Chiral cyclic architectonics with tetraphenylethylenes:

 conformation immobilization, optical resolution and circularly polarized luminescenceQi Meng, Liwen Cui, Qi Liao, Jian Xu* and Yuxiang Wang*

Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. Email: wangyx@cczu.edu.cn

Table of Contents

1. Measurements and Materials
2. Synthesis procedures of the chiral cyclic TPEs
3. Photophysical Properties of the chiral cyclic TPEs
4. Chiroptical properties of the chiral cyclic TPEs
5. Crystal data and structure refinement for the chiral cyclic TPEs
6. Chiral HPLC analysis of the chiral cyclic TPEs
7. NMR Spectra of the chiral cyclic TPEs
8. HRMS Spectra of the chiral cyclic TPEs
9. Theoretical calculations of chiral cyclic TPEs

1. Measurements and Materials

Nuclear magnetic resonance (NMR) spectra were recorded on 300 MHz Bruker spectrometer with TMS as the internal standard. Ultraviolet-visible (UV-vis) spectra were recorded on Shimadzu UV1700 UV-vis spectrophotometer. Emission spectra were performed on Agilent Cary Eclipse spectrophotometer. The transient photoluminescence (PL) decay spectra and absolute PL quantum yield were determined by Edinburgh FS5 Fluorescence Spectrometer. Circular dichroism (CD) spectra were measured from a JASCO J-810 spectropolarimeter. CPL spectra were measured from a JASCO CPL-300 spectrofluoropolarimeter. The enantiomeric excesses were confirmed by chiral HPLC using an Agilent 1200 LC instrument with a Daicel CHIRALPAK ${ }^{\circledR}$ AD and OD column (solvent flow rate $1.0 \mathrm{~L} / \mathrm{min}$).

The single crystals of (\boldsymbol{R})-pTPE and (R)-oTPE1 were obtained by volatilizing the solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ at room temperature, the single crystals of rac-oTPE2 and (S)-oTPE3 were obtained by volatilizing the solution of $i-\mathrm{PrOH}$ at room temperature. X-ray data at 150 K and 170 K were examined on a Bruker SMART APEX II Single-Crystal X-Ray Diffractometer using MoK α radiation $(\lambda=0.71073 \AA)$. The structures were solved by direct methods and refined with the fullmatrix least square technique. The details of crystal data and structure refinement were presented in Table S6. The crystal data of (R)-pTPE, (R)-oTPE1, rac-oTPE2 and (S)-oTPE3 were deposited to CCDC with CCDC number of 2182870, 2182873, 2182878 and 2182879.

2. Synthesis procedures of the chiral cyclic TPEs

Synthesis of (R)-pTPE. Compound $\mathbf{1}(100.00 \mathrm{mg}, 0.19 \mathrm{mmol})$ and (R)-BINOL $(55.24 \mathrm{mg}, 0.19$ mmol) were dissolved in anhydrous dimethylformamide (DMF, 10 mL), which was slowly added dropwise to anhydrous DMF solution $(20 \mathrm{~mL})$ containing anhydrous potassium carbonate (106.66 $\mathrm{mg}, 0.77 \mathrm{mmol}$) under N_{2} atmosphere at $80^{\circ} \mathrm{C}$. After stirring for 12 h , the mixture was cooled to room temperature, the reaction mixture was washed with water and extracted with ethyl acetate. The organic phase was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate $=80: 1$) to afford the (\boldsymbol{R})-pTPE ($35.20 \mathrm{mg}, 28 \%$) as a white powder. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97(\mathrm{~d}, \mathrm{~J}=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 12 \mathrm{H}), 6.63(\mathrm{~s}, 8 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}$, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.87,144.18,141.92,141.68,135.39,134.72,131.19,129.28$,
$128.95,128.18,127.95,126.95,126.35,125.73,123.66,120.82,116.12,70.36$. HRMS (ESI, m/z):
caled for $\mathrm{C}_{48} \mathrm{H}_{35} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$, 643.2632; found, 643.2634 .
Synthesis of (S)-pTPE. Compound $1(200.00 \mathrm{mg}, 0.31 \mathrm{mmol})$ and (S)-BINOL ($110.49 \mathrm{mg}, 0.39$ mmol) were dissolved in anhydrous dimethylformamide (DMF, 10 mL), which was slowly added dropwise into 25 mL anhydrous DMF solution containing anhydrous potassium carbonate (213.32 $\mathrm{mg}, 1.54 \mathrm{mmol}$) under N_{2} atmosphere at $80^{\circ} \mathrm{C}$. After stirring for 12 h , the mixture was cooled to room temperature, the reaction mixture was washed with water and extracted with ethyl acetate. The organic phase was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate $=80: 1$) to afford (S)-pTPE ($65.00 \mathrm{mg}, 26 \%$) as a white powder.

