using $\mathbf{0 . 1} \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of 1-naphthaldehyde ($0.22 \mathrm{~mL}, 1.64 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.20 \mathrm{~mL}, 1.64 \mathrm{mmol})$ was added to a scintillation vial containing 2 $(0.0011 \mathrm{~g}, 0.00164 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent by rotary evaporation at $25^{\circ} \mathrm{C}$ yielded a white solid identified as 1-naphthalenemethanol ${ }^{6}$ ($221 \mathrm{mg}, 1.39 \mathrm{mmol}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): 7.91 ($\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, aryl), $7.62(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$, aryl), $7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, aryl), 7.29 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$, aryl), $7.25(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}$, aryl), $7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, aryl), 7.16 (s, 1 H, aryl), 4.73 (s, $2 \mathrm{H},-\mathrm{CH}_{2}$), $2.40(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 137.12 (s, aryl), 134.18 (s, aryl), 131.72 (s, aryl), 128.84 (s, aryl), 128.36 ($\mathrm{s}, \operatorname{aryl}$), 126.27 (s, aryl), 125.91 (s, aryl), 125.62 (s, aryl), 125.14 (s, aryl), 124.16 (s, aryl), $63.07\left(\mathrm{~s},-\mathrm{CH}_{2}\right)$.

+
$\stackrel{\sim}{i}$

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-naphthalenemethanol in benzene- d_{6}.

Figure S31. ${ }^{13} \mathrm{C}$ NMR spectrum of 1-naphthalenemethanol in benzene- d_{6}.

Hydrosilylation of 3,5-dimethylbenzaldehyde using $0.1 \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of 3,5dimethylbenzaldehyde ($0.72 \mathrm{~mL}, 5.37 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.66 \mathrm{~mL}, 5.37 \mathrm{mmol})$ was added to a scintillation vial containing $2(0.0036 \mathrm{~g}, 0.0054 \mathrm{mmol})$. The resulting light orange solution was allowed to stir at room temperature for 4 h and then exposed to air to deactivate the catalyst. The solution was then filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was taken in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 3,5 -dimethylbenzyl alcohol ${ }^{7}(707 \mathrm{mg}, 5.19 \mathrm{mmol}, 97 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz , benzene- d_{6}): 6.87 (s, 2H, phenyl), 6.74 (s, 1H, phenyl), 4.42 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{CH}_{2}$), $2.86(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 2.14\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz , benzene- d_{6}): 141.74 (s, phenyl), 137.80 (s , phenyl), 129.14 (s, phenyl), 125.12 (s , phenyl), 65.02 ($\mathrm{s},-\mathrm{CH}_{2}$), 21.31 ($\mathrm{s},-$ CH_{3}).

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum of 3,5-dimethylbenzyl alcohol in benzene- d_{6}.
僉

Figure S33. ${ }^{13} \mathrm{C}$ NMR spectrum of 3,5 -dimethylbenzyl alcohol in benzene- d_{6}.

Hydrosilylation of 2,4,6-trimethylbenzaldehyde using $0.1 \mathbf{~ m o l \%}$ 2: In a glove box, a mixture of 2,4,6trimethylbenzaldehyde ($0.68 \mathrm{~mL}, 4.62 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.57 \mathrm{~mL}, 4.62 \mathrm{mmol})$ was added to a scintillation vial containing $2(0.0031 \mathrm{~g}, 0.0046 \mathrm{mmol})$. The resulting light orange solution was allowed to stir at room temperature for 4 h and then exposed to air to deactivate the catalyst. The solution was then filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was taken in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 2,4,6-trimethylbenzyl alcohol ${ }^{8}$ ($666 \mathrm{mg}, 4.43 \mathrm{mmol}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , benzene- d_{6}): 6.71 (s, 2H, phenyl), 4.42 (s, 2H, CH_{2}), $2.22\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz , benzene $-d_{6}$): 137.36 (s , phenyl), 137.18 (s, phenyl), 134.54 (s, phenyl), 129.34, (s, phenyl) 58.94 (s, $-\mathrm{CH}_{2}$), $21.04\left(\mathrm{~s},-\mathrm{CH}_{3}\right), 19.40$ (s, CH_{3}).

Figure S34. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,4,6-trimethylbenzyl alcohol in benzene- d_{6}.

Figure S35. ${ }^{13} \mathrm{C}$ NMR spectrum of 2,4,6-trimethylbenzyl alcohol in benzene- d_{6}.

Hydrosilylation of pyridine-3-carbaldehyde using $0.1 \mathbf{m o l} \%$ 2: In a glove box, a mixture of pyridine-3-carbaldehyde ($0.20 \mathrm{~mL}, 2.23 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.28 \mathrm{~mL}, 2.23 \mathrm{mmol})$ was added to another scintillation vial containing $2(0.0015 \mathrm{~g}, 0.00223 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent by rotary evaporation at $25^{\circ} \mathrm{C}$ yielded a yellow liquid identified as pyridine-3-carbinol ${ }^{6}$ ($99.7 \mathrm{mg}, 0.91$ mmol, 41%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): 8.50 ($\mathrm{s}, 1 \mathrm{H}$, pyridyl), $8.23(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridyl), $7.40\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, pyridyl), $6.73\left(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, pyridyl), $5.45\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}_{2}\right), 4.47(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, benzene- d_{6}): 148.30 (s, pyridyl), 148.09 (s , pyridyl), 138.17 (s , pyridyl), 135.03 (s , pyridyl), 123.68 (s, pyridyl), 61.90 ($\mathrm{s},-\mathrm{CH}_{2}$).

Figure S36. ${ }^{1} \mathrm{H}$ NMR spectrum of pyridine-3-carbinol in benzene- d_{6}.

Figure S37. ${ }^{13} \mathrm{C}$ NMR spectrum of pyridine-3-carbinol in benzene- d_{6}.

Hydrosilylation of furfural using $\mathbf{0 . 1} \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of furfural ($0.24 \mathrm{~mL}, 2.98$ $\mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.37 \mathrm{~mL}, 2.98 \mathrm{mmol})$ was added to a scintillation vial containing $2(0.002 \mathrm{~g}, 0.00298$ $\mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was taken in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent by rotary evaporation at $25^{\circ} \mathrm{C}$ yielded a yellow liquid identified as furfuryl alcohol ${ }^{6}(191 \mathrm{mg}, 1.94 \mathrm{mmol}, 65 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): $7.07(\mathrm{~s}, 1 \mathrm{H}$, furyl), $6.03\left(\mathrm{~s}, 1 \mathrm{H}\right.$, furyl), $6.00\left(\mathrm{~s}, 1 \mathrm{H}\right.$, furyl), $4.27\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.22(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 155.16 (s, furyl), 142.33 (s, furyl), 110.52 (s , furyl), 107.59 (s, furyl), $57.25\left(\mathrm{~s},-\mathrm{CH}_{2}\right)$.

Figure S38. ${ }^{1} \mathrm{H}$ NMR spectrum of furfuryl alcohol in benzene- d_{6}.

Figure S39. ${ }^{13} \mathrm{C}$ NMR spectrum of furfuryl alcohol in benzene- d_{6}.

Hydrosilylation of thiophene-2-carbaldehyde using $0.1 \mathbf{m o l} \%$ 2: In a glove box, a mixture of thiophene-2-carbaldehyde $(0.26 \mathrm{~mL}, 2.83 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.35 \mathrm{~mL}, 2.83 \mathrm{mmol})$ was added to a scintillation vial containing $2(2 \mathrm{mg}, 0.00298 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was taken in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}$ (3 x 3 mL), filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent by rotary evaporation at $25{ }^{\circ} \mathrm{C}$ yielded an yellow liquid identified as thiophene-2-carbinol ${ }^{8}$ ($323 \mathrm{mg}, 2.83 \mathrm{mmol}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, benzene- d_{6}): $6.88(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 6.73(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 6.70(\mathrm{t}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H},=\mathrm{CH}), 4.46\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 3.44(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, benzene- $\left.d_{6}\right): 144.92(\mathrm{~s},=\mathrm{CH})$, $134.56(\mathrm{~s},=C \mathrm{H}), 126.88(\mathrm{~s},=C \mathrm{H}), 125.31(\mathrm{~s},=C \mathrm{H}), 59.60\left(\mathrm{~s},-\mathrm{CH}_{2}\right)$.

Figure S40. ${ }^{1} \mathrm{H}$ NMR spectrum of thiophene-2-carbinol in benzene- d_{6}.

$$
\begin{aligned}
& \stackrel{\circ}{0} \\
& \stackrel{0}{1} \\
& 1
\end{aligned}
$$

Figure S41. ${ }^{13} \mathrm{C}$ NMR spectrum of thiophene-2-carbinol in benzene- d_{6}.

