Supporting Information

Organocatalytic multicomponent coupling to access a highly functionalised tetracyclic furoindoline: Interrupted Passerini/Joullié–Ugi cascade reaction

Takeshi Yamada* and Sentaro Okamoto*

[†] Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686

E-mail: tyamada@kanagawa-u.ac.jp okamos10@kanagawa-u.ac.jp

Table of Contents

1.	General Information	2
2.	Preparation of Isocyanide	3
3.	General Procedure for the Interrupted Passerini Reaction	6
4.	Study of stability of tetracyclic furoindoline 21a	10
5.	General Procedure for the	
	Interrupted Passerini/Joulie–Ugi cascade reaction	11
6.	Reference	20
7.	¹ H NMR Spectra	21
8.	¹³ C NMR Spectra	36
9.	COSY, HMQC, HMBC and NOESY Spectra of 18a	50
10.	NOESY Spectra of 21a, 22a and 22b	53

1. General Information

All reagents and solvents were purchased from either Tokyo Chemical Industry Co., Ltd., or FUJIFILM Wako Pure Chemical Corporation, Kanto Chemical Co., Ltd., Sigma-Aldrich Co. LLC and used without further purification. CDCl₃ was treated with K₂CO₃ prior to use. Chromatography was carried out with Wakogel^{*} C-200 silica gel (FUJIFILM Wako Pure Chemical Corporation, granule, 0.075-0.150 mm). Melting points were measured using the micro melting point equipment (J-SCIENCE LAB Co., Ltd., RFS-10). NMR spectra were recorded at 600 and 400 MHz for ¹H and 150 and 100 MHz for ¹³C on JEOL JNM-ECA600 and -ECZ400R spectrometers, respectively. Chemical shifts are reported in part per million (ppm, δ) relative to residual solvent peaks of CDCl₃ (7.26 ppm for ¹H NMR, 77.0 ppm for ¹³C NMR), CD₃OD (3.31 ppm for ¹H NMR, 49.0 ppm for ¹³C NMR) and DMSO-d6 (2.50 ppm for ¹H NMR, 39.5 ppm for ¹³C NMR) and coupling constant (*J* values) are given in Hertz. IR spectra were recorded on a JASCO IR FT/IR 4100 spectrometer. High-resolution mass spectra (HRMS) were measured on a JEOL Accu TOF T-100 equipped with an ESI ionization unit.

2. Preparation of Isocyanide

Compounds **11a**,¹ **11b**², **11e**¹, **19a**,^{3,4} **20a**⁵ and **20b**⁶ were prepared as known method. Experimental procedures for preparing isocyanide **11c**, **11d** and **11f** are described below.

3-(2-isocyanoethyl)indolin-2-one (s3)

A suspension of tryptamine (1.6 g, 10 mmol) in HCO₂Me (10 ml) was stirred at room temperature under Ar atmosphere for 48 h. The mixture was filtrate through a pad of silica gel and wash with a 10% MeOH in CH₂Cl₂. Resulting solution was concentrated *in vacuo* to provide a crude product **s1** as a pale brown oil. To a solution of crude product **s1** in AcOH (50 mL) was added DMSO (2.0 mL) and conc. aqueous HCl (17 mL) at room temperature. After being stirred at room temperature for 1 h, the mixture was poured into a saturated aqueous Na₂CO₃ (180 mL) and extracted with AcOEt (100 mL x 3). The combined organic extracts were washed with brine (100 mL), dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to provide a crude product **s2** as a dark brown oil. To a solution of crude indolidone **s2** and NEt₃ (3.8 mL, 27 mmol) in CH₂Cl₂ (60 ml) was added POCl₃ (750 µL, 8.3 mmol) dropwise at -78 °C under Ar atmosphere. After being stirred at -78 °C for 3 h, the mixture was quenched by icy water (100 mL) and extracted with CH₂Cl₂ (100 mL x 3). The combined organic extracts were washed with water (100 ml) and brine (100 mL), dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (hexane/AcOEt = 2/1 to 1.5/1) to provide corresponding isocyanide **s3** as a pale brown solid (545 mg, 29% yield (3 steps)).

mp 123-124 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (m, 1H), 7.31-7.21 (2H), 7.07 (m, 1H), 6.94 (d, *J* = 7.6 Hz, 1H), 3.77 (ddd, *J* = 14.9, 7.6, 7.2 Hz, 1H), 3.67-3.57 (2H), 2.35 (m, 1H), 2.26 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 179.0, 157.1, 141.3, 128.6, 127.7, 124.0, 122.7, 110.1, 42.5, 38.5, 30.2. IR (neat, ATR) 3189, 2360, 2149, 1694, 1620, 1470, 1336, 1235, 750, 665 cm⁻¹. HRMS (ESI-TOF) *m/z* [M–H]⁻ calcd for [C₁₁H₉N₂O]⁻ 185.0715, found 185.0175.

3

3-(2-isocyanoethyl)-2-t-butyldimethylsilyloxyindole (11c)

To a solution of isocyanide **s3** (489 mg, 2.6 mmol) and NEt₃ (1.1 mL, 7.8 mmol) in CH₂Cl₂ (13 ml) was added TBSOTf (0.9 mL, 3.9 mmol) dropwise at 0 °C under Ar atmosphere. After being stirred at 0 °C for 1 h, the mixture was quenched by saturated aqueous NaHCO₃ (20 mL) and extracted with CH₂Cl₂ (20 mL x 3). The combined organic extracts were washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (hexane/AcOEt = 8/1 to 2.5/1) to provide corresponding isocyanide **11c** as a colorless solid (592 mg, 76% yield).

mp 166-168 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (brs, 1H), 7.25 (m, 1H), 7.02 (m, 1H), 6.97-6.88 (2H), 4.47 (ddd, *J* = 16.6, 8.6, 4.7 Hz, 1H), 4.34 (ddd, *J* = 16.6, 8.2, 7.1 Hz, 1H), 2.47 (ddd, *J* = 12.8, 8.6, 7.1 Hz, 1H), 2.13 (ddd, *J* = 12.8, 8.2, 4.7 Hz, 1H), 0.86 (s, 9H), -0.13 (s, 3H), -0.15 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.1, 179.9, 140.8, 131.4, 128.8, 123.6, 122.8, 110.1, 71.4, 65.5, 36.1, 26.4, 16.9 (3C), -5.3 (d, *J* = 2.8 Hz), -5.9 (d, *J* = 2.8 Hz). IR (neat, ATR) 3193, 2934, 2858, 2360, 1710, 1619, 1470, 1330, 1252, 1210, 937, 811, 751, 681, 515 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for [C₁₇H₂₅N₂OSi]⁺ 301.1736, found 301.1727.

