Supplementary Information

Kinetically controlled narcissistic self-sorting of Pd(II)-linked self-assemblies from structurally similar tritopic ligands

Tsukasa Abe,¹ Shinnosuke Horiuchi¹ and Shuichi Hiraoka^{1,*}

¹Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.

*E-mail: hiraoka-s@g.ecc.u-tokyo.ac.jp

General Information · · · · · 2
• Materials ·····2
• Preparation of [<i>Pd</i> Py* ₂](PF ₆) ₂ 2
• X-ray analysis of the $[\mathbf{Pd}_31_2]^{6+}$ cage and $(\mathrm{BF}_4^-) \subset [\mathbf{Pd}_21_2]^{4+} \cdots 2$
General procedure for the self-sorting experiments4
• Characterization of the [<i>Pd</i> ₃ 1 ₂] ⁶⁺ cage ······5
• Characterization of $(BF_4) \subset [Pd_21_2]^{4+} \cdots 9$
• Determination of the equilibrium constants between NO_3^- and the $[Pd_31_2]^{6+}$ cage $\cdots 13$
• Characterization of the $[Pd_32_2]^{6+}$ cage $\cdots 14$
• Assignment of the ¹ H NMR spectra of $(X^{-}) \subset [Pd_2 2_2]^{4+} \cdots 16$
• ¹ H NMR spectra of the self-sorting experiments
• References

General Information

¹H, ¹³C, ¹⁹F NMR spectra were recorded using a Bruker AV-500 (500 MHz) spectrometer. All ¹H NMR spectra were referenced using a residual solvent peak, CD₃NO₂ (δ 4.33). Electrospray ionization time-of-flight (ESI-TOF) mass spectra were obtained using a Waters Xevo G2-S Tof mass spectrometer.

Materials

Unless otherwise noted, all solvents and reagents were obtained from commercial suppliers (TCI Co., Ltd., WAKO Pure Chemical Industries Ltd., KANTO Chemical Co., Inc., and Sigma-Aldrich Co.) and were used as received. CD_3NO_2 was purchased from Acros Organics and used after dehydration with Molecular Sieves 4Å. Tritopic ligands 1 and 2 and [*Pd*(CH₃CN)₂](PF₆)₂ were prepared according to the literature.^{1–3}

Preparation of [PdPy*2](PF6)2

A solution of Py* (Py*: 3-chloropyridine) (62.5 mg, 0.55 mmol), PdCl₂⁴ (Pd indicates Pd(TMEDA)) (73.5 mg, 0.25 mmol), and AgPF₆ (139 mg, 0.55 mmol) in anhydrous CH₃NO₂ (3 mL) was stirred at 70 °C for 3 h under nitrogen atmosphere. The obtained solution was filtered and concentrated in vacuo. The obtained solid was washed with water (1.0 mL) with a centrifugation several times to afford [PdPy*₂](PF₆)₂ as pale yellow solid in 63% yield. ¹H NMR (500 MHz, CD₃NO₂): δ 9.05 (d, J = 2.0 Hz, 2H), 8.98 (d, J = 5.0 Hz, 2H), 8.07 (ddd, J = 8.0, 1.5, 1.0 Hz, 2H), 7.67 (dd, J = 9.5, 5.5 Hz, 2H), 3.18 (s, 4H), 2.73 (s, 12H). ¹³C NMR (125 MHz, CD₃NO₂): δ 152.5, 150.7, 142.7, 136.9, 130.0, 64.5, 51.8. ESI-TOF-MS (positive m/z): [Pd(TMEDA)Py*₂]²⁺ calcd. for C₁₆H₂₄Cl₂N₄Pd, 225.02; found, 225.01.