Hydrosilylation of 3-cyclohexene-1-carbaldehyde using $0.1 \mathbf{m o l} \%$ 2: In a glove box, a mixture of 3-cyclohexene-1-carbaldehyde ($0.21 \mathrm{~mL}, 1.78 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.22 \mathrm{~mL}, 1.78 \mathrm{mmol})$ was added to a scintillation vial containing $2(1.2 \mathrm{mg}, 0.00178 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent at $25^{\circ} \mathrm{C}$ under vacuum yielded a colorless liquid identified as 3 -cyclohexene-1-carbinol ${ }^{6}$ ($208 \mathrm{mg}, 2.13 \mathrm{mmol}$, 84%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): $5.65(\mathrm{~s}, 2 \mathrm{H},=\mathrm{CH}), 3.76(\mathrm{~m}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}), 3.40(\mathrm{~d}, J=$ $\left.6.1 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.07\left(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}_{2}\right), 1.97\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.74(\mathrm{~d}, J=12.7 \mathrm{~Hz}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.22\left(\mathrm{dd}, J=20.1,7.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): $127.31(\mathrm{~s},=\mathrm{CH})$, $126.43(\mathrm{~s},=\mathrm{CH}), 67.53\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 36.69(\mathrm{~s},-\mathrm{CH}), 28.62\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 25.71\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 25.10\left(\mathrm{~s},-C \mathrm{H}_{2}\right)$.

Figure S42. ${ }^{1} \mathrm{H}$ NMR spectrum of 3-cyclohexene-1-carbinol in benzene- d_{6}.

Figure S43. ${ }^{13} \mathrm{C}$ NMR spectrum of 3-cyclohexene-1-carbinol in benzene- d_{6}.

Hydrosilylation of heptanal using $\mathbf{0 . 1} \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of heptanal ($0.22 \mathrm{~mL}, 1.56$ $\mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.22 \mathrm{~mL}, 1.56 \mathrm{mmol})$ was added to a scintillation vial containing $2(1.1 \mathrm{mg}, 0.0016$ $\mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent under vacuum at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as heptan-1-ol ${ }^{9}(121 \mathrm{mg}, 1.04 \mathrm{mmol}, 67 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): $3.56(\mathrm{t}, J=6.7$ $\left.\mathrm{Hz}, 3 \mathrm{H},-\mathrm{CH}_{2}\right), 1.54\left(\mathrm{p}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.26\left(\mathrm{~m}, J=6 \mathrm{~Hz}, 8 \mathrm{H},-\mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, J=6 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): $62.64\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 33.21\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 32.34\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 29.68\left(\mathrm{~s},-\mathrm{CH}_{2}\right)$, $26.30\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 23.09\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 14.33\left(\mathrm{~s},-\mathrm{CH}_{3}\right)$.

Figure S44. ${ }^{1} \mathrm{H}$ NMR spectrum of heptan-1-ol in benzene- d_{6}.

Figure S45. ${ }^{13} \mathrm{C}$ NMR spectrum of heptan- 1 -ol in benzene- d_{6}.

Hydrosilylation of 2-hexenal using $\mathbf{0 . 1} \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of 2-hexenal ($0.33 \mathrm{~mL}, 2.83$ $\mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.35 \mathrm{~mL}, 2.83 \mathrm{mmol})$ was added to a scintillation vial containing $2(1.9 \mathrm{mg}, 0.00283$ $\mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent under vacuum at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 2-hexen-1-ol ${ }^{10}$ ($208 \mathrm{mg}, 2.07 \mathrm{mmol}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): 5.70-5.59 (m, $1 \mathrm{H},-\mathrm{CH}), 5.39(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}), 4.08\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.89\left(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.25(\mathrm{q}, J=$ $\left.7.4 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 0.80\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): $131.92(\mathrm{~s},-\mathrm{CH})$, $130.17(\mathrm{~s},-\mathrm{CH}), 63.54\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 34.64\left(\mathrm{~s},-C \mathrm{H}_{2}\right), 22.70\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 13.83\left(\mathrm{~s},-\mathrm{CH}_{3}\right)$.

Figure S46. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-hexen-1-ol in benzene- d_{6}.

Figure S47. ${ }^{13} \mathrm{C}$ NMR spectrum of 2-hexen-1-ol in benzene- d_{6}.

Hydrosilylation of cinnamaldehyde using $0.1 \mathbf{m o l} \%$ 2: In a glove box, a mixture of cinnamaldehyde $(0.39 \mathrm{~mL}, 3.13 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.38 \mathrm{~mL}, 2.53 \mathrm{mmol})$ was added to a scintillation vial containing 2 $(0.0021 \mathrm{~g}, 0.00313 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotary evaporation at $25{ }^{\circ} \mathrm{C}$ to yield a colorless liquid identified as cinnamyl alcohol ${ }^{11}$ ($400 \mathrm{mg}, 2.98 \mathrm{mmol}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): 7.24 ($\mathrm{d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $7.05(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 1 H, phenyl), $6.50(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}), 6.19(\mathrm{dt}, J=15.9,5.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}), 4.11(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.-\mathrm{CH}_{2}\right), 3.29(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 137.42 (s , phenyl), 130.67 (s , phenyl), 129.37 (s, phenyl), 128.85 (s, phenyl), 127.71 (s, -CH), 126.84 (s, -CH), 63.36 (s, $-\mathrm{CH}_{2}$).

Figure S48. ${ }^{1} \mathrm{H}$ NMR spectrum of cinnamyl alcohol in benzene- d_{6}.

Figure S49. ${ }^{13} \mathrm{C}$ NMR spectrum of cinnamyl alcohol in benzene- d_{6}.

Hydrosilylation of acetophenone using $\mathbf{0 . 1} \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of acetophenone (0.66 $\mathrm{mL}, 5.66 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.70 \mathrm{~mL}, 5.66 \mathrm{mmol})$ were added to a scintillation vial containing $2(0.0038$ $\mathrm{g}, 0.0057 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of 10% $\mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent under vacuum at $25{ }^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 1 -phenylethanol ${ }^{9}(686 \mathrm{mg}, 5.65 \mathrm{mmol}, 91 \%) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, benzene$\left.d_{6}\right): 7.18(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $7.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $7.01(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl), $4.56(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}), 3.55(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 1.25\left(\mathrm{dd}, J=6.5,1.1 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, benzene- d_{6}): 146.65 (s, phenyl), 128.49 (s , phenyl), 127.26 (s, phenyl), 125.75 (s , phenyl), 69.75 (s , $-C H), 25.29\left(\mathrm{~s},-\mathrm{CH}_{3}\right)$.

Figure S50. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-phenylethanol in benzene- d_{6}.

Figure S51. ${ }^{13} \mathrm{C}$ NMR spectrum of 1-phenylethanol in benzene- d_{6}.

Hydrosilylation of 4-methoxyacetophenone using $0.1 \mathbf{m o l} \%$ 2: In a glove box, a mixture of 4methoxyacetophenone ($291 \mathrm{mg}, 1.938 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.24 \mathrm{~mL}, 1.938 \mathrm{mmol})$ was added to another scintillation vial containing $2(0.0013 \mathrm{~g}, 0.0019 \mathrm{mmol})$. The resulting light orange solution was allowed to stir at room temperature for 5 h and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was taken in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 1-(4methoxy)phenylethanol ${ }^{9}$ ($208 \mathrm{mg}, 1.369 \mathrm{mmol}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): 7.17 (d, $J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$, phenyl), $6.79\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$, phenyl), $4.60(\mathrm{~m}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}), 3.34\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$, $1.95(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 1.34\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 159.39 (s, phenyl), 138.98 (s, phenyl), 126.94 (s, phenyl), 114.05 (s, phenyl), 69.84 ($\mathrm{s},-\mathrm{OCH}_{3}$), 54.85 ($\mathrm{s},-\mathrm{CH}$), 25.64 (s , CH_{3}).

Figure S52. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-(4-methoxy)phenylethanol in benzene- d_{6}.

Figure S53. ${ }^{13} \mathrm{C}$ NMR spectrum of 1-(4-methoxy)phenylethanol in benzene- d_{6}.

Hydrosilylation of 4-methylacetophenone using $0.1 \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of 4methylacetophenone ($0.35 \mathrm{~mL}, 2.684 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.33 \mathrm{~mL}, 2.684 \mathrm{mmol})$ was added to a scintillation vial containing $2(0.0018 \mathrm{~g}, 0.00268 \mathrm{mmol})$. The resulting light orange solution was allowed to stir at room temperature for 14 h and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 1-(4methyl)phenylethanol ${ }^{9}(297 \mathrm{mg}, 2.18 \mathrm{mmol}, 81 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): 7.24 (d, $J=5.6 \mathrm{~Hz}$, 2 H , phenyl), 7.06 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $4.67(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}), 2.46(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 2.20(\mathrm{~s}$, $3 \mathrm{H},-\mathrm{CH}_{3}$), $1.40\left(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 143.93 (s, phenyl), 136.65 (s, phenyl), 129.23 (s, phenyl), 125.76 (s , phenyl), 70.09 ($\mathrm{s},-\mathrm{CH}$), $25.63\left(\mathrm{~s},-\mathrm{CH}_{3}\right), 21.11\left(\mathrm{~s},-\mathrm{CH}_{3}\right)$.

Figure S54. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-(4-methyl)phenylethanol in benzene- d_{6}.

Figure S55. ${ }^{13} \mathrm{C}$ NMR spectrum of 1-(4-methyl)phenylethanol in benzene- d_{6}.