3-(2-isocyanoethyl)-4-methoxyindole (11d)

To a solution of *N*-formyl-4-methoxytryptamine $s4^7$ (874.7 mg, 4.0 mmol) and NEt₃ (2.8 mL, 20.0 mmol) in CH₂Cl₂ (8.0 mL) was added POCl₃ (550 µL, 6.0 mmol) dropwise at -78 °C under Ar atmosphere. After being stirred at -78 °C for 3 h, the mixture was quenched by icy water (50 mL) and extracted with CH₂Cl₂ (30 mL x 3). The combined organic extracts were washed with H₂O (100 mL) and brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (hexane/AcOEt = 4/1) to provide 3-(2-isocyanoethyl)-4-methoxyindole **11d** as a pale brown solid (607 mg, 76% yield).

mp 71-73 °C. ¹H NMR (400 MHz, CD₃OD) δ 7.03-6.92 (3H), 6.46 (m, 1H), 3.89 (m, 3H), 3.71 (m, 2H), 3.17 (m, 2H). ¹³C NMR (100 MHz, CD₃OD) δ 155.5, 154.3, 140.0, 123.4, 123.2, 117.9, 111.5, 105.9, 99.9, 55.5, 44.6, 28.8. IR (neat, ATR) 3404, 2937, 2837, 2531, 2360, 2150, 1583, 1503, 1437, 1355, 1254, 1086, 973, 935, 779, 736, 679 cm⁻¹. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd for [C₁₂H₁₂N₂NaO]⁺ 223.0847, found 223.0848.

Preparation of 3-(2-isocyanoethyl)-7-methoxyindole 11f

A suspension of 7-methoxytryptamine **s5**⁸ (510 mg, 2.68 mmol) in HCO₂Me (2 mL) was stirred at room temperature under Ar atmosphere. After being stirred for 26 h, the mixture was filtrate through a pad of silica gel and wash with a 10% MeOH in CH₂Cl₂. Resulting solution was concentrated *in vacuo* to provide a crude **s6** as a pale brown solid. To a solution of crude product **s6** and NEt₃ (3.0 mL, 22 mmol) in CH₂Cl₂ (24 mL) was added POCl₃ (320 μ L, 3.5 mmol) dropwise at -78 °C under Ar atmosphere. After being stirred at -78 °C for 6 h, the mixture was quenched by icy water (50 mL) and extracted with CH₂Cl₂ (30 mL x 3). The combined organic extracts were washed with H₂O (100 mL) and brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (hexane/AcOEt = 4/1) to provide 3-(2-isocyanoethyl)-7-methoxyindole **11f** as a colorless powder (303 mg, 57% yield (2 steps)).

mp 119-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (brs, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.11 (d, *J* = 2.4 Hz, 1H), 7.07 (dd, *J* = 8.0, 7.2 Hz, 1H), 6.68 (d, *J* = 7.2 Hz, 1H), 3.97 (s, 3H), 3.66 (m, 2H), 3.16 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 128.0, 126.8, 122.1, 120.2, 111.4, 110.8, 102.1, 55.3, 42.3 (t, *J* = 6.2 Hz, 1H), 26.0. IR (neat, ATR) 3295, 2935, 2360, 2159, 1626, 1577, 1499, 1448, 1374, 1348, 1260, 1097, 1056, 935, 783, 732, 685, 614, 554 cm⁻¹. HRMS (ESI-TOF) *m/z* [M–H]⁻ calcd for [C₁₂H₁₁N₂O]⁻ 199.0871, found 199.0872.

3. General Procedure for Interrupted Passerini Reaction of 3-(2-isocyanoethyl)indole

To a solution of isocyanide (0.2 mmol) and aldehyde (0.3 mmol) in toluene (300 μ L) was added 3,5,6-trifluoro-2-pyridone (**8**, 3.0 mg, 0.04 mmol) at room temperature under Ar atmosphere. After complete consumption of isocyanide, 300 μ L of eluent (0.5% NEt₃ in Hexane/AcOEt = 3/1) was added to the reaction mixture. The mixture was put on a silica gel and purified by column chromatography (0.5% NEt₃ in Hexane/AcOEt = 3/1) to provide corresponding tetracyclic furoindoline **21-23**.

4-(tert-butyl)-2,4,5a,6-tetrahydro-1H-pyrrolo[3',2':3,4]furo[2,3-b]indole (21a)

Colorless powder (43.5 mg, 85% yield). mp 112-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.14 (m, 1H), 7.08 (m, 1H), 6.78 (m, 1H), 6.71 (m, 1H), 5.24 (m, 1H), 4.90 (brs, 1H), 4.58-4.42 (2H), 3.87 (m, 1H), 2.33-2.16 (2H), 1.03 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 148.2, 130.1, 128.9, 123.0, 119.7, 109.7, 93.2, 80.9, 70.5, 67.6, 36.5, 34.0, 25.5 (3C). IR (neat, ATR) 3334, 2952, 2869, 1672, 1605, 1472, 1358, 1259, 1213, 1174, 1063, 1023, 975, 941, 882, 741 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₁₆H₂₀N₂ONa]⁺ 279.1475, found 279.1474.

Large Scale synthesis of 21a

The reaction of isocyanide **19** (513 mg, 3.0 mmol), pivalaldehyde (510 μ L, 4.5 mmol) in the presence of catalyst **8** (90 mg, 0.6 mmol) in toluene (4.5 mL) provided corresponding tetracyclic furoindoline **21a** (642 mg, 83% yield).

4-(tert-butyl)-6-methyl-2,4,5a,6-tetrahydro-1H-pyrrolo[3',2':3,4]furo[2,3-b]indole (21b)

After reaction for 6 h, the reaction mixture was purified by silica gel column chromatography (0.5% NEt₃ in Hexane/AcOEt = 4/1).

Colorless solid (16.0 mg, 30% yield). mp 108-110 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (m, 1H), 7.04 (m, 1H), 6.70 (m, 1H), 6.49 (d, *J* = 7.6 Hz, 1H), 5.12 (s, 1H), 4.57-4.39 (2H), 3.75 (m, 1H), 3.01 (s, 3H), 2.32-2.17 (2H), 1.02 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 185.1, 150.0, 130.7, 128.9, 122.6, 118.0, 106.3, 97.6, 80.1, 69.1, 67.4, 36.7, 33.8, 30.6, 25.4 (3C). IR (neat, ATR) 2951, 2870, 1674, 1603, 1488, 1388, 1361, 1305, 1273, 1238, 1174, 1120, 1003, 973, 938, 881, 743 cm⁻¹. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for [C₁₇H₂₃N₂O]⁺ 271.1810, found 271.1814.