Synthesis of 2. In a two-necked round bottom flask were placed 1,1-Di(2-methylphenyl)-2,2--diphenylethylene ($1.40 \mathrm{~g}, 4.13 \mathrm{mmol}$), N-bromosuccinimide ($1.59 \mathrm{~g}, 8.93 \mathrm{mmol}$) and a catalytic amount of benzoyl peroxide, then 35 mL of carbon tetrachloride was added. The mixture was refluxed for 5 h . After cooling to room temperature, the reaction mixture was poured into 80 mL water and extracted with ethyl acetate. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. Then the residue was purified by column chromatography (petroleum ether) to afford product $2(1.29 \mathrm{~g}, 64 \%)$ as a pale-yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37-7.30(\mathrm{~m}$, $2 \mathrm{H}), 7.22-7.06(\mathrm{~m}, 16 \mathrm{H}), 4.45\left(\mathrm{dd}, \mathrm{J}_{1}=10.4 \mathrm{~Hz}, \mathrm{~J}_{2}=10.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.14\left(\mathrm{dd}, \mathrm{J}_{1}=10.4 \mathrm{~Hz}, \mathrm{~J}_{2}=10.4\right.$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.47,142.11,141.93,140.31,140.25,136.42,135.74$, $132.91,132.59,131.81,131.44,131.26,131.00,130.58,130.43,128.62,128.33,128.23,128.14$, $128.09,128.03,127.89,127.14,127.04,32.48,32.24$.

Synthesis of (R)-oTPE1 to (R)-oTPE3. Under N_{2} atmosphere at $80^{\circ} \mathrm{C}, 16 \mathrm{~mL}$ anhydrous DMF solution containing compound $2(600.00 \mathrm{mg}, 1.16 \mathrm{mmol})$ was slowly added dropwise into 40 mL anhydrous DMF solution containing (R)-BINOL $(331.47 \mathrm{mg}, 1.16 \mathrm{mmol})$ and anhydrous potassium carbonate ($639.97 \mathrm{mg}, 4.63 \mathrm{mmol}$). After stirring overnight, the mixture was cooled to room temperature. Then the reaction mixture was washed with water and extracted with ethyl acetate. The organic phase was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated. The reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate $=100: 1$) to afford three products all as a white powder.
(R)-oTPE1 (74.80 mg, 10\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=$
9.1 Hz, 2H), 7.28-7.23 (m, 4H), 7.13-7.10 (m, 2H), $7.07(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 6 \mathrm{H})$, $6.71(\mathrm{t}, \mathrm{J}=10.0 \mathrm{~Hz}, 5 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 154.51,142.67,140.73,140.24,135.73,134.77,133.70,131.20,130.47,128.91,128.40$, $127.80,127.72,127.60,126.58,126.14,126.00,125.49,123.03,118.46,113.84,69.20$. HRMS (ESI, m / z): caled for $\mathrm{C}_{48} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, 665.2451; found, 665.2454.
(R)-oTPE2 (59.70 mg, 8\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=$ 8.1 Hz, 2H), $7.53(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.16$ $(\mathrm{m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-6.95(\mathrm{~m}, 5 \mathrm{H}), 6.80(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $4 \mathrm{H}), 6.47(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.05,142.48,140.63,140.47,138.22,134.34,134.01,131.14,129.36,128.98$, $128.80,127.85,127.43,126.84,126.21,125.94,125.30,123.26,119.76,115.18,70.53$. HRMS (ESI, m / z): caled for $\mathrm{C}_{48} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{~K}\left[\mathrm{M}+\mathrm{K}^{+}\right]$, 681.2190; found, 681.2182 .
(R)-oTPE3 (55.00 mg, 7\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{q}, \mathrm{J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{q}, \mathrm{J}=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 7 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}$ $=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $156.35,154.69,143.57,143.39,142.10,141.10,140.34,139.89,136.07,135.27,134.60,134.37$, $134.24,132.89,132.08,131.18,130.88,129.81,129.59,129.38,129.15,127.95,127.89,127.73$, $127.59,127.34,127.11,127.06,126.73,126.63,126.45,125.36,125.30,124.17,123.97,122.53$, $120.45,119.40,117.59,72.00,69.92$. HRMS (ESI, m/z): caled for $\mathrm{C}_{48} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, 665.2451; found, 665.2441.