Hydrosilylation of 4 -fluoroacetophenone using $0.1 \mathrm{~mol} \%$ 2: In a glove box, a mixture of 4fluoroacetophenone ($0.54 \mathrm{~mL}, 4.47 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.55 \mathrm{~mL}, 4.47 \mathrm{mmol})$ was added to a scintillation vial containing $2(0.003 \mathrm{~g}, 0.00447 \mathrm{mmol})$. The resulting light orange solution was allowed to stir at room temperature for 2 h and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was taken in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 1-(4fluoro) phenylethanol ${ }^{9}(429 \mathrm{mg}, 3.06 \mathrm{mmol}, 69 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): 7.01 (pseudo $\mathrm{t}, 2 \mathrm{H}$, phenyl), 6.83 (pseudo $\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $4.47(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}), 2.48(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 1.22(\mathrm{~d}$, $\left.J=6.5 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): $162.37(\mathrm{~d}, J=245 \mathrm{~Hz}$, phenyl), $142.27(\mathrm{~s}$, phenyl), 127.28 (d, $J=7.9 \mathrm{~Hz}$, phenyl), 115.19 (d, $J=21.2 \mathrm{~Hz}$, phenyl), $69.42(\mathrm{~s},-C \mathrm{H}), 25.40\left(\mathrm{~s},-C \mathrm{H}_{3}\right)$. ${ }^{19} \mathrm{~F}$ NMR (376 MHz , benzene- d_{6}): -115.68 ($\mathrm{s}, \mathrm{Ph}-F$).

```
\underbrace~
*゙な导氐
|
```


Figure S56．${ }^{1} \mathrm{H}$ NMR spectrum of 1－（4－fluoro）phenylethanol in benzene－d_{6} ．

Figure S57．${ }^{13} \mathrm{C}$ NMR spectrum of 1－（4－fluoro）phenylethanol in benzene－d_{6} ．

Figure S58. ${ }^{19} \mathrm{~F}$ NMR spectrum of 1-(4-fluoro)phenylethanol in benzene- d_{6}.

Hydrosilylation of 4-chloroacetophenone using $0.1 \mathbf{~ m o l} \%$ 2: In a glove box, a 20 mL scintillation vial containing a mixture of 4-chloroacetophenone ($0.38 \mathrm{~mL}, 2.98 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(3.67 \mathrm{~mL}, 2.98 \mathrm{mmol})$ was added to another scintillation vial containing $2(0.002 \mathrm{~g}, 0.00298 \mathrm{mmol})$. The resulting light orange solution was allowed to stir at room temperature for 11 h and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of 10% $\mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 11 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 1-(4-chloro)phenylethanol ${ }^{9}(356 \mathrm{mg}, 2.289 \mathrm{mmol}, 77 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): 7.11 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $6.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $4.34(\mathrm{~m}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H},-$ CH), $1.14\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 144.98 (s, phenyl), 132.98 (s , phenyl), 128.61 (s, phenyl), 126.94 (s, phenyl), 69.35 (s, -CH), 25.41 ($\mathrm{s},-\mathrm{CH}_{3}$).

Figure S59. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-(4-chloro)phenylethanol in benzene- d_{6}.

Figure S60. ${ }^{13} \mathrm{C}$ NMR spectrum of 1-(4-chloro)phenylethanol in benzene- d_{6}.

Hydrosilylation of 4-cyanoacetophenone using $0.1 \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of 4cyanoacetophenone ($346 \mathrm{mg}, 2.385 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.29 \mathrm{~mL}, 2.385 \mathrm{mmol})$ was added to another scintillation vial containing $2(0.0016 \mathrm{~g}, 0.00238 \mathrm{mmol})$. The resulting light orange solution was allowed to stir at room temperature for 6 h and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 1-(4cyano)phenylethanol ${ }^{8}(330 \mathrm{mg}, 2.24 \mathrm{mmol}, 94 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): $7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2 H, phenyl), $6.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $4.38(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}), 2.09(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 1.12(\mathrm{~d}, J$ $\left.=6.5 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): $151.59(\mathrm{~s},-\mathrm{CN}), 132.16(\mathrm{~s}$, phenyl), $126.07(\mathrm{~s}$, phenyl), 119.09 (s, phenyl), 111.05 (s, phenyl), 69.27 ($\mathrm{s},-\mathrm{CH}$), 25.35 ($\mathrm{s},-\mathrm{CH}_{3}$).

Figure S61. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-(4-cyano)phenylethanol in benzene- d_{6}.

Figure S62. ${ }^{13} \mathrm{C}$ NMR spectrum of 1-(4-cyano)phenylethanol in benzene- d_{6}.

Hydrosilylation of 2-acetylpyridine using $\mathbf{0 . 1} \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of 2-acetylpyridine $(0.35 \mathrm{~mL}, 2.684 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.33 \mathrm{~mL}, 2.684 \mathrm{mmol})$ were added to a scintillation vial containing 2 $(0.0018 \mathrm{~g}, 0.00268 \mathrm{mmol})$. The resulting light orange solution turned slightly warm. The mixture was allowed to stir at room temperature for 5 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25{ }^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 1-(2-pyridine)ethanol ${ }^{12}(161 \mathrm{mg}, 1.31 \mathrm{mmol}, 80 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): $8.29(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, 1 H , aromatic), $7.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic $), 6.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $6.59(\mathrm{~m}, 1 \mathrm{H}$, aromatic $), 4.89(\mathrm{~m}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}), 1.46\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene$\left.d_{6}\right): 164.56$ (s , aromatic), 148.30 (s , aromatic), 136.53 (s , aromatic), 121.96 (s , aromatic), 119.84 (s , aromatic), $69.42(\mathrm{~s},-\mathrm{CH}), 24.65\left(\mathrm{~s},-\mathrm{CH}_{3}\right)$.


```
* 每
```


Figure S63. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-(2-pyridine)ethanol in benzene- d_{6}.

Figure S64. ${ }^{13} \mathrm{C}$ NMR spectrum of 1-(2-pyridine)ethanol in benzene- d_{6}.

Hydrosilylation of 2-acetylfuran using $\mathbf{0 . 1} \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of 2-acetylfuran (0.49 $\mathrm{mL}, 4.92 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.61 \mathrm{~mL}, 4.92 \mathrm{mmol})$ was added to a scintillation vial containing 2 (0.0033 $\mathrm{g}, 0.0049 \mathrm{mmol})$. The resulting light orange solution was allowed to stir at room temperature for 1 h and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was taken in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25{ }^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 1-(furan-2-yl)ethanol ${ }^{13}$ ($470 \mathrm{mg}, 4.19 \mathrm{mmol}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , benzene- d_{6}): 7.27 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 6.15 (pseudo $\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $6.10(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $4.71(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}), 1.62(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 1.42(\mathrm{~d}, J$ $\left.=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz , benzene- d_{6}): 158.75 (s , aromatic), 141.70 (s , aromatic), 110.31 (s , aromatic), 105.07 (s , aromatic), $63.72(\mathrm{~s},-\mathrm{CH}), 21.68\left(\mathrm{~s},-\mathrm{CH}_{3}\right)$.

Figure S65. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-(furan-2-yl)ethanol in benzene- d_{6}.

Figure S66. ${ }^{13} \mathrm{C}$ NMR spectrum of 1-(furan-2-yl)ethanol in benzene- d_{6}.

Hydrosilylation of 2-acetylthiophene using $0.1 \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of 2-acetylthiophene $(0.56 \mathrm{~mL}, 5.22 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.64 \mathrm{~mL}, 5.22 \mathrm{mmol})$ was added to a scintillation vial containing 2 $(0.0035 \mathrm{~g}, 0.0052 \mathrm{mmol})$. The resulting light orange solution was allowed to stir at room temperature for 2 h and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was taken in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 1 -(Thiophen-2-yl)ethanol ${ }^{12}$ ($641 \mathrm{mg}, 5.00$ mmol, $96 \%)$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , benzene- d_{6}): $6.86(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $6.70(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, 2 H , aromatic), $4.76(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}), 2.00(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 1.34\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz , benzene- d_{6}): 150.94 (s , aromatic), 126.68 (s , aromatic), 124.22 (s , aromatic), 123.07 (s , aromatic $), 66.20(\mathrm{~s},-\mathrm{CH}), 25.61\left(\mathrm{~s},-\mathrm{CH}_{3}\right)$.

Figure S67. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-(thiophen-2-yl)ethanol in benzene- d_{6}.

Figure S68. ${ }^{13} \mathrm{C}$ NMR spectrum of 1-(thiophen-2-yl)ethanol in benzene- d_{6}.

Hydrosilylation of 2,2,2-trifluoroacetophenone using $0.1 \mathbf{m o l} \%$ 2: In a glove box, a mixture of 2,2,2trifluoroacetophenone ($0.41 \mathrm{~mL}, 2.982 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.37 \mathrm{~mL}, 2.982 \mathrm{mmol})$ was added to another scintillation vial containing $2(0.002 \mathrm{~g}, 0.00298 \mathrm{mmol})$. The resulting light orange solution was allowed to stir at room temperature for 5 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was taken in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 2,2,2-trifluoro-1phenylethanol ${ }^{12}$ ($381 \mathrm{mg}, 2.16 \mathrm{mmol}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): $7.23(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), 7.06 ($\mathrm{m}, 3 \mathrm{H}$, phenyl), $4.47\left(\mathrm{~m}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}\right.$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 134.56 (s, phenyl), 129.54 (s, phenyl), 128.70 (s, phenyl), 126.38 (s, phenyl), 123.57 ($\mathrm{s},-\mathrm{CH}$), 75.63 ($\mathrm{q}, \mathrm{J}=32.3$ $\mathrm{Hz},-\mathrm{CF}_{3}$). ${ }^{19}$ F NMR (376 MHz , benzene- d_{6}): $-76.00\left(\mathrm{~d}, J=7.5 \mathrm{~Hz},-\mathrm{CF}_{3}\right.$).

