Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

A Diversity Oriented Clicking Strategy: The Stereoselective Synthesis of Highly-Functionalised Olefins from 2-Substituted-Alkynyl-1-Sulfonyl Fluorides

Christopher J. Smedley*

* — Dr. Christopher J. Smedley, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia, E-mail: <u>chris.smedley@monash.edu</u>

Contents

General Methods	3
Synthesis and Experimental Data for Compounds 8a-8l	4
Synthesis and Experimental Data for Compounds 9a-9j	9
Synthesis and Experimental Data for Compounds 14a-14f	.13
Plausible Reaction Mechanism for the Reaction of DMSO with SASFs	.17
2D NMR Spectra for Compounds 9a-CF3 and 9a	.17
X-ray Crystallography Data	.21
References	.24
¹ H, ¹³ C and ¹⁹ F NMR spectra	.25

General Methods

The petroleum ether used refers to the fraction with 40-60 °C boiling point. Commercial solvents and reagents were used as supplied. Unless otherwise stated, all reactions were monitored by TLC on Polygram® SIL/G₂₅ plates and visualized using UV light and stained using basic KMnO₄. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on either a Bruker AscendTM 400 (400 MHz) or a UltrashieldTM 500 PLUS (500 MHz) instrument as dilute solutions in the stipulated solvent. All chemical shifts (δ) are reported in parts per million (ppm) with ¹H and ¹³C NMR referenced to solvent signals [¹H NMR: CDCl₃ (7.27), DMSO-d₆ (2.50); ¹³C NMR: CDCl₃ (77.16), DMSO-d₆ (39.52)]. Coupling constants (*J*) are reported in Hertz (Hz) and recorded after averaging. The multiplicity of the ¹H NMR signals are designated by one of the following abbreviations: s=singlet, d=doublet, t=triplet, q=quartet, hept=heptet, m=multiplet, br=broad signal. HRMS were obtained using an Agilent 6530 accurate-mass Q-TOF LC/MS in electrospray ionization (ESI) mode Flash column chromatography was performed using a Biotage[®] IsoleraTM on Biotage[®] KP-Sil SNAP cartridges. Melting points data were collected using a Gallenkamp melting point apparatus.

Synthesis and Experimental Data for Compounds 8a-8l

General Procedure A

A solution of the required SASF **7** was stirred in DMSO (4.00 mL/mmol) at room temperature for 30 min. The reaction mixture was then extracted into EtOAc washed with brine (x2) and H_2O (x2). The organic layer was dried over anhydrous MgSO₄, filtered under vacuum and the solvent was removed under reduced pressure to obtain the analytically pure product.

(Z)-2-(Dimethylsulfonio)-2-(fluorosulfonyl)-1-phenylethen-1-olate (8a)¹

Following general procedure A (0.25 mmol), the title compound was isolated as a colourless solid (63 mg, 95%). **m.p.** 102-103 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.61 – 7.56 (m, 2H), 7.50 – 7.46 (m, 1H), 7.43 – 7.39 (m, 2H), 3.11 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 188.2, 140.1, 131.2, 128.1, 127.6, 73.4 (d, *J* = 29.7 Hz), 28.2; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 78.0; **HRMS** (ESI⁺): calculated for C₁₀H₁₂FO₃S₂ [M+H⁺]: m/z = 263.0206, m/z found 263.0204; **IR** v_{max} (ATR)/cm⁻¹: 3024, 2941, 2853, 1597, 1574, 1368, 1292, 1180, 989, 847.

(Z)-2-(Dimethylsulfonio)-2-(fluorosulfonyl)-1-(4'-propyl-[1,1'-biphenyl]-4-yl)ethen-1-olate (8b)

Following general procedure A (0.25 mmol), the title compound was isolated as a colourless solid (87 mg, 92%). **m.p.** 170-172 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.68 (appt. d, *J* = 8.6 Hz, 2H), 7.63 (appt. d, *J* = 8.6 Hz, 2H), 7.55 (appt. d, *J* = 8.2 Hz, 2H), 7.28 – 4.91 (m, 4H), 3.15 (s, 6H), 2.68 – 2.60 (m, 2H), 1.74 – 1.62 (m, 2H), 0.98 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 187.8, 144.0, 142.6, 138.5, 137.8, 129.1, 128.4, 127.2, 126.6, 73.2 (d, *J* = 30.1 Hz), 37.8, 28.3, 24.6, 14.0; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 78.1; **HRMS** (ESI⁺): calculated for C₁₉H₂₂FO₃S₂ [M+H⁺]: m/z = 381.0989, m/z found 389.0986; **IR** v_{max} (ATR)/cm⁻¹: 3042, 2953, 1926, 2870, 1605, 1422, 1393, 1300, 978.

(Z)-2-(Dimethylsulfonio)-2-(fluorosulfonyl)-1-(4-propylphenyl)ethen-1-olate (8c)

Following general procedure A (0.25 mmol), the title compound was isolated as a yellow solid (76 mg, >99%). **m.p.** 90-92 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (appt. d, *J* = 8.2 Hz, 2H), 7.22 (appt. d, *J* = 8.3 Hz, 2H), 3.12 (s, 6H), 2.68 – 2.57 (m, 2H), 1.72 – 1.60 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 188.1, 146.3, 137.5, 128.2, 127.8, 73.0 (d, *J* = 29.5 Hz), 38.1, 28.3 (d, *J* = 1.3 Hz), 24.3, 13.9; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 78.0; **HRMS** (ESI⁺): calculated for C₁₃H₁₈FO₃S₂ [M+H⁺]: m/z = 305.0676, m/z found 305.0676; **IR** v_{max} (ATR)/cm⁻¹: 3044, 2953, 1928, 2868, 1589, 1560, 1422, 1375, 1292, 1231, 976.