Synthesis of (S)-oTPE. Under N_{2} atmosphere at $80^{\circ} \mathrm{C}, 40 \mathrm{~mL}$ anhydrous DMF solution containing compound $2(1.00 \mathrm{~g}, 1.93 \mathrm{mmol})$ was slowly added dropwise into 100 mL anhydrous DMF solution containing (S)-BINOL ($552.45 \mathrm{mg}, 1.93 \mathrm{mmol})$ and anhydrous potassium carbonate $(1.07 \mathrm{mg}, 7.74$ mmol). After stirring overnight, the mixture was cooled to room temperature. Then the reaction mixture was washed with water and extracted with ethyl acetate. The organic phase was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated. The reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate $=100: 1$) to afford three products all as a white
powder. (S)-oTPE1 (179.00 mg, 14\%), (S)-oTPE2 (98.00 mg, 8\%) and (S)-oTPE3 (51.00 mg, 4\%).
3. Photophysical Properties of the chiral cyclic TPEs

Figure S1. UV spectra of (\boldsymbol{R}) - \boldsymbol{p} TPE and (\boldsymbol{R})-oTPE1 to (\boldsymbol{R})-oTPE3 in THF solution (ca. $\left.10^{-5} \mathrm{M}\right)$.

Figure S2. UV spectra of $(\boldsymbol{R})-\boldsymbol{p}$ TPE and ($\boldsymbol{R})$-oTPE1 to $(\boldsymbol{R})-\boldsymbol{o}$ TPE3 in the film state.

Table S1. Photophysical properties of the chiral cyclic TPEs.

Compound	THF solution				Film			
	$\lambda_{\text {abs }}(\mathrm{nm})$	$\lambda_{\text {em }}(\mathrm{nm})$	τ (ns)	$\Phi_{\mathrm{F}}(\%)$	$\lambda_{\text {abs }}(\mathrm{nm})$	$\lambda_{\text {em }}(\mathrm{nm})$	$\tau(\mathrm{ns})$	$\Phi_{\mathrm{F}}(\%)$
(R)-pTPE	242, 278	497	1.96	1.5	238, 285	476	5.31	32.6
	340				340			
(R)-oTPE1	239, 273	417	3.89	22.4	238, 287	414	1.49	23.4
	339				340			
(R)-oTPE2	239, 273	405	4.38	15.5	237, 287	402	1.44	33.4
	341				342			
(R)-oTPE3	239, 278	405	4.50	0.2	235, 294	452	3.68	21.0
	312				324			

Figure S3. (a, c) Fluorescence spectra of (R)-oTPE2 and (R)-oTPE3 in $\mathrm{H}_{2} \mathrm{O}$ /THF mixtures with different water fraction $\left(f_{\mathrm{w}} / \%\right)$. (b, d) the relative fluorescence intensity to f_{w}, inset: photographs taken under UV illumination (365 nm).

Figure S4. Fluorescence spectra of $(\boldsymbol{R})-\boldsymbol{p T P E}$ and (\boldsymbol{R})-oTPE1 to (\boldsymbol{R})-oTPE3 in the film state.

Figure S5. Transient PL decay spectra of (R)-pTPE and (R)-oTPE1 to (R)-oTPE3 in THF solution (ca. $10^{-5} \mathrm{M}$).

Figure S6. Transient PL decay spectra of (\boldsymbol{R})-pTPE and (\boldsymbol{R})-oTPE1 to (\boldsymbol{R})-oTPE3 in the film state.