X-ray analysis of the $[\mathbf{Pd}_3\mathbf{1}_2]^{6+}$ cage and $(\mathsf{BF}_4^-) \subset [\mathbf{Pd}_2\mathbf{1}_2]^{4+}$

The single crystals were immersed in and coated with Paraton N oil (Hampton Research Corp.) and mounted on a MicroMountTM (MiteGen LLC). Diffraction data of the single crystal were collected on a SuperNova single-crystal X-ray diffractometer with an Eos CCD detector (Rigaku Oxford Diffraction) at 180 K, using Cu K α ($\lambda = 1.54184$ Å) radiation monochromated by multilayer mirror optics. Bragg spots were integrated using the CrysAlisPro program package (Rigaku Oxford Diffraction). An empirical absorption correction based on the multi-scan method using spherical harmonics was implemented in the SCALE3 ABSPACK scaling algorithm. The structure was solved by an intrinsic phasing method on the SHELXT program⁵ and refined by a full-matrix least-squares minimization on F2 executed by the SHELXL program⁶ using the Olex2 software package (OlexSys Ltd)⁷ and the ShelXle graphical user interface.^{8.} The data were corrected for scattered electron density in the large solvent void by using the PLATON SQUEEZE method.⁹ Thermal displacement parameters where refined anisotropically for all non-hydrogen atoms. All the hydrogen atoms were located at calculated positions and the parameters were refined with a riding model. The crystal structures are shown in Figure 3. Crystallographic data are summarized in Table S1. The data were deposited in the CSD as CCDC Deposition 2191966 for (BF₄)⊂[Pd₂1₂](BF₄)₃ and 2191967 for [Pd₃1₂](PF₆)₆, respectively.

Compound	The $[Pd_31_2]^{6+}$ cage	$(BF_4^{-}) \subset [Pd_21_2]^{4+}$ C _{56.5} H _{69.5} B _{3.5} F ₁₄ N _{12.5} O ₅ Pd ₂		
Formula	$C_{60}H_{78}F_{41}N_{12}P_7Pd_3$			
Formula weight	2282.33	1520.38		
Habit	colorless	colorless		
Crystal size /mm	$0.20\times0.20\times0.05$	$0.50 \times 0.30 \times 0.10$		
T/K	180	140		
Crystal system	hexagonal	triclinic		
Space group	<i>P</i> -62c	<i>P</i> -1		
a/Å	16.6805(5)	12.3891(4)		
b/Å	16.6805(5)	14.7381(5)		
c/Å	24.1520(13)	21.5181(7)		
$\alpha/^{o}$	90	98.368(3)		
$eta /^{\mathrm{o}}$	90	91.608(3)		
γ/°	120	110.971(3)		
$V/\text{\AA}^3$	5819.7(5)	3616.0(2)		
Ζ	2	2		
$d_{ m calc}/{ m g}$ · cm ⁻³	1.302	1.396		
<i>F</i> (000)	2268	1543		
μ (Cu K α)/mm ⁻¹	5.523	4.775		
GOF	1.036	1.035		
No. of reflns	13799	28962		
Unique data	3643	13338		
$R_{ m int}$	0.0509	0.0358		
$R_1^a (F^2 > 2\sigma(F^2))$	0.0830	0.0490		
wR_2^b (all data)	0.2556	0.1420		

Table S1. X-ray crystallographic data for the $[\mathbf{Pd}_3\mathbf{1}_2]^{6+}$ cage and $(\mathrm{BF}_4^-) \subset [\mathbf{Pd}_2\mathbf{1}_2]^{4+}$.