(Z)-2-(Dimethylsulfonio)-2-(fluorosulfonyl)-1-(4-isopropylphenyl)ethen-1-olate (8d)

Following general procedure A (0.10 mmol), the title compound was isolated as a colourless solid (29 mg, 97%). **m.p.** 110-111 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.55 (appt. d, *J* = 8.2 Hz, 1H), 7.26 (appt. d, *J* = 8.2 Hz, 2H), 3.11 (s, 6H), 2.95 (hept., *J* = 13.9 Hz, 1H), 1.27 (d, *J* = 6.9 Hz, 6H); ¹³C **NMR** (101 MHz, CDCl₃) δ 188.0, 152.4, 137.6, 128.0, 126.2, 73.0 (d, *J* = 29.6 Hz), 34.2, 28.3, 23.9; ¹⁹F **NMR** (376 MHz, CDCl₃) δ 77.9; **HRMS** (ESI⁺): calculated for C₁₃H₁₈FO₃S₂ [M+H⁺]: m/z = 305.0676, m/z found 305.0675; **IR** v_{max} (ATR)/cm⁻¹: 3021, 2957, 1587, 1558, 1371, 1179, 1047, 829.

(Z)-2-(Dimethylsulfonio)-2-(fluorosulfonyl)-1-(4-methoxyphenyl)ethen-1-olate (8e)

Following general procedure A (0.25 mmol), the title compound was isolated as a yellow solid (71 mg, 97%). **m.p.** 127-128 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.61 (appt. d, *J* = 8.8 Hz, 2H), 6.91 (appt. d, *J* = 8.8

Hz, 2H), 3.84 (s, 3H), 3.07 (s, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 187.1, 162.2, 132.3, 130.0, 113.4, 72.6 (d, *J* = 30.4 Hz), 55.4, 28.3 (d, *J* = 1.4 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ 78.3; **HRMS** (ESI⁺): calculated for C₁₁H₁₄FO₄S₂ [M+H⁺]: m/z = 293.0312, m/z found 293.0318; **IR** v_{max} (ATR)/cm⁻¹: 2959, 1659, 1599, 1574, 1429, 1292, 1258, 1217, 1040, 810, 791.

(Z)-2-(Dimethylsulfonio)-2-(fluorosulfonyl)-1-(naphthalen-1-yl)ethen-1-olate (8f)

Following general procedure A (0.10 mmol), the title compound was isolated as a yellow solid (23 mg, 74%). **m.p.** 103-105 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.02 – 7.77 (m, 3H), 7.57 – 7.36 (m, 4H), 3.14 (s, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 188.3, 138.2, 133.7, 130.2, 130.0, 128.6, 127.0, 126.4, 124.9, 124.8, 124.4, 75.9(d, *J* = 24.7 Hz), 28.5; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 76.2; **HRMS** (ESI⁺): calculated for C₁₄H₁₄FO₃S₂ [M+H⁺]: m/z = 313.0363, m/z found 313.0363; **IR** v_{max} (ATR)/cm⁻¹: 3053, 2930, 1601, 1574, 1392, 1373, 1296, 1258, 1184, 1055, 1036, 978.

(Z)-1-(4-(Cyclopentyloxy)-3-methoxyphenyl)-2-(dimethylsulfonio)-2-(fluorosulfonyl)ethen-1-olate (8g)

Following general procedure A (0.25 mmol), the title compound was isolated as a yellow solid (88 mg, 94%). **m.p.** 208-209 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.23 (m, 1H), 7.20 (d, *J* = 1.9 Hz, 1H), 6.86 (d, *J* = 8.4 Hz, 1H), 4.88 – 4.75 (m, 1H), 3.87 (s, 3H), 3.09 (s, 6H), 2.02 – 1.75 (m, 6H), 1.68 – 1.54 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 187.1, 151.0, 149.3, 131.8, 121.9, 112.9, 111.9, 80.5, 72.4 (d, *J* = 31.0 Hz), 56.1, 33.0, 28.4, 24.3; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 78.2; **HRMS** (ESI⁺): calculated for C₁₆H₂₂FO₅S₂ [M+H⁺]: m/z = 377.0887, m/z found 377.0884; **IR** v_{max} (ATR)/cm⁻¹: 3019, 2957, 1651, 1591, 1508, 1423, 1202, 1173, 1043, 789.

(Z)-2-(Dimethylsulfonio)-2-(fluorosulfonyl)-1-(4-isopropoxy-3-methoxyphenyl)ethen-1-olate (8h)

Following general procedure A (0.25 mmol), the title compound was isolated as a light brown solid (79 mg, 90%). **m.p.** 148 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.29 – 7.24 (m, 1H), 7.21 (d, *J* = 2.0 Hz, 1H), 6.89 – 6.85 (m, 1H), 4.61 (hept, *J* = 6.1 Hz, 1H), 3.88 (s, 3H), 3.09 (s, 6H), 1.39 (d, *J* = 6.1 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 187.1, 150.5, 149.6, 132.1, 121.9, 113.3, 111.9, 72.5 (d, *J* = 31.0 Hz), 71.3, 56.1, 28.3, 22.1; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 78.2; **HRMS** (ESI⁺): calculated for C₁₄H₁₉FO₅S₂ [M+H⁺]: m/z = 351.0731, m/z found 351.0731; **IR** v_{max} (ATR)/cm⁻¹: 2976 1603, 1416, 1366, 1273, 1184, 928, 868.

