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I. THEORETICAL CONSIDERATIONS

The Hamiltonian of a molecule coupled to a single cavity mode has the form

Ĥcm = Ĥ0 + ~ωcâ
†â− g~̂µ~e(â† + â). (1)

We refer to the manuscript regarding the notations used in Eq. (1). Note that the quadratic

dipole self-energy term1–5 is omitted in Eq. (1) as it is expected to have negligible effects

for the cases investigated in this work. If two molecular electronic states (X and A) are

considered, the Hamiltonian of Eq. (1) can be recast in the direct product basis of the

electronic states (|X〉 and |A〉) and Fock states of the cavity mode (|n〉 with n = 0, 1, 2, . . . )

as

Ĥcm =



T̂ + VX 0 0 W1 0 0 . . .

0 T̂ + VA W1 0 0 0 . . .

0 W1 T̂ + VX + ~ωc 0 0 W2 . . .

W1 0 0 T̂ + VA + ~ωc W2 0 . . .

0 0 0 W2 T̂ + VX + 2~ωc 0 . . .

0 0 W2 0 0 T̂ + VA + 2~ωc . . .
...

...
...

...
...

...
. . .


(2)

where T̂ denotes the kinetic energy operator, while VX and VA are the ground-state and

excited-state potential energy surfaces (PESs). The cavity-molecule coupling is described

by the operator Wn = −g
√
n~d~e where ~d is the molecular transition dipole moment vector.

It is important to note that terms pertaining to the X and A permanent dipole moments

are neglected in Eq. (2).

The interaction of the cavity mode with a laser pulse is described by the Hamiltonian

ĤL = −µcE(t)(â† + â) (3)

which gives rise to the total Hamiltonian

Ĥ = Ĥcm + ĤL. (4)

All previous equations correspond to the diabatic representation.6–8 The adiabatic represen-

tation is defined by diagonalizing the potential energy part (V ) of the Hamiltonian in Eq.

(2),

V ad = UTV U (5)
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where V ad contains the polaritonic PESs on its diagonal. Accordingly, the Hamiltonian in

the adiabatic representation equals

Ĥad = UTĤU = UTT̂U + V ad + UTĤLU. (6)

The Born–Oppenheimer (BO) approximation is defined by neglecting the kinetic coupling

terms in Ĥad (in other words, the approximation UTT̂U ≈ T̂ is made), that is,

ĤBO = T̂ + V ad + UTĤLU. (7)

We stress that here the terms diabatic and adiabatic refer to the coupled cavity-molecule

system. Of course, in the field-free case, the electronic states |X〉 and |A〉 are adiabatic

electronic states. However, for a molecule coupled to the cavity mode, the light-matter

interaction terms appear in the potential energy part of Eq. (2). Therefore, Ĥcm corre-

sponds to the diabatic representation and one can move to the adiabatic representation by

diagonalizing the potential energy part of Ĥcm.

As a next step, geometric phase (GP) effects are incorporated by taking the similarity-

transformed Hamiltonian

ĤBO
GP = exp(iθ)ĤBO exp(−iθ) (8)

where exp(−iθ) is a position-dependent phase factor which will enable us to work with

single-valued nuclear wave functions.9–13 As discussed in the manuscript, the coupled cavity-

molecule system is pumped to the singly-excited subspace (ground electronic state with one

photon and excited electronic state with zero photon) by a laser pulse. If the cavity frequency

is in near-resonance with the X → A electronic transition, it is a good approximation to

separate matrix elements of the potential energy matrix (V ) of Eq. (2) corresponding to the

singly-excited subspace (VA and VX + ~ωc)
14,15 and work with a two-dimensional block of V

defined as

VS =

VA W1

W1 VX + ~ωc

 . (9)

Therefore, in our particular case, θ is chosen as the angle which parameterizes the two-by-two

orthogonal transformation matrix

U =

 cos θ sin θ

− sin θ cos θ

 (10)
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which diagonalizes VS. Thus, the matrix

UTVSU =

cos θ − sin θ

sin θ cos θ

VA W1

W1 VX + ~ωc

 cos θ sin θ

− sin θ cos θ

 (11)

is diagonal if

θ =
1

2
arctan

(
2W1

VX + ~ωc − VA

)
. (12)

This procedure is clearly an approximation which will be further investigated in future

work. An alternative way of evaluating the transformation angle θ would be the block

diagonalization idea proposed in Refs. 16 and 17. Finally, we stress that the Lindblad

equation is solved using the full cavity-molecule Hamiltonian Ĥ with n = 0, . . . , nmax (see

the next section for more information) and only the calculation of the angle θ involves the

two-by-two approximation used in Eqs. (9), (10), (11) and (12).