^{*a*} $\overline{R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|}.$

^b $wR_2 = \{\Sigma w (F_o^2 - F_c^2)^2 / \Sigma (F_o^2)^2\}^{1/2}.$

General procedure for the self-sorting experiments

A 2.4 mM solution of [2.2] paracyclophane in CHCl₃ (125 μ L), which was used as an internal standard, was added to two NMR tubes (tubes I and II) and the solvent was removed in vacuo. A solution of [PdPy*2](PF6)2 or $[Pd(CH_3CN)_2](PF_6)_2$ solution in CD₃NO₂ was prepared as solution A (10 mM (for $[Pd]_0 = 1.7 \text{ mM})$). Solution A (60 µL), CDCl₃ (50 µL), CD₃NO₂ (490 µL) were added to tube I. The exact concentration of [*Pd*Py*₂](PF₆)₂ or $[Pd(CH_3CN)_2](PF_6)_{21}$ in solution A was determined through the comparison of the signal integral with [2.2]paracyclophane by ¹H NMR. Solution of tritopic ligands 1 and 2 (10 mM (for $[1]_0 = [2]_0 = 0.67$ mM) in CHCl₃ (40 mL) were added to tube II and the solvent was removed in vacuo. Then, CDCl₃ (50 µL) and CD_3NO_2 (450 µL) was added to tube II and the exact amount of 1 in tube II was determined through the comparison of the signal integral with [2.2]paracyclophane by ¹H NMR. 1.25 eq. (against the total amounts of ligands 1 and 2 in tube II) of solution A (ca. 100 µL; the exact amount was determined based on the exact concentrations of solution A and of 1 in tube II) was added to tube II. Then, n-Bu₄N·NO₃ in CD₃NO₂ (20 mM, 30 µL) was added to tube II. After convergence monitored by ¹H NMR, the existence ratios of $(NO_3^-) \subset [Pd_31_2]^{6+}$, $(NO_3^-) \subset [Pd_22_2]^{4+}$ and $(NO_3^-) \subset [Pd_21 \cdot 2]^{4+}$ based on 1 and 2 were quantified by the integral value of each ¹H NMR signal against the signal of the internal standard ([2.2]paracyclophane). The existence ratios indicate the distribution of the two tritopic ligands in the assemblies. Thus, when the self-assembly takes place in a purely statistic manner (nonselective), the existence ratios of $(NO_3^-) \subseteq [Pd_31_2]^{6+}$, $(NO_3^-) \subseteq [Pd_22_2]^{4+}$ and $(NO_3^{-}) \subseteq [Pd_21 \cdot 2]^{4+}$ should be 50, 50 and 50%, respectively, where the ratio of the numbers of the assemblies is 1:1:2.

Characterization of the $[Pd_31_2]^{6+}$ cage

Figure S1. ¹H DOSY NMR spectrum (500 MHz, CD₃NO₂, 298 K, aromatic region) of the reaction mixture for the self-assembly of the [Pd_31_2](PF₆)₆ cage from [$PdPy*_2$](PF₆)₂ and 1 ([Pd]₀ = 1.0 mM and [1]₀ = 0.67 mM) in CD₃NO₂ at 298 K measured after convergence. The signals colored blue and brown indicate [Pd_31_2]⁶⁺ and Py*, respectively.

Figure S2. (H,H)-COSY NMR spectrum (500 MHz, CD₃NO₂, 298 K, aromatic region) of the reaction mixture for the self-assembly of the $[Pd_31_2](PF_6)_6$ cage from $[PdPy*_2](PF_6)_2$ and 1 ($[Pd]_0 = 1.0$ mM and $[1]_0 = 0.67$ mM) in CD₃NO₂ at 298 K measured after convergence. The signals colored blue and brown indicate $[Pd_31_2](PF_6)_2$ cage and Py*, respectively.

Figure S3. ESI-TOF mass spectrum of the reaction mixture for the self-assembly of the $[Pd_31_2]^{6+}$ cage from $[PdPy^*_2](BF_4)_2$ and 1 in CD₃NO₂ at 298 K measured after convergence. (a): overall spectrum, (b)–(f): expanded spectra.

Characterization of (BF₄[−])⊂[*Pd*₂1₂]⁴⁺

Figure S4. ¹H DOSY NMR spectrum (500 MHz, CD₃NO₂, 298 K, aromatic region) of $(BF_4^-) \subset [Pd_21_2]^{4+}$ in CD₃NO₂ at 298 K measured after convergence. The signals colored blue indicate $(BF_4^-) \subset [Pd_21_2]^{4+}$. The pyridyl rings including H^a–H^d are engaged in coordinating to a Pd(II) ion, while that including H^a–H^d does not coordinate to a Pd(II) ion.