4-(tert-butyl)-10-methoxy-2,4,5a,6-tetrahydro-1H-pyrrolo[3',2':3,4]furo[2,3-b]indole (21d)

Pale yellow solid (42.9 mg, 75%). mp 139-140 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.10 (dd, *J* = 8.4, 7.8 Hz, 1H), 6.39-6.34 (2H), 5.13 (s, 1H), 4.88 (brs, 1H), 4.70 (m, 1H), 4.39 (m, 1H), 3.89 (m, 1H), 3.78 (s, 3H), 2.18-2.09 (2H), 1.03 (s, 9H).¹³C NMR (150 MHz, CDCl₃) δ 180.9, 156.5, 150.5, 130.1, 116.3, 103.3, 102.2, 94.3, 80.7, 69.3, 67.9, 55.2, 34.4, 34.0, 25.5 (3C). IR (neat, ATR) 3331, 2950, 1674, 1602, 1464, 1278, 1251, 1099, 975, 941, 885, 773, 728 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₁₇H₂₂N₂O₂Na]⁺ 309.1579, found 309.1573.

4-(*tert*-butyl)-9-chloro-2,4,5a,6-tetrahydro-1*H*-pyrrolo[3',2':3,4]furo[2,3-*b*]indole (21e)

Pale yellow solid (47.6 mg, 82% yield). mp 125-126 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.09 (dd, *J* = 8.4, 2.0 Hz 1H), 7.02 (d, *J* = 2.0 Hz, 1H), 6.62 (d, *J* = 8.4 Hz, 1H), 5.24 (s, 1H), 4.90 (brs, 1H), 4.57-4.42 (2H), 3.87 (m, 1H), 2.33-2.16 (2H), 1.02 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 184.3, 146.9, 131.7, 128.8, 124.1, 123.2, 110.4, 93.4, 80.9, 70.4, 67.6, 36.3, 34.0, 25.4 (3C). IR (neat, ATR) 3330, 2955, 2870, 1675, 1606, 1479, 1257, 1173, 1073, 978, 945, 886, 813, 733 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for [C₁₆H₂₀ClN₂O]⁺ 291.1264, found 291.1268.

4-(tert-butyl)-7-methoxy-2,4,5a,6-tetrahydro-1H-pyrrolo[3',2':3,4]furo[2,3-b]indole (21f)

MeC

The reaction was performed in 400 μ L of toluene.

Colorless oil (48.7 mg, 85% yield). ¹H NMR (600 MHz, CDCl₃) δ 6.81-6.68 (3H), 5.26 (s, 1H), 4.95 (brs, 1H), 4.51 (m, 1H), 4.45 (dd, *J* = 15.3, 8.4 Hz, 1H), 3.87 (m, 1H), 3.83 (s, 3H), 2.26 (ddd, *J* = 12.6, 10.1, 8.4 Hz, 1H), 2.19 (dd, *J* = 12.6, 5.4 Hz, 1H), 1.02 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 185.3, 145.0, 137.6, 130.8, 120.3, 115.2, 110.4, 93.5, 80.9, 71.4, 67.6, 55.3, 36.2, 34.1, 25.4 (3C). IR (neat, ATR) 3321, 2952, 1672, 1616, 1592, 1490, 1463, 1283, 1255,

1217, 1181, 1051, 977, 947, 907, 732 cm⁻¹. HRMS (ESI-TOF) *m*/*z* [M+Na]⁺ calcd for [C₁₇H₂₂N₂O₂Na]⁺ 309.1579, found 309.1577.

Methyl 4-(tert-butyl)-2,4,5a,6-tetrahydro-1H-pyrrolo[3',2':3,4]furo[2,3-b]indole-2-carboxylate (22)

The reaction was performed in 500 μ L of toluene. After reaction for 48 h, the reaction mixture was purified by silica gel column chromatography (0.5% NEt₃ in Hexane/AcOEt = 2.5/1 to 1/1).

Characteristic data of major diastereomer 22a

Major diastereomer **22a** could not isolated due to the instability. Therefore, the yield was calculated by ¹H NMR spectroscopy using nitrobenzene as the internal standard (41% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.19-7.11 (2H), 6.81 (m, 1H), 6.72 (m, 1H), 5.39 (ddd, *J* = 10.4, 1.8, 1.8 Hz, 1H), 5.17 (s, 1H), 4.89 (brs, 1H), 3.91 (m, 1H), 3.86 (s, 3H), 2.64 (dd, *J* = 14.0, 10.4 Hz, 1H), 2.37 (dd, *J* = 14.0, 1.8 Hz, 1H), 1.03 (s, 9H). HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₁₈H₂₂N₂NaO₃]⁺ 337.1528, found 337.1530.

Characteristic data of minor diastereomer 22b

Pale yellow amorphous solid (16.3 mg, 26% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.16 (ddd, *J* = 7.8, 7.3, 1.1 Hz, 1H), 7.04 (d, *J* = 7.8 Hz, 1H), 6.80 (ddd, *J* = 7.8, 7.8, 1.1 Hz, 1H), 6.72 (d, *J* = 7.3 Hz, 1H), 5.42 (ddd, *J* = 8.7, 6.9, 3.3 Hz, 1H), 5.30 (s, 1H), 4.92 (brs, 1H), 3.91 (d, *J* = 3.3 Hz, 1H), 3.83 (s, 3H), 2.50-2.41 (2H), 1.04 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 187.8, 172.3, 148.3, 129.4, 129.0, 122.9, 119.9, 110.0, 92.8, 81.0, 80.4, 71.3, 52.4, 39.7, 34.3, 25.4 (3C). IR (neat, ATR) 3385, 2954, 2361, 2335, 1740, 1675, 1607, 1475, 1363, 1270, 1210, 1177, 1070, 1029, 973, 910, 744 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₁₈H₂₂N₂NaO₃]⁺ 337.1528, found 337.1541.

