Supporting Information

Direct Acylation and Alkynylation of Hydrocarbons via Synergistic Decatungstate Photo-HAT/Nickel Catalysis

Wenfeng Liu, Yang Ke, Chuhan Liu, Wangqing Kong* The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072 (P. R. China) E-mail: wqkong@whu.edu.cn

Contents

1.	General Information	S3
2.	General Procedures	S4
3.	Optimization Details	S 8
4.	Mechanistic Studies	S12
5.	Characterization Data of Products	S13
6.	Synthetic Applications	S37
7.	NMR Spectra	S41
8.	References	S89

1. General Information

Nuclear magnetic resonance (NMR) spectroscopy measurements were carried out at room temperature. ¹H NMR, ¹³C NMR, ¹⁹F NMR, HSQC and HMBC experiments were carried out using Bruker ADVANCE III (600 MHz) or JNM-ECZ400S/L1 (400 MHz) spectrometers. Chemical shifts (δ) are reported in ppm relative to the residual solvent peak with corresponding coupling constants (*J*) in Hertz (Hz) and multiplicities (s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet and combinations of these and app.: apparent multiplicities). Gas chromatography was determined with a SHIMADZU Nexis GC 2030 gas chromatography instrument with a FID detector. High-resolution mass spectra (HRMS) were recorded on Thermo Fisher Orbitrap Elite mass spectrometer. The photoreaction instrument (WPTEC-1020L) was purchased from WATTCAS, China.

Materials and Methods:

Commercially available reagents and ligands were purchased from Sigma Aldrich, Alfa Aesar, and Strem Chemicals and unless otherwise stated were used without further purification. NiBr₂·DME, NiI₂ and Ni(OAc)₂ were bought from Strem Chemicals. All reactions dealing with air- or moisture-sensitive compounds were performed in the argon-filled glove box or by standard Schlenk techniques in oven-dried reaction vessels under argon atmosphere. Solvents were purchased in HPLC quality, degassed by purging thoroughly with argon and dried over 4 Å activated molecular sieves. More sensitive compounds were stored in a desiccator or in a glove-box if required. Reactions were monitored by thin layer chromatography (TLC) using glass 0.25 mm silica gel plates. Compounds were visualized by UV-light at 254 nm and by dipping the plates in an aqueous potassium permanganate solution followed by heating. Flash column chromatography was performed over silica gel (200-400 mesh).

2. General Procedure

2.1 Synthesis of ketones via direct and selective acylation of hydrocarbons

An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with NiBr₂•dtbbpy (0.002 mmol, 1.0 mol%), tetrabutylammonium decatungstate (0.004 mmol, 2.0 mol%), acyl chlorides (0.2 mmol, 1.0 equiv.), hydrocarbons (2.0 mmol, 10.0 equiv.), anhydrous K₃PO₄ (0.48 mmol, 2.4 equiv.) and dry MeCN (1.0 mL) in an argon-filled glovebox. The vial was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 2 W 390 nm LED lamp (WATTCAS: WP-TEC-1020LC) at 25 °C for 8 hours. The resulting mixture was diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with EtOAc/hexane to afford the corresponding ketone products.

2.2 Synthesis of amides via direct and selective acylation of hydrocarbons

An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with NiCl₂•dtbbpy (0.004 mmol, 2.0 mol%), tetrabutylammonium decatungstate (0.004 mmol, 2.0 mol%), carbamic chloride (0.2 mmol, 1.0 equiv.), hydrocarbons (2.0 mmol, 10.0 equiv.), anhydrous K₃PO₄ (0.4 mmol, 2.0 equiv.) and dry MeCN (1.0 mL) in an argon-filled glovebox. The vial was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 10 W 390 nm LED lamp (WATTCAS: WP-TEC-1020LC) at 25 °C for 36 hours. The resulting mixture was

diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with EtOAc/hexane to afford the corresponding amide products.

2.3 Synthesis of esters via direct and selective acylation of hydrocarbons

An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with NiBr₂ (0.02 mmol, 10 mol%), dtbbpy (0.03 mmol, 15 mol%), tetrabutylammonium decatungstate (0.004 mmol, 2.0 mol%), chloroformates (0.2 mmol, 1.0 equiv.), hydrocarbons (2.0 mmol, 10.0 equiv.), anhydrous K₃PO₄ (0.4 mmol, 2.0 equiv.) and dry MeCN (1.0 mL) in an argon-filled glovebox. The vial was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 10 W 390 nm LED lamp (WATTCAS: WP-TEC-1020LC) at 25 °C for 24 hours. The resulting mixture was diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with EtOAc/hexane to afford the corresponding ester products.

2.4 Synthesis of alkyl-substituted alkynes via direct and selective alkynylation of hydrocarbons

An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with NiBr₂•dtbbpy (0.02 mmol, 10 mol%), tetrabutylammonium decatungstate (0.004

mmol, 2 mol%), alkynyl bromides (0.2 mmol, 1.0 equiv.), anhydrous K₂HPO₄ (0.3 mmol, 1.5 equiv.), hydrocarbon (2.0 mmol, 10.0 equiv.) and dry MeCN (1.0 mL) in an argon-filled glovebox. The vial was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 6 W 390 nm LED lamp (WATTCAS: WP-TEC-1020LC) at 5 °C for 12 hours. The resulting mixture was diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. Solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with EtOAc/hexane to afford the corresponding alkyne products.

2.5 Synthesis of alkyl-substituted alkynes via direct and selective alkynylation of ethers

An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with Ni(acac)₂ (0.02 mmol, 10 mol%), dtbbpy (0.03 mmol, 15 mol%), **PC1** (0.02 mmol, 10 mol%), alkynyl bromides (0.2 mmol, 1.0 equiv.), anhydrous Na₂CO₃ (0.4 mmol, 2.0 equiv.) and ether (1.0 mL) as both C-H partners and solvent in an argon-filled glovebox. The vial was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 10 W 390 nm LED lamp (WATTCAS: WP-TEC-1020LC) at 25 °C for 48 hours. The resulting mixture was diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. Solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel, eluting with EtOAc/hexane to afford the corresponding alkyne products.

3. Optimization of Reaction Conditions

Table S1: Optimization of the reaction conditions for C(sp³)-H alkynylation of hydrocarbons.

\bigcap	+ BrTIPS	Ni(dtbbpy)Br _{2 (} 10 mol%) TBADT (2 mol%)	
1 (10 equiv.)	(0.2 mmol)	K ₃ PO ₄ (2.0 equiv.) MeCN (1 mL) LEDs (390 nm) , 12 h, 5 °C	+ H———TIPS

entry	Power value of LED lamp (W)	yield of 34 (%)
1	10	50
2	8	56
3	6	65
4	4	59

\bigcirc	+ Br -= TIPS	Ni(dtbbpy)Br _{2 (} X mol%) TBADT (Y mol%) K ₃ PO ₄ (2.0 equiv.) MeCN (Z mL) 10 W LEDs (390 nm) , 12 h, 5 °C		TIPS 34
1 (10 equiv.)	(0.2 mmol)			+ HTIPS
entry	Х	Y	Z	yield of 34 (%)
1	10	2	0.5	60
2	10	2	1.0	75
3	5	2	0.5	45
4	10	1	0.5	64
5	10	2	2	62

Table S2: optimization of the equivalents of Ni and TBADT, concentration for C(sp³)–H alkynylation of hydrocarbons with alkynyl bromides

Table S3: optimization of the base for C(sp ³)–H alkynylation of hydrocarbons
with alkynyl bromides

+	BrTIPS	Ni(dtbbpy)Br _{2 (} 10 mol%) TBADT (2 mol%)	
1 (10 equiv.)	(0.2 mmol)	MeCN (1 mL) 6 W LEDs (390 nm) , 12 h, 5 °C	HTIPS
entry	Base	Eq.	yield of 34 (%) ^a
1	K ₃ PO ₄	2.0	75
2	K ₂ HPO ₄	2.0	86
3	Na ₂ CO ₃	2.0	72
4	K ₂ HPO ₄	1.5	96(76) ^b
5	K ₂ HPO ₄	1.1	90
6	K ₂ HPO ₄ ^c	1.5	67(57) ^b

^aGC yield, ^bisolated yield, ^cThis reaction was performed at 25 °C.