Eq. (8) can be rearranged by evaluating the action of the kinetic energy operator on

exp(−iθ), which yields

ĤBO
GP = ĤBO + i(∇θ)∇+

i

2
(∇2θ) +

1

2
(∇θ)2. (13)

In the 2D(ν2,ν4) model (see the next section for further discussion) used in numerical com-

putations, T̂ = −1
2

(
∂2

∂Q2
2

+ ∂2

∂Q2
4

)
and ∇ =

(
∂

∂Q2
, ∂
∂Q4

)
. By substituting the commutator

[∇,∇θ] = ∇(∇θ)− (∇θ)∇ = ∇2θ (14)

into the second GP term ( i
2
(∇2θ)) one can show that the sum of the first two GP terms

becomes

i(∇θ)∇+
i

2
(∇2θ) =

i

2
((∇θ)∇+∇(∇θ)). (15)

This way, ĤBO
GP can be transformed to a more symmetric form

ĤBO
GP = ĤBO +

i

2
((∇θ)∇+∇(∇θ)) +

1

2
(∇θ)2 (16)

which was employed in numerical computations carried out in this study.
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II. COMPUTATIONAL MODEL AND TECHNICAL DETAILS

As already described in previous work,18–20 the four-atomic formaldehyde (H2CO)

molecule has a planar equilibrium structure (C2v point-group symmetry) in the ground

electronic state (X̃ 1A1) and two symmetry-equivalent nonplanar equilibrium structures (Cs

point-group symmetry) which are connected by a planar transition state structure (C2v

point-group symmetry) in the excited electronic state (Ã 1A2). The ground-state equilib-

rium structure and definition of the body-fixed coordinate axes are depicted in Figure S1.

Out of the six vibrational normal modes of H2CO the ν2 (C=O stretch, A1 symmetry)

and ν4 (out-of-plane bend, B1 symmetry) vibrational modes are included in the compu-

tational model called the 2D(ν2,ν4) model. The corresponding anharmonic fundamentals

in the ground electronic state (obtained by six-dimensional variational computations) are

1738.1 cm−1 (ν2 mode) and 1147.0 cm−1 (ν4 mode).

z

y

x

FIG. S1. Equilibrium structure of the H2CO molecule in the ground electronic state and definition

of the body-fixed coordinate axes (the equilibrium structure is placed in the yz plane).

In order to set up the 2D(ν2,ν4) model normal coordinates corresponding to the planar

transition state structure of the excited electronic state were evaluated and the four inactive

normal coordinates (Q1, Q3, Q5, Q6) were set to zero. Then, the 2D(ν2,ν4) potential energy

surfaces (PESs) (VX and VA) and the transition dipole moment (TDM) surface were com-
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puted as a function of the Q2 and Q4 normal coordinates at the CAM-B3LYP/6-31G* level

of theory. Finally, two-dimensional PES and TDM functions were generated by interpolating

the ab initio PES and TDM points.

Due to symmetry, the TDM vanishes at any geometry of C2v symmetry. Moreover, in

the 2D(ν2,ν4) model, only the body-fixed y component of the TDM can be nonzero and the

TDM is always perpendicular to the permanent dipole moment of both electronic states.

This observation motivates the choice that the cavity field is polarized along the body-

fixed y axis in all computations. Since H2CO does not have any first-order nonadiabatic

coupling between the X and A electronic states around its equilibrium geometry, light-

induced nonadiabatic effects can be unambiguously distinguished from natural ones.