Table S2. Transient PL decay data of the chiral cyclic TPEs in THF solutions and films. ${ }^{\text {a }}$

Compound	State	$\langle\tau\rangle[\mathrm{ns}]$	$\tau_{1}[\mathrm{~ns}]$	$\tau_{2}[\mathrm{~ns}]$	A_{1}	A_{2}
(R)-pTPE	THF solution	2.0	0.6	4.7	1166.4	75.9
	film	5.3	2.3	6.8	1476.2	979.2
(R)-oTPE1	THF solution	3.9	1.3	5.7	790.8	265.3
	film	1.5	0.3	2.7	2477.9	279.7
(R)-oTPE2	THF solution	4.4	1.0	5.8	772.7	3113.
						8
	film	1.4	0.4	2.4	2155.3	425.6
(R)-oTPE3	THF solution	4.5	1.5	5.7	642.3	438.1
	film	3.7	1.8	4.8	1498.5	909.7

${ }^{\text {a }}$ Fluorescence lifetimes data were fitted by multiple-exponential function and the mean fluorescence
lifetimes $(\langle\tau\rangle)$ were calculated by $=\Sigma \mathrm{A}_{\mathrm{i}} \tau_{\mathrm{i}}{ }^{2} / \Sigma \mathrm{A}_{\mathrm{i}} \tau_{\mathrm{i}}$, where A_{i} is the preexponential factors for τ_{i}.
4. Chiroptical properties of the chiral cyclic TPEs

Figure S7. CD spectra of $(\boldsymbol{R} / \boldsymbol{S})-\boldsymbol{p}$ TPE and $(\boldsymbol{R} / \boldsymbol{S})$-oTPE1 to $(\boldsymbol{R} / \boldsymbol{S})$-oTPE3 in 99:1 $\mathrm{H}_{2} \mathrm{O} /$ THF.

Figure S8. CD spectra of $(\boldsymbol{R} / \boldsymbol{S})-\boldsymbol{p T P E}$ and $(\boldsymbol{R} / \boldsymbol{S})-\boldsymbol{o T P E} 1$ to $(\boldsymbol{R} / \boldsymbol{S})-\boldsymbol{o T P E} 3$ in the film state.

Figure S9. CPL spectra of the ($\boldsymbol{R} / \boldsymbol{S}$)-pTPE and ($\boldsymbol{R} / \boldsymbol{S}$)-oTPE1 to $(\boldsymbol{R} / \boldsymbol{S})$-oTPE3 in $99: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$.

Figure S10. CPL spectra of the $(\boldsymbol{R} / \boldsymbol{S})$-pTPE and ($\boldsymbol{R} / \boldsymbol{S}$)-oTPE1 to $(\boldsymbol{R} / \boldsymbol{S})$-oTPE3 in the film state.

Table S3. Chiroptical properties of the chiral cyclic TPEs in THF solutions.

Compound	$\lambda_{\text {CD }}(\mathrm{nm})$	$g_{\text {abs }}\left(10^{-3}\right)$	$\lambda_{\text {CPL }}(\mathrm{nm})$	$g_{\text {lum }}\left(10^{-3}\right)$
$\begin{aligned} & (R)-p T P E \\ & (S)-p T P E \end{aligned}$	312	-1.94	538	-1.97
		1.56		1.97
$\begin{aligned} & (R) \text {-oTPE1 } \\ & (S) \text {-oTPE1 } \end{aligned}$	312	-3.78	427	-1.48
		2.45		1.55
$\begin{aligned} & \text { (R)-oTPE2 } \\ & \text { (S)-oTPE2 } \end{aligned}$	312	2.50	411	1.06
		-3.74		-1.06
$\begin{aligned} & (R) \text {-oTPE3 } \\ & (S) \text {-oTPE3 } \end{aligned}$	312	0.50	-	-
		-1.47		

Table S4. Chiroptical properties of the chiral cyclic TPEs in aggregate and film states.