Following general procedure A (0.25 mmol), the title compound was isolated as a colourless solid (80 mg, 82%). **m.p.** 160-161 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 1H), 7.21 (d, *J* = 2.0 Hz, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 4.33 – 4.23 (m, 1H), 3.88 (s, 3H), 3.09 (s, 6H), 2.10 – 2.01 (m, 2H), 1.87 – 1.78 (m, 2H), 1.64 – 1.52 (m, 3H), 1.41 – 1.24 (m, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 187.1, 150.5, 149.7, 132.1, 121.8, 113.6, 112.1, 77.1, 72.4 (d, *J* = 31.0 Hz), 56.1, 32.0, 28.4, 25.7, 24.2; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 78.2; **HRMS** (ESI⁺): calculated for C₁₇H₂₄FO₅S₂ [M+H⁺]: m/z = 391.1044, m/z found 391.1046; **IR** v_{max} (ATR)/cm⁻¹: 3022, 2941, 1566, 1510, 1371, 1227 1184, 874.

(Z)-1-(Benzo[d][1,3]dioxol-5-yl)-2-(dimethylsulfonio)-2-(fluorosulfonyl)ethen-1-olate (8j)

Following general procedure A (0.25 mmol), the title compound was isolated as a yellow solid (70 mg, 97%). **m.p.** 176-177 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.10 (d, *J* = 1.7 Hz, 1H), 6.82 (d, *J* = 8.1 Hz, 1H), 6.02 (s, 2H), 3.10 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 186.9, 150.4, 147.6, 134.0, 123.3, 108.5, 107.8, 101.7, 72.7 (d, *J* = 31.3 Hz), 28.3 (d, *J* = 1.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ 78.2; **HRMS** (ESI⁺): calculated for C₁₁H₁₂FO₅S₂ [M+H⁺]: m/z = 307.0105, m/z found 307.0108; **IR** v_{max} (ATR)/cm⁻¹: 3036, 2947, 2839, 1607, 1568, 1508, 1369, 1304, 1180, 1024, 991, 841.

(Z)-1-(3,4-Diethoxyphenyl)-2-(dimethylsulfonio)-2-(fluorosulfonyl)ethen-1-olate (8k)

Following general procedure A (0.10 mmol), the title compound was isolated as a colourless solid (33 mg, 94%). **m.p.** 98-99 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.27 – 7.24 (m, 1H), 7.21 (d, *J* = 2.0 Hz, 1H), 6.86 (d, *J* = 8.3 Hz, 1H), 4.13 (appt. qd, *J* = 7.0, 2.5 Hz, 4H), 3.08 (s, 6H), 1.46 (appt. td, *J* = 7.0, 5.5 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 187.2, 151.8, 148.0, 132.1, 121.9, 113.3 (d, *J* = 6.0 Hz), 111.7, 72.4 (d, *J* = 31.0 Hz), 64.6, 64.5, 28.4, 28.3, 14.9; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 78.2; **HRMS** (ESI⁺): calculated for C₁₄H₂₀FO₅S₂ [M+H⁺]: m/z = 351.0731, m/z found 351.0732; **IR** v_{max} (ATR)/cm⁻¹: 2984, 1593, 1570, 1510, 1397, 1369, 1327, 1173, 1042, 964.

(Z)-2-(Dimethylsulfonio)-2-(fluorosulfonyl)-1-(2-methoxyphenyl)ethen-1-olate (8l)

Following general procedure A (0.25 mmol, heated at 80 °C), the title compound was isolated as a colourless solid (58 mg, 79%). **m.p.** 158-159 °C;¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.33 (m, 1H), 7.29 –

7.25 (m, 1H), 6.99 (appt. t, J = 7.3 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 3.83 (s, 3H), 3.09 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 131.1, 130.2, 128.3, 120.8, 111.1, 74.9 (d, J = 23.0 Hz), 55.8, 28.6; ¹⁹F NMR (376 MHz, CDCl₃) δ 74.0; HRMS (ESI⁺): calculated for C₁₁H₁₄FO₄S₂ [M+H⁺]: m/z = 293.0312, m/z found 293.0312; **IR** v_{max} (ATR)/cm⁻¹: 2924, 1599, 1487, 1462, 1377, 1310, 1244, 1180.

Synthesis and Experimental Data for Compounds 9a-9j

General Procedure B

A solution of the required SASF **7** was stirred in anhydrous DMF (2.00 mL/mmol) at 80 °C for 2.5 h. The reaction mixture was then cooled to room temperature and extracted into EtOAc washed with brine (x2) and H_2O (x2). The organic layer was dried over anhydrous MgSO₄, filtered under vacuum and the solvent was removed under reduced pressure to obtain the analytically pure product.

(E)-1-(Dimethylamino)-3-oxo-3-phenylprop-1-ene-2-sulfonyl fluoride (9a)

Following general procedure B (0.10 mmol), the title compound was isolated as a low melting orange solid (24 mg, 92%). ¹H NMR (500 MHz, CDCl₃) δ 7.91 (s, 1H), 7.85 (appt. d, *J* = 7.2 Hz, 2H), 7.60 – 7.55 (m, 1H), 7.47 (appt. t, *J* = 7.6 Hz, 2H), 3.32 (s, 3H), 2.71 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 188.1, 157.3, 139.5, 133.3, 129.2, 128.7, 100.1 (d, *J* = 22.3 Hz), 48.1, 42.5; ¹⁹F NMR (376 MHz, CDCl₃) δ 73.4; HRMS (ESI⁺): calculated for C₁₁H₁₂FNO₃SNa [M+Na⁺]: m/z = 280.0414, m/z found 280.0417; **IR** v_{max} (ATR)/cm⁻¹: 1647, 1641, 1618, 1379, 1184.