Figure S69. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,2,2-trifluoro-1-phenylethanol in benzene- d_{6}.

Figure S70. ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2,2-trifluoro-1-phenylethanol in benzene- d_{6}.

Figure S71. ${ }^{19} \mathrm{~F}$ NMR spectrum of 2,2,2-trifluoro-1-phenylethanol in benzene- d_{6}.

Hydrosilylation of benzophenone using $\mathbf{0 . 1 ~ m o l} \%$ 2: In a glove box, a mixture of benzophenone (0.35 $\mathrm{mL}, 2.684 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.33 \mathrm{~mL}, 2.684 \mathrm{mmol})$ were added to a scintillation vial containing 2 ($0.0018 \mathrm{~g}, 0.00268 \mathrm{mmol}$). The resulting light orange solution was allowed to stir at room temperature for 18 h and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed $>99 \%$ conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25{ }^{\circ} \mathrm{C}$ yielded a colorless liquid identified as diphenylmethanol ${ }^{13}(411 \mathrm{mg}, 2.23 \mathrm{mmol}, 83 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, benzene- d_{6}): 7.27 ($\mathrm{d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}$, phenyl), 7.11 (t, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}$, phenyl), 7.04 ($\mathrm{d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}$, phenyl), 5.48 (s, 1H, -CH), 2.24 (s, 1H, -OH). ${ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 144.74 (s, phenyl), 128.57 (s, phenyl), 127.51 (s, phenyl), 127.02 (s, phenyl), 76.19 (s, -CH).

Figure S72. ${ }^{1} \mathrm{H}$ NMR spectrum of diphenylmethanol in benzene- d_{6}.

Figure S73. ${ }^{13} \mathrm{C}$ NMR spectrum of diphenylmethanol in benzene- d_{6}.

Hydrosilylation of 2-hexanone using $0.1 \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of hexanone (0.26 mL , $2.09 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.26 \mathrm{~mL}, 2.09 \mathrm{mmol})$ were added to another scintillation vial containing 2 $(0.0014 \mathrm{~g}, 0.0021 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 2 -hexanol ${ }^{9}(187 \mathrm{mg}, 1.83 \mathrm{mmol}, 88 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, benzene- $\left.d_{6}\right)$: $3.68(\mathrm{~m}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}), 3.47(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 1.45\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2}\right), 1.34\left(\mathrm{~m}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right)$, $1.25\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{CH}_{2}\right), 1.13\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 0.89\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): $67.84(\mathrm{~s},-C \mathrm{H}), 39.43\left(\mathrm{~s},-C \mathrm{H}_{2}\right), 28.46\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 23.61\left(\mathrm{~s},-C \mathrm{H}_{2}\right), 23.21\left(\mathrm{~s},-\mathrm{CH}_{3}\right), 14.36(\mathrm{~s},-$ CH_{3}).

Figure S74. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-hexanol in benzene- d_{6}.

Figure S75. ${ }^{13} \mathrm{C}$ NMR spectrum of 2-hexanol in benzene- d_{6}.

Hydrosilylation of cyclohexanone using $\mathbf{0 . 1} \mathbf{~ m o l} \%$ 2: In a glove box, a mixture of cyclohexanone (0.26 $\mathrm{mL}, 2.53 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.31 \mathrm{~mL}, 2.53 \mathrm{mmol})$ was added to a scintillation vial containing 2 (0.0017 $\mathrm{g}, 0.00253 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 2 min and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of 10% $\mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as cyclohexanol ${ }^{9}$ ($197.6 \mathrm{mg}, 1.97 \mathrm{mmol}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): 3.95 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{OH}$), 3.58 (dt, $J=9.7,5.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}), 1.91\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$), $1.67\left(\mathrm{dd}, J=8.9,4.4 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$), 1.37 $\left(\mathrm{m}, 3 \mathrm{H},-\mathrm{CH}_{2}\right), 1.13\left(\mathrm{dt}, J=22.3,11.9 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): $69.82(\mathrm{~s},-\mathrm{CH})$, $35.82\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 25.91\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 24.38\left(\mathrm{~s},-\mathrm{CH}_{2}\right)$.

Figure S76. ${ }^{1} \mathrm{H}$ NMR spectrum of cyclohexanol in benzene- d_{6}.

Figure S77. ${ }^{13} \mathrm{C}$ NMR spectrum of cyclohexanol in benzene- d_{6}.

Hydrosilylation of 2,4-dimethylpentan-3-one using $0.1 \mathrm{~mol} \%$ 2: In a glove box, a mixture of Diisopropyl ketone ($0.35 \mathrm{~mL}, 2.53 \mathrm{mmol}$) and $\mathrm{PhSiH}_{3}(0.31 \mathrm{~mL}, 2.53 \mathrm{mmol})$ was added to a scintillation vial containing $2(0.0017 \mathrm{~g}, 0.00253 \mathrm{mmol})$. The resulting light orange solution was allowed to stir at room temperature for 24 h and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was taken in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 2 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 3 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as 2,4-dimethyl-3pentanol ${ }^{9}(291 \mathrm{mg}, 1.69 \mathrm{mmol}, 68 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): $3.37(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}$), 1.77 (ddt, $J=25.8,12.4,6.3 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}), 1.08\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 0.94\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H},-\mathrm{CH}_{3}\right)$, $0.80\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): $83.93(\mathrm{~s},-\mathrm{CH}), 30.71(\mathrm{~s},-\mathrm{CH}), 19.46$ ($\mathrm{s},-\mathrm{CH}_{3}$), $17.09\left(\mathrm{~s},-\mathrm{CH}_{3}\right)$.

Figure S78. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,4-dimethyl-3-pentanol in benzene- d_{6}.

Figure S79. ${ }^{13} \mathrm{C}$ NMR spectrum of 2,4-dimethyl-3-pentanol in benzene- d_{6}.

Hydrosilylation of benzaldehyde using $\mathbf{0 . 0 1 ~ m o l \%}$ 2: In a glove box, a mixture of benzaldehyde (1.67 $\mathrm{mL}, 16.40 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(2.02 \mathrm{~mL}, 16.40 \mathrm{mmol})$ was added to a scintillation vial containing 2 $(0.0011 \mathrm{~g}, 0.0016 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 30 s and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 5 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated using a rotovap at $25^{\circ} \mathrm{C}$ to yield a colorless liquid identified as benzyl alcohol ${ }^{6}$ ($0.896,8.28 \mathrm{mmol}, 51 \%$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, benzene- d_{6}): 7.21 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), 7.16 ($\mathrm{d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl), 4.37 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{CH}_{2}$), $2.70(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 141.77 (s , phenyl), 128.58 (s , phenyl), 127.47 (s , phenyl), 127.11 (s , phenyl), $64.88\left(\mathrm{~s},-\mathrm{CH}_{2}\right)$.

Figure S80. ${ }^{1} \mathrm{H}$ NMR spectrum of silyl ethers generated via 2-catalyzed benzaldehyde hydrosilylation prior to hydrolysis in chloroform- d.

Figure S81. ${ }^{1} \mathrm{H}$ NMR spectrum of benzyl alcohol in benzene- d_{6}.

$\begin{array}{lll}185 & 180 & 175 & 170 & 165 & 160 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35\end{array}$

Figure S82. ${ }^{13} \mathrm{C}$ NMR spectrum of benzyl alcohol in benzene- d_{6}.

Hydrosilylation of acetophenone using $\mathbf{0 . 0 1 ~ \mathbf { ~ m o l } \%}$ 2: In a glove box, a mixture of acetophenone (2.08 $\mathrm{mL}, 17.89 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(2.2 \mathrm{~mL}, 17.89 \mathrm{mmol})$ was added to a scintillation vial containing $2(0.0012$ $\mathrm{g}, 0.0018 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 30 s and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed 98% conversion. The solution was hydrolyzed with 5 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under vacuum at $25^{\circ} \mathrm{C}$ to yield a colorless liquid identified as 1phenylethanol ${ }^{9}(0.947,8.28 \mathrm{mmol}, 43 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}): 7.24 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), 7.18 ($\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), 7.09 (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl), $4.59(\mathrm{~m}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH})$, $1.30\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}): 146.62 (s , phenyl), 128.56 (s , phenyl), 127.36 (s, phenyl), 125.79 (s, phenyl), 70.22 ($\mathrm{s},-\mathrm{CH}$), $25.56\left(\mathrm{~s},-\mathrm{CH}_{3}\right)$.

Figure S83. ${ }^{1} \mathrm{H}$ NMR spectrum of silyl ethers generated via 2-catalyzed acetophenone hydrosilylation prior to hydrolysis in chloroform- d.

Figure S84. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-phenylethanol in benzene- d_{6}.

N	$\stackrel{\circ}{\circ}$
$\stackrel{\sim}{\circ}$	ผ
।	

Figure S85. ${ }^{13} \mathrm{C}$ NMR spectrum of 1-phenylethanol in benzene- d_{6}.