	— Н	N 0 11	li-catalyst (10 mol%) TBADT (2 mol%)		
	1	+ CI ^I Ph	K ₃ PO₄, MeCN X W LEDs 25 °C, 8 hours	Ph + 3	4 Cy - Ph 5
_	R = N $R = N$ $R = 0$	R Me Me Me Bu (L2) Me	\sim N N Me \sim		4 [−] 4(Bu ₄ N ⁺) N=O
entry	T	nickel catalyst	Power value of	yield of	yield of
entry	1	nekereataryst	LEDs (W)	3 (%) ^b	4 (%) ^b
1	L1	NiBr ₂	10	15	-
2	L2	NiBr ₂	10	45	8
3	L3	NiBr ₂	10	10	13
4	L4	NiBr ₂	10	42	10
5	L5	NiBr ₂	10	trace	-
6	L2	NiCl ₂	10	trace	-
7	L2	NiI ₂	10	39	5
8	L2	$NiOAc_2 \cdot 4H_2O$	10	44	15
9	L2	NiBr ₂ ·dme	10	62	8
10		$Ni(L2)Br_2$	10	66	7
11		$Ni(L2)Br_2$	6	68	5
12		$Ni(L2)Br_2$	2	78	< 2
13 ^d		Ni(L2)Br ₂	2	83 (71) ^c	< 2
14 ^{d,e}		$Ni(L2)Br_2$	2	69	6
15 ^d		-	2	no rea	oction
$16^{d,f}$		$Ni(L2)Br_2$	2	no rea	iction
17 ^{d,g}		$Ni(L2)Br_2$	2	no rea	ection

Table S4: Optimization of the Reaction Conditions

^aReaction conditions: **1** (2 mmol), **2** (0.2 mmol), [Ni]/L (10 mol%), TBADT (2 mol%), K₃PO₄ (0.48 mmol) in MeCN (0.5 mL) at 25 °C under irradiation of LEDs (X W, 390 nm) for 8 hours. ^bYields determined by GC analysis using adamantane as an internal standard. ^cIsolated yield. ^d1 mol% Ni(**L2**)Br₂ was used. ^e5 equivalents of cyclohexane were used. ^fWithout TBADT. ^gWithout light.

4. Mechanistic studies

4.1 UV-VIS absorption spectra

The UV-visible absorption spectra for TBADT in MeCN (10⁻⁴ M) is shown above.

4.2 Emission spectra

The emission spectra for TBADT irradiated under 320 nm light in MeCN (10^{-5} M) is shown above.

5. Characterization Data of Products

Cyclohexyl(phenyl)methanone (3)

Chemical Formula: C₁₃H₁₆O Exact Mass: 188.1201

3 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K₃PO₄ (0.48 mmol, 101.8 mg) and benzoyl chloride (0.2 mmol, 28.1 mg) and was purified by silica gel column chromatography (PE/EtOAc = 40/1) to obtain **3** as colorless oil (28.9 mg, 71% yield).

The NMR data matched those reported in the literature.¹

¹H NMR (600 MHz, CDCl₃) δ 7.97-7.91 (m, 2H), 7.56-7.52 (m, 1H), 7.48-7.42 (m, 2H), 3.26 (tt, *J* = 11.4, 3.3 Hz, 1H), 1.96-1.81 (m, 4H), 1.79-1.70 (m, 1H), 1.56-1.45 (m, 2H), 1.45-1.35 (m, 2H), 1.31-1.24 (m, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 204.0, 136.5, 132.8, 128.7, 128.4, 45.8, 29.5, 26.1, 26.0.

Cyclohexyl(p-tolyl)methanone (6)

Chemical Formula: C₁₄H₁₈O Exact Mass: 202.1358

6 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K₃PO₄ (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 40/1) to obtain **6** as colorless oil (32.2 mg, 73% yield).

The NMR data matched those reported in the literature.²

¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 3.24 (tt, *J* = 11.6, 3.3 Hz, 1H), 2.40 (s, 3H), 1.92-1.81 (m, 4H), 1.78-1.69 (m, 1H), 1.53-1.45 (m, 2H), 1.44-1.34 (m, 2H), 1.31-1.24 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 203.7, 143.6, 133.9, 129.4, 128.5, 45.6, 29.6, 26.1, 26.0, 21.7.

Cyclohexyl(4-methoxyphenyl)methanone (7)

7 was prepared according to general procedure 2.1 using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K_3PO_4 (0.48 mmol, 101.8 mg) and 4-methoxybenzoyl chloride (0.2 mmol, 34.1 mg) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain 7 as colorless oil (28.8 mg, 66% yield).

The NMR data matched those reported in the literature.¹

¹H NMR (600 MHz, CDCl₃) δ 7.96-7.89 (m, 2H), 6.97-6.89 (m, 2H), 3.86 (s, 3H), 3.21 (tt, *J* = 11.6, 3.2 Hz, 1H), 1.92-1.80 (m, 4H), 1.77-1.70 (m, 1H), 1.55-1.45 (m, 2H), 1.43-1.34 (m, 2H), 1.31-1.22 (m, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 202.6, 163.3, 130.6, 129.4, 113.8, 55.6, 45.4, 29.7, 26.1, 26.1.

Cyclohexyl(4-fluorophenyl)methanone (8)

Chemical Formula: C₁₃H₁₅FO Exact Mass: 206.1107

8 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2

mmol, 168.0 mg), anhydrous K_3PO_4 (0.48 mmol, 101.8 mg) and 4-fluorobenzoyl chloride (0.2 mmol, 31.7 mg) and was purified by silica gel column chromatography (PE/EtOAc = 40/1) to obtain **8** as colorless oil (29.7 mg, 72% yield).

The NMR data matched those reported in the literature.¹

¹H NMR (600 MHz, CDCl₃) δ 8.00-7.94 (m, 2H), 7.15-7.08 (m, 2H), 3.21 (tt, *J* = 11.6, 3.2 Hz, 1H), 1.90-1.81 (m, 4H), 1.76-1.71 (m, 1H), 1.53-1.44 (m, 2H), 1.43-1.34 (m, 2H), 1.29-1.24 (m, 1H);

¹⁹F NMR (565 MHz, CDCl₃) δ -106.00 (m);

¹³C NMR (151 MHz, CDCl₃) δ 202.3, 165.6 (d, *J* = 254.0 Hz), 132.7 (d, *J* = 2.9 Hz), 130.9 (d, *J* = 9.2 Hz), 115.7 (d, *J* = 21.8 Hz), 45.6, 29.4, 25.9, 25.8.

Cyclohexyl(3-methoxyphenyl)methanone (9)

Chemical Formula: C₁₄H₁₈O₂ Exact Mass: 218.1307

9 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K_3PO_4 (0.48 mmol, 101.8 mg) and 3-methoxybenzoyl chloride (0.2 mmol, 34.1 mg) and was purified by silica gel column chromatography (PE/EtOAc = 40/1) to obtain **9** as colorless oil (27.9 mg, 64% yield).

The NMR data matched those reported in the literature.¹

¹H NMR (600 MHz, CDCl₃) δ 7.54-7.50 (m, 1H), 7.49-7.44 (m, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.11-7.07 (m, 1H), 3.85 (s, 3H), 3.23 (tt, *J* = 11.5, 3.3 Hz, 1H), 1.90-1.82 (m, 4H), 1.76-1.72 (m, 1H), 1.53-1.45 (m, 2H), 1.43-1.35 (m, 2H), 1.29-1.24 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 203.8, 159.9, 137.8, 129.5, 120.8, 119.0, 112.8, 55.4, 45.8, 29.5, 26.0, 25.9.