(E)-1-(Dimethylamino)-3-(4-isopropylphenyl)-3-oxoprop-1-ene-2-sulfonyl fluoride (9b)

Following general procedure B (0.25 mmol), the title compound was isolated as a yellow oil (71 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.80 (appt. d, *J* = 8.3 Hz, 2H), 7.32 (appt. d, *J* = 8.2 Hz, 2H), 3.28 (s, 3H), 3.02 – 2.91 (m, 1H), 2.66 (s, 3H), 1.27 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ

187.8, 156.7, 155.0, 137.1, 129.6, 126.9, 99.7 (d, *J* = 21.6 Hz), 47.9, 42.1, 34.4, 23.7; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 73.0; **HRMS** (ESI⁺): calculated for C₁₄H₁₉FNO₃S [M+H⁺]: m/z = 300.1064, m/z found 300.1063; **IR** v_{max} (ATR)/cm⁻¹: 2963, 2932, 1667, 1643, 1435, 1416, 1385, 1337, 1254, 1132, 1057, 957, 837.

(E)-1-(Dimethylamino)-3-oxo-3-(4-propylphenyl)prop-1-ene-2-sulfonyl fluoride (9c)

Following general procedure B (0.25 mmol), the title compound was isolated as a yellow oil (69 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 8.3 Hz, 3H), 3.28 (s, 3H), 2.71 – 2.60 (m, 5H), 1.74 – 1.59 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.8, 156.8, 149.0, 137.1, 129.5, 128.9, 99.8 (d, *J* = 21.7 Hz), 47.9, 42.2, 38.2, 24.2, 13.9; ¹⁹F NMR (376 MHz, CDCl₃) δ 73.0; HRMS (ESI⁺): calculated for C₁₄H₁₉FNO₃S [M+H⁺]: m/z = 300.1064, m/z found 300.1061; IR v_{max} (ATR)/cm⁻¹: 2961, 2934, 1651, 1626, 1435, 1385, 1254, 1184, 1134, 957, 912, 840.

(*E*)-1-(Dimethylamino)-3-(4'-isopropyl-[1,1'-biphenyl]-4-yl)-3-oxoprop-1-ene-2-sulfonyl fluoride (9d)

Following general procedure B (0.25 mmol), the title compound was isolated as a colourless solid (75 mg, 80%). **m.p.** 100-102 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.90 (m, 3H), 7.69 (appt. d, *J* = 8.6 Hz, 2H), 7.56 (appt. d, *J* = 8.2 Hz, 2H), 7.29 (appt. d, *J* = 8.3 Hz, 2H), 3.31 (s, 3H), 2.72 (s, 3H), 2.69 – 2.60 (m, 2H), 1.76 – 1.64 (m, 2H), 0.99 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 187.6, 157.0, 146.1, 143.2, 137.8, 137.2, 129.9, 129.2, 127.2, 127.1, 99.9 (d, *J* = 22.0 Hz), 48.0, 42.3, 37.8, 24.6, 14.0; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 73.3; **HRMS** (ESI⁺): calculated for C₂₀H₂₃FNO₃S [M+H⁺]: m/z = 376.1377, m/z found 376.1380; **IR** v_{max} (ATR)/cm⁻¹: 3024, 2953, 2928, 1651, 1609, 1440, 1418, 1173, 964, 835.

(E)-1-(Dimethylamino)-3-(4-methoxyphenyl)-3-oxoprop-1-ene-2-sulfonyl fluoride (9e)

Following general procedure B (0.25 mmol), the title compound was isolated as an orange solid (63 mg, 88%). **m.p.** 126-127 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (appt. d, *J* = 8.9 Hz, 2H), 7.82 (s, 1H), 6.95 (appt. d, *J* = 8.9 Hz, 2H), 3.87 (s, 3H), 3.27 (s, 3H), 2.67 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 186.8, 164.0, 156.3, 132.1, 131.9, 114.0, 99.5 (d, *J* = 21.3 Hz), 55.7, 47.8, 41.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 72.9; **HRMS** (ESI⁺): calculated for C₁₂H₁₅FNO₄S [M+H⁺]: m/z = 288.0700, m/z found 288.0701; **IR** v_{max} (ATR)/cm⁻¹: 2972, 2943, 2833, 1643, 1622, 1599, 1531, 1254, 1171, 1022, 908, 839.

(E)-3-(Benzo[d][1,3]dioxol-5-yl)-1-(dimethylamino)-3-oxoprop-1-ene-2-sulfonyl fluoride (9f)

Following general procedure B (0.25 mmol), the title compound was isolated as an orange oil (71 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.49 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.36 (d, *J* = 1.7 Hz, 1H), 6.86 (d, *J* = 8.1 Hz, 1H), 6.06 (s, 2H), 3.30 (s, 3H), 2.72 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.4, 156.4, 152.4, 148.4, 134.0, 126.4, 108.9, 108.1, 102.2, 99.4 (d, *J* = 21.7 Hz), 47.9, 41.9; ¹⁹F NMR (376 MHz, CDCl₃) δ 73.0; HRMS (ESI⁺): calculated for C₁₂H₁₃FNO₅S [M+H⁺]: m/z = 302.0493, m/z found 302.0494; IR v_{max} (ATR)/cm⁻¹: 3057, 2986, 2934, 1620, 1441m 1381, 1260, 1184, 1040.