Compound	99:1 $\mathrm{H}_{2} \mathrm{O} /$ THF				Flim			
	$\begin{aligned} & \lambda_{\mathrm{CD}} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{gathered} g_{\mathrm{abs}} \\ \left(10^{-3}\right) \end{gathered}$	$\begin{aligned} & \lambda_{\mathrm{CPL}} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{gathered} g_{\text {lum }} \\ \left(10^{-3}\right) \end{gathered}$	$\begin{aligned} & \lambda_{\mathrm{CD}} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{gathered} g_{\mathrm{abs}} \\ \left(10^{-3}\right) \end{gathered}$	$\begin{aligned} & \lambda_{\mathrm{CPL}} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{gathered} g_{\text {lum }} \\ \left(10^{-3}\right) \end{gathered}$
$\begin{aligned} & (R)-p \text { TPE } \\ & (S)-p \text { TPE } \end{aligned}$	323	$\begin{gathered} -0.64 \\ 0.63 \end{gathered}$	498	$\begin{gathered} -1.05 \\ 1.20 \end{gathered}$	261	$\begin{gathered} 1.75 \\ -1.32 \end{gathered}$	523	$\begin{aligned} & -1.33 \\ & 0.88 \end{aligned}$
(R)-oTPE1 (S)-oTPE1	323	$\begin{gathered} -1.18 \\ 1.12 \end{gathered}$	425	$\begin{gathered} -1.79 \\ 1.78 \end{gathered}$	254	$\begin{gathered} 1.16 \\ -1.30 \end{gathered}$	427	-1.75 1.64
$\begin{aligned} & (R)-o T P E 2 \\ & (S) \text {-oTPE2 } \end{aligned}$	346	$\begin{gathered} 1.37 \\ -1.37 \end{gathered}$	425	$\begin{gathered} 1.25 \\ -0.91 \end{gathered}$	229	$\begin{gathered} 1.37 \\ -1.84 \end{gathered}$	414	$\begin{array}{r} 1.38 \\ -1.38 \end{array}$
$\begin{aligned} & (R) \text {-oTPE3 } \\ & (S) \text {-oTPE3 } \end{aligned}$	346	0.46 -0.41	-	-	231	$\begin{gathered} 1.62 \\ -1.81 \end{gathered}$	-	-

5. Crystal data and structure refinement for the chiral cyclic TPEs

Table S5. The dihedral angles of the chiral cyclic TPEs.

Compound	A	B	C	D	Binaphthyl
(R)-pTPE	$56.410(429){ }^{\circ}$	48.372(954) ${ }^{\circ}$	$40.165(790)^{\circ}$	51.921(771) ${ }^{\circ}$	113.263(376)
					-
(R)-oTPE1	$\mathbf{5 8 . 8 3 1}(\mathbf{4 5 8})^{\circ}$	46.335(458) ${ }^{\circ}$	58.256(428) ${ }^{\text {® }}$	48.483(402) ${ }^{\circ}$	83.834(201) ${ }^{\circ}$
(R)-oTPE2	$50.945(314)^{\circ}$	$52.375(311)^{\circ}$	$56.100(241)^{\circ}$	55.443(304) ${ }^{\circ}$	$81.306(91)^{\circ}$
(S)-oTPE3	45.609(800) ${ }^{\circ}$	$57.548(657)^{\circ}$	$42.536(874)^{\circ}$	65.312(646) ${ }^{\circ}$	$98.943(268)^{\circ}$

Table S6. Crystal data and structure refinement for the chiral cyclic TPEs.