Figure S5. (H,H)-COSY NMR spectrum (500 MHz, CD₃NO₂, 298 K, aromatic region) of $(BF_4^-) \subset [Pd_21_2]^{4+}$ in CD₃NO₂ at 298 K measured after convergence. The signals colored blue indicate $(BF_4^-) \subset [Pd_21_2]^{4+}$. The pyridyl rings including H^a–H^d are engaged in coordinating to a Pd(II) ion, while that including H^a–H^d does not coordinate to a Pd(II) ion.

Figure S6. ESI-TOF mass spectrum of the reaction mixture for the self-assembly of $(BF_4) \subseteq [Pd_21_2]^{4+}$ from $[PdPy^*_2](BF_4)_2$ and 1 in CD₃NO₂ at 298 K measured after convergence. (a): overall spectrum, (b)–(d): expanded spectra.

(BF₄ [−])⊂[<i>Pd</i> ₂ 1 ₂] ⁴⁺										
فالتحديثه حالية أن	المرورية والمغار فمنابع إفرافة فع	والقرب الأو والمالية والمقاطر المرواة والقرور	and with the state of the second state of the	ا الأولية الواقية في وجود عام الأولي	an an an the state of the second state of the	فالمعقل ومترجع فالقرار	والمعاقب والسواف والمحاد	á helyllesin kihoszatra silla kilitég	والمسترور الالأعرابية مقر أرأد العلا	. الد مانغیار
الشيفية. [1]	and and a constraint of the second	فيعسمنها ويفجلوا مطرويتا	a na manana a falana a fa	anterna attanta.	In the later is a straight of the second	de terdesekter socielle aber de centre	a la	angan kabupatén di dari kabupatén di kabupatén di kabupatén di kabupatén di kabupatén di kabupatén di kabupatén	an a	diji kanalara
-130	-135	-140	-145	-150	-155	-160	-165	-170	-175	-180
										ppm

Figure S7. Partial ¹⁹F NMR spectrum (500 MHz, CD₃NO₂, 298 K) of $(BF_4^-) \subset [Pd_21_2]^{4+}$ in CD₃NO₂ measured after convergence. The signal colored in blue indicates $(BF_4^-) \subset [Pd_21_2]^{4+}$.

Determination of the equilibrium constants between NO_3^- and the $[Pd_31_2]^{6+}$ cage

Figure S8. (a) Selected ¹H NMR spectra (500 MHz, CD₃NO₂, 298 K, aromatic region, $[1]_0 = 0.67$ mM, $[PdPy*_2(PF_6)_2] = 1.0$ mM) of the titration experiment of the $[Pd_31_2](PF_6)_6$ cage with *n*-Bu₄N·NO₃. Binding isotherm to determine (b) the first and (c) the second equilibrium constants between NO₃⁻ and the $[Pd_31_2]$ cage.

Characterization of the [Pd₃2₂]⁶⁺ cage

Figure S9. ¹H DOSY NMR spectrum (500 MHz, CD₃NO₂, 298 K, aromatic region) of the reaction mixture for the self-assembly of the [Pd_32_2](PF₆)₆ cage from [PdPy*₂](PF₆)₂ and **2** ([Pd]₀ = 0.82 mM and [2]₀ = 0.82 mM) in CD₃NO₂ at 298 K measured after convergence. The signals colored green, brown, and orange indicate the [Pd_32_2](PF₆)₆ cage, Py*, and [PdPy*₂](PF₆)₂, respectively. The signals marked in red solid circle indicate the uncharacterized species.