4-((*tert*-butyldimethylsilyl)oxy)-2-methylpropan-2-yl)-2,4,5a,6-tetrahydro-1*H*-pyrrolo[3',2':3,4]furo[2,3*b*]indole (23a)

Product **23a** could not be isolated due to the instability. Therefore, the yield was calculated by ¹H NMR spectroscopy using nitrobenzene as the internal standard (69% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.11 (ddd, *J* =7.6, 7.2, 1.1 Hz, 1H), 7.06 (d, *J* =7.2 Hz, 1H), 6.76 (m, 1H), 6.68 (d, *J* =7.6

Hz, 1H), 5.23 (s, 1H), 4.83 (brs, 1H), 4.57-4.40 (2H), 4.08 (m, 1H), 3.52 (d, J = 9.4 Hz, 1H), 3.45 (d, J = 9.4 Hz, 1H), 2.33-2.18 (2H), 1.03 (s, 3H), 0.93 (s, 3H), 0.80 (s, 9H), -0.02 (s, 3H), -0.03 (s, 3H). HRMS (ESI-TOF) m/z [M+H]⁺ calcd for [C₂₂H₃₅N₂O₂Si]⁺ 387.2468, found 387.2461.

tert-butyl (2-(2,4,5a,6-tetrahydro-1H-pyrrolo[3',2':3,4]furo[2,3-b]indol-4-yl)propan-2-yl)carbamate (23b)

After reaction for 3.5 h, the reaction mixture was purified by silica gel column chromatography (0.5% NEt₃ in Hexane/AcOEt = 2/1). Product **23b** could not be isolated due to the instability. Therefore, the yield was calculated by ¹H NMR spectroscopy using nitrobenzene as the internal standard (36% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.14 (ddd, *J* = 7.9, 7.8, 1.5 Hz, 1H), 7.07 (d, *J* = 7.2 Hz, 1H), 6.79 (ddd, *J* = 7.8, 7.2, 1.0 Hz, 1H), 6.71 (d, *J* = 7.9 Hz, 1H), 5.27 (s, 1H), 5.17 (brs, 1H), 4.90 (brs, 1H), 4.61-4.41 (2H), 4.30 (m, 1H), 2.36-2.18 (2H), 1.42 (s, 3H), 1.40 (s, 9H), 1.38 (s, 3H). HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₂₀H₂₇N₃NaO₃]⁺ 380.1950, found 380.1945.

4. Study of Stability of Tetracyclic Furoindoline 21a

To a solution of tetracyclic furoindoline **21a** (13.8 mg, 0.054 mmol) in toluene (500 μ L) was added 3,5,6trifluoro-2-pyridone (5.0 mg, 0.03 mmol) at room temperature under Ar atmosphere. After stirred for 40 h, the mixture was put on a silica gel and purified by column chromatography (Hexane/AcOEt = 2/1) to provide the α hydroxyamide **s7** as a pale brown oil (1.5 mg, 10% yield).

Characteristic data of *N*-(2-hydroxy-3,3-dimethylbutanoyl)tryptamine (s7)

¹H NMR (400 MHz, CDCl₃) δ 8.07 (brs, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.21 (m, 1H), 7.13 (m, 1H), 7.05 (brs, 1H), 6.18 (m, 1H), 3.70-3.61 (2H), 3.63 (s, 1H), 3.07-2.93 (2H), 0.93 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 136.4, 127.3, 122.3, 122.0, 119.5, 118.7, 112.9, 111.3, 79.6, 39.4, 34.9, 25.9 (3C), 25.4. IR (neat, ATR) 3401, 3323, 2957, 1650, 1529, 1458, 1363, 1231, 1079, 1017, 743 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₁₆H₂₂N₂NaO₂]⁺ 297.1579, found 297.1582.

5. General Procedure for One-pot Interrupted Passerini/Joullié-Ugi Reaction of 3-(2-isocyanoethyl)indole

To a solution of isocyanide **11** (0.1 mmol) and aldehyde (0.15 mmol) in toluene (150 μ L) was added 3,5,6-trifluoro-2-pyridone (**8**, 1.5 mg, 0.02 mmol) at room temperature under Ar atmosphere. After isocyanide **11** was completely consumed, isocyanide **24** (0.15 mmol) (or a solution of **11a** (0.15 mmol) in toluene (150 μ L)) and carboxylic acid (0.15 mmol) were added. The reaction mixture was stirred at same temperature for 12 h. The mixture was then put on a silica gel and purified by column chromatography to provide corresponding highly functionalised tetracyclic furoindoline **18**.

Purified by silica gel column chromatography (Hexane/AcOEt = 1.5/1 to 1/2).

Colorless amorphous solid (28.0 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (brd, *J* = 7.6 Hz, 1H), 7.07 (ddd, *J* = 8.0, 7.4, 1.3 Hz, 1H), 6.69 (dd, *J* = 7.4, 7.4 Hz, 1H), 6.53 (d, *J* = 8.0 Hz, 1H), 5.58 (s, 1H), 5.24 (brs, 1H), 4.55 (brs, 1H), 3.88 (dd, *J* = 10.0, 8.4 Hz, 1H), 3.80 (brs, 1H), 3.61 (m, 1H), 2.67 (brm, 1H), 2.11 (s, 3H), 1.97 (m, 1H), 1.55-1.20 (8H), 1.12 (s, 9H), 0.72 (brs, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 166.1, 150.3, 129.4, 127.3, 125.3, 118.8, 107.9, 97.6, 86.0, 80.7, 70.3, 56.1, 55.8, 48.4, 35.6, 34.6, 31.5 (4C), 29.4, 27.8 (3C), 25.5, 24.3. IR (neat, ATR) 3315, 2952, 1650, 1519, 1478, 1408, 1358, 1269, 1224, 1072, 996, 913, 734 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₂₇H₄₁N₃O₃Na]⁺ 478.3046, found 478.3034.

Tetracyclic furoindoline (18b)

Purified by silica gel column chromatography (Hexane/AcOEt = 3/1).

Pale brown amorphous solid (17.6 mg, 34% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (m, 2H), 7.47-7.32 (5H), 7.27 (m, 1H), 7.09 (ddd, *J* = 7.6, 7.6, 1.2 Hz, 1H), 6.71 (dd, *J* = 7.6, 7.6 Hz, 1H), 6.55 (d, *J* = 7.6 Hz, 1H), 5.63 (s, 1H), 5.30 (brs, 1H), 4.59 (s, 1H), 3.87 (brm, 1H), 3.83-3.60 (2H), 2.67 (brm, 1H), 1.89 (brd, *J* = 8.8 Hz, 1H), 1.55-1.29 (8H), 1.21

(s, 9H), 0.73 (brs, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 165.9, 150.4,137.5, 129.9, 129.5, 128.2 (2C), 127.5, 127.1 (2C), 125.1, 118.9, 108.9, 97.3, 85.9, 81.2, 70.5, 56.3, 55.8, 50.8, 35.4, 34.8, 31.6 (4C), 29.5, 28.1 (3C), 25.5. IR (neat, ATR) 3336, 2953, 2361, 1643, 1516, 1479, 1393, 1270, 1226, 1069, 744 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₃₂H₄₃N₃O₃Na]⁺ 540.3202, found 540.3205.

Tetracyclic furoindoline (18d)

Purified by silica gel column chromatography (Hexane/AcOEt = 2/1).

Pale yellow oil (27.9 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.28 (brs, 1H), 7.08 (m, 1H), 6.99 (brs, 1H), 6.70 (brdd, *J* = 7.4, 7.4, Hz, 1H), 6.55 (d, *J* = 8.0 Hz, 1H), 6.47 (brs, 1H), 5.64 (m, 1H), 5.25 (brs, 1H), 4.61 (brs, 1H), 4.23 (brm, 1H), 4.09-3.69 (2H), 2.74 (m, 1H), 2.01 (m, 1H), 1.60-1.23 (2H), 1.42 (s, 3H), 1.36 (brs, 3H), 1.12 (s, 9H), 0.72 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 159.3, 150.4, 148.6, 144.1, 129.5, 127.5, 125.0, 118.8, 115.7, 111.1, 107.8, 97.2, 86.1, 81.3, 69.7, 56.2, 55.9, 49.3, 35.6, 34.6, 31.6 (4C), 29.6, 28.0 (3C), 25.5. IR (neat, ATR) 3329, 2952, 1670, 1631, 1518, 1477, 1401, 1366, 1271, 1226, 1069, 914, 733 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₃₀H₄₁N₃O₄Na]⁺ 530.2995, found 530.3001.

Tetracyclic furoindoline (18e)

Purified by silica gel column chromatography (Hexane/AcOEt = 2/1).

Colorless solid (39.0 mg, 73%). mp 228-229 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 7.29 (m, 1H), 7.24 (d, *J* = 7.5, 1H), 7.20 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.10 (ddd, *J* = 8.0, 7.6, 1.3 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 1H), 6.85 (dd, *J* = 7.5, 7.4 Hz, 1H), 6.72 (dd, *J* = 7.7, 7.6, Hz, 1H), 6.55 (d, *J* = 8.0 Hz, 1H), 5.64 (m, 1H), 5.43 (s, 1H), 4.61 (s, 1H), 3.95 (dd, *J* = 11.2, 8.2 Hz, 1H), 3.87 (s, 1H), 3.67 (ddd, *J* = 12.6, 11.2, 4.9 Hz, 1H), 2.68 (ddd, *J* = 12.8, 12.6, 8.2 Hz, 1H), 1.95 (dd, *J* = 12.8, 4.9 Hz, 1H), 1.42 (d, *J* = 15.2 Hz, 1H), 1.39 (s, 3H), 1.32 (s, 3H), 1.32 (d, *J* = 15.2 Hz, 1H), 1.21 (s, 9H),

0.73 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 167.0, 156.2, 150.4, 131.6, 129.6, 127.2, 126.6, 124.8, 121.5, 119.0, 118.8, 117.3, 108.0, 97.4, 85.7, 81.8, 70.6, 56.7, 55.6, 50.5, 35.8, 34.9, 31.5 (4C), 29.2, 27.8 (3C), 25.3. IR (neat, ATR) 3331, 2952, 1632, 1521, 1480, 1419, 1361, 1265, 1215, 1069, 910, 735 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₃₂H₄₃N₃O₄Na]⁺ 556.3152, found 556.3163.

Tetracyclic furoindoline (18f)

Purified by silica gel column chromatography (Hexane/AcOEt = 1/2 to 0/1).

Pale yellow amorphous solid (29.3 mg, 68% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.05 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.03 (m, 1H), 6.62 (dd, *J* = 7.5 Hz, 1H), 6.57 (d, *J* = 8.4 Hz, 1H), 5.91 (brs, 1H), 5.62 (d, *J* = 3.6 Hz, 1H), 4.59 (s, 1H), 4.27-4.00 (2H), 4.08 (dd, *J* = 18.6, 4.8 Hz, 1H), 3.94 (dd, *J* = 10.5, 8.1, 1H), 3.8-3.50 (2H), 2.59 (m, 1H), 2.14 (s, 3H), 2.04 (m, 1H), 1.72 (brs, 1H), 1.25 (m, 3H), 1.10 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 169.2, 167.2, 150.1, 129.5, 125.0 (2C), 118.4, 108.3, 97.5, 86.4, 80.4, 70.7, 61.5, 48.5, 41.6, 35.2, 34.2, 27.3 (3C), 24.4, 14.1. IR (neat, ATR) 3352, 2959, 1739, 1656, 1517, 1482, 1403, 1354, 1270, 1204, 1071, 915, 735 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₂₃H₃₁N₃O₅Na]⁺ 452.2162, found 452.2170.

Tetracyclic furoindoline (18g)

Purified by silica gel column chromatography (Hexane/AcOEt = 1.5/1 to 0/1).

Colorless solid (27.5 mg, 56% yield). mp 184-186 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (m, 2H), 7.49-7.35 (3H), 7.16-6.95 (2H), 6.64 (ddd, *J* = 7.6, 7.6, 0.9 Hz, 1H), 6.59 (d, *J* = 7.2 Hz, 1H), 5.89 (brm, 1H), 5.67 (s, 1H), 4.65 (brs, 1H), 4.44-3.87 (4H), 3.90-3.42 (3H), 2.58 (brm, 1H), 1.95 (brm, 1H), 1.27 (brm, 3H), 1.19 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.8 (2C), 167.1, 150.2, 137.2, 130.2, 129.6, 128.3 (2C), 127.2 (2C), 125.2, 124.8, 118.5, 108.3, 97.1, 86.3, 80.7, 70.9, 61.5, 51.0, 41.7, 35.0, 34.4, 27.6 (3C), 14.1. IR (neat, ATR) 3345, 2958, 1739, 1641, 1483, 1396, 1270, 1206, 1067, 743 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₂₈H₃₃N₃O₅Na]⁺ 514.2318, found 514.2327.

Tetracyclic furoindoline (18h)

Purified by silica gel column chromatography (Hexane/AcOEt = 1/1.5 to 1/3).

Pale yellow amorphous solid (20.2 mg, 44% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.18-7.00 (4H), 6.95 (brs, 1H), 6.78 (d, *J* = 9.0 Hz, 2H), 6.63 (dd, *J* = 7.2, 7.8, 1H), 6.59 (d, *J* = 7.2Hz, 1H), 5.65 (d, *J* = 3.6 Hz, 1H), 4.61 (d, *J* = 3.0 Hz, 1H), 4.25 (brs, 1H), 3.96 (dd, *J* = 10.2, 8.4 Hz, 1H), 3.76 (s, 3H), 3.72 (m, 1H), 2.62 (m, 1H), 2.18 (s, 3H), 2.08 (dd, *J* = 12.0, 4.8 Hz, 1H), 1.13 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 169.6, 166.2, 157.0, 150.3, 130.2, 129.8, 125.9, 125.2, 123.7 (2C), 119.0, 114.1 (2C), 108.5, 97.9, 86.8, 80.8, 71.0, 55.6, 48.8, 35.7, 34.5, 27.6 (3C), 24.7. IR (neat, ATR) 3349, 2957, 1644, 1513, 1408, 1354, 1238, 1076, 1034, 912, 827, 736 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₂₆H₃₁N₃O₄Na]⁺ 472.2213, found 472.2220.

Tetracyclic furoindoline (18i)

Purified by silica gel column chromatography (Hexane/AcOEt = 2/1 to 1.5/1).

Pale brown amorphous solid (24.4 mg, 48% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, *J* = 7.2 Hz, 2H), 7.59-7.38 (3H), 7.23-7.11 (3H), 7.09 (dd, *J* = 8.1, 7.4 Hz, 1H), 6.82 (d, *J* = 8.4 Hz, 2H), 6.64 (dd, *J* = 7.4, 7.4 Hz, 1H), 6.61 (d, *J* = 8.1 Hz, 1H), 5.70 (brd, *J* = 3.0 Hz, 1H), 4.69 (brd, *J* = 2.4 Hz, 1H), 4.28 (brm, 1H), 3.86 (brm, 1H), 3.84 (brm, 1H), 3.78 (s, 3H), 2.61 (brm, 1H), 2.01 (brd, *J* = 9.0 Hz, 1H), 1.22 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 165.7, 156.8, 150.2, 137.1, 130.4, 130.0 (2C), 128.4 (2C), 127.3 (2C), 125.9, 124.7, 123.5 (2C), 118.8, 114.0 (2C), 108.2, 97.2, 86.4, 81.0, 70.9, 55.4, 51.1, 35.3, 34.5, 27.7 (3C). IR (neat, ATR) 3348, 2956, 1682, 1635, 1512, 1399, 1239, 1069, 1035, 914, 731 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₃₁H₃₃N₃O₄Na]⁺ 534.2369, found 534.2362.

Tetracyclic furoindoline (18j)

Purified by silica gel column chromatography (Hexane/AcOEt = 2.5/1).

Colorless amorphous solid (23.7 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 2.0 Hz, 1H), 7.83-7.70 (3H), 7.70-7.58 (2H), 7.54-7.36 (5H), 7.31 (dd, *J* = 8.6, 1.4 Hz, 1H), 7.17 (brd, *J* = 7.2 Hz, 1H), 7.07 (dd, *J* = 7.6, 7.6 Hz, 1H), 6.62 (d, *J* = 8.4 Hz, 1H), 6.57 (dd, *J* = 7.6, 7.6 Hz, 1H), 5.73 (d, *J* = 3.0 Hz, 1H), 4.69 (d, *J* = 3.0 Hz, 1H), 4.36 (brs, 1H), 3.90 (d, *J* = 8.4 Hz, 2H), 2.65 (m, 1H), 2.05 (d, *J* = 12.4 Hz, 1H), 1.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 165.9, 150.2, 137.0, 134.5, 133.7, 130.9, 130.6, 129.7, 128.5, 128.4 (2C), 127.7, 127.5, 127.4 (2C), 126.3, 125.7, 125.0, 124.6, 121.0, 119.0, 118.2, 108.3, 97.3, 86.5, 81.2, 71.1, 51.1, 35.3, 34.5, 27.7 (3C). IR (neat, ATR) 3360, 2958, 2360, 1690, 1633, 1529, 1493, 1396, 1271, 1070, 737 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₃₄H₃₃N₃O₃Na]⁺ 554.2420, found 554.2427.

Tetracyclic furoindoline (18k)

Purified by silica gel column chromatography (Hexane/AcOEt = 1/1 to 1/2).

Pale brown amrophous solid (43.5 mg, 75% yield). ¹H NMR (600 MHz, DMSO-d₆, 100 °C) δ 10.5 (brs, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.51-7.39 (5H), 7.36 (d, *J* = 7.2 Hz, 1H), 7.16 (brs, 1H), 7.07 (m, 1H), 6.98 (m, 1H), 6.93 (m, 1H), 6.26 (brs, 1H), 6.15 (brs, 1H), 6.14 (m, 1H), 5.57 (d, *J* = 3.6 Hz, 1H), 4.49 (m, 1H), 3.67 (m, 1H), 3.61 (s, 3H), 3.57 (m, 2H), 3.12 (m, 2H), 2.93 (m, 1H), 2.86 (m, 1H), 1.74 (dd, *J* = 12.0, 4.8 Hz, 1H), 1.08 (s, 9H). ¹³C NMR (100 MHz, DMSO-d₆) δ 167.6, 165.8, 158.1, 153.0, 138.5, 136.3, 130.0, 129.5, 127.8 (2C), 127.3, 127.2 (2C), 122.7, 120.8, 118.2, 118.1, 112.5, 111.4, 111.2, 101.2, 100.5, 97.4, 86.4, 80.0, 71.7, 54.9, 50.8, 40.4, 33.9, 30.4, 27.8 (3C), 24.9. IR (neat, ATR) 3312, 2954, 1730, 1640, 1604, 1519, 1465, 1396, 1250, 1082, 741 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₃₅H₃₈N₄O₄Na]⁺ 601.2791, found 601.2781.

Tetracyclic furoindoline (18I)

Purified by silica gel column chromatography (Hexane/AcOEt = 1/1 to 1/2, AcOEt/MeOH = 9/1). Pale brown amorphous solid (40.2 mg, 69% yield). ¹H NMR (400 MHz, DMSO-d₆, 100 °C) δ 10.6, (brs, 1H), 7.55 (brs, J = 8.0 Hz, 1H), 7.52-7.42 (5H), 7.36 (m, 1H) 7.15 (m, 1H), 7.70 (m, 1H), 7.00 (m, 1H), 7.00-6.91 (2H), 6.58 (m, 1H), 6.50 (d, J = 8.4 Hz, 1H), 5.66 (d, J = 3.2 Hz, 1H), 4.25 (m, 1H), 3.73 (ddd, J = 12.5, 10.3, 5.3 Hz, 1H), 3.62 (dd, J = 10.3, 8.0 Hz, 1H), 3.43 (m, 1H), 3.30 (m, 1H), 2.96 (m, 1H), 2.88 (m, 1H), 2.37 (ddd, J = 12.5, 12.4, 8.0 Hz, 1H), 1.95 (dd, J = 12.4, 5.3 Hz, 1H), 1.06 (s, 9H). ¹³C NMR (100 MHz, DMSO-d₆) δ 167.9, 166.7, 150.3, 137.5, 136.3, 130.0, 128.4, 128.0 (2C), 127.6 (2C), 127.2, 126.8, 124.5, 122.7, 120.9, 120.0, 118.2 (2C), 112.1, 111.4, 108.2, 97.1, 86.0, 80.1, 69.4, 50.6, 40.3, 34.4, 33.8, 27.6 (3C), 25.0. IR (neat, ATR) 3329, 2954, 1636, 1487, 1401, 1269, 1071, 814, 741 cm⁻¹. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd for [C₃₄H₃₅CIN₄O₃Na]⁺ 605.2296, found 605.2289.

Tetracyclic furoindoline (18m)

Purified by silica gel column chromatography (Hexane/AcOEt = 1/1 to 1/2).

Colorless amporphous solid (45.2 mg, 78% yield). ¹H NMR (400 MHz, DMSO-d₆, 100 °C) δ 10.6, (brs, 1H), 7.63-7.41 (6H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.16 (brs, 1H), 7.07 (m, 1H), 6.98 (m, 1H), 6.72 (d, *J* = 7.6 Hz, 1H), 6.61 (m, 1H), 6.48 (m, 1H), 5.91 (m, 1H), 5.62 (d, *J* = 3.6 Hz, 1H), 4.25 (m, 1H), 3.78 (s, 3H), 3.72 (m, 1H), 3.61 (m, 1H), 3.41 (m, 1H), 3.27 (m, 1H), 2.91 (m, 1H), 2.84 (m, 1H), 2.39 (m, 1H), 1.88 (dd, *J* = 12.4, 4.8 Hz, 1H), 1.06 (s, 9H). ¹³C NMR (100 MHz, DMSO-d₆, 80 °C) δ 167.6, 166.2, 142.8, 140.0, 137.6, 136.1, 129.3, 127.6 (2C), 127.0, 126.7 (2C), 126.3, 122.2, 120.5, 117.8, 117.8 (2C), 117.2, 111.9, 111.0, 110.9, 97.1, 85.4, 80.0, 70.3, 54.9, 50.1, 39.8, 34.4, 33.5, 27.2 (3C), 24.3. IR (neat, ATR) 3324, 2934, 1728, 1637, 1496, 1451, 1400, 1255, 1227, 1066, 1009, 736 cm⁻¹. HRMS (ESI-TOF)

m/z [M+Na]⁺ calcd for [C₃₅H₃₈N₄O₄Na]⁺ 601.2791, found 601.2804.

Tetracyclic furoindoline (18n)

Purified by silica gel column chromatography (Hexane/AcOEt = 1.5/1 to 1:1).

Colorless amorphous solid (36.0 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 1.8 Hz, 1H), 7.02 (dd, *J* = 8.0, 1.8 Hz, 1H), 6.38 (d, *J* = 8.0 Hz, 1H), 5.53 (d, *J* = 3.2 Hz, 1H), 5.21 (brs, 1H), 4.43 (d, *J* = 3.2 Hz, 1H), 4.15 (brs, 1H), 3.89 (dd, *J* = 10.5, 8.2 Hz, 1H), 3.65 (d, *J* = 8.8 Hz, 1H), 3.59 (ddd, *J* = 12.4, 10.5, 5.2 Hz, 1H), 2.98 (d, *J* = 8.4 Hz, 1H), 2.66 (m, 1H), 2.11 (s, 3H), 1.96 (dd, *J* = 12.4, 5.2 Hz, 1H), 1.43 (s, 3H), 1.37 (s, 2H), 1.33 (s, 3H), 1.31 (s, 3H), 0.88 (s, 9H), 0.81 (s, 3H), 0.75 (brs, 9H), 0.03 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 166.2, 148.8, 129.2, 127.2, 126.9, 123.2, 108.3, 97.3, 80.8, 80.3, 72.4, 70.2, 56.5, 55.7, 48.3, 38.9, 35.3, 31.6 (3C), 31.5, 29.1, 26.0 (3C), 25.6, 24.3, 22.4, 18.6, 16.6, -5.3, -5.4. IR (neat, ATR) 3325, 2952, 2864, 1657, 1520, 1481, 1405, 1358, 1254, 1082, 841, 777, 733 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₃₃H₅₄ClN₃O₄SiNa]⁺ 642.3470, found 642.3479.

Tetracyclic furoindoline (18o)

Purified by silica gel column chromatography (Hexane/AcOEt = 1/1).

Colorless powder (34.9 mg, 66%). mp 323 °C (decomp.). ¹H NMR (400 MHz, DMSO-d₆, 100 °C) δ 10.51 (brs, 1H), 7.45 (brd, *J* = 7.2 Hz, 1H), 7.34 (m, 1H), 7.20-7.01 (2H), 7.03-6.81 (3H), 6.49 (d, *J* = 7.6 Hz, 1H), 6.45 (brdd, *J* = 7.2, 7.2 Hz, 1H), 6.29 (brm, 1H), 6.05 (brs, 1H), 5.52 (d, *J* = 3.6 Hz, 1H), 4.13 (dd, *J* = 10.6, 7.9 Hz, 1H), 4.05 (brm, 1H), 3.54 (ddd, *J* = 12.5, 10.6, 5.1 Hz, 1H), 3.32 (m, 1H), 3.21 (m, 1H), 2.81 (m, 1H), 2.67 (brm, 1H), 2.43 (ddd, *J* = 12.5, 12.5, 7.9 Hz, 1H), 1.96 (dd, *J* = 12.5, 5.1 Hz, 1H), 1.21 (s, 9H), 0.94 (s, 9H). ¹³C NMR (100 MHz, DMSO-d₆, 100 °C) δ 173.9, 166.6, 151.0, 136.1, 128.0, 126.9, 125.5, 124.6, 122.1, 120.5, 117.8, 117.7, 116.4, 111.6, 110.9, 106.9, 96.3, 85.2, 81.4, 67.8, 47.3, 39.3, 38.2, 34.8, 33.6, 27.0 (3C), 26.8 (3C), 24.1. IR (neat, ATR) 3310, 2961, 2360, 1731, 1613, 1475, 1410, 1358, 1239, 1067, 743 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₃₂H₄₀N₄O₃Na]⁺ 551.2998, found 551.3011.