(E)-1-(Dimethylamino)-3-(4-isopropoxy-3-methoxyphenyl)-3-oxoprop-1-ene-2-sulfonyl fluoride (9g)

Following general procedure B (0.25 mmol), the title compound was isolated as a yellow solid (68 mg, 79%). **m.p.** 108 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.49 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.45 (d, *J* = 2.0 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), 4.66 (hept, *J* = 6.1 Hz, 1H), 3.90 (s, 3H), 3.28 (s, 3H), 2.69 (s, 3H), 1.41 (d, *J* = 6.1 Hz, 6H); ¹³**C NMR** (126 MHz, CDCl₃) δ 186.8, 156.2, 152.6, 150.1, 131.8, 124.8, 112.7,

111.9, 99.4 (d, J = 21.5 Hz), 71.5, 56.2, 47.8, 41.8, 22.1; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 73.0; **HRMS** (ESI⁺): calculated for C₁₅H₂₁FNO₅S [M+H⁺]: m/z = 346.1119, m/z found 346.1120; **IR** v_{max} (ATR)/cm⁻¹: 2976, 2953, 2934, 1616, 1591, 1454, 1421, 1377, 1265, 1180, 1034, 939, 820.

(*E*)-3-(4-(Cyclopentyloxy)-3-methoxyphenyl)-1-(dimethylamino)-3-oxoprop-1-ene-2-sulfonyl fluoride (9h)

Following general procedure B (0.25 mmol), the title compound was isolated after purification by flash column chromatography (0-55% EtOAc in petroleum ether) as a yellow solid (64 mg, 69%). **m.p.** 98-99 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.49 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.43 (d, *J* = 2.0 Hz, 1H), 6.88 (d, *J* = 8.5 Hz, 1H), 4.88 – 4.81 (m, 1H), 3.89 (s, 3H), 3.27 (s, 3H), 2.67 (s, 3H), 2.07 – 1.76 (m, 6H), 1.70 – 1.55 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 186.8, 156.0, 153.0, 149.9, 131.6, 124.8, 112.7, 111.7, 99.2 (d, *J* = 21.1 Hz), 80.8, 56.2, 47.8, 41.7, 33.0, 24.3; ¹⁹F NMR (376 MHz, CDCl₃) δ 72.9; HRMS (ESI⁺): calculated for C₁₇H₂₃FNO₅S [M+H⁺]: m/z = 372.1275, m/z found 372.1278; IR v_{max} (ATR)/cm⁻¹: 2972, 2940, 1620, 1591, 1506, 1418, 1263, 1182, 1074, 974, 874, 824.

(E)-3-(3,4-Diethoxyphenyl)-1-(dimethylamino)-3-oxoprop-1-ene-2-sulfonyl fluoride (9i)

Following general procedure B (0.25 mmol), the title compound was isolated as an orange solid (82 mg, 95%). **m.p.** 137-138 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.48 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.43 (d, *J* = 2.0 Hz, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 4.15 (appt. dq, *J* = 9.6, 7.0 Hz, 4H), 3.26 (s, 3H), 2.66 (s, 3H), 1.50 – 1.43 (m, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 186.8, 156.1, 153.7, 148.7, 131.9, 124.7, 113.1, 111.5, 99.3 (d, *J* = 21.1 Hz), 64.7, 64.7, 47.8, 41.7, 14.8, 14.7; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 72.8; **HRMS** (ESI⁺): calculated for C₁₅H₂₁FNO₅S [M+H⁺]: m/z = 346.1119, m/z found 346.1117; **IR** v_{max} (ATR)/cm⁻¹: 2978, 2932, 1645, 1612, 1593, 1396, 1263, 1175, 1042, 841.

(*E*)-3-(4-(Cyclohexyloxy)-3-methoxyphenyl)-1-(dimethylamino)-3-oxoprop-1-ene-2-sulfonyl fluoride (9j)

Following general procedure B (0.25 mmol), the title compound was isolated as a yellow solid (85 mg, 89%). **m.p.** 51-52 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.49 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.46 (d, *J* = 2.0 Hz, 1H), 6.91 (d, *J* = 8.5 Hz, 1H), 4.39 – 4.30 (m, 1H), 3.91 (s, 3H), 3.29 (s, 3H), 2.70 (s, 3H), 2.11 – 2.01 (m, 2H), 1.90 – 1.80 (m, 2H), 1.67 – 1.54 (m, 3H), 1.44 – 1.27 (m, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 186.7, 156.1, 152.5, 150.2, 131.8, 124.8, 113.0, 112.0, 99.4 (d, *J* = 21.3 Hz), 77.1, 56.2, 47.8, 41.7, 31.9, 25.6, 24.1; ¹⁹F **NMR** (376 MHz, CDCl₃) δ 72.9; **HRMS** (ESI⁺): calculated for C₁₈H₂₅FNO₅S [M+H⁺]: m/z = 386.1432, m/z found 386.1434; **IR** v_{max} (ATR)/cm⁻¹: 2936, 2857, 1651, 1620, 1506, 1450, 1377, 1267, 1126, 1032, 957.

Synthesis and Experimental Data for Compounds 14a-14f

General Procedure C

A solution of the required DMSO adduct **8** (0.10 mmol) and 10% Pd/C (3.00 mg, 30 mol%) in EtOAc (0.2M) under a H₂ atmosphere was stirred at 40 °C for 16 h. The reaction mixture was cooled to room temperature, diluted with EtOAC, filtered through Celite[®], and washed with brine (x2) and H₂O (x2). The organic layer was dried over anhydrous MgSO₄, filtered under vacuum and the solvent was removed under reduced pressure to obtain the analytically pure product.