Cyclohexyl(3,5-dimethylphenyl)methanone (10)

10 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K₃PO₄ (0.48 mmol, 101.8 mg) and 3,5-dimethylbenzoyl chloride (0.2 mmol, 33.7 mg) and was purified by silica gel column chromatography (PE/EtOAc = 40/1) to obtain **10** as colorless oil (27.2 mg, 66% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.53 (s, 2H), 7.18 (s, 1H), 3.24 (tt, *J* = 11.5, 3.3 Hz, 1H), 2.37 (s, 6H), 1.90-1.81 (m, 4H), 1.77-1.70 (m, 1H), 1.53-1.44 (m, 2H), 1.44-1.35 (m, 2H), 1.31-1.23 (m, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 204.3, 138.1, 136.5, 134.3, 125.9, 45.6, 29.4, 25.9, 25.8, 21.2;

HRMS: (ESI) calcd for $C_{15}H_{21}O^{+}[M+H]^{+}$ 217.1587; found 217.1583.

Cyclohexyl(2-fluorophenyl)methanone (11)

Chemical Formula: C₁₃H₁₅FO Exact Mass: 206.1107

11 was prepared according to general procedure 2.1 using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K_3PO_4 (0.48 mmol, 101.8 mg) and 2-fluorobenzoyl chloride (0.2 mmol, 31.7 mg) and was purified by silica gel column chromatography (PE/EtOAc = 100/1) to obtain 11 as colorless oil (12.8 mg, 31% yield).

The NMR data matched those reported in the literature.³

¹H NMR (600 MHz, CDCl₃) δ 7.76-7.70 (m, 1H), 7.51-7.44 (m, 1H), 7.24-7.19 (m, 1H), 7.14-7.08 (m, 1H), 3.15-3.08 (m, 1H), 1.97-1.91 (m, 2H), 1.84-1.78 (m, 2H), 1.73-1.68 (m, 1H), 1.45-1.34 (m, 4H), 1.27-1.23 (m, 1H);

¹⁹F NMR (565 MHz, CDCl₃) δ -111.69 (m);

¹³C NMR (151 MHz, CDCl₃) δ 202.9 (d, J = 4.2 Hz), 161.1 (d, J = 253.1 Hz), 133.8 (d, J = 8.8 Hz), 130.8 (d, J = 2.9 Hz), 126.1 (d, J = 13.6 Hz), 124.4 (d, J = 3.6 Hz), 116.4 (d, J = 23.8 Hz), 50.1 (d, J = 6.1 Hz), 28.8, 26.0, 25.8.

Cyclohexyl(furan-2-yl)methanone (12)

Chemical Formula: C₁₁H₁₄O₂ Exact Mass: 178.0994

12 was prepared according to general procedure 2.1 using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K_3PO_4 (0.48 mmol, 101.8 mg) and furan-2-carbonyl chloride (0.2 mmol, 26.1 mg) and was purified by silica gel column chromatography (PE/EtOAc = 40/1) to obtain 12 as colorless oil (15.3 mg, 43% yield).

The NMR data matched those reported in the literature.⁴

¹H NMR (600 MHz, CDCl₃) δ 7.60-7.55 (m, 1H), 7.18 (dd, *J* = 3.5, 0.8 Hz, 1H), 6.52 (dd, *J* = 3.5, 1.7 Hz, 1H), 3.06 (tt, *J* = 11.7, 3.3 Hz, 1H), 1.91-1.80 (m, 4H), 1.75-1.69 (m, 1H), 1.55-1.46 (m, 2H), 1.40-1.32 (m, 2H), 1.30-1.25 (m, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 193.0, 152.3, 146.1, 117.0, 112.1, 46.3, 28.9, 25.8, 25.7.

(4-chlorophenyl)(cyclohexyl)methanone (13)

13 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K_3PO_4 (0.48 mmol, 101.8 mg) and 4-chlorobenzoyl chloride (0.2 mmol, 35.0 mg) and was purified by silica gel column chromatography (PE/EtOAc = 100/1) to obtain **13** as colorless oil (29.8 mg, 67% yield).

The NMR data matched those reported in the literature.⁵

¹H NMR (600 MHz, CDCl₃) δ 8.00-7.78 (m, 2H), 7.53-7.35 (m, 2H), 3.20 (tt, *J* = 11.5, 3.2 Hz, 1H), 1.94-1.80 (m, 4H), 1.80-1.71 (m, 1H), 1.54-1.42 (m, 2H), 1.42 -1.32 (m, 2H), 1.31-1.21 (m, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 202.6, 139.1, 134.6, 129.7, 128.9, 45.6, 29.3, 25.9, 25.8.

cyclohexyl(4-(trifluoromethyl)phenyl)methanone (14)

Chemical Formula: C₁₄H₁₅F₃O Exact Mass: 256.1075

14 was prepared according to general procedure 2.1 using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K_3PO_4 (0.48 mmol, 101.8 mg) and 4-(trifluoromethyl)benzoyl chloride (0.2 mmol, 41.7 mg) and was purified by silica gel column chromatography (PE/EtOAc = 100/1) to obtain 14 as colorless oil (17.9 mg, 35% yield).

The NMR data matched those reported in the literature.¹

¹H NMR (600 MHz, CDCl₃) δ 8.06-7.99 (m, 2H), 7.76-7.69 (m, 2H), 3.24 (tt, *J* = 11.4, 3.3 Hz, 1H), 1.92-1.83 (m, 4H), 1.78-1.72 (m, 1H), 1.55-1.44 (m, 2H), 1.44-1.35 (m, 2H), 1.30-1.25 (m, 1H);

¹⁹F NMR (565 MHz, CDCl₃) δ -63.08(s);

¹³C NMR (151 MHz, CDCl₃) δ 202.9, 139.1, 134.0 (q, *J* = 32.7 Hz), 128.5, 125.6 (q, *J* = 3.7 Hz), 123.6 (q, *J* = 272.6 Hz), 45.9, 29.2, 25.8, 25.7.

Cyclooctyl(*p*-tolyl)methanone (15)

Me

Chemical Formula: C₁₆H₂₂O Exact Mass: 230.1671

15 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclooctane (2 mmol, 224.0 mg), anhydrous K_3PO_4 (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 40/1) to obtain **15** as colorless oil (33.0 mg, 69% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 7.9 Hz, 2H), 3.46 (tt, *J* = 8.8, 3.5 Hz, 1H), 2.41 (s, 3H), 1.88-1.81 (m, 2H), 1.80-1.70 (m, 4H), 1.69-1.63 (m, 3H), 1.63-1.53 (m, 5H);

¹³C NMR (151 MHz, CDCl₃) δ 204.2, 143.4, 133.9, 129.3, 128.4, 44.8, 29.1, 26.7, 26.6, 25.6, 21.6;

HRMS: (ESI) calcd for $C_{16}H_{23}O^{+}[M+H]^{+} 217.1743$; found 217.1736.

Cyclopentyl(*p*-tolyl)methanone (16)

Me

Chemical Formula: C₁₃H₁₆O Exact Mass: 188.1201

16 was prepared according to general procedure 2.1 using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclopentane (2 mmol, 140.0 mg), anhydrous K₃PO₄ (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 40/1) to obtain 16 as colorless oil (20.7 mg, 66% yield).

The NMR data matched those reported in the literature.⁶

¹H NMR (600 MHz, CDCl₃) δ 7.88 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 7.9 Hz, 2H), 3.74-3.65 (m, 1H), 2.41 (s, 3H), 1.96-1.85 (m, 4H), 1.77-1.69 (m, 2H), 1.69-1.61 (m, 2H);

¹³C NMR (151 MHz, CDCl₃) δ 202.5, 143.4, 134.5, 129.2, 128.6, 46.3, 30.1, 26.4, 21.6.