Compound	(R)-pTPE	(R)-oTPE1
CCDC	2182870	2182873
Empirical formula	$\mathrm{C}_{48} \mathrm{H}_{34} \mathrm{O}_{2}$	$\mathrm{C}_{48} \mathrm{H}_{34} \mathrm{O}_{2}$
Formula weight	642.8	642.8
Temperature/K	150	170
Crystal system	monoclinic	monoclinic
Space group	P 21	C 2
a / \AA	14.7146(7)	28.682(2)
b/Å	9.8698(5)	11.1603(9)
c / \AA	25.4906(12)	27.232(3)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	102.8760(10)	112.691(3)
γ°	90	90
Volume/ \AA^{3}	3608.9(3)	8042.2 (12)
Z	2	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.261	1.062
μ / mm^{-1}	0.147	0.063
F(000)	1436.0	2704.0
Crystal size/mm ${ }^{3}$	$0.13 \times 0.06 \times 0.04$	$0.12 \times 0.08 \times 0.05$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.828 to 50.796	3.960 to 52.798
Index ranges	$\begin{aligned} -17 & \leq \mathrm{h} \leq 17, \\ -11 & \leq \mathrm{k} \leq 11, \\ -30 & \leq 1 \leq 30 \end{aligned}$	$\begin{aligned} -35 & \leq h \leq 35, \\ -13 & \leq \mathrm{k} \leq 13, \\ -29 & \leq 1 \leq 34 \end{aligned}$
Reflections collected	38856	34565
Independent reflections	$\begin{gathered} 12767\left[\mathrm{R}_{\mathrm{int}}=0.0970\right. \\ \mathrm{R}_{\text {sigma }}=0.1207 \end{gathered}$	$\begin{gathered} 14895\left[\mathrm{R}_{\mathrm{int}}=0.0646,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0955\right] \end{gathered}$
Data/restraints/parameters	12767/1/928	14895/1/901
Goodness-of-fit on F^{2}	1.044	1.018
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\begin{gathered} \mathrm{R}_{1}=0.0829 \\ \mathrm{wR}_{2}=0.2030 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0704 \\ \mathrm{wR}_{2}=0.1628 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} \mathrm{R}_{1}=0.1388 \\ \mathrm{wR}_{2}=0.2438 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.1227 \\ \mathrm{wR}_{2}=0.1987 \end{gathered}$
Largest diff. peak/hole / e \AA^{-3}	1.66/-0.59	0.35/-0.26
Flack parameter	0.07(9)	4.9(8)

Compound	rac-oTPE2	(S)-otPE3
CCDC	2182878	2182879
Empirical formula	$\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{2}$	$\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{2}$
Formula weight	642.8	642.8
Temperature/K	170	170
Crystal system	triclinic	triclinic
Space group	P -1	P1
a / \AA	10.5253(13)	10.2979(5)
b / \AA	12.6297(15)	17.4037(10)
c/ \AA	14.6251(16)	17.5627(9)
$\alpha /{ }^{\circ}$	113.373(3)	69.825(2)
$\beta /{ }^{\circ}$	100.425(3)	80.955(2)
$\gamma /{ }^{\circ}$	100.824(4)	81.076(2)
Volume/ \AA^{3}	1681.0(3)	2900.4(3)
Z	2	3
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.270	1.104
μ / mm^{-1}	0.076	0.066
$\mathrm{F}(000)$	676.0	1014.0
Crystal size/mm ${ }^{3}$	$0.08 \times 0.05 \times 0.03$	$0.19 \times 0.06 \times 0.05$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\mathrm{oK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.108 to 52.834	4.028 to 52.994
Index ranges	$\begin{aligned} & -13 \leq h \leq 13, \\ & -15 \leq k \leq 15, \\ & -16 \leq 1 \leq 18 \end{aligned}$	$\begin{aligned} -12 & \leq \mathrm{h} \end{aligned} \leq 12,$
Reflections collected	18951	33052
Independent reflections	$\begin{gathered} 6798\left[\mathrm{R}_{\text {int }}=0.0959\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.1313\right] \end{gathered}$	$\begin{gathered} 19422\left[\mathrm{R}_{\text {int }}=0.0361,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0602\right] \end{gathered}$
Data/restraints/parameters	6798/0/451	19422/2331/1340
Goodness-of-fit on F^{2}	1.048	1.270
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\begin{gathered} \mathrm{R}_{1}=0.0728 \\ \mathrm{wR}_{2}=0.1206 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.1096 \\ \mathrm{wR}_{2}=0.3006 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} \mathrm{R}_{1}=0.1803 \\ \mathrm{wR}_{2}=0.1633 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.1391 \\ \mathrm{wR}_{2}=0.3364 \end{gathered}$
Largest diff. peak/hole / e \AA^{-3}	0.23/-0.26	1.20/-0.35
Flack parameter	-	-0.8(6)

6. Chiral HPLC analysis of the chiral cyclic TPEs

Figure S11. Chiral HPLC spectra of (R)-pTPE (top) and (S)-pTPE (bottom)
Table S7. Chiral HPLC data of $(\boldsymbol{R} / \boldsymbol{S})-\boldsymbol{p}$ TPE