The Lindblad equation was solved numerically in the diabatic representation using the

direct product of two-dimensional discrete variable representation basis functions and Fock

states of the cavity mode |n〉 with n = 0, 1, 2. In addition to numerically-exact diabatic

computations, Born–Oppenheimer (BO) computations were carried out without (BO model)

or with the GP terms (BOGP model). In both cases the potential energy part of the diabatic

Hamiltonian was diagonalized at each two-dimensional grid point to obtain polaritonic PESs.

The Lindblad equation was then transformed to the adiabatic representation, nonadiabatic

coupling terms were omitted and the resulting equations were solved numerically using the

same two-dimensional discrete variable representation basis for each polaritonic PES.
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III. SUPPLEMENTAL DATA AND FIGURES

Table S1 provides relevant energy levels of the coupled cavity-molecule system together

with eigenstate labels and photonic part populations used in the manuscript (cavity parame-

ters are ωc = 30245.5 cm−1 and g = 0.1 au). Figure S2 shows absolute values of the transition

dipole moments between the lowest-energy eigenstate (initial state) and selected eigenstates

of the cavity-molecule system for the three models investigated (exact, Born–Oppenheimer

(BO) and BO with geometric phase (BOGP)). Fourier transforms of the laser pulses that are

used to transfer population to the LP state are also given in Fig. S2. Selected energy levels

together with eigenstate labels shown in Fig. S2 are provided in Table S1. Figure S3 depicts

populations of relevant eigenstates (exact, Born–Oppenheimer (BO) and BO with geometric

phase (BOGP) models) for the following cavity and laser parameters: ωc = 30245.5 cm−1

and g = 0.1 au, and ωL = 29400 cm−1 or ωL = 30400 cm−1, both with T = 200 fs and

E0 = 0.001 au (corresponding to a field intensity of I = 3.51 · 1010 W/cm2). Figures S4 and

S5 provide probability density figures for selected eigenstates with ωc = 30245.5 cm−1 and

g = 0.1 au (see Table S1 for more information on eigenstate labels). As exact eigenstates are

computed using the diabatic representation, exact eigenstates are first transformed to the

adiabatic representation and LP densities of the resulting states are then evaluated. Figure

S6 shows population and emission figures (exact, BO and BOGP models) for the cavity

parameters ωc = 29957.2 cm−1 and g = 0.1 au. In this case the cavity mode is pumped with

the following laser pulses: ωL = 29200 cm−1 (panels a-b) and ωL = 30300 cm−1 (panels c-d),

both with T = 200 fs and E0 = 0.001 au.
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TABLE S1. Selected energy levels of the coupled cavity-molecule system (E in units of cm−1),

eigenstate labels and photonic part populations for the three models investigated (exact: labels

0 − 3, Born–Oppenheimer (BO): labels 1A/B, 3A/B and 4B, BO with geometric phase (BOGP):

labels 0b, 1a/b, 2a/b and 3a/b). Each energy level is referenced to the lowest energy level of the

given model (exact: Elowest = 1507.4 cm−1, BO and BOGP: Elowest = 1507.1 cm−1). The energy

of the light-induced conical intersection (LICI) is 29390.5 cm−1 referenced to Elowest. The cavity

wavenumber and coupling strength are ωc = 30245.5 cm−1 and g = 0.1 au, respectively.

Eigenstate label (E − Elowest) / cm−1 Photonic part population

0 28863.7 0.11

1 29805.9 0.46

2 30039.7 0.12

3 30620.1 0.37

1A 29523.7 0.24

1B 29924.0 0.33

3A 30599.5 0.07

3B 30669.0 0.33

4B 31200.7 0.30

0b 28819.7 0.12

1a 29699.1 0.15

1b 29766.2 0.31

2a 30039.3 0.14

2b 30063.7 0.32

3a 30627.2 0.05

3b 30713.2 0.37

8



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ra

n
si

ti
o

n
D

ip
o
le

s
/

a.
u

.