((1S,4R)-Bicyclo[2.2.1]heptan-2-yl)(p-tolyl)methanone (17)

Chemical Formula: C₁₅H₁₈O Exact Mass: 214.1358

17 was prepared according to general procedure 2.1 using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), (*1s*,4*s*)-bicyclo[2.2.1]heptane (2 mmol, 192.4 mg), anhydrous K₃PO₄ (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 40/1) to obtain 17 as colorless oil (26.6 mg, 60% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, *J* = 8.2 Hz, 2H), 7.26-7.22 (m, 2H), 3.19 (dd, *J* = 8.9, 5.5 Hz, 1H), 2.52-2.48 (m, 1H), 2.40 (s, 3H), 2.34 (s, 1H), 2.03-1.97 (m, 1H), 1.65-1.55 (m, 2H), 1.50-1.44 (m, 1H), 1.44-1.39 (m, 2H), 1.33-1.27 (m, 1H), 1.17-1.11 (m, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 201.2, 143.4, 134.2, 129.3, 128.7, 49.5, 41.2, 36.4, 36.3, 33.8, 29.9, 29.2, 21.7;

HRMS: (ESI) calcd for $C_{15}H_{19}O^{+}[M+H]^{+}$ 215.1430; found 215.1428.

2-phenyl-1-(p-tolyl)ethan-1-one (18)

Chemical Formula: C₁₅H₁₄O Exact Mass: 210.1045

18 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), toluene (2.0 mmol, 184.3 mg), anhydrous K_3PO_4 (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 40/1) to obtain **18** as colorless oil (15.0 mg, 35% yield).

The NMR data matched those reported in the literature.⁷

¹H NMR (600 MHz, CDCl₃) δ 7.95-7.88 (m, 2H), 7.36-7.29 (m, 2H), 7.29-7.23 (m, 5H), 4.26 (s, 2H), 2.40 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 197.4, 144.1, 134.9, 134.2, 129.6, 129.5, 128.9, 128.8, 126.9, 45.6, 21.8.

(tetrahydrofuran-2-yl)(p-tolyl)methanone (19)

Chemical Formula: C₁₂H₁₄O₂ Exact Mass: 190.0994

19 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), tetrahydrofuran (2 mmol, 144.2 mg), anhydrous K_3PO_4 (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain **19** as colorless oil (22.3 mg, 57% yield). The NMR data matched those reported in the literature.⁸

¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 8.2 Hz, 2H), 7.27-7.25 (m, 2H), 5.24 (dd, *J* = 8.5, 5.8 Hz, 1H), 4.04 (dt, *J* = 8.3, 6.8 Hz, 1H), 3.97 (dt, *J* = 8.2, 6.7 Hz, 1H), 2.41 (s, 3H), 2.32-2.24 (m, 1H), 2.16-2.07 (m, 1H), 2.00-1.93 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 198.5, 144.3, 132.7, 129.4, 129.0, 80.0, 69.5, 29.5, 25.8, 21.8.

(1,4-dioxan-2-yl)(p-tolyl)methanone (20)

20 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), 1,4-dioxane (2 mmol, 176.2 mg), anhydrous K_3PO_4 (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 10/1) to obtain **20** as colorless oil (26.6 mg, 61% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 8.3 Hz, 2H), 7.29-7.25 (m, 2H), 4.97 (dd, *J* = 9.5, 2.9 Hz, 1H), 4.08 (dd, *J* = 11.8, 2.9 Hz, 1H), 4.00-3.95 (m, 1H), 3.92-3.86 (m, 1H), 3.81-3.76 (m, 1H), 3.74-3.67 (m, 2H), 2.42 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 195.5, 144.8, 132.4, 129.5, 129.0, 77.6, 68.4, 66.9, 66.5, 21.9.

HRMS: (ESI) calcd for $C_{12}H_{15}O_3^+[M+H]^+ 207.1016$; found 207.1014.

(4-bromotetrahydro-2*H*-pyran-2-yl)(*p*-tolyl)methanone (21)

Chemical Formula: C₁₃H₁₅BrO₂ Exact Mass: 282.0255

21 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), 4-bromotetrahydro-2*H*-pyran (2.0 mmol, 330.1 mg), anhydrous K₃PO₄ (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain **21** as colorless oil (30.6 mg, 54% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.88 (d, *J* = 8.3 Hz, 2H), 7.29-7.25 (m, 2H), 5.29 (dd, *J* = 10.1, 2.6 Hz, 1H), 4.83-4.77 (m, 1H), 4.16-4.09 (m, 1H), 4.05-3.99 (m, 1H), 2.41 (s, 3H), 2.35-2.28 (m, 1H), 2.26-2.17 (m, 2H), 2.01-1.95 (m, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 197.0, 144.7, 132.1, 129.5, 129.1, 74.6, 63.7, 49.3, 37.1, 34.2, 21.9;

HRMS: (ESI) calcd for $C_{13}H_{16}BrO_2^+[M+H]^+$ 283.0823; found 283.0325.

2-(*tert*-butoxy)-1-(*p*-tolyl)ethan-1-one (22)

22 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), 2-methoxy-2-methylpropane (2.0 mmol, 176.4 mg), anhydrous K₃PO₄ (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain **22** as colorless oil (26.4 mg, 64% yield).

The NMR data matched those reported in the literature.9

¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, *J* = 8.2 Hz, 2H), 7.26-7.23 (m, 2H), 4.63 (s, 2H), 2.40 (s, 3H), 1.27 (s, 9H);

¹³C NMR (151 MHz, CDCl₃) δ 196.9, 144.1, 133.0, 129.3, 128.4, 74.6, 66.3, 27.6, 21.8.

2-ethoxy-1-(p-tolyl)propan-1-one (23)

23 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), ethoxyethane (2.0 mmol, 148.2 mg), anhydrous K₃PO₄ (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain **23** as colorless oil (9.6 mg, 27% yield). The NMR data matched those reported in the literature.¹⁰

¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 2H), 7.27-7.25 (m, 2H), 4.65 (q, J = 6.9 Hz, 1H), 3.54 (dq, J = 9.1, 7.0 Hz, 1H), 3.47 (dq, J = 9.0, 7.0 Hz, 1H), 2.41 (s, 3H), 1.48 (d, J = 6.9 Hz, 3H), 1.21 (t, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 200.9, 144.3, 132.4, 129.4, 129.1, 79.3, 65.3, 21.8,

19.2, 15.5.

Tert-butyl 2-(4-methylbenzoyl)pyrrolidine-1-carboxylate (24)

24 was prepared according to general procedure 2.1 using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), tert-butyl pyrrolidine-1-carboxylate (1.0 mmol, 171.2 mg), anhydrous K₃PO₄ (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 10/1) to obtain 24 as colorless oil (26.5 mg, 45% yield); a 3:2 mixture of rotamers.

The NMR data matched those reported in the literature.¹¹

¹H NMR (600 MHz, CDCl₃) δ 7.91-7.82 (m, 2H), 7.29-7.22 (m, 2H), 5.31 (dd, J = 9.3, 3.1 Hz, 0.4H), 5.17 (dd, J = 8.9, 3.9 Hz, 0.6H), 3.70-3.64 (m, 0.6H), 3.64-3.58 (m, 0.4H), 3.56-3.51 (m, 0.6H), 3.49-3.43 (m, 0.4H), 2.41 (s, 1.8H), 2.39 (s, 1.2H), 2.35-2.23 (m, 1H), 1.97-1.85 (m, 3H), 1.46 (s, 3.6H), 1.25 (s, 5.4H); ¹³C NMR (151 MHz, CDCl₃) δ 198.5, 198.0, 154.5, 153.9, 144.0, 144.0, 132.7, 132.5, 129.4, 129.3, 128.7, 128.3, 79.7, 79.6, 61.3, 61.0, 46.8, 46.6, 31.0, 29.9, 28.5, 28.2, 24.2, 23.6, 21.7.

Tert-butyl methyl(2-oxo-2-(p-tolyl)ethyl)carbamate (25)

Chemical Formula: C₁₅H₂₁NO₃ Exact Mass: 263.1521

25 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), tert-butyl dimethylcarbamate (1.0 mmol, 145.2 mg), anhydrous K₃PO₄ (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 10/1) to obtain **25** as colorless oil (35.8 mg, 69% yield); a 1.2:1 mixture of rotamers.