	Ret.	Area	Height	Area	ee value		
Sample	Time	(a.u.)	(a.u.)	Column	Mobile Phase	$(\%)$	
	(\min)						
$\boldsymbol{(R) - p T P E}$	21.199	1754.525	39.944	100.000	100.0	AD	$1 \% i$-PrOH in hexanes
$\boldsymbol{(S) - p T P E}$	19.914	2420.231	45.852	100.000	100.0		

Figure S12. Chiral HPLC spectra of (R)-oTPE1 (top) and (S)-oTPE1 (bottom)
Table S8. Chiral HPLC data of (R/S)-oTPE1

| | Ret. | Area | Height | Area | ee value | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample | Time | (a.u.) | (a.u.) | $(\%)$ | $(\%)$ | Column | Mobile Phase |
| | (min) | | | | | | |
| $\boldsymbol{(R) - o T P E 1}$ | 10.487 | 14444.527 | 664.058 | 99.600 | 99.2 | AD | $1 \% i$-PrOH in hexanes |

	11.601	57.970	1.703	0.400	
	9.800	440.384	20.920	3.131	

Figure S13. Chiral HPLC spectra of (R)-oTPE2 (top) and (S)-oTPE2 (bottom)
Table S9. Chiral HPLC data of (R/S)-oTPE2

Sample	Ret. Time (min)	Area (a.u.)	Height (a.u.)	Area (\%)	$e e$ value (\%)	Column	Mobile Phase
(R)-oTPE2	7.124	115.825	5.494	1.260	97.5	CD	$1 \% i-\mathrm{PrOH}$ in hexanes
	8.520	9073.723	374.946	98.740			
(S)-oTPE2	7.144	7651.361	424.036	96.784	93.6		
	8.777	254.277	12.942	3.216			

Figure S14. Chiral HPLC spectra of (R)-oTPE3 (top) and (S)-oTPE3 (bottom)
Table S10. Chiral HPLC data of (R/S)-oTPE3

Sample	Ret.	Area	Height	Area	$e e$ value	Column	Mobile Phase

	Time	(a.u.)	(a.u.)	(\%)	(\%)		
	(min)						
(R)-oTPE3	12.279	1670.401	58.928	9.061			
	21.078	16765.477	366.116	90.939		AD	$1 \% i$-PrOH in hexanes
(S)-oTPE3	15.024	15380.312	515.613	98.233	96.5		
	21.164	276.591	4.309	1.767			

7. NMR Spectra of the chiral cyclic TPEs

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of (\boldsymbol{R}) - \boldsymbol{p} TPE ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum of (\boldsymbol{R}) - \boldsymbol{p} TPE $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of $2\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectrum of $2\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of (\boldsymbol{R})-oTPE1 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum of (\boldsymbol{R})-oTPE1 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

(R)-oTPE2

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of (\boldsymbol{R})-oTPE2 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum of (R)-oTPE2 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

(R)-oTPE3

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum of (\boldsymbol{R})-oTPE3 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S24. ${ }^{13} \mathrm{C}$ NMR spectrum of (\boldsymbol{R})-oTPE3 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

8. HRMS Spectra of the chiral cyclic TPEs

Figure S25. HRMS spectra of (R)-pTPE.

Figure S26. HRMS spectra of (R)-oTPE1.

Figure S27. HRMS spectra of (R)-oTPE2.

Figure S28. HRMS spectra of (R)-oTPE3.

9. Theoretical calculations of chiral cyclic TPEs

Figure S29. Optimized structures and energy diagrams for the interconversion between (M) and (P) configurations of $(\boldsymbol{R})-\boldsymbol{p}$ TPE. The relative free energies are given in kcal mol^{-1}.

Figure S30. Optimized structures and energy diagrams for the interconversion between (M) and (P) configurations of $(\boldsymbol{R})-\boldsymbol{o T P E}$. The relative free energies are given in $\mathrm{kcal} \mathrm{mol}^{-1}$.

Figure S31. Optimized structures and energy diagrams for the interconversion between (M) and (P) configurations of (\boldsymbol{R})-oTPE2. The relative free energies are given in $\mathrm{kcal} \mathrm{mol}^{-1}$.

Figure S32. Optimized structures and energy diagrams for the interconversion between (M) and (P) configurations of (\boldsymbol{R})-oTPE3. The relative free energies are given in $\mathrm{kcal} \mathrm{mol}^{-1}$.