Hydrosilylation of cyclohexanone using $\mathbf{0 . 0 1 ~ \mathbf { ~ m o l } \%}$ 2: In a glove box, a mixture of cyclohexanone $(1.54 \mathrm{~mL}, 14.91 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(1.84 \mathrm{~mL}, 14.91 \mathrm{mmol})$ was added to a scintillation vial containing 2 $(0.001 \mathrm{~g}, 0.0015 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was allowed to stir at room temperature for 30 s and then exposed to air to deactivate the catalyst. The resulting solution was filtered through Celite and a ${ }^{1} \mathrm{H}$ NMR spectrum was collected in CDCl_{3}, which revealed greater than 99% conversion. The solution was hydrolyzed with 5 mL of $10 \% \mathrm{NaOH}(\mathrm{aq})$ and allowed to stir for 2 h . The organic product was extracted using $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, filtered through Celite and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation of the solvent at $25^{\circ} \mathrm{C}$ yielded a colorless liquid identified as cyclohexanol ${ }^{9}(1.49 \mathrm{~g}, 10.28 \mathrm{mmol}, 69 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , benzene $-d_{6}$): $3.68(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 3.55(\mathrm{~m}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}), 1.89\left(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.65(\mathrm{dt}, J=8.8,4.1$ $\mathrm{Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}$), $1.38\left(\mathrm{~m}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz},-\mathrm{CH}_{2}\right), 1.30\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.12(\mathrm{dq}, J=21.8,11.1 \mathrm{~Hz}, 3 \mathrm{H},-$ CH_{2}). ${ }^{13} \mathrm{C}$ NMR (101 MHz, benzene- d_{6}): $70.01(\mathrm{~s},-\mathrm{CH}), 35.88\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 26.02\left(\mathrm{~s},-\mathrm{CH}_{2}\right), 24.59\left(\mathrm{~s},-\mathrm{CH}_{2}\right)$.

Figure S86. ${ }^{1} \mathrm{H}$ NMR spectrum of silyl ethers generated via 2-catalyzed cyclohexanone hydrosilylation prior to hydrolysis in chloroform- d.
范

| 0.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 1.0 | 4.5 | 4.0 | 1.5 | 1.0 | 1.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.0 |
| :--- |

Figure S87. ${ }^{1} \mathrm{H}$ NMR spectrum of cyclohexanol in benzene- d_{6}.

Figure S88. ${ }^{13} \mathrm{C}$ NMR spectrum of cyclohexanol in benzene- d_{6}.

Determination of maximum aldehyde hydrosilylation TON: Under an inert atmosphere, a round bottom flask was charged with $0.0013 \mathrm{~g}(0.0019 \mathrm{mmol})$ of $\mathbf{2}$. A mixture of $2.38 \mathrm{~mL}(19.38 \mathrm{mmol})$ of PhSiH_{3} and $1.97 \mathrm{~mL}(19.38 \mathrm{mmol})$ of benzaldehyde was added to the flask and stirred for 2 min . The resulting light orange solution became hot and was then allowed to cool to room temperature over the next 15 min . At that time, an additional 10,000 equivalents of PhSiH_{3} and benzaldehyde were added. This process was repeated three additional times until a total of 50,000 equivalents of PhSiH_{3} and benzaldehyde were added. Finally, the pale orange mixture was exposed to air to deactivate the catalyst. Collecting a ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture revealed 38% overall conversion of the substrate into silyl ethers, equating to a TON of 19,000 .

Figure 89. ${ }^{1} \mathrm{H}$ NMR spectrum of silyl ethers and unreacted benzaldehyde in benzene- d_{6}.

Procedure for the determination of maximum ketone hydrosilylation TON: Under an inert

 atmosphere, a round bottom flask was charged with $0.0011 \mathrm{~g}(0.0016 \mathrm{mmol})$ of $\mathbf{2}$. A mixture of 2.02 mL (16.40 mmol) of PhSiH_{3} and $1.70 \mathrm{~mL}(16.40 \mathrm{mmol})$ of cyclohexanone was added to the flask and stirred for 2 min . The resulting brown solution became hot and was then allowed to cool to room temperature over the next 15 min . At that time, an additional 10,000 equivalents of PhSiH_{3} and cyclohexanone were added. This process was repeated two additional times until a total of 40,000 equivalents of PhSiH_{3} and cyclohexanone were added. Finally, the pale brown mixture was exposed to air to deactivate the catalyst. Collecting a ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture revealed an overall 44% conversion of the substrate into silyl ethers, resulting in a TON of 17,600 .

Figure 90. ${ }^{1} \mathrm{H}$ NMR spectrum of silyl ethers and unreacted cyclohexanone in benzene- d_{6}.

MECHANISTIC EXPERIMENTS

Given the activity observed for $\mathbf{2}$, there was interest in elucidating the mechanism through which it operates. Unfortunately, its efficiency precluded our ability to observe catalytically-relevant intermediates. The independent addition of benzaldehyde to $5 \mathrm{~mol} \% \mathbf{2}$ in benzene- d_{6} did not result in a reaction at $25^{\circ} \mathrm{C}$ or upon heating to $80^{\circ} \mathrm{C}$ for 24 h , as judged by multinuclear NMR spectroscopy. Similarly, the addition of excess phenylsilane to $\mathbf{2}$ did not result in conversion to a new Co complex. Benzaldehyde hydrosilylation was then conducted using a $5 \mathrm{~mol} \%$ loading of 2 to allow for post-catalysis Co complex identification. After 2 min , complete substrate hydrosilylation was noted and ${ }^{31} \mathrm{P}$ NMR analysis confirmed the presence of $\mathbf{2}$, which also appears to be the catalyst resting state (no color change was noted during catalysis).

It was recently proposed that the ability of (${ }^{\text {Ph2PrPPDI }}$)Mn to catalyze efficient carbonyl hydrosilylation through a $\mathrm{Si}-\mathrm{H}$ activation, carbonyl insertion, and $\mathrm{Si}-\mathrm{O}$ reductive elimination pathway ${ }^{6}$ is enabled by a particularly small thermodynamic penalty associated with phosphine arm dissociation ($2.6 \mathrm{kcal} / \mathrm{mol}$). ${ }^{14,15}$ To provide additional insight into the activity of $\mathbf{2}$, DFT calculations were performed to elucidate the relative energy of its 4 -coordinate analog, which was found to be $20.5 \mathrm{kcal} / \mathrm{mol}$ uphill. This energy penalty is sufficiently large to suggest that the superior hydrosilylation activity of $\mathbf{2}$ is not due to facile phosphine dissociation and subsequent $\mathrm{Si}-\mathrm{H}$ oxidative addition. Computational models considering several reaction pathways failed to produce a convincing mechanism, implying that an unconventional hydrosilylation cycle may be operative.

Reaction between benzaldehyde and $\mathbf{5 ~ m o l} \%$ of 2: Under an inert atmosphere, a J. Young tube was charged with a mixture of $0.020 \mathrm{~g}(0.0298 \mathrm{mmol})$ of $\mathbf{2}$ and $0.06 \mathrm{~mL}(0.596 \mathrm{mmol})$ of benzaldehyde in benzene- d_{6} and sealed. The collection of ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra at room temperature revealed no reaction. After heating the J. Young tube at $80^{\circ} \mathrm{C}$ for 24 h , no change was noted by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy.

Reaction between PhSiH_{3} and $\mathbf{5 ~ m o l} \%$ of 2: Under an inert atmosphere, a J. Young tube was charged with a mixture of $0.015 \mathrm{~g}(0.0224 \mathrm{mmol})$ of $\mathbf{2}$ and $0.05 \mathrm{~mL}(0.447 \mathrm{mmol})$ of PhSiH_{3} in benzene $-d_{6}$ and sealed. The collection of ${ }^{1} \mathrm{H},{ }^{29} \mathrm{Si}$, and ${ }^{31} \mathrm{P}$ NMR spectra at room temperature revealed no reaction. After heating the J. Young tube at $80^{\circ} \mathrm{C}$ for 12 h , no change was noted by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy.

Hydrosilylation of benzaldehyde using $5 \mathbf{~ m o l} \%$ of 2: In the glove box, a mixture of benzaldehyde $(0.076 \mathrm{~mL}, 0.745 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.092 \mathrm{~mL}, 0.745 \mathrm{mmol})$ was added to a scintillation vial containing $2(0.025 \mathrm{~g}, 0.0373 \mathrm{mmol})$. The resulting light orange solution became hot and the reaction vigorously bubbled. The mixture was then allowed to stir at room temperature for 2 min . This resulting solution was transferred to a J. Young tube and sealed. A ${ }^{1} \mathrm{H}$ NMR spectrum was collected in benzene- d_{6}, which revealed greater than 99% conversion. The ${ }^{31} \mathrm{P}$ NMR spectrum revealed 2.