¹H NMR (600 MHz, CDCl₃) δ 7.86-7.80 (m, 2H), 7.29-7.22 (m, 2H), 4.65 (s, 1.1H), 4.55 (s, 0.9H), 2.96 (s, 1.35H), 2.92 (s, 1.65H), 2.41 (s, 1.35H), 2.40 (s, 1.65H), 1.48 (s, 5H), 1.37 (s, 4H);

¹³C NMR (151 MHz, CDCl₃) δ 194.9, 194.5, 156.4, 155.9, 144.5, 144.4, 132.91, 132.88, 129.6, 129.5, 128.1, 127.9, 80.1, 80.0, 55.7, 55.1, 35.8, 35.7, 28.5, 28.3, 21.8. HRMS: (ESI) calcd for $C_{15}H_{22}NO_3^+[M+H]^+$ 264.1594; found 264.1601.

N-methyl-N-(2-oxo-2-phenylethyl)acetamide (26)

26 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), N,N-dimethylacetamide (2.0 mmol, 174.2 mg), anhydrous K₃PO₄ (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 5/1) to obtain **26** as colorless oil (15.7 mg, 41% yield); a 4.7:1 mixture of rotamers.

¹H NMR (600 MHz, CDCl₃) δ 7.88-7.80 (m, 2H), 7.27-7.24 (m, 2H), 4.82 (s, 1.65H), 4.72 (s, 0.35H), 3.09 (s, 2.5H), 2.99 (s, 0.5H), 2.43 (s, 0.5H), 2.40 (s, 2.5H), 2.19 (s, 2.5H), 1.98 (s, 0.5H);

¹³C NMR (151 MHz, CDCl₃) δ 194.1, 193.1, 171.6, 171.5, 145.3, 144.6, 132.8, 132.3, 129.8, 129.5, 128.2, 128.0, 57.0, 54.0, 37.4, 35.3, 21.9, 21.8, 21.5, 21.3;
HRMS: (ESI) calcd for C₁₂H₁₆NO₂⁺[M+H]⁺ 206.1176; found 206.1170.

3-(4-methylbenzoyl)cyclopentan-1-one (27)

Chemical Formula: C₁₃H₁₄O₂ Exact Mass: 202.0994

27 was prepared according to general procedure 2.1 using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclopentanone (2.0 mmol, 168.2 mg), anhydrous K₃PO₄ (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain 27 as colorless oil (19.9 mg, 47% yield).

The NMR data matched those reported in the literature.¹²

¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 8.2 Hz, 2H), 7.32-7.27 (m, 2H), 4.14-4.06 (m, 1H), 2.74-2.65 (m, 1H), 2.48-2.43 (m, 1H), 2.43 (s, 3H), 2.42-2.37 (m, 1H), 2.37-2.32 (m, 1H), 2.31-2.24 (m, 1H), 2.20-2.12 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 217.2, 200.0, 144.6, 133.2, 129.7, 128.7, 43.1, 41.2,

37.5, 27.2, 21.8.

3-(4-methylbenzoyl)cyclohexan-1-one (28)

Chemical Formula: C₁₄H₁₆O₂ Exact Mass: 216.1150

28 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexanone (2.0 mmol, 196.3 mg), anhydrous K₃PO₄ (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain **28** as colorless oil (29.7 mg, 68% yield, r.r. = 3:2). The NMR data matched those reported in the literature.¹²

¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 8.2 Hz, 0.8H), 7.85 (d, *J* = 8.3 Hz, 1.2H), 7.31-7.27 (m, 2H), 3.85-3.75 (m, 0.6H), 3.69 (tt, *J* = 10.2, 3.8 Hz, 0.4H), 2.75-2.69 (m, 0.6H), 2.61-2.51 (m, 0.9H), 2.50-2.44 (m, 1.1H), 2.43-2.36 (m, 4.4H), 2.24-2.19 (m, 1H), 2.13-2.00 (m, 2H), 1.89-1.80 (m, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 210.6, 210.4, 200.1, 144.5, 144.3, 132.9, 129.7, 129.6, 128.6, 128.5, 45.2, 43.3, 42.7, 41.1, 40.1, 29.0, 28.6, 25.0, 21.8.

(1,1-dioxidotetrahydrothiophen-3-yl)(p-tolyl)methanone (29)

29 was prepared according to general procedure **2.1** using NiBr₂•dtbbpy (0.002 mmol, 1.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), tetrahydrothiophene 1,1-dioxide (2.0 mmol, 240.3 mg), anhydrous K₃PO₄ (0.48 mmol, 101.8 mg) and 4-methylbenzoyl chloride (0.2 mmol, 30.9 mg) and was purified by silica gel column chromatography (PE/EtOAc = 10/1) to obtain **29** as colorless oil (25.8 mg, 53% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.34-7.30 (m, 2H), 4.35-4.23 (m, 1H), 3.52-3.42 (m, 1H), 3.30-3.21 (m, 2H), 3.17-3.10 (m, 1H), 2.60-2.50 (m, 1H), 2.44 (s, 3H), 2.41-2.33 (m, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 196.3, 145.5, 132.2, 130.0, 128.8, 52.5, 50.8, 41.8, 25.9, 21.9;

HRMS: (ESI) calcd for $C_{12}H_{15}O_3S^+[M+H]^+$ 239.0736; found 239.0733.

N, N-diphenylcyclohexanecarboxamide (31)

Chemical Formula: C₁₉H₂₁NO Exact Mass: 279.1623

31 was prepared according to general procedure **2.2** using NiCl₂•dtbbpy (0.004 mmol, 1.6 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K_3PO_4 (0.4 mmol, 84.8 mg) and diphenylcarbamic chloride (0.2 mmol, 46.3 mg) and was purified by silica gel column chromatography (PE/EtOAc = 10/1) to obtain **31** as colorless oil (34.1 mg, 61% yield).

The NMR data matched those reported in the literature.¹³

¹H NMR (600 MHz, CDCl₃) δ 7.42-7.31 (m, 5H), 7.28-7.20 (m, 5H), 2.38 (tt, *J* = 11.6, 3.4 Hz, 1H), 1.86-1.76 (m, 2H), 1.73-1.68 (m, 2H), 1.65-1.53 (m, 3H), 1.26-1.17 (m, 1H), 1.07-0.95 (m, 2H);

¹³C NMR (151 MHz, CDCl₃) δ 176.7, 143.1, 129.6, 128.9, 126.7, 42.3, 29.4, 25.6, 25.5.

Isobutyl cyclohexanecarboxylate (33)

Chemical Formula: C₁₁H₂₀O₂ Exact Mass: 184.1463

33 was prepared according to general procedure **2.3** using NiBr₂ (0.02 mmol, 4.4 mg), dtbbpy (0.03 mmol, 8.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K_3PO_4 (0.4 mmol, 84.8 mg) and isobutyl carbonochloridate (0.2 mmol, 27.3 mg) and was purified by silica gel column chromatography (PE/EtOAc = 100/1) to obtain **33** as colorless oil (14.4 mg, 39% yield).

The NMR data matched those reported in the literature.¹⁴

¹H NMR (600 MHz, CDCl₃) δ 3.81 (d, J = 6.6 Hz, 2H), 2.27 (tt, J = 11.3, 3.7 Hz, 1H), 1.91-1.85 (m, 3H), 1.74-1.68 (m, 2H), 1.63-1.58 (m, 1H), 1.45-1.37 (m, 2H), 1.29-1.16 (m, 3H), 0.89 (d, J = 6.7 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃) δ 176.1, 70.1, 43.3, 29.0, 27.8, 25.8, 25.4, 19.0.

(cyclohexylethynyl)triisopropylsilane (34)

TIPS

Chemical Formula: C₁₇H₃₂Si Exact Mass: 264.2273

34 was prepared according to general procedure **2.4** using NiBr₂•dtbbpy (0.02 mmol, 10.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2

anhydrous K₂HPO₄ (0.3)mmol, 168.0 mg), mmol, 52.3 mg) and (bromoethynyl)triisopropylsilane (0.2 mmol, 52.1 mg) and was purified by silica gel column chromatography (PE) to obtain 34 as colorless oil (40.3 mg, 76% yield). The NMR data matched those reported in the literature.¹⁵ ¹H NMR (600 MHz, CDCl₃) δ 2.50-42 (m, 1H), 1.80-1.70 (m, 4H), 1.53-1.44 (m, 3H), 1.39-1.28 (m, 3H), 1.13-1.03 (m, 21H); ¹³C NMR (151 MHz, CDCl₃) δ 113.6, 79.5, 32.7, 29.8, 26.0, 24.5, 18.6, 11.3

(cyclohexylethynyl)benzene (35)

Chemical Formula: C₁₄H₁₆ Exact Mass: 184.2820

35 was prepared according to general procedure **2.4** using NiBr₂•dtbbpy (0.02 mmol, 10.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K_2 HPO₄ (0.3 mmol, 52.3 mg) and (bromoethynyl)benzene (0.2 mmol, 36.2 mg) and was purified by silica gel column chromatography (PE) to obtain **35** as colorless oil (18.8 mg, 51% yield).