28500 29000 29500 30000 30500 31000 31500

E - Elowest / cm
-1

exact

BO

BOGP

L
IC

I

0

1

2

3

1A 1B

3A

3B

4B

0b

1a

1b

2a
2b 3a

3b

FIG. S2. Absolute values of transition dipoles between selected cavity-molecule eigenstates and the

lowest-energy eigenstate for three different models (exact, Born–Oppenheimer (BO) and BO with

geometric phase (BOGP)). Fourier transforms (absolute value) of the 200 fs laser pulses used to

initiate the dynamics are also shown (carrier wavenumbers: ωL = 29400 cm−1 (left curve, dashed

line) and ωL = 30400 cm−1 (right curve, dash-dotted line)). Energy levels of selected eigenstates

are referenced to the lowest energy level (E −Elowest). The energetic position of the light-induced

conical intersection (LICI), explicitly marked in the figure, is 29390.5 cm−1 referenced to Elowest.

The cavity wavenumber and coupling strength are ωc = 30245.5 cm−1 and g = 0.1 au, respectively.
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FIG. S3. (a-c) Populations of relevant eigenstates of the coupled cavity-molecule system for the

three different models investigated (exact, Born-Oppenheimer (BO) and BO with geometric phase

(BOGP)). Populations are shown during excitation with a 200 fs laser pulse (carrier wavenumber:

ωL = 29400 cm−1). (d-f) Same as for panels a-c with ωL = 30400 cm−1. Eigenstate labels indicated

in the panels are defined in Table S1. The cavity parameters are ωc = 30245.5 cm−1 and g = 0.1 au

for all panels.
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FIG. S4. Probability density figures for selected eigenstates of the coupled cavity-molecule system

(exact: 1, Born–Oppenheimer (BO): 1A, BO with geometric phase (BOGP): 1a and 1b, see Table

S1 for more information). Q2 and Q4 are dimensionless normal coordinates of the modes ν2 and ν4.

The cavity wavenumber and coupling strength are ωc = 30245.5 cm−1 and g = 0.1 au, respectively.

The red dot indicates the position of the LICI at Q2 = 10.05 and Q4 = 0.
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FIG. S5. Probability density figures for selected eigenstates of the coupled cavity-molecule system

(exact: 3, Born–Oppenheimer (BO): 3B, BO with geometric phase (BOGP): 3b, see Table S1 for

more information). Q2 and Q4 are dimensionless normal coordinates of the modes ν2 and ν4. The

cavity wavenumber and coupling strength are ωc = 30245.5 cm−1 and g = 0.1 au, respectively.

The red dot indicates the position of the LICI at Q2 = 10.05 and Q4 = 0.

12



0.0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
P

o
p
u
la

ti
o
n
s

0 100 200 300 400 500 600 700 800 900 1000

Time / fs

PLP
exact

PLP
BO

PLP
BOGP

L = 29200 cm
-1

(a)

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 100 200 300 400 500 600 700 800 900 1000

Time / fs

exact

BO

BOGP

L = 29200 cm
-1

(b)

<
N̂

>

0.0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
o
p
u
la

ti
o
n
s

0 100 200 300 400 500 600 700 800 900 1000

Time / fs

PLP
exact

PLP
BO

PLP
BOGP

L = 30300 cm
-1

(c)

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0 100 200 300 400 500 600 700 800 900 1000

Time / fs

exact

BO

BOGP

L = 30300 cm
-1

(d)

<
N̂

>

FIG. S6. (a) Population of the lower polaritonic (LP) state for the three different models investi-

gated (exact, Born–Oppenheimer (BO) and BO with geometric phase (BOGP)) during and after

excitation with a 200 fs laser pulse (carrier wavenumber: ωL = 29200 cm−1). The cavity wavenum-

ber and coupling strength are ωc = 29957.2 cm−1 and g = 0.1 au. Populations of polaritonic

states higher than LP are negligible (see dashed lines with empty markers). (b) Ultrafast emission

signals for the three different models with the parameters of panel a. The emission is proportional

to the expectation value of the photon number operator N̂ . The exact emission is significantly

overestimated by the BO model, while the BOGP model shows an excellent agreement with the

exact results. (c-d) Same as for panels a-b with ωL = 30300 cm−1. In contrast to panels a-b, the

exact emission is underestimated by the BO model and inclusion of the GP does not improve the

BO model.
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