COMPUTATIONAL DETAILS

All calculations were carried out using DFT^{16} as implemented in the Jaguar 9.1 suite ${ }^{17}$ of ab initio quantum chemistry programs. Geometry optimizations were performed with B3LYP-D3 ${ }^{18-23}$ functional and the $6-31 \mathrm{G}^{* *}$ basis set ${ }^{24}$ for main group atoms. Co was represented using the Los Alamos LACVP basis. ${ }^{25-27}$ The energies of the optimized structures were reevaluated by additional single-point calculations on each optimized geometry with Dunning's correlation consistent triple- ζ basis set cc-$\mathrm{pVTZ}(-\mathrm{f}),{ }^{28}$ which includes a double set of polarization functions. For Co, we used a modified version of LACVP, designated as LACV3P, in which the exponents were decontracted to match the effective core potential with triple- ζ quality. Solvation energies were evaluated by a self-consistent reaction field (SCRF) approach based on accurate numerical solutions of the Poisson-Boltzmann equation. In the results reported, solvation calculations were carried out with the $6-31 \mathrm{G}^{* *} / \mathrm{LACVP}$ basis at the optimized gasphase geometry employing the dielectric constants of $\varepsilon=2.379$ for toluene. As is the case for all continuum models, the solvation energies are subject to empirical parametrization of the atomic radii that are used to generate the solute surface. We employed the standard set of optimized radii in Jaguar for H $(1.150 \AA), \mathrm{C}(1.900 \AA), \mathrm{N}(1.600 \AA), \mathrm{P}(2.074 \AA)$, and $\mathrm{Co}(1.436 \AA)$. Analytical vibrational frequencies within the harmonic approximation were computed with the $6-31 \mathrm{G}^{* *} /$ LACVP basis to confirm proper convergence to well-defined minima or saddle points on the potential energy surface. The energy components have been computed with the following protocol. The free energy in solution-phase, G (sol), has been calculated as follows:

$$
\begin{gathered}
G(\mathrm{sol})=G(\mathrm{gas})+G_{\mathrm{slv}} \\
G(\mathrm{gas})=H(\mathrm{gas})-T S(\mathrm{gas}) \\
H(\mathrm{gas})=E(\mathrm{SCF})+\mathrm{ZPE} \\
\Delta E(\mathrm{SCF})=\sum E(\mathrm{SCF}) \text { for products }-\sum E(\mathrm{SCF}) \text { for reactants } \\
\Delta G(\mathrm{sol})=\sum G(\mathrm{sol}) \text { for products }-\sum G(\mathrm{sol}) \text { for reactants }
\end{gathered}
$$

Table S13. Computed energy components for DFT-optimized structures.

Table S14. Cartesian coordinates of the optimized geometries.

12			
Co	12.901490211	-0.344653994	1.470313430
P	13.101685524	-2.033988953	2.938718081
P	12.899350166	1.534884691	2.711048841
N	14.838886261	-0.543676198	0.999368489
N	10.914701462	-0.202355593	1.264177799
C	15.106206894	-0.729627669	-0.281731784
C	11.974620819	-2.306014776	4.373012543
C	10.458076477	-0.216774419	0.023855284
C	13.930342674	-0.673584700	-1.122490883
C	14.210640907	2.023911715	3.918224812
C	14.141819000	1.695695519	5.282721519
C	10.801686287	-3.066740036	4.223432541
C	11.498385429	-0.404393494	-0.963177025
C	12.789234161	3.078372478	1.691197753
C	15.914418221	-0.605542839	1.988044739
C	14.777140617	-2.069148064	3.768084288
C	12.767742157	-0.477593243	-0.333745927
C	10.075902939	-2.480704069	6.460179329
C	9.994302750	0.008442366	2.380813122
C	11.354489326	1.707674623	3.747301340
C	12.751323700	4.357904911	2.269483328
C	15.387534142	2.635026455	3.447499990
C	13.151228905	-6.208437443	0.869836390
C	16.454666138	2.899371624	4.305702209
C	12.176611900	-1.638851404	5.593586922
C	12.555033684	5.364768982	0.079364702
C	11.398231506	-0.515042067	-2.357773781
C	13.090521812	-3.711417437	2.153238535
C	10.073084831	1.440341830	2.944958448

C	13.257776260	-4.892223358	2.896288633
C	15.930256844	-1.937429905	2.762761354
C	13.81929583	-0.795461774	-2.515185833
C	12.557695389	-0.711416423	-3.122866869
C	11.240569115	-1.726764083	6.625023365
C	16.488945007	-0.991100609	-0.828513086
C	9.864090919	-3.151529551	5.253716946
C	15.210107803	1.960793376	6.142469883
C	13.288390160	-6.131990910	2.259397984
C	12.634414673	5.493179321	1.469492912
C	9.004718781	-0.044724390	-0.347130001
C	12.946736336	-3.799284935	0.762890399
C	12.979771614	-5.042221069	0.124658361
C	16.374403000	2.559915543	5.658574581
C	12.711398125	2.959457397	0.298014909
C	12.593845367	4.097919941	-0.503589511
H	12.477763176	-0.802167058	-4.202522278
H	10.436047554	-0.456284255	-2.863101006
H	14.696279526	-0.953291655	-3.140777588
H	8.886215210	-0.009238696	-1.431433082
H	8.388006210	-0.870834351	0.027129725
H	8.591731071	0.883862972	0.062530331
H	16.957424164	-1.854169250	-0.342210799
H	16.447374344	-1.196915865	-1.899536014
H	17.154094696	-0.131432354	-0.681420267
H	12.816191673	-2.880546808	0.197130471
H	12.869126320	-5.095254421	-0.955418110
H	13.175646782	-7.175448418	0.373866558
H	13.416264534	-7.039345741	2.844496727
H	13.349480629	-4.842657566	3.978626251
H	10.623197556	-3.598219156	3.292665005
H	8.965630531	-3.746906519	5.111963749
H	9.345547676	-2.546116829	7.261596680
H	11.423389435	-1.204718232	7.561040401
H	13.070286751	-1.042159319	5.745202541
H	13.245986938	1.238238692	5.689207077
H	15.127318382	1.701783180	7.195086479
H	17.205583572	2.764575481	6.327377796
H	17.351320267	3.374227762	3.915439606
H	15.463043213	2.910911560	2.399008036
H	12.744160652	1.964483023	-0.139107987
H	12.536926270	3.991243362	-1.583943248
H	12.466424942	6.2511334422	-0.543782175
H	12.609603882	6.478863716	1.927415252
H	12.832143784	4.467162132	3.348293543
H	8.959197044	-0.206875056	2.097192287
H	10.258646965	-0.697818816	3.171273708
H	9.981495857	2.161042452	2.122320652
H	9.210027695	1.597110868	3.605163813
H	11.325958252	2.704487085	4.201675415
H	11.420982361	0.970355153	4.554724693

H	16.895376205	-0.447999537	1.527798772
H	15.764769554	0.210972518	2.697892904
H	16.879419327	-2.003566027	3.310574532
H	15.912620544	-2.773522615	2.051970720
H	14.815618515	-1.221882463	4.461734295
H	14.878729820	-2.988904476	4.354783535

${ }^{3} 2$			
Co	12.950459480	-0.210257143	1.377243400
P	13.319458961	-1.920967340	2.832038164
P	12.722759247	1.504578710	2.830333948
N	15.173606873	-0.631740689	0.630687237
N	10.627135277	-0.126506165	0.995399535
C	15.180751801	-0.995123804	-0.612362385
C	12.305869102	-2.044893026	4.368191719
C	10.352075577	-0.233682364	-0.264873534
C	13.893212318	-0.875676811	-1.357388973
C	13.913664818	1.857084990	4.195426464
C	13.610134125	1.768624425	5.562012672
C	11.008333206	-2.581061602	4.270228386
C	11.496386528	-0.524153948	-1.179281473
C	12.647330284	3.137817621	1.972549558
C	16.332286835	-0.804690301	1.491497278
C	15.062526703	-1.861422420	3.507017612
C	12.761925697	-0.604906440	-0.561169505
C	10.541963577	-1.996075630	6.573150158
C	9.618434906	0.126873329	2.007705212
C	11.071876526	1.489572287	3.702203989
C	12.714746475	4.362569332	2.652939320
C	15.240583420	2.145553112	3.825214148
C	13.170776367	-6.246015072	1.141344786
C	16.230047226	2.336766481	4.787374973
C	12.703937531	-1.493974686	5.596047878
C	12.463529587	5.555706978	0.563699126
C	11.364689827	-0.725105941	-2.566025972
C	13.240878105	-3.654984713	2.208839417
C	9.857587814	1.455639243	2.755247593
C	13.375569344	-4.772274017	3.048069000
C	16.164350510	-2.010578871	2.441841125
C	13.764163971	-1.053839564	-2.746296644
C	12.500579834	-0.980149329	-3.340038538
C	11.828303337	-1.467586994	6.685685158
C	16.408775330	-1.572507143	-1.297480822
C	10.137786865	-2.559620142	5.358617783
C	14.605711937	1.952326536	6.527783871
C	13.339562416	-6.060715675	2.517243624
C	12.624955177	5.564644814	1.951975346
C	8.946425438	-0.093178898 -0.	-0.825377643
C	13.066708565	-3.848607779	0.832465887

C	13.034608841	-5.140361309	0.301290393
C	15.917598724	2.234376431	6.147432804
C	12.488061905	3.137111425	0.578730762
C	12.393245697	4.341637135	-0.121266060
H	12.400403976	-1.123668194	-4.412666321
H	10.398225784	-0.697270811	-3.063395023
H	14.625469208	-1.237769604	-3.384598017
H	8.950180054	0.054079298	-1.904974461
H	8.350030899	-0.988572657	-0.612816632
H	8.426266670	0.759863079	-0.380134225
H	16.804281235	-2.419107914	-0.726737440
H	16.188806534	-1.930592299	-2.302520752
H	17.208747864	-0.826776087	-1.372087836
H	12.950619698	-2.975898743	0.194226623
H	12.897343636	-5.280001163	-0.767989755
H	13.141037941	-7.251512527	0.729324996
H	13.439327240	-6.921180248	3.174091578
H	13.491528511	-4.632149696	4.120320320
H	10.684279442	-3.023169994	3.331204891
H	9.141522408	-2.983024836	5.258978367
H	9.862742424	-1.974585176	7.420732021
H	12.158917427	-1.031629801	7.625268459
H	13.691862106	-1.063205719	5.711966038
H	12.601894379	1.537577033	5.887696743
H	14.349492073	1.874159336	7.581465244
H	16.6888847355	2.374854088	6.899449825
H	17.247190475	2.561565399	4.477240562
H	15.490614891	2.224591017	2.769756079
H	12.447559357	2.186561823	0.048877444
H	12.273420334	4.329856873	-1.201505780
H	12.397369385	6.493695259	0.018589962
H	12.685040474	6.509143353	2.486810446
H	12.851241112	4.374181271	3.731525183
H	8.590948105	0.132357448	1.618152976
H	9.679524422	-0.692383230	2.736690283
H	9.926491737	2.271846056	2.024964809
H	8.962065697	1.652446508	3.359015465
H	11.008301735	2.382402658	4.336363316
H	11.057365417	0.609629393	4.355787754
H	17.277286530	-0.924324095	0.943373442
H	16.428634644	0.102143377	2.101011992
H	17.120004654	-2.154221535	2.963020086
H	15.992400169	-2.917232752	1.847578168
H	15.176716805	-0.894661188	4.010863304
H	15.170874596	-2.648867607	4.262606621

52			
Co	12.897266388	-0.327631503	1.294604778
P	13.329332352	-1.994486332	3.011707306

P	12.667760849	1.555609703	2.818942547
N	15.004285812	-0.700259030	0.721161902
N	10.706372261	-0.103190191	1.013104200
C	15.094392776	-0.960210621	-0.588999033
C	12.294640541	-2.127281189	4.521808147
C	10.409185410	-0.070679769	-0.287575126
C	13.892145157	-0.818604648	-1.394483685
C	13.899601936	1.881485343	4.137464046
C	13.646750450	1.681493640	5.502504349
C	10.992106438	-2.642646551	4.394400597
C	11.476758003	-0.347796500	-1.240238428
C	12.631837845	3.122829437	1.865508080
C	16.161954880	-0.763380170	1.594159365
C	15.064755440	-1.864049315	3.668040991
C	12.738623619	-0.519372284	-0.657095313
C	10.525969505	-2.138757467	6.716163635
C	9.697237968	0.092803247	2.036970377
C	11.037393570	1.549159765	3.709837675
C	12.756092072	4.379052162	2.480161428
C	15.198721886	2.245633166	3.737968683
C	13.288246155	-6.238476753	1.151596546
C	16.216421127	2.397815943	4.676443577
C	12.697895050	-1.625094414	5.768592358
C	12.534462929	5.466749668	0.329215407
C	11.359791756	-0.475845873	-2.665081978
C	13.277615547	-3.688409805	2.310966969
C	9.819710732	1.443593740	2.774867773
C	13.332439423	-4.834439754	3.120683908
C	16.141332626	-1.957692862	2.571814299
C	13.769371033	-0.949042320	-2.819165230
C	12.511327744	-0.771896660	-3.404190063
C	11.817652702	-1.629001379	6.854788780
C	16.394386292	-1.389158010	-1.233102560
C	10.118504524	-2.650880098	5.480188847
C	14.671229362	1.829297900	6.442060471
C	13.334706306	-6.102700233	2.542114019
C	12.708795547	5.543689728	1.714574575
C	9.011566162	0.228865832	-0.784837127
C	13.227682114	-3.831026793	0.915685058
C	13.236017227	-5.103437901	0.341432452
C	15.956593513	2.184130192	6.033741474
C	12.457285881	3.050683498	0.474184394
C	12.406451225	4.220356464	-0.286889762
H	12.423642159	-0.870407999	-4.484943867
H	10.409256935	-0.368222654	-3.180181980
H	14.624179840	-1.164321899	-3.454588413
H	9.015214920	0.457583815	-1.851404428
H	8.334383965	-0.622141838	-0.630536854
H	8.575734138	1.088315487	-0.263122350
H	16.881219864	-2.187415123	-0.660749674
H	16.227468491	-1.764210701	-2.243627310

H	17.110738754	-0.559238195	-1.302300811
H	13.181647301	-2.948251247	0.284430683
H	13.195539474	-5.202546120	-0.739732802
H	13.289825439	-7.228467941	0.703120708
H	13.371285439	-6.985691071	3.174839020
H	13.359720230	-4.733366966	4.202660561
H	10.667321205	-3.044754744	3.437887192
H	9.117691040	-3.057105303	5.361317635
H	9.843493462	-2.140855074	7.561320782
H	12.148764610	-1.235400200	7.812554359
H	13.694482803	-1.218643188	5.902171612
H	12.657891273	1.395871401	5.844242096
H	14.459740639	1.666762471	7.495834827
H	16.751451492	2.296009302	6.765855789
H	17.213787079	2.678478956	4.349246025
H	15.406660080	2.413956642	2.684338331
H	12.368791580	2.081413746	-0.011871830
H	12.277418137	4.152283192	-1.363492608
H	12.502462387	6.375396729	-0.265860736
H	12.813948631	6.511639595	2.197717667
H	12.904033661	4.444332123	3.555213690
H	8.674265862	0.007511840	1.648273826
H	9.808238029	-0.705392241	2.784962177
H	9.834673882	2.259633780	2.041476965
H	8.920439720	1.583571792	3.389804840
H	10.978977203	2.462537527	4.314225674
H	11.048280716	0.690873146	4.393077374
H	17.110231400	-0.794698119	1.042495370
H	16.190521240	0.155764669	2.197950840
H	17.118021011	-2.008047342	3.072200775
H	16.024990082	-2.890275240	2.006299496
H	15.148790359	-0.897064149	4.178852558
H	15.206179619	-2.654106379	4.414858341

Table S15. Vibrational frequencies (in cm^{-1}) of the optimized structures.

525.71	531.63	542.18	565.24	567.28	607.13
628.47	631.04	631.70	632.95	633.41	650.11
652.24	663.60	667.83	698.03	699.92	707.86
708.90	710.43	715.12	715.49	717.29	723.70
745.17	756.88	758.23	766.47	766.84	795.18
815.24	842.31	844.05	859.51	868.37	871.47
873.50	875.47	881.78	904.77	909.18	918.95
928.49	929.24	945.38	946.37	946.63	975.22
983.64	989.22	989.40	989.53	997.44	999.85
1009.67	1012.75	1013.51	1015.01	1015.28	1016.68
1017.43	1037.99	1039.06	1043.99	1045.41	1045.90
1051.86	1052.45	1053.37	1054.43	1055.83	1062.96
1084.13	1093.91	1107.91	1108.83	1110.78	1110.92
1112.56	1113.37	1115.42	1117.25	1118.53	1131.73
1180.72	1190.68	1192.51	1194.61	1194.82	1196.15
1196.68	1214.99	1217.21	1219.61	1224.53	1225.98
1227.07	1233.04	1302.28	1304.28	1318.42	1318.87
1325.89	1327.12	1330.52	1330.98	1355.75	1360.91
1361.73	1365.95	1367.19	1375.49	1376.83	1383.21
1388.05	1393.33	1394.65	1402.60	1418.09	1422.49
1470.57	1471.48	1473.31	1475.12	1477.01	1477.43
1480.45	1496.03	1497.16	1497.98	1498.50	1501.02
1508.94	1523.22	1523.43	1524.91	1525.97	1526.79
1527.09	1536.61	1565.18	1594.62	1621.04	1621.36
1627.76	1628.02	1628.55	1642.03	1643.31	1644.25
1644.88	3027.38	3027.63	3035.96	3036.99	3045.13
3045.24	3061.25	3063.17	3073.81	3074.53	3090.80
3091.91	3100.69	3101.48	3124.19	3124.83	3142.74
3143.77	3152.35	3158.23	3165.48	3165.85	3170.46
3170.75	3172.83	3174.11	3176.83	3177.34	3179.44
3182.02	3186.69	3188.34	3188.79	3190.36	3190.58
3196.75	3197.35	3198.30	3200.31	3204.68	3208.67

16.58	24.15	29.86	32.02	34.49	37.96
41.08	43.92	47.20	50.29	53.45	61.14
65.99	67.31	83.11	85.13	92.22	95.98
104.44	109.84	117.88	128.86	146.39	153.83
154.59	165.00	181.23	197.94	203.55	211.73
218.28	222.61	227.31	253.81	260.09	271.90
276.96	285.97	290.84	327.13	331.58	337.18
343.07	353.41	373.95	380.11	408.43	410.67
412.60	414.39	417.14	421.35	428.21	443.66
447.66	467.26	470.38	476.03	492.03	495.25
516.16	526.38	529.25	548.39	552.51	594.27
622.40	630.90	631.32	632.05	632.75	634.22
659.48	661.98	666.07	701.27	703.55	710.70
711.84	712.71	714.08	715.64	716.81	716.99