Tetracyclic furoindoline (18p)

To a solution of isocyanide **11a** (34.2 mg, 0.2 mmol) and isobutyraldehyde (14.9 μ L, 0.15 mmol) in toluene (300 μ L) was added 3,5,6-trifluoro-2-pyridone (**8**, 14.9 mg, 0.1 mmol) at 0 °C under Ar atmosphere. After being stirred at 0 °C for 5 h, pivalic acid (10.2 mg, 0.10 mmol) was added. The reaction mixture was gently warmed to room temperature and keep stirring for 8 h. The mixture was then put on a silica gel and purified by column chromatography (Hexane/AcOEt = 1/1) to provide corresponding highly functionalised tetracyclic furoindoline **18p** as a pale brown solid (12.9 mg, 25% yield).

mp 257 °C (decomp.). ¹H NMR (400 MHz, DMSO-d₆, 100 °C) δ 10.5 (brs, 1H), 7.50 (d, *J* = 7.6 Hz, 1H), 6.34 (d, *J* = 8.0 Hz, 1H), 7.13-7.03 (2H), 7.03-6.91 (3H), 6.47 (d, *J* = 8.4 Hz, 1H), 6.46 (m, 1H), 6.41-6.29 (2H), 5.54 (d, *J* = 3.6 Hz, 1H), 4.20 (d, *J* = 4.0 Hz, 1H), 4.12 (dd, *J* = 10.2, 8.0 Hz, 1H), 3.59 (ddd, *J* = 12.2, 10.2, 5.3 Hz, 1H), 3.36 (m, 1H), 3.21 (m, 1H), 2.83 (ddd, *J* = 14.5, 8.5, 5.7 Hz, 1H), 2.70 (m, 1H), 2.48 (ddd, *J* = 12.6, 12.2, 8.0 Hz, 1H), 2.18 (m, 1H), 2.00 (dd, *J* = 12.6, 5.3 Hz, 1H), 1.23 (s, 9H), 0.91 (d, *J* = 6.8 Hz, 3H), 0.83 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆, 100 °C) δ 174.2, 167.0, 150.7, 136.1, 127.9, 126.8, 125.3, 124.4, 122.0, 120.4, 117.7, 117.6, 116.3, 111.6, 110.8, 106.8, 97.2, 84.0, 81.6, 66.1, 47.0, 39.3, 38.3, 34.8, 26.9 (3C), 26.5, 24.2, 22.5, 17.6. IR (neat, ATR) 3303, 2962, 2929, 2875, 1620, 1515, 1478, 1406, 1358, 1268, 1053, 1023, 743 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₃₁H₃₈N₄O₃Na]⁺ 537.2842, found 537.2853.

Tetracyclic furoindoline (18q)

To a solution of isocyanide **11a** (34.2 mg, 0.2 mmol) and aldehyde **20b** (28.1 mg, 0.15 mmol) in toluene (300 μ L) was added 3,5,6-trifluoro-2-pyridone (**8**, 3.0 mg, 0.02 mmol) at room temperature under Ar atmosphere. After being stirred at same temperature for 3.5 h, benzoic acid (12.2 mg, 0.1 mmol) was added and stirred for 12 h. The mixture was then put on a silica gel and purified by column chromatography (Hexane/AcOEt = 1/1) to provide corresponding highly functionalised tetracyclic furoindoline **18q** as a pale brown amorphous solid (24.7 mg, 38% yield).

¹H NMR (400 MHz, DMSO-d₆, 100 °C) δ 10.6 (brs, 1H), 7.62-7.51 (3H), 7.52-7.43 (3H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.16 (brs, 1H), 7.08 (brdd, *J* = 8.4, 6.8 Hz, 1H), 6.98 (dd, *J* = 7.6, 7.2 Hz, 2H), 6.94 (d, *J* = 7.6 Hz, 1H), 6.52 (d, *J* = 8.0 Hz, 2H), 6.48 (dd, *J* = 8.0, 7.2 Hz, 1H), 6.14 (brs, 1H), 5.68 (d, *J* = 3.2 Hz, 1H), 4.46, (brs, 1H), 3.80 (ddd, *J* = 11.2, 11.2, 5.2 Hz, 1H), 3.68 (dd, *J* = 10.4, 8.0 Hz, 1H), 3.49 (m, 1H), 3.26 (m, 1H), 3.02 (m, 1H), 2.98 (m, 1H), 2.88 (m, 1H), 2.46 (ddd, *J* = 12.5, 12.5, 8.2 Hz, 1H), 1.96 (dd, *J* = 12.8, 4.8 Hz, 1H), 1.56 (s, 3H), 1.36 (s, 3H), 1.29 (s, 9H). ¹³C NMR (100 MHz, DMSO-d₆, 100 °C) δ 168.0, 166.4, 153.6, 150.7, 136.9, 136.1, 129.3, 128.3, 127.4 (2C), 126.9, 126.7 (2C), 124.8, 124.3, 122.1, 120.4, 117.7 (2C), 116.6, 111.9, 110.9, 107.0, 96.5, 83.2, 79.7, 76.4, 69.3, 53.8, 49.9, 39.9, 33.9, 27.8 (3C), 25.9, 24.2, 22.8. IR (neat, ATR) 3315, 1650, 1524, 1392, 1363, 1272, 1168, 1054, 1026, 745 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd for [C₃₈H₄₃N₅O₅Na]⁺ 672.3162, found 672.3160.

4. Reference

- 1. X. Zhao, X. Liu, H. Mei, J. Guo, L. Lin and X. Feng, Angew. Chem. Int. Ed. 2015, 54, 4032.
- 2. J. M. Saya, B. Oppelaar, R. C. Cioc, G. van der Heijden, C. M. L. Vande Velde, R. V. A. Orru and E. Ruijter, *Chem. Commun.*, 2016, **52**, 12482.
- 3. W.-B. Cao, S. Li, M.-M. Xu, H. Li, X.-P. Xu, Y. Lan and S.-J. Ji, Angew. Chem. Int. Ed., 2020, 59, 21425.
- 4. W.-C. Chang, D. Sanyal, J.-L. Huang, K. Ittiamornkul, Q. Zhu and X. Liu, Org. Lett., 2017, 19, 1208.
- 5. A. B. Smith III, J. A. Jurica and S. P. Walsh, Org. Lett., 2008, 10, 5625.
- 6. P. Kulkarni, D. Datta, R. O. Ramabhadran and K. Ganesh, Org. Biomol. Chem. 2021, 19, 6534.
- 7. A. C. Kruegel, M. M. Gassaway, A. Kapoor, A. Váradi, S. Majumdar, M. Filizola, J. A Javitch and D. Sames, *J. Am. Chem. Soc.* 2016, **138**, 6754.
- 8. H. M. Nelson, S. H. Reisberg, H. P. Shunatona, J. S. Patel and F. D. Toste, Angew. Chem. Int. Ed. 2014, 53, 5600.

0.04

0.03

220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 -10.0 -20.0 80.0 70.0 60.0 40.0 30.0 20.0 10.0 ò 50.0 11 148.770 80.751 80.261 77.317 77.000 76.683 72.424 70.247 56.540 55.686 48.319 38.928 35.254 31.590 31.484 229.067 229.067 225.576 225.576 224.290 18.631 18.631 -5.321 97.288 169.307 166.151 108.329 173 245 861 158 129.123.

X : parts per Million : Carbon13

COSY, HMBC and NOESY correlation of ${\bf 18a}$ in ${\rm CDCl}_{3}$