2-Oxo-2-phenylethane-1-sulfonyl fluoride (14a)^{2.3}

Following general procedure C, the title compound was isolated as a colourless solid (20 mg, >99%). **m.p.** 83.9-84.5-111 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 8.00 – 7.93 (m, 2H), 7.74 – 7.68 (m, 1H), 7.60 – 7.53 (m, 2H), 5.01 (d, *J* = 2.3 Hz, 2H); ¹³**C NMR** (126 MHz, CDCl₃) δ 184.8, 135.4, 134.6 (d, *J* = 2.8 Hz), 129.4, 129.0, 57.6 (d, J = 15.9 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ 62.9; **HRMS** (ESI⁺): calculated for C₈H₇FO₃SNa [M+Na⁺]: m/z = 224.9992, m/z found 224.9991.

2-Oxo-2-(4-propylphenyl)ethane-1-sulfonyl fluoride (14b)

Following general procedure C, the title compound was isolated as a colourless solid (24 mg, >99%). **m.p.** 82.5-84.4 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.88 (appt. d, *J* = 8.4 Hz, 2H), 7.35 (appt. d, *J* = 8.4 Hz, 2H), 4.98 (d, *J* = 2.3 Hz, 2H), 2.73 – 2.65 (m, 2H), 1.74 – 1.64 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 184.3, 151.4, 132.4 (d, *J* = 2.9 Hz), 129.5, 129.2, 57.5 (d, *J* = 15.6 Hz), 38.3, 24.2, 13.9; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 62.8; **HRMS** (ESI⁺): calculated for C₁₁H₁₃FO₃SNa [M+Na⁺]: m/z = 267.0462, m/z found 267.0467; **IR** v_{max} (ATR)/cm⁻¹: 2961, 2932, 1694, 1605, 1416, 1327, 1213, 988.

2-(4-Isopropylphenyl)-2-oxoethane-1-sulfonyl fluoride (14c)

Following general procedure C, the title compound was isolated as a yellow solid (23 mg, 96%). **m.p.** 84.6-86.3 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (appt. d, *J* = 8.5 Hz, 2H), 7.40 (appt. d, *J* = 8.3 Hz, 2H), 4.97 (d, *J* = 2.3 Hz, 2H), 3.01 (hept, *J* = 6.9 Hz, 1H), 1.29 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 184.3, 157.4, 132.5 (d, *J* = 2.8 Hz), 129.4, 127.6, 57.5 (d, *J* = 15.7 Hz), 34.6, 23.6; ¹⁹F NMR (376 MHz, CDCl₃) δ 62.8; **HRMS** (ESI⁺): calculated for C₁₁H₁₃FO₃SNa [M+Na⁺]: m/z = 267.0462, m/z found 267.0464; **IR** v_{max} (ATR)/cm⁻¹: 2965, 2253, 1688, 1605, 1420, 1206, 1188.

2-(3,4-Diethoxyphenyl)-2-oxoethane-1-sulfonyl fluoride (14d)

Following general procedure C, the title compound was isolated as a yellow solid (24 mg, 83%). **m.p.** 134.8-136.6 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.52 (d, *J* = 2.1 Hz, 1H), 7.49 (dd, *J* = 8.4, 2.2 Hz, 1H), 6.92 (d, *J* = 8.4 Hz, 1H), 4.94 (d, *J* = 2.3 Hz, 2H), 4.21 (q, *J* = 7.2 Hz, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 1.50 (appt. dt, *J* = 13.8, 7.0 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 182.8, 155.1, 149.1, 127.4 (d, *J* = 2.8 Hz), 124.2, 112.2, 111.4, 64.8, 64.8, 57.2 (d, *J* = 15.4 Hz), 14.6, 14.5; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 62.5; **HRMS** (ESI⁺): calculated for C₁₂H₁₅FO₅SNa [M+Na⁺]: m/z = 313.0516, m/z found 313.0516; **IR** v_{max} (ATR)/cm⁻¹: 2253, 1678, 1593, 1514, 1429, 1273, 1152, 1038.

2-(4-Methoxyphenyl)-2-oxoethane-1-sulfonyl fluoride (14e)

Following general procedure C, the title compound was isolated as a yellow solid (23 mg, >99%). **m.p.** 78.6-81.0 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.94 (appt. d, *J* = 9.0 Hz, 2H), 7.01 (appt. d, *J* = 9.0 Hz, 2H), 4.94 (d, *J* = 2.4 Hz, 2H), 3.92 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 182.9, 165.4, 131.7, 127.7 (d, *J* = 2.8 Hz), 114.7, 57.4 (d, *J* = 15.5 Hz), 55.9; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 62.6; **HRMS** (ESI⁺): calculated for C₉H₉FO₄SNa [M+Na⁺]: m/z = 255.0098, m/z found 255.0100; **IR** v_{max} (ATR)/cm⁻¹: 2253, 1682, 1682, 1601, 1422, 1269, 1173.