728.29	757.88	759.23	764.91	767.20	791.00
807.91	831.90	837.93	863.46	866.00	870.24
871.02	874.61	877.77	903.58	912.84	916.83
925.57	926.09	941.08	946.15	960.84	976.52
978.76	980.98	984.76	989.10	998.09	998.99
1002.88	1006.36	1013.31	1013.83	1013.96	1014.45
1016.75	1032.42	1034.97	1035.99	1046.31	1047.75
1052.10	1052.59	1052.99	1053.92	1060.53	1063.50
1084.32	1095.89	1108.12	1108.92	1111.08	1111.36
1113.83	1117.87	1118.32	1121.18	1122.24	1139.34
1172.49	1192.41	1194.74	1195.16	1195.76	1196.58
1197.43	1216.58	1219.25	1223.31	1223.38	1225.59
1232.09	1239.13	1279.99	1294.15	1305.95	1318.30
1321.04	1322.25	1326.31	1331.42	1331.84	1332.51
1351.37	1361.94	1366.18	1366.74	1368.10	1382.27
1385.56	1387.28	1393.01	1395.97	1410.94	1417.44
1471.82	1472.35	1475.09	1475.65	1476.80	1478.33
1478.75	1492.28	1495.49	1498.55	1499.78	1500.49
1505.18	1523.93	1526.94	1527.31	1527.46	1530.89
1532.45	1579.41	1612.43	1622.72	1623.15	1628.56
1629.00	1643.05	1643.83	1645.53	1645.74	1653.18
1658.93	3009.93	3011.43	3028.68	3028.76	3038.28
3038.48	3048.60	3049.02	3056.52	3061.78	3075.56
3076.08	3095.49	3097.81	3105.59	3111.42	3153.96
3157.57	3158.03	3166.06	3167.12	3169.12	3169.27
3169.44	3172.28	3173.16	3175.29	3175.61	3178.87
3180.28	3186.43	3186.67	3187.63	3188.17	3190.11
3197.95	3199.31	3200.57	3201.31	3213.99	3218.93

-67.29	26.79	27.81	33.53	36.47	40.94
45.13	51.99	53.40	54.79	61.19	68.35
70.72	76.72	79.11	84.85	86.94	106.59
114.64	124.89	129.89	132.60	136.53	145.11
152.54	155.73	185.82	190.22	205.04	208.25
213.61	217.52	248.86	258.88	271.60	276.55
283.75	286.14	292.31	319.18	323.34	331.01
343.63	367.16	370.66	380.90	408.18	410.96
411.24	413.08	418.81	423.32	424.39	430.06
454.18	461.33	477.98	483.36	493.63	496.70
515.99	523.63	527.83	534.61	539.53	358.17
624.06	630.47	630.79	631.43	631.89	633.04
639.99	668.97	669.33	694.56	705.67	709.02
709.86	711.84	715.01	716.37	718.31	720.97
732.54	755.44	759.34	762.56	764.92	765.62
769.92	831.83	832.32	835.97	864.39	866.11
870.90	871.06	871.51	892.38	900.78	928.57
929.99	936.51	941.41	943.42	949.75	977.71

981.36	981.97	987.16	987.67	989.51	1002.29
1003.20	1011.98	1012.56	1013.54	1014.03	1014.68
1015.10	1025.25	1031.84	1034.17	1037.44	1039.58
1051.65	1052.38	1053.27	1054.46	1055.86	1062.36
1080.02	1092.59	1112.09	1112.56	1113.46	1113.58
1121.43	1121.64	1122.13	1124.69	1125.92	1134.75
1173.23	1185.67	1187.13	1197.10	1197.12	1197.84
1198.44	1201.26	1223.66	1225.09	1225.38	1226.75
1229.91	1233.39	1286.19	1294.55	1301.39	1322.89
1323.40	1325.61	1326.41	1332.99	1333.76	1345.31
1352.30	1368.82	1369.18	1369.68	1369.97	1379.05
1379.51	1391.13	1393.73	1403.97	1415.31	1424.43
1460.67	1472.07	1472.99	1473.60	1475.26	1477.57
1478.17	1487.80	1493.43	1493.95	1495.88	1497.79
1498.48	1507.45	1522.09	1524.79	1527.92	1528.46
1528.54	1528.80	1539.84	1560.63	1586.13	1622.75
1623.96	1626.74	1627.54	1641.73	1642.65	1644.17
1645.74	3004.31	3008.14	3021.02	3023.19	3023.72
3025.00	3034.82	3037.77	3050.64	3051.34	3074.62
3075.65	3077.83	3081.65	3091.30	3094.29	3144.80
3146.43	3150.42	3171.05	3171.25	3172.00	3173.25
3174.07	3176.01	3178.40	3179.60	3180.95	3182.31
3183.74	3189.63	3190.21	3190.84	3192.85	3196.71
3203.20	3203.42	3203.74	3204.13	3213.28	3215.10

REFERENCES

(1) Li, Y.; Li, Z.; Li, F.; Wang, Q.; Tao, F. Preparation of a Nafion-Teflon Bimembrane-Supported Palladium Catalyst and Its Use in the Heck Reaction. Tetrahedron Lett. 2005, 46, 6159-6162.
(2) CrysAlisPro. Version 1.171. 39.15 E. Rigaku Corporation, The Woodlands, Texas.
(3) Sheldrick, G. M. SHELXT- Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A 2015, 71, 3-8.
(4) Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112-122.
(5) Müller, P. Practical Suggestions for Better Crystal Structures. Crystallography Rev. 2009, 15, 5783.
(6) Mukhopadhyay, T. K.; Rock, C. L.; Hong, M.; Ashley, D. C.; Groy, T. L.; Baik, M.-H.; Trovitch, R. J. Mechanistic Investigation of Bis(imino)pyridine Manganese Catalyzed Carbonyl and Carboxylate Hydrosilylation. J. Am. Chem. Soc. 2017, 139, 4901-4915.
(7) Pu. Y.; Jiang. N.; Ragauskas, A. J. Ionic Liquid as a Green Solvent for Lignin. J. Wood Chem. Technol. 2007, 27, 23-33.
(8) Sarkar. N.; Sahoo. R. K.; Mukhopadhyay. S.; Nembenna. S. Organoaluminium Cation Catalyzed Selective Hydrosilylation of Carbonyls, Alkenes, and Alkynes. Eur. J. Inorg. Chem. 2022, 28, e202101303.
(9) Rock, C. L.; Groy, T. L.; Trovitch, R. J. Carbonyl and Ester C-O Bond Hydrosilylation using κ^{4} diimine Nickel Catalysts. Dalton Trans. 2018, 47, 8807-8816.
(10) Rodiansono; Khairi, S.; Hara, T.; Ichikuni, N.; Shimazu, S. Highly Efficient and Selective Hydrogenation of Unsaturated Compounds Using Ni-Sn Alloy Catalysts. Catal. Sci. Technol. 2012, 2, 2139-2145.
(11) Ghosh, C.; Mukhopadhyay, T. K.; Flores, M.; Groy, T. L.; Trovitch, R. J. A Pentacoordinate Mn(II) Precatalyst That Exhibits Notable Aldehyde and Ketone Hydrosilylation Turnover Frequencies. Inorg. Chem. 2015, 54, 10398-10406.
(12) Fernandez, J. A.; Garcia, J. M.; Rios, P.; Rodriguez, A. Hydrosilylation of Carbonyl Compounds by a Nickel Complex Bearing a PBP Ligand. Eur. J. Inorg. Chem. 2021, 29, 2993-2998.
(13) Ferratè, O. M.; Chatterjee. B.; Werlè, C.; Leitner, W. Hydrosilylation of Carbonyl and Carboxyl Groups Catalysed by Mn(I) Complexes Bearing Triazole Ligands. Catal. Sci. Technol. 2019, 9, 6370-6378.
(14) Mena, M. R.; Kim, J.-H.; So, S.; Ben-Daat, H.; Porter, T. M.; Ghosh, C., Sharma, A.; Flores, M.; Groy, T. L.; Baik, M.-H.; Trovitch, R. J. Comparing the Electronic Structure of Iron, Cobalt, and Nickel Compounds That Feature a Phosphine-Substituted Bis(imino)pyridine Chelate. Inorg. Chem. 2022, 61, 6438-6450.
(15) Sharma, A.; Trovitch, R. J. Phosphorous-substituted redox-active ligands in base metal hydrosilylation catalysis. Dalton Trans. 2021, 50, 15973-15977.
(16) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules. International Series of Monographs on Chemistry. Oxford University Press, New York 1994, 3, 14312-14321.
(17) Bochevarov, A. D.; Harder, E.; Hughes, T. F.; Greenwood, J. R.; Braden, D. A.; Philipp, D. M.; Rinaldo, D.; Halls, M. D.; Zhang, J.; Friesner, R. A. Jaguar: A High-performance Quantum Chemistry Software Program with Strengths in Life and Materials Sciences. Int. J. Quantum Chem. 2013, 113, 2110-2142.
(18) Slater, J. C.; Phillips, J. C. Quantum Theory of Molecules and Solids Vol. 4: The Self-Consistent Field for Molecules and Solids. Phys. Today 1974, 27, 49.
(19) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980, 58, 1200-1211.
(20) Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098-3100.
(21) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785-789.
(22) Becke, A. D. Density-functional Thermochemistry. I. The Effect of the Exchange-only Gradient Correction. J. Chem. Phys. 1992, 96, 2155-2160.
(23) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
(24) Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724-728.
(25) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270-283.
(26) Wadt, W. R.; Hay, P. J. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. J. Chem. Phys. 1985, 82, 284-298.
(27) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985, 82, 299-310.
(28) Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007-1023.

[^0]: Symmetry transformations used to generate equivalent " A " atoms: $-x+1,-y,-z+1$