Figure S10. (H,H)-COSY NMR spectrum (500 MHz, CD₃NO₂, 298 K, aromatic region) of the reaction mixture for the self-assembly of the $[Pd_32_2](PF_6)_6$ cage from $[PdPy^*_2](PF_6)_2$ and 2 ($[Pd]_0 = 0.82$ mM and $[2]_0 = 0.82$ mM) in CD₃NO₂ at 298 K measured after convergence. The signals colored green, brown, and orange indicate the $[Pd_32_2](PF_6)_6$ cage, Py*, and $[PdPy^*_2](PF_6)_2$, respectively. The signals marked in red solid circle indicate the uncharacterized species.

Figure S11. ¹H NMR spectra of (a) (NO₃⁻) \subset [*Pd*₂**2**₂]⁴⁺ and (b) (BF₄⁻) \subset [*Pd*₂**2**₂]⁴⁺ with their assignments.

¹H NMR spectra of the self-sorting experiments

Figure S12. ¹H NMR spectra (500 MHz, CD₃NO₂:CDCl₃ = 11:1 (v/v), 298 K, aromatic region, $[1]_0 = [2]_0 = 0.67 \text{ mM}$, $[PdPy*_2(PF_6)_2] = 1.0 \text{ mM}$) of the self-sorting experiments of (a) state III and (b) state II generated from state III by heating to reach equilibrium.

Figure S13. ¹H NMR spectrum (500 MHz, CD₃NO₂:CDCl₃ = 11:1 (v/v), 298 K, aromatic region, $[1]_0 = [2]_0 = 0.67 \text{ mM}$, $[PdPy^*_2(PF_6)_2] = 1.0 \text{ mM}$) of the reaction mixture of 1, 2, and $[PdPy^*_2](PF_6)_2$ at 363 K. Signals in blue and brown are assigned to the $[Pd_31_2](PF_6)_6$ cage and free Py*, respectively.

Figure S14. ¹H NMR spectra (500 MHz, CD₃NO₂:CDCl₃ (11:1 (v/v)), 298 K, aromatic region) of the selfsorting experiments depending on the pathway using CH₃CN as a leaving ligand. (a) state IV generated at 298 K by initially adding NO₃⁻. The assignment of the signals of $(NO_3^-) \subset [Pd_21 \cdot 2]^{4+}$ is indicated by red characters. (b) state V generated from states IV and VI by heating to reach equilibrium. (c) state VI generated at 363 K without NO₃⁻, following that NO₃⁻ was added at 298 K. The assignment of the signals for $(NO_3^-) \subset [Pd_31_2]^{6+}$ and $(NO_3^-) \subset [Pd_22_2]^{4+}$ are shown in Figures S2 and S11a, respectively. Asterisk indicates CHCl₃.

Figure S15. A summary of the self-sorting experiments of the tritopic ligands 1 and 2 with $[PdX_2](PF_6)_2$ in CD₃NO₂.

References

- 1. R. Lavendomme, T. K. Ronson and J. R. Nitschke, J. Am. Chem. Soc. 2019, 141, 12147–12158.
- 2. H. L. Anderson, S. Anderson and J. K. M. Sanders, J. Chem. Soc. Perkin Trans. 1 1995, 2231–2245.
- 3. K. Uehara, T. Oishi, T. Hirose and N. Mizuno, Inorg. Chem. 2013, 52, 11200-11209.
- 4. F. Proutiere, E. Lyngvi, M. Aufiero, I. A. Sanhueza and F. Schoenebeck, *Organometallics* 2014, **33**, 6879–6884.
- 5. G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3-8.
- 6. G. M. Sheldrick, G. M. Acta Crystallogr. Sect. C 2015, 71, 3-8.
- 7. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.* 2009, **42**, 339–341.
- 8. C. B. Hübschle, G. M. Sheldrick, B. Dittrich, *ShelXle*: a Qt graphical user interface for *SHELXL*. J. Appl. Cryst. 2011, 44, 1281–1284.
- 9. A. L. Spek, Acta Crystallogr. Sect. D 2009, 65, 148–155.