2-(4-Isopropoxy-3-methoxyphenyl)-2-oxoethane-1-sulfonyl fluoride (14f)

Following general procedure C (0.10 mmol), the title compound was isolated as a yellow oil (28 mg, 97%). ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, *J* = 2.1 Hz, 1H), 7.50 (dd, *J* = 8.4, 2.2 Hz, 1H), 6.93 (d, *J* = 8.6 Hz, 1H), 4.95 (d, *J* = 2.3 Hz, 2H), 4.71 (hept, *J* = 6.0 Hz, 1H), 3.92 (s, 3H), 1.44 (d, *J* = 6.1 Hz, 6H); ¹³C NMR

(101 MHz, CDCl₃) δ 182.9, 154.1, 150.5, 127.3 (d, *J* = 2.7 Hz), 124.4, 112.6, 111.2, 71.8, 57.3 (d, *J* = 15.4 Hz), 56.3, 22.0; ¹⁹F NMR (376 MHz, CDCl₃) δ 62.5; HRMS (ESI⁺): calculated for C₁₂H₁₅FO₅SNa [M+Na⁺]: m/z = 313.0516, m/z found 313.0513; IR v_{max} (ATR)/cm⁻¹: 2253, 1678, 1593, 1512, 1422, 1277, 1153, 1107.

(E)-3-(Dimethylamino)-1-phenyl-2-((trifluoromethyl)sulfonyl)prop-2-en-1-one (9a-CF₃)¹

(*E*)-3-(Dimethylamino)-1-phenyl-2-((trifluoromethyl)sulfonyl)prop-2-en-1-one was synthesised according to the procedure by Hanack and Wilhelm.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.87 (appt. d, *J* = 7.8 Hz, 2H), 7.76 (s, 1H), 7.59 (appt. t, *J* = 7.3 Hz, 1H), 7.47 (appt. t, *J* = 7.5 Hz, 2H), 3.30 (s, 3H), 2.65 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 188.9, 158.2, 139.5, 133.6, 129.9, 128.6, 120.6 (q, *J* = 326.1 Hz), 97.4, 48.1, 41.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -78.1; **IR** v_{max} (ATR)/cm⁻¹: 2981, 2933, 1697, 1595, 1580, 1452, 1331, 980, 985, 802.

Plausible Reaction Mechanism for the Reaction of DMSO with SASFs

Scheme S1. Plausible reaction mechanism for DMSO incorporation to SASFs.

First, nucleophilic addition of the oxygen atom of DMSO to the highly activated SASF triple bond occurs, pushing electron density onto the oxygen atom of the sulfonyl fluoride group to give intermediate **S2**. The oxygen atom then pushes electron density back through attacking the sulfur atom of DMSO and cleaving the S-O bond to give **S3**. It is then proposed that during tautomerisation of **S3**, tautomer **S5** can undergo free rotation of the C-C bond in order to give the least sterically hindered configuration and finally give the isomerised product **8**."

2D NMR Spectra for Compounds 9a-CF3 and 9a

Figure S1. HSQC spectra of **9a-CF**₃ (CDCl₃) showing the correlation between H_A and C_1 (blue).

Figure S2. HMBC spectra of **9a-CF**₃ (CDCl₃) showing the correlation between H_A and NMe_2 (green), H_A and C_3 (red), H_B and C_3 (blue) and NMe_2 and C_1 (orange).

Figure S3. HSQC spectra of ${\bf 9a}$ (CDCl_3) showing the correlation between H_A and C_1 (blue).

Figure S4. HMBC spectra of **9a** (CDCl₃) showing the correlation between H_A and NMe_2 (green), H_A and C_3 (blue), H_B and C_3 (red) and NMe_2 and C_1 (orange).

X-ray Crystallography Data

Method: All crystals were grown by slow diffusion (CHCl₃/petroleum ether).

X-ray data of structure 8l (CCDC2120509)

Datablock: mo_d8v19482_0m

Bond precision:		C-C = 0.0047 A		W	avelength=0.71073
Cell:	a=9.44	b.4459(3) b=12.5540(5) c=13			923(5)
	alpha=1	114.362(1) beta=102.263(1) gamma			96.976(1)
Temperature:	293 К				
		Calculated	ł		Reported
Volume		1343.37(9))		1343.37(9)
Space group		P -1			P -1
Hall group		-P 1			-P 1
Moiety formu	la	C11 H13 F	04 S2		?
Sum formula		C11 H13 F	04 S2		C11 H13 F O4 S2
Mr		292.33			292.33
Dx,g cm-3		1.445			1.445
Z		4			4
Mu (mm-1)		0.411			0.411
F000		608.0			608.0
F000'		609.33			
h,k,lmax		11,15,15			11,15,15
Nref		4997			4987
Tmin,Tmax		0.944,0.97	72		0.562,0.746
Tmin'		0.944			
Correction m	ethod=	# Reporte	d T Limits: Tmin=	=0.562	2
Tmax=0.746 A	bsCorr	= MULTI-S	CAN		
Data complet	eness=	0.998	Theta(max) = 2	5.496	
R(reflection	s)= 0.0	466(3871) wR2(reflec	tions)= 0.1115(4987)
S = 1.062		Npar= 3	331		

X-ray data of structure 9i (CCDC2120512)