The NMR data matched those reported in the literature.¹⁶

¹H NMR (600 MHz, CDCl₃) δ 7.41-7.38 (m, 2H), 7.29-7.23 (m, 3H), 2.62-2.55 (m, 1H), 1.92-1.86 (m, 2H), 1.79-1.74 (m, 2H), 1.57-1.51 (m, 3H), 1.39-1.32 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 131.6, 128.2, 127.4, 124.1, 94.5, 80.5, 32.7, 29.7, 26.0, 24.9.

1-(cyclohexylethynyl)-4-methoxybenzene (36)

OMe

Chemical Formula: C₁₅H₁₈O Exact Mass: 214.1358

36 was prepared according to general procedure **2.4** using NiBr₂•dtbbpy (0.02 mmol, 10.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2

mmol, 168.0 mg), anhydrous K_2HPO_4 (0.3 mmol, 52.3 mg) and 1-(bromoethynyl)-4-methoxybenzene (0.2 mmol, 42.2 mg) and was purified by silica gel column chromatography (PE) to obtain **36** as colorless oil (26.9 mg, 63% yield). The NMR data matched those reported in the literature.¹⁷

¹H NMR (600 MHz, CDCl₃) δ 7.35-7.31 (m, 2H), 6.83-6.78 (m, 2H), 3.79 (s, 3H), 2.59-2.53 (m, 1H), 1.90-1.84 (m, 2H), 1.79-1.72 (m, 2H), 1.55-1.48 (m, 3H), 1.37-1.30 (m, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 158.9, 132.9, 116.3, 113.7, 92.8, 80.1, 55.2, 32.8, 29.7, 25.9, 24.9.

methyl 4-(cyclohexylethynyl)benzoate (37)

COOMe

Chemical Formula: C₁₆H₁₈O₂ Exact Mass: 242.1307

37 was prepared according to general procedure **2.4** using NiBr₂•dtbbpy (0.02 mmol, 10.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K_2HPO_4 (0.3 mmol, 52.3 mg) and methyl 4-(bromoethynyl)benzoate (0.2 mmol, 47.8 mg) and was purified by silica gel column chromatography (PE/EtOAc = 100/1) to obtain **37** as colorless oil (22.3 mg, 46% yield).

The NMR data matched those reported in the literature.¹⁷

¹H NMR (600 MHz, CDCl₃) δ 7.96-7.92 (m, 2H), 7.47-7.39 (m, 2H), 3.90 (s, 3H), 2.66-2.56 (m, 1H), 1.92-1.86 (m, 2H), 1.78-1.73 (m, 2H), 1.58-1.50 (m, 3H), 1.39-1.30 (m, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 166.7, 131.5, 129.3, 129.0, 128.7, 97.9, 80.0, 52.1, 32.5, 29.7, 25.8, 24.8.

tert-butyl((1-(cyclohexylethynyl)cyclohexyl)oxy)dimethylsilane (38)

38 was prepared according to general procedure **2.4** using NiBr₂•dtbbpy (0.02 mmol, 10.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K₂HPO₄ (0.3 mmol, 52.3 mg) and ((1-(bromoethynyl)cyclohexyl)oxy)(tert-butyl)dimethylsilane (0.2 mmol, 63.5 mg) and was purified by silica gel column chromatography (PE) to obtain **38** as colorless oil (51.5 mg, 80% yield).

¹H NMR (600 MHz, CDCl₃) δ 2.45-2.33 (m, 1H), 1.84-1.76 (m, 2H), 1.75-1.68 (m, 4H), 1.66-1.57 (m, 3H), 1.55-1.49 (m, 3H), 1.48-1.37 (m, 4H), 1.35-1.25 (m, 4H), 0.87 (s, 9H), 0.16 (s, 6H);

¹³C NMR (151 MHz, CDCl₃) δ 89.0, 84.5, 69.2, 41.5, 32.8, 29.1, 25.9, 25.9, 25.5, 25.0, 23.0, 18.1, -2.8.

HRMS: (ESI) calcd for C₂₀H₃₇OSi⁺[M+H]⁺ 321.2608; found 321.2600.

tert-butyl((3-cyclohexyl-1,1-diphenylprop-2-yn-1-yl)oxy)dimethylsilane (39)

\frown	Ph
$\langle \rangle$	 - ← Ph
	ÒTBS

Chemical Formula: C₂₇H₃₆OSi Exact Mass: 404.2535

39 was prepared according to general procedure **2.4** using NiBr₂•dtbbpy (0.02 mmol, 10.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K₂HPO₄ (0.3 mmol, 52.3 mg) and ((3-bromo-1,1-diphenylprop-2-yn-1-yl)oxy)(tert-butyl)dimethylsilane (0.2 mmol, 80.3 mg) and was purified by silica gel column chromatography (PE) to obtain **39** as colorless oil (41.5 mg, 51% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.60-7.57 (m, 4H), 7.28-7.24 (m, 4H), 7.20-7.17 (m, 2H), 2.56-2.50 (m, 1H), 1.94-1.87 (m, 2H), 1.77-1.73 (m, 2H), 1.58-1.53 (m, 3H), 1.37-1.31 (m, 3H), 0.97 (s, 9H), 0.02 (s, 6H);

¹³C NMR (151 MHz, CDCl₃) δ 147.5, 127.7, 126.8, 126.0, 93.2, 82.9, 75.4, 32.5, 29.4, 26.1, 25.8, 25.1, 18.5, -3.1.

HRMS: (APCI) calcd for C₂₇H₃₇OSi⁺[M+H]⁺ 405.2608; found 405.2608.

2-(3-cyclohexylprop-2-yn-1-yl)-2-methylcyclopentane-1,3-dione (40)

Chemical Formula: C₁₅H₂₀O₂ Exact Mass: 232.1463

40 was prepared according to general procedure **2.4** using NiBr₂•dtbbpy (0.02 mmol, 10.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclohexane (2 mmol, 168.0 mg), anhydrous K₂HPO₄ (0.3 mmol, 52.3 mg) and 2-(3-bromoprop-2-yn-1-yl)-2-methylcyclopentane-1,3-dione (0.2 mmol, 45.8 mg) and was purified by silica gel column chromatography (PE/EA = 50/1) to obtain **40** as colorless oil (23.0 mg, 50% yield).

¹H NMR (600 MHz, CDCl₃) δ 2.77 (s, 4H), 2.41 (d, 2H), 2.26-2.20 (m, 1H), 1.73-1.67 (m, 2H), 1.64-1.59 (m, 2H), 1.51-1.44 (m, 1H), 1.31-1.20 (m, 5H), 1.07 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 216.0, 87.3, 74.2, 55.7, 36.1, 32.8, 28.8, 25.8, 25.7, 24.8, 18.6.

HRMS: (ESI) calcd for $C_{15}H_{21}O_2^+[M+H]^+$ 233.1536; found 233.1538.

(cyclopentylethynyl)triisopropylsilane (41)

Chemical Formula: C₁₆H₃₀Si Exact Mass: 250.2117

41 was prepared according to general procedure **2.4** using NiBr₂•dtbbpy (0.02 mmol, 10.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclopentane (2 mmol, 140.3 mg), anhydrous K_2 HPO₄ (0.3 mmol, 52.3 mg) and

(bromoethynyl)triisopropylsilane (0.2 mmol, 52.1 mg) and was purified by silica gel column chromatography (PE) to obtain **41** as colorless oil (32.5 mg, 65% yield). The NMR data matched those reported in the literature.¹⁵ ¹H NMR (600 MHz, CDCl₃) δ 2.70-2.64 (m, 1H), 1.93-1.86 (m, 2H), 1.76-1.70 (m, 2H), 1.67-1.61 (m, 2H), 1.57-1.53 (m, 2H), 1.09-1.02 (m, 21H); ¹³C NMR (151 MHz, CDCl₃) δ 114.1, 79.0, 34.2, 31.2, 24.9, 18.6, 11.3.

(cyclooctylethynyl)triisopropylsilane (42)

TIPS

Chemical Formula: C₁₉H₃₆Si Exact Mass: 292.2586

42 was prepared according to general procedure **2.4** using NiBr₂•dtbbpy (0.02 mmol, 10.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), cyclooctane (2 mmol, 224.4mg), anhydrous K_2HPO_4 (0.3 mmol, 52.3 mg) and (bromoethynyl)triisopropylsilane (0.2 mmol, 52.1 mg) and was purified by silica gel column chromatography (PE) to obtain **42** as colorless oil (24.5 mg, 42% yield). The NMR data matched those reported in the literature.¹⁵

¹H NMR (600 MHz, CDCl₃) δ 2.65-2.60 (m, 1H), 1.89-1.83 (m, 2H), 1.79-1.73 (m, 2H), 1.73-1.65 (m, 3H), 1.55-1.51 (m, 4H), 1.50-1.46 (m, 3H), 1.07-1.04 (m, 21H); ¹³C NMR (151 MHz, CDCl₃) δ 114.5, 79.4, 31.7, 31.2, 27.5, 25.4, 24.4, 18.7, 11.3.

N-methyl-N-(3-(triisopropylsilyl)prop-2-yn-1-yl)acetamide (43)

43 was prepared according to general procedure **2.4** using NiBr₂•dtbbpy (0.02 mmol, 10.0 mg), tetrabutylammonium decatungstate (0.004 mmol, 14.0 mg), N,N-dimethylacetamide (2.0 mmol, 174.2 mg), anhydrous K₂HPO₄ (0.3 mmol, 52.3 mg) and (bromoethynyl)triisopropylsilane (0.2 mmol, 52.1 mg) and was purified by

silica gel column chromatography (PE/EtOAc = 10/1) to obtain **43** as colorless oil (27.3 mg, 51% yield); a 1.2:1 mixture of rotamers. The NMR data matched those reported in the literature.¹⁸ ¹H NMR (600 MHz, CDCl₃) δ 4.29 (s, 1.1H), 4.06 (s, 0.9H), 3.07 (s, 1.7H), 2.99 (s, 1.3H), 2.16 (s, 1.3H), 2.09 (s, 1.7H), 1.05 (s, 3H), 1.05 (s, 18H); ¹³C NMR (151 MHz, CDCl₃) δ 170.5, 170.1, 102.2, 101.2, 86.0, 85.0, 41.3, 36.7, 34.7, 33.1, 21.7, 21.4, 18.5, 18.5, 11.1, 11.0.

triisopropyl((tetrahydrofuran-2-yl)ethynyl)silane (44)

Chemical Formula: C₁₅H₂₈OSi Exact Mass: 252.1909

44 was prepared according to general procedure 2.5 using Ni(acac)₂ (0.02 mmol, 5.1 mg), dtbbpy (0.03 mmol, 8.0 mg), 4-(4-methoxybenzoyl)benzonitrile (0.02 mmol, 4.7 mg), anhydrous Na₂CO₃ (0.4 mmol, 42.0 mg), tetrahydrofuran (1 mL) as sovlent and (bromoethynyl)triisopropylsilane (0.2 mmol, 52.1 mg) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain 44 as colorless oil (41.9 mg, 83% yield).

The NMR data matched those reported in the literature.¹⁸

¹H NMR (600 MHz, CDCl₃) δ 4.62 (dd, J = 7.3, 4.6 Hz, 1H), 3.97-3.94 (m, 1H), 3.84-3.80 (m, 1H), 2.17-2.11 (m, 1H), 2.06-1.97 (m, 2H), 1.92-1.86 (m, 1H), 1.07-1.05 (m, 21H);

¹³C NMR (151 MHz, CDCl₃) δ 107.8, 85.0, 68.6, 67.5, 33.7, 25.1, 18.6, 11.1.

((1,4-dioxan-2-yl)ethynyl)triisopropylsilane (45)

Chemical Formula: C₁₅H₂₈O₂Si Exact Mass: 268.1859

45 was prepared according to general procedure **2.5** using Ni(acac)₂ (0.02 mmol, 5.1 mg), dtbbpy (0.03 mmol, 8.0 mg), 4-(4-methoxybenzoyl)benzonitrile (0.02 mmol, 4.7 mg), anhydrous Na₂CO₃ (0.4 mmol, 42.0 mg), 1,4-dioxane (1 mL) as sovlent and (bromoethynyl)triisopropylsilane (0.2 mmol, 52.1 mg) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain **45** as colorless oil (17.2 mg, 32% yield).

The NMR data matched those reported in the literature.¹⁸

¹H NMR (600 MHz, CDCl₃) δ 4.37 (dd, J = 8.3, 2.9 Hz, 1H), 3.92-3.88 (m, 1H), 3.84 (dd, J = 11.5, 2.9 Hz, 1H), 3.69-3.66 (m, 3H), 3.59 (dd, J = 11.5, 8.3 Hz, 1H), 1.07-1.06 (m, 21H);

¹³C NMR (151 MHz, CDCl₃) δ 102.5, 87.9, 70.6, 66.5, 66.3, 65.6, 18.5, 11.0.

(benzo[d][1,3]dioxol-2-ylethynyl)triisopropylsilane (46)

Chemical Formula: C₁₈H₂₆O₂Si Exact Mass: 302.1702

46 was prepared according to general procedure **2.5** using Ni(acac)₂ (0.02 mmol, 5.1 mg), dtbbpy (0.03 mmol, 8.0 mg), 4-(4-methoxybenzoyl)benzonitrile (0.02 mmol, 4.7 mg), anhydrous Na₂CO₃ (0.4 mmol, 42.0 mg), benzo[d][1,3]dioxole (1 mL) as sovlent and (bromoethynyl)triisopropylsilane (0.2 mmol, 52.1 mg) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain **46** as colorless oil (21.8 mg, 36% yield).

The NMR data matched those reported in the literature.¹⁸

¹H NMR (600 MHz, CDCl₃) δ 6.85 (s, 4H), 6.58 (s, 1H), 1.08-1.07 (m, 21H);

¹³C NMR (151 MHz, CDCl₃) δ 146.7, 121.8, 108.9, 99.6, 98.1, 90.9, 18.4, 10.9.

(3-(tert-butoxy)prop-1-yn-1-yl)triisopropylsilane (47)

47 was prepared according to general procedure 2.5 using Ni(acac)₂ (0.02 mmol, 5.1 mg), dtbbpy (0.03 mmol, 8.0 mg), 4-(4-methoxybenzoyl)benzonitrile (0.02 mmol, 4.7 mg), anhydrous Na₂CO₃ (0.4 mmol, 42.0 mg), 2-methoxy-2-methylpropane (1 mL) as sovlent and (bromoethynyl)triisopropylsilane (0.2 mmol, 52.1 mg) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain 47 as colorless oil (22.1 mg, 41% yield).

The NMR data matched those reported in the literature.¹⁸

¹H NMR (600 MHz, CDCl₃) δ 4.14 (s, 2H), 1.25 (s, 9H), 1.08-1.05 (m, 21H);

¹³C NMR (151 MHz, CDCl₃) δ 106.2, 85.4, 74.6, 51.2, 27.8, 18.6, 11.2.

(3,4-dimethoxybut-1-yn-1-yl)triisopropylsilane (48)

48 was prepared according to general procedure **2.5** using Ni(acac)₂ (0.02 mmol, 5.1 mg), dtbbpy (0.03 mmol, 8.0 mg), 4-(4-methoxybenzoyl)benzonitrile (0.02 mmol, 4.7 mg), anhydrous Na₂CO₃ (0.4 mmol, 42.0 mg), 1,2-dimethoxyethane (1 mL) as sovlent and (bromoethynyl)triisopropylsilane (0.2 mmol, 52.1 mg) and was purified by silica gel column chromatography (PE/EtOAc = 20/1) to obtain **48** as colorless oil (22.7 mg, 42% yield).

The NMR data matched those reported in the literature.¹⁸

¹H NMR (600 MHz, CDCl₃) δ 4.22 (dd, *J* = 8.0, 3.4 Hz, 1H), 3.61-3.53 (m, 2H), 3.47 (s, 3H), 3.41 (s, 3H), 1.08-1.06 (m, 21H);

¹³C NMR (151 MHz, CDCl₃) δ 103.0, 88.1, 75.0, 71.0, 59.2, 56.5, 18.5, 11.1.

6. Synthetic Applications

To the solution of **34** (211.6 mg, 0.8 mmol) in THF (2.0 mL) and 2 mL TBAF (1.0 M in THF) was added under Ar atmosphere, and was stirred at room temperature for 2 h. Saturated NH₄Cl aqueous solution (10 mL) was added to the reaction mixture, and the product was extracted with AcOEt (10 mL \times 3). The combined extracts were washed by brine (10 mL), dried over Na₂SO₄ and concentrated under reduced pressure to give the terminal alkyne, which was used in the next step without further purification.

The terminal alkyne was dissolved in acetone (2.0 mL). Then, AgNO₃ (13.6 mg, 0.1 equiv.), NBS (156.6 mg, 1.1 equiv.) were added. The mixture was stirred at room temperature for 4 h. After the reaction was completed, concentrated the mixture and purified by chromatography on silica gel (PE) to afford the bromide alkyne **50** as color less liquid (116.7 mg, 78% yield).

The NMR data matched those reported in the literature.¹⁹

¹H NMR (600 MHz, CDCl₃) δ 2.45-2.34 (m, 1H), 1.83-1.74 (m, 2H), 1.73-1.64 (m, 2H), 1.53-1.41 (m, 3H), 1.34-1.26 (m, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 84.4, 37.7, 32.3, 30.1, 25.8, 24.8.

An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with NiBr₂•dtbbpy (9.8 mg, 0.02 mmol), tetrabutylammonium decatungstate (14.0 mg, 0.004 mmol), **50** (37.4 mg, 0.2 mmol), anhydrous K_2HPO_4 (50 mg, 0.3 mmol), cyclohexane (168 mg, 2.0 mmol) and dry MeCN (1.0 mL) in an argon-filled glovebox. The vial was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 6 W 390 nm LED lamp at 5 °C for 12 hours. The resulting mixture was diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. Solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (PE) to afford **51** as color less liquid (26.3 mg, 69% yield).

The NMR data matched those reported in the literature.²⁰

¹H NMR (600 MHz, CDCl₃) δ 2.38-2.29 (m, 2H), 1.82-1.73 (m, 4H), 1.72-1.65 (m, 4H), 1.53-1.44 (m, 2H), 1.45-1.35 (m, 4H), 1.33-1.23 (m, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 84.5, 33.2, 29.0, 26.0, 24.9.

An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with Ni(acac)₂ (5.6 mg, 0.02 mmol), dtbbpy (7.7 mg, 0.03 mmol), **PC1** (5.6 mg, 0.02 mmol), **50** (37.4 mg, 0.2 mmol), anhydrous Na₂CO₃ (42.3 mg, 0.4 mmol) and THF (1.0 mL) as both C-H partners and solvent in an argon-filled glovebox. The vial was sealed and removed from the glovebox. The reaction mixture was stirred and irradiated using a 10 W 390 nm LED lamp at 25 °C for 48 hours. The resulting mixture was diluted with ethyl acetate and passed through a pad of celite. The celite plug was further washed with ethyl acetate. Solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (PE/EA = 50/1) to afford **52** as color less liquid (20.3 mg, 57% yield).

¹H NMR (600 MHz, CDCl₃) δ 4.56 (ddd, *J* = 7.3, 5.7, 1.8 Hz, 1H), 3.97-3.92 (m, 1H), 3.80-3.74 (m, 1H), 2.42-2.34 (m, 1H), 2.15-2.09 (m, 1H), 2.04-1.98 (m, 1H), 1.94-1.86 (m, 2H), 1.80-1.74 (m, 2H), 1.72-1.67 (m, 2H), 1.52-1.47 (m, 1H), 1.44-1.38 (m, 2H), 1.30-1.25 (m, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 89.3, 79.8, 68.5, 67.6, 33.7, 32.6, 29.1, 25.9, 25.4, 24.9;

HRMS: (ESI) calcd for C₁₂H₁₉O⁺[M+H]⁺ 179.1430; found 179.1424.

7. NMR Spectra

6

S42

250 240 230 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

10 0 -10 -20 -30 -40 -50 -90 -100 -110 f1 (ppm) -180 -190 -200 -210 -60 -70 -80 120 130 -140 -150 -160 -170

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 10 f1 (ppm)

250 240 230 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (pm)

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (pm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

S67

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S75

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 fl(ppm)

S80

25 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

8. References

- D. Mazzarella, A. Pulcinella, L. Bovy, R. Broersma and T. Noël, *Angew. Chem.*, *Int. Ed.*, 2021, **60**, 21277-21282.
- 2. X. Li and G. Zou, J. Organomet. Chem., 2015, 794, 136-145.
- Q. Wu, Y.-J. Mao, K. Zhou, S. Wang, L. Chen, Z.-Y. Xu, S.-J. Lou and D.-Q. Xu, Chem. Commun., 2021, 57, 4544-4547.
- 4. J. Amani and G. A. Molander, J. Org. Chem., 2017, 82, 1856-1863.
- G. S. Lee, J. Won, S. Choi, M.-H. Baik and S. H. Hong, Angew. Chem., Int. Ed., 2020, 59, 16933-16942.
- A. H. Roy, C. P. Lenges and M. Brookhart, J. Am. Chem. Soc., 2007, 129, 2082-2093.
- 7. Y.-C. Wong, K. Parthasarathy and C.-H. Cheng, Org. Lett., 2010, 12, 1736-1739.
- 8. K. Watanabe, T. Hamada and K. Moriyama, Org. Lett., 2018, 20, 5803-5807.
- 9. J. Zhang, D. Xiao, H. Tan and W. Liu, J. Org. Chem., 2020, 85, 3929-3935.
- 10. J. Chan Lee and T. Hong, Synth. Commun., 1997, 27, 4085-4090.
- 11. Z. H. Zhou, Y. L. Tang, K. Y. Li, B. Liu and C. C. Tang, *Heteroatom Chem.*, 2003, 14, 603-606.
- 12. M. Zhang, J. Xie and C. Zhu, Nat. Commun., 2018, 9, 3517.
- F. Tinnis, E. Stridfeldt, H. Lundberg, H. Adolfsson and B. Olofsson, Org. Lett., 2015, 17, 2688-2691.
- 14. L. Lu, R. Shi, L. Liu, J. Yan, F. Lu and A. Lei, Chem. Eur. J., 2016, 22, 14484-14488.
- W. Jia, L. Zhao, H. Wei, L. Zhu, L. Fu and W. Chen, *Chin. J. Org. Chem.*, 2022, 42, 1-15.
- 16. L. Capaldo and D. Ravelli, Org. Lett., 2021, 23, 2243-2247.
- 17. Y. Jin, L. Wang, Q. Zhang, Y. Zhang, Q. Liao and C. Duan, *Green Chem.*, 2021, 23, 9406-9411.
- K. Matsumoto, M. Nakajima and T. Nemoto, J. Org. Chem., 2020, 85, 11802-11811.

- R. Pan, C. Shi, D. Zhang, Y. Tian, S. Guo, H. Yao and A. Lin, *Org. Lett.*, 2019, 21, 8915-8920.
- F. Ghiringhelli, L. Nattmann, S. Bognar and M. van Gemmeren, J. Org. Chem., 2019, 84, 983-993.