Datablock: mo_d8v20433_0m

Bond precision:		C-C = 0.0134 A		V	Navelength=0.71073
Cell: a=8.42 alpha=		19) b=	19.723(5)	c=10.59	2(2)
		90 beta=107.954(6) gamma=		gamma=9	0
Temperature:	293 K				
	Ca	lculated			Reported
Volume	16	73.4(7)			1673.4(7)
Space group	P	21/c			P 21/c
Hall group	-P	2ybc			-P 2ybc
Moiety formu	la Cl	5 H20 F N	1 05 S		?
Sum formula	C1	5 H20 F N	1 05 S		C15 H20 F N O5 S
Mr	34	5.38			345.38
Dx,g cm-3	1.	371			1.371
Z	4				4
Mu (mm-1)	0.1	227			0.227
F000	72	8.0			728.0
F000'	72	8.91			
h,k,lmax	10	,23,12			10,23,12
Nref	29	43			2942
Tmin,Tmax	Ο.	973,0.989)		0.613,0.746
Tmin'	0.	964			
Correction m Tmax=0.746 A	ethod= # bsCorr =	Reported MULTI-SC	T Limits: Tm AN	nin=0.61	3
Data complet	eness= 1.	000	Theta(max)=	= 24.997	
R(reflection	s)= 0.134	3(1963)	wR2(ref]	lections)= 0.4419(2942)
S = 1.676		Npar= 21	_3		

X-ray data of structure 9j (CCDC2120511)

Datablock: d8v20436

Bond precision:		C-C = 0.0043 A			Wavelength=0.71073
Cell:	a=12.5	21(11)	b=13.867(12)	c=11.47	73(8)
alpha=		90 beta=100.55(2) gamma=9		90	
Temperature:	293 K				
		Calculat	ed		Reported
Volume		1958(3)			1958(3)
Space group		P 21/c			P 21/c
Hall group		-P 2ybc			-P 2ybc
Moiety formu	la	C18 H24	F N 05 S		?
Sum formula		C18 H24	F N 05 S		C18 H24 F N O5 S
Mr		385.44			385.44
Dx,g cm-3		1.308			1.307
Z		4			4
Mu (mm-1)		0.202			0.202
F000		816.0			816.0
F000'		816.94			
h,k,lmax		15,16,13			15,16,13
Nref		3638			3635
Tmin,Tmax		0.981,0.	992		0.485,0.746
Tmin'		0.976			
Correction m	ethod=	# Report	ed T Limits: Tm	in=0.48	35
Tmax=0.746 A	bsCorr	= MULTI-	SCAN		
Data complet	eness=	0.999	Theta(max)=	25.495	5
R(reflection	s) = 0.0)531(227	9) wR2(refl	ections	s)= 0.1457(3635)
S = 1.056		Npar=	238		

References

- M. Hanack and B. Wilhelm, *Angew. Chem., Int. Ed.,* 1989, **28**, 1057–1059.
 T. Henkel, T. Krügerke and K. Seppelt, *Angew. Chem., Int. Ed.*, 1990, **29**, 1128–1129.
 D. Chen, X. Nie, Q. Feng, Y. Zhang, Y. Wang, Q. Wang, L. Huang, S. Huang and S. Liao, *Angew. Chem., Int. Ed.*, 2021, **60**, 27271–27276.

¹H, ¹³C and ¹⁹F NMR spectra

¹H NMR 8a:

¹³C NMR 8a:

¹H NMR **8b**:

¹³C NMR **8b**:

¹⁹F NMR **8b**:

¹H NMR 8c:

¹³C NMR **8c**:

¹⁹F NMR: **8c**:

¹H NMR **8d**:

¹³C NMR **8d**:

¹⁹F NMR **8d**:

¹H NMR 8e:

¹³C NMR 8e:

¹⁹F NMR **8e**:

¹H NMR **8f**:

¹³C NMR **8f**:

¹H NMR 8g:

¹³C NMR **8g**:

¹⁹F NMR **8g**:

¹H NMR 8h:

¹³C NMR **8h**:

¹⁹F NMR **8h**:

¹H NMR **8i**:

¹³C NMR **8i**:

¹⁹F NMR **8i**:

¹H NMR **8j**:

¹³C NMR **8j**:

¹⁹F NMR **8j**:

¹H NMR **8k**:

¹³C NMR 8k:

¹⁹F NMR **8k**:

¹H NMR 8I:

¹³C NMR **8I**:

¹⁹F NMR **8I**:

¹H NMR **9a**:

¹³C NMR **9a**:

¹⁹F NMR **9a**:

¹H NMR **9b**:

¹³C NMR **9b**:

¹⁹F NMR **9b**:

¹H NMR **9c**:

¹³C NMR **9c**:

¹⁹F NMR **9c**:

¹H NMR **9d**:

¹³C NMR **9d**:

¹⁹F NMR **9d**:

¹H NMR **9e**:

¹³C NMR **9e**:

¹⁹F NMR **9e**:

¹H NMR **9f**:

¹³C NMR **9f**:

¹⁹F NMR **9f**:

¹H NMR **9g**:

¹³C NMR **9g**:

¹⁹F NMR **9g**:

¹H NMR **9h**:

¹³C NMR **9h**:

¹⁹F NMR **9h**:

¹H NMR **9i**:

¹³C NMR **9i**:

¹⁹F NMR **9i**:

¹H NMR **9j**:

¹³C NMR **9j**:

¹H NMR **14a**:

¹³C NMR **14a**:

¹⁹F NMR **14a**:

¹H NMR **14b**:

¹³C NMR **14b**:

¹⁹F NMR **14b**:

¹H NMR **14c**:

¹³C NMR **14c**:

¹⁹F NMR **14c**:

¹H NMR **14d**:

¹³C NMR **14d**:

¹⁹F NMR **14d**:

¹H NMR **14e**:

¹³C NMR **14e**:

¹⁹F NMR **14e**:

¹H NMR **14f**:

¹³C NMR **14f**:

¹⁹F NMR **14f**:

¹H NMR **9a-CF₃**:

¹³C NMR **9a-CF**₃:

¹⁹F NMR **9a-CF**₃:

