Supporting Information

Phosphine-Catalyzed Regio- and Stereoselective Hydroboration of Ynamides to (Z)-β-borylenamides

Swetha Jos,1 Christine Tan,1 Pierre Thilmany,2 Alaâ Saadane,2 Carla Slebodnick,1 Gwilherm Evano,2 Webster L. Santos1*

1Department of Chemistry, Virginia Tech, Blacksburg, Virginia, United States
2Université Libre de Bruxelles, Laboratoire de Chimie Organique, Brussels, Belgium

Table of Contents
I General Experimental Methods: .. 2
II Synthesis of substrates... 2
III Synthesis of cis-hydroborated ynamides: ... 5
IV Applications... 10
V GC-MS Phenyl substituent (2a) ... 13
VI References: .. 13
VII X-Ray Crystallography- Experimental .. 14
VIII NMR spectra ... 15
I General Experimental Methods:
Reactions were performed using the Schlenk technique under Argon or Nitrogen atmosphere. All glassware used was flame-dried or oven-dried overnight. Chemicals were obtained from commercial sources unless otherwise noted. THF, toluene, MeCN, and DCM were dried using the Innovative Technology Pure SolvMD solvent purification system. Column chromatography was performed using SiliaFlash P60 40-63 μm, 60 Å. TLC analyses were performed using Silicycle aluminum-backed silica gel F-254 plates and visualized by UV light or KMnO₄ stain. Silica gel column chromatography was performed using SiliaFlash P60 40-63 μm, 60 Å silica from SiliCycle Inc. ¹H, ¹³C, ¹¹B, ³¹P and ¹⁹F spectra were recorded using an Agilent 400-MR 400 MHz, an Agilent U4-DD2 400 Hz, or a Bruker Avance II 500 MHz spectrometer. Chemical shifts are reported in δ ppm, and ¹H, ¹¹B, ¹³C, ¹⁹F, and ³¹P NMR are referenced to an internal standard (CDCl₃, CD₂Cl₂, CD₃CN, or TMS). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m = multiplet), coupling constants (Hz), and integration. GC–MS experiments were performed using an Agilent 7890 Series GC system coupled to an HP 5975 mass selective detector. ESI mass spectra were acquired with an Agilent 6220 LC-ESI-TOF or a Thermo Scientific Q-Exactive Orbitrap.

II Synthesis of substrates
All the ynamides (1a-1t) were synthesized according to the reported procedure [¹] and were compared with previous literature except 1f and 1j.

\[
\begin{align*}
\text{A} & \quad \text{AgNO₃ (0.1)} \quad \text{NBS (1.1)} \quad \text{Acetone (3 h)} \\
\text{B} & \quad \text{CuSO₄.5H₂O} \quad \text{K₂CO₃} \quad \text{1,10-phenanthroline} \quad \text{Toluene, 70°C, 48 h}
\end{align*}
\]

To a 100 mL round bottom flask containing the A dissolved in acetone, NBS was added slowly. To this AgNO₃ was added and stirred under argon atmosphere for 3 h. After the completion of the reaction, the solvent was evaporated, and the crude mixture purified by flash column chromatography (1-10% EtOAc/hexanes) to yield B.

A 15 mL pressure tube was charged with the oxazolidinone (4.0 mmol), potassium carbonate (8 mmol), CuSO₄.5H₂O (0.8 mmol), 1,10-phenanthroline (3.0 mmol) and the bromoalkyne (4.0 mmol). The tube was fitted with a rubber septum, evacuated under high vacuum and backfilled with argon three times. Dry toluene (4 mL) was next added, the rubber septum was replaced by a Teflon-coated screw cap and the mixture was stirred at 70 °C for 48 hours. The reaction mixture was then cooled to room temperature, filtered over a plug of silica (washed with EtOAc) and concentrated under reduced pressure. The crude residue was finally purified by flash column chromatography over silica gel.
<table>
<thead>
<tr>
<th>Substrate (R)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1a</td>
</tr>
<tr>
<td>2-Me</td>
<td>1b</td>
</tr>
<tr>
<td>3-Me</td>
<td>1c</td>
</tr>
<tr>
<td>4-Me</td>
<td>1d</td>
</tr>
<tr>
<td>4-terbutyl</td>
<td>1e</td>
</tr>
<tr>
<td>4-OMe</td>
<td>1g</td>
</tr>
<tr>
<td>3-OMe</td>
<td>1h</td>
</tr>
<tr>
<td>2-OMe</td>
<td>1i</td>
</tr>
<tr>
<td>2-naphtyl</td>
<td>1k</td>
</tr>
<tr>
<td>4-Ph</td>
<td>1l</td>
</tr>
<tr>
<td>4-OPh</td>
<td>1m</td>
</tr>
<tr>
<td>4-F</td>
<td>1n</td>
</tr>
<tr>
<td>4-Cl</td>
<td>1o</td>
</tr>
<tr>
<td>3-Cl</td>
<td>1p</td>
</tr>
<tr>
<td>2-Cl</td>
<td>1q</td>
</tr>
<tr>
<td>4-Br</td>
<td>1r</td>
</tr>
<tr>
<td>4-CF3</td>
<td>1s</td>
</tr>
</tbody>
</table>
3-((4-propylphenyl) ethynyl) oxazolidin-2-one (1f)

\[
\text{1H NMR} (600 \text{ MHz, CDCl}_3) \delta 7.36 (d, \ J = 8.1 \text{ Hz, 2H}), 7.12 (d, \ J = 7.9 \text{ Hz, 2H}), 4.48 (t, \ J = 8.0 \text{ Hz, 2H}), 4.00 (t, \ J = 8.0 \text{ Hz, 2H}), 2.64 – 2.46 (m, 2H), 1.67 – 1.48 (m, 2H), 0.92 (t, \ J = 7.3 \text{ Hz, 3H}). \]

\[
\text{13C NMR} (151 \text{ MHz, CDCl}_3) \delta 155.9, 143.1, 131.5, 128.4, 119.1, 78.2, 71.2, 62.9, 47.0, 37.8, 24.2, 13.7. \]

\[
\text{HRMS: (ESI)}^+ \ m/z \text{ calcd for C}_{14}\text{H}_{15}\text{NO}_2 [\text{M+H}]^+ 230.1181; \text{ Found: } 230.1185.
\]

3-((4-propoxyphenyl)ethynyl)oxazolidin-2-one (1j)

\[
\text{1H NMR} (400 \text{ MHz, CDCl}_3) \delta 7.37 (d, \ J = 8.7 \text{ Hz, 2H}), 6.82 (d, \ J = 8.7 \text{ Hz, 2H}), 4.48 (t, \ J = 8.0 \text{ Hz, 2H}), 3.99 (t, \ J = 8.0 \text{ Hz, 2H}), 3.92 (t, \ J = 6.6 \text{ Hz, 2H}), 1.80 (h, \ J = 7.1 \text{ Hz, 2H}), 1.03 (t, \ J = 7.4 \text{ Hz, 3H}). \]

\[
\text{13C NMR} (151 \text{ MHz, CDCl}_3) \delta 159.7, 156.4, 133.8, 114.8, 114.1, 77.6, 71.4, 69.9, 47.5, 22.9, 10.8. \]

\[
\text{HRMS: (ESI)}^+ \ m/z \text{ calcd for C}_{14}\text{H}_{16}\text{NO}_3 [\text{M+H}]^+ 246.1130; \text{ Found: } 246.1132.
\]
III Synthesis of cis-hydroborated ynamides:

To a 2-dram vial enabled with a septum under Schlenk line conditions, the ynamide (1a-1t) 0.25 mmol was added. To this, toluene (0.2 M) was added. Under argon atmosphere, the pinacol borane (0.3 mmol) and tri-n-butyl phosphine (0.025 mmol) was added. This mixture was stirred at 100°C for 20 h. The reaction was monitored by GC-MS, and after the completion of the reaction, it was directly purified via flash chromatography (20% - 30% EtOAc/Hexanes).

Note: The peak for the carbon directly attached to Bpin is missing in the 13C NMR for each compound due to quadrupolar relaxation.

(Z)-3-(2-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) vinyl) oxazolidin-2-one (2a)

47 mg scale, White powdery solid, 48 mg, 60%. 1H NMR (500 MHz, CD2Cl2) δ 7.36 – 7.20 (m, 4H), 7.19 – 7.08 (m, 2H), 4.13 (t, J = 7.5 Hz, 2H), 3.11 (t, J = 7.5 Hz, 2H), 1.26 (s, 12H). 13C NMR (126 MHz, CD2Cl2) δ 157.4, 139.2, 135.3, 130.7, 128.3, 127.2, 84.5, 63.6, 45.3, 25.3. 11B NMR (128 MHz, CD2Cl2) δ 30.8. HRMS: (ESI+) m/z calcd for C17H22BNO4 [M+H]+ 316.1720; Found: 316.1717.

(Z)-3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(o-tolyl) vinyl) oxazolidin-2-one (2b)

50 mg scale, White powdery solid, 30 mg, 37 %. 1H NMR (400 MHz, CDCl3) δ 7.47 (s, 1H), 7.23 – 6.92 (m, 4H), 4.12 (t, J = 8.1 Hz, 2H), 3.10 (q, J = 8.7 Hz, 1H), 2.90 (q, J = 8.7 Hz, 1H), 2.19 (s, 3H), 1.23 (s, 12H). 13C NMR (126 MHz, CDCl3) δ 156.4, 137.6, 136.5, 134.4, 130.1, 129.3, 126.8, 124.9, 83.4, 62.4, 43.8, 24.7, 24.4, 20.3. 11B NMR (128 MHz, CDCl3) δ 30.8. HRMS: (ESI+) m/z calcd for C18H25BNO4 [M+H]+ 330.1877; Found: 330.1876.
(Z)-3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(m-tolyl vinyl)oxazolidin-2-one (2c)

50 mg scale, White powdery solid, 41 mg, 51%. \textbf{H NMR} (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.19 – 7.15 (m, 1H), 7.03 (d, J = 7.3 Hz, 1H), 6.96 – 6.90 (m, 2H), 4.16 (t, J = 8.0 Hz, 2H), 3.14 (t, J = 8.0 Hz, 2H), 2.33 (s, 3H), 1.25 (s, 12H). \textbf{C NMR} (126 MHz, CDCl₃) δ 156.8, 137.9, 137.0, 134.6, 130.5, 127.4, 127.3, 126.9, 83.6, 62.7, 44.6, 24.7, 21.5. \textbf{B NMR} (128 MHz, CDCl₃) δ 30.7. \textbf{HRMS}: (ESI⁺) m/z calcd for C₁₈H₂₅BNO₄ [M+H]+ 330.1877; Found: 330.1880.

(Z)-3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(p-tolyl vinyl)oxazolidin-2-one (2d)

50 mg scale, White powdery solid, 41 mg, 51%. \textbf{H NMR} (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.09 (d, J = 7.8 Hz, 2H), 7.02 (d, J = 7.8 Hz, 2H), 4.16 (t, J = 8.0 Hz, 3H), 3.16 (t, J = 8.0 Hz, 3H), 2.33 (s, 1H), 1.24 (s, 12H). \textbf{C NMR} (151 MHz, CDCl₃) δ 156.7, 136.0, 134.9, 134.5, 129.6, 128.3, 83.5, 62.6, 44.6, 24.6, 21.2. \textbf{B NMR} (128 MHz, CDCl₃) δ 30.7. \textbf{HRMS}: (ESI⁺) m/z calcd for C₁₈H₂₅BNO₄ [M+H]+ 330.1877; Found: 330.1870.

(Z)-3-(2-(4-(tert-butyl)phenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)oxazolidin-2-one (2e)

61 mg scale, White powdery solid, 48 mg, 52%. \textbf{H NMR} (500 MHz, CD₂Cl₂) δ 7.33 – 7.28 (m, 3H), 7.04 (d, J = 8.3 Hz, 2H), 4.14 – 4.11 (t, J = 8.2 Hz, 2H), 3.12 (s, 3H), 1.32 (s, 9H), 1.26 (s, 12H). \textbf{C NMR} (126 MHz, CD₂Cl₂) δ 156.6, 149.4, 135.0, 134.5, 129.5, 124.4, 83.6, 62.8, 44.4, 34.3, 31.1, 24.4. \textbf{B NMR} (128 MHz, CD₂Cl₂) δ 30.9. \textbf{HRMS}: (ESI⁺) m/z calcd for C₂₁H₃₁BNO₄ [M+H]+ 372.2346; Found: 372.2344.

(Z)-3-(2-(4-propylphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)oxazolidin-2-one (2f)

57 mg scale, White powdery solid, 40 mg, 45%. \textbf{H NMR} (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.09 (d, J = 7.9 Hz, 2H), 7.03 (d, J = 7.9 Hz, 2H), 4.16 (t, J = 8.0 Hz, 2H), 3.15 (t, J = 8.0 Hz, 2H), 2.63 – 2.53 (m, 2H), 1.67 – 1.59 (m, 2H), 1.25 (s, 12H), 0.95 (t, J = 7.3 Hz, 3H). \textbf{C NMR} (151 MHz, CDCl₃) δ 156.8, 140.7, 135.0, 134.5, 129.5, 124.4, 83.5, 62.6, 44.5, 37.7, 24.6, 24.4, 13.9. \textbf{B NMR} (128 MHz, CDCl₃) δ 30.6. \textbf{HRMS}: (ESI⁺) m/z calcd for C₂₀H₂₉BNO₄ [M+H]+ 358.2190; Found: 358.2195.
(Z)-3-(2-(2-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)oxazolidin-2-one (2g)

Observed via GC-MS (13% conversion)

(2H)

54 mg scale, White powdery solid, 35 mg, 40%. 1H NMR (400 MHz, CDCl$_3$) δ 7.43 (s, 1H), 7.20 (t, J = 7.9 Hz, 1H), 6.80 – 6.64 (m, 3H), 4.17 (t, J = 8.0 Hz, 2H), 3.80 (s, 3H), 3.20 (t, J = 8.0 Hz, 2H), 1.25 (s, 12H). 13C NMR (126 MHz, CDCl$_3$) δ 158.8, 156.7, 139.6, 134.7, 128.5, 122.5, 115.7, 111.7, 83.6, 62.7, 55.1, 44.5, 24.7. 11B NMR (128 MHz, CDCl$_3$) δ 30.8. HRMS: (ESI$^+$) m/z calcd for C$_{18}$H$_{24}$BNO$_5$Na $[\text{M+Na}]^+$ 368.1645; Found: 368.1647.

(2i)

54 mg scale, White powdery solid, 53 mg, 62%. 1H NMR (400 MHz, CD$_2$Cl$_2$) δ 7.28 (s, 1H), 7.04 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 4.14 (t, J = 8.0 Hz, 2H), 3.80 (s, 3H), 3.15 (t, J = 8.0 Hz, 2H), 1.26 (s, 12H). 13C NMR (126 MHz, CD$_2$Cl$_2$) δ 158.5, 156.9, 134.7, 131.0, 130.4, 113.1, 83.8, 63.0, 55.4, 44.8, 24.6. 11B NMR (128 MHz, CD$_2$Cl$_2$) δ 30.6. HRMS: (ESI$^+$) m/z calcd for C$_{18}$H$_{25}$BNO$_5$ [M+H]$^+$ 346.1836; Found: 346.1829.

(2j)

61 mg scale, White powdery solid, 51 mg, 55%. 1H NMR (400 MHz, CDCl$_3$) δ 7.40 (s, 1H), 7.02 - 7.00 (m, 2H), 6.82 (d, J = 8.4 Hz, 2H), 4.20 – 4.13 (m, 2H), 3.90 (t, J = 6.6 Hz, 2H), 3.18 (t, J = 7.9 Hz, 2H), 1.83 – 1.78 (m, 2H), 1.25 (s, 12H), 1.04 (t, J = 7.4 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 156.8, 134.6, 130.8, 129.9, 113.6, 83.6, 69.4, 62.7, 44.7, 24.7, 22.7, 10.6. 11B NMR (128 MHz, CDCl$_3$) δ 30.5. HRMS: (ESI$^+$) m/z calcd for C$_{20}$H$_{29}$BNO$_5$ [M+H]$^+$ 374.2139; Found: 374.2142.
(Z)-3-(2-(naphthalen-2-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)oxazolidin-2-one (2k)

59 mg scale, White powdery solid, 48 mg, 52%. 1H NMR (400 MHz, CDCl$_3$) δ 7.85 – 7.72 (m, 3H), 7.57 – 7.42 (m, 4H), 7.31 – 7.29 (m, 1H), 4.09 (t, J = 8.0 Hz, 2H), 3.11 (t, J = 8.0 Hz, 2H), 1.26 (s, 12H). 13C NMR (126 MHz, CDCl$_3$) δ 156.7, 135.9, 135.1, 132.8, 132.1, 128.5, 128.1, 127.8, 127.7, 127.1, 126.2, 125.7, 83.7, 62.7, 44.8, 24.7. 11B NMR (128 MHz, CDCl$_3$) δ 30.9. HRMS: (ESI$^+$) m/z calcd for C$_{21}$H$_{25}$BNO$_4$ [M+H]$^+$ 366.1877; Found: 366.1879.

(Z)-3-((1,1'-biphenyl)-4-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)oxazolidin-2-one (2l)

66 mg scale, White powdery solid, 47 mg, 47%. 1H NMR (400 MHz, CDCl$_3$) δ 7.62 – 7.60 (m, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.48 (s, 1H), 7.45 – 7.42 (m, 2H), 7.35 – 7.32 (m, 1H), 7.21 (d, J = 8.1 Hz, 2H), 4.18 (t, J = 8.0 Hz, 2H), 3.23 (t, J = 8.0 Hz, 2H), 1.27 (s, 12H). 13C NMR (126 MHz, CDCl$_3$) δ 156.9, 140.8, 139.3, 137.3, 135.2, 130.4, 128.9, 127.4, 127.0, 126.4, 83.9, 62.9, 44.9, 24.9. 11B NMR (128 MHz, CDCl$_3$) δ 30.7. HRMS: (ESI$^+$) m/z calcd for C$_{23}$H$_{27}$BNO$_4$ [M+H]$^+$ 392.2033; Found: 392.2025.

(Z)-3-(2-(4-phenoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)oxazolidin-2-one (2m)

70 mg scale, White powdery solid, 55mg, 55%. 1H NMR (400 MHz, CDCl$_3$) δ 7.43 (s, 1H), 7.38 – 7.30 (m, 2H), 7.18 – 6.98 (m, 5H), 6.96 – 6.85 (m, 2H), 4.20 (t, J = 8.0 Hz, 2H), 3.22 (t, J = 8.0 Hz, 2H), 1.26 (s, 12H). 13C NMR (126 MHz, CDCl$_3$) δ 157.2, 157.1, 156.4, 135.4, 133.1, 131.5, 130.2, 123.9, 119.7, 117.9, 84.1, 63.1, 45.1, 25.1. 11B NMR (128 MHz, CDCl$_3$) δ 31.2. HRMS: (ESI$^+$) m/z calcd for C$_{23}$H$_{27}$BNO$_5$ [M+H]$^+$ 408.1982; Found: 408.1984.

(Z)-3-(2-(4-fluorophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)oxazolidin-2-one (2n)

50 mg scale, White powdery solid, 20 mg, 25%. 1H NMR (400 MHz, CDCl$_3$) δ 7.44 (s, 1H), 7.13 – 7.07 (m, 2H), 7.05 – 6.93 (m, 2H), 4.18 (t, J = 8.0 Hz, 2H), 3.15 (t, J = 8.0 Hz, 2H), 1.25 (s, 12H). 13C NMR (151 MHz, CDCl$_3$) δ 161.5 (d, J = 245.5 Hz), 156.6, 135.1, 133.8, 131.2 (d, J = 7.8 Hz), 114.5 (d, J = 21.2 Hz), 83.7, 62.6, 44.6, 24.6. 11B NMR (128 MHz, CDCl$_3$) δ 30.6. 19F NMR (376 MHz, CDCl$_3$) δ -116.12. HRMS: (ESI$^+$) m/z calcd for C$_{17}$H$_{22}$BFNO$_4$ [M+H]$^+$ 334.1626; Found: 334.1615.
(Z)-3-(2-(4-chlorophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)oxazolidin-2-one (2o)

55 mg scale, White powdery solid, 49 mg, 57%. 1H NMR (400 MHz, CDCl$_3$) δ 7.45 (s, 1H), 7.26 (d, $J = 8.3$ Hz, 2H), 7.08 (d, $J = 8.3$ Hz, 2H), 4.19 (t, $J = 8.0$ Hz, 2H), 3.17 (t, $J = 8.0$ Hz, 2H), 1.24 (s, 12H). 13C NMR (151 MHz, CDCl$_3$) δ 156.6, 136.7, 135.2, 132.4, 131.1, 127.8, 83.8, 62.7, 44.8, 24.7. 11B NMR (128 MHz, CDCl$_3$) δ 31.0. HRMS: (ESI$^+$) m/z calcd for C$_{17}$H$_{22}$BClNO$_4$ [M+H]$^+$ 350.1330; Found: 350.1324.

(Z)-3-(2-(3-chlorophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)oxazolidin-2-one (2p)

55 mg scale, White powdery solid, 41mg, 48%. 1H NMR (400 MHz, CDCl$_3$) δ 7.46 (s, 1H), 7.26 (s, 1H), 7.22 – 7.21 (s, 1H), 7.13 - 7.12 (m, 1H), 7.04 – 7.01 (m, 1H), 4.20 (t, $J = 8.0$ Hz, 2H), 3.17 (t, $J = 8.0$ Hz, 2H), 1.25 (s, 12H). 13C NMR (126 MHz, CDCl$_3$) δ 156.6, 140.1, 135.4, 133.5, 129.8, 128.8, 128.1, 126.7, 83.8, 62.7, 44.7, 24.7. 11B NMR (128 MHz, CDCl$_3$) δ 30.5. HRMS: (ESI$^+$) m/z calcd for C$_{17}$H$_{22}$BClNO$_4$ [M+H]$^+$ 350.1330; Found: 350.1320.

(Z)-3-(2-(2-chlorophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)oxazolidin-2-one (2q)

55 mg scale, White powdery solid, 48 mg, 56%. 1H NMR (400 MHz, CDCl$_3$) δ 7.49 (s, 1H), 7.37 – 7.35 (m, 1H), 7.21 – 7.14 (m, 3H), 4.17 (t, $J = 8.1$ Hz, 2H), 3.11 (t, $J = 8.1$ Hz, 2H), 1.24 (s, 12H). 13C NMR (126 MHz, CDCl$_3$) δ 156.3, 137.3, 135.3, 134.3, 131.7, 129.0, 128.2, 126.0, 83.7, 62.5, 43.8, 24.9, 24.3. 11B NMR (128 MHz, CDCl$_3$) δ 30.2. HRMS: (ESI$^+$) m/z calcd for C$_{17}$H$_{22}$BClNO$_4$ [M+H]$^+$ 350.1330; Found: 350.1332.

(Z)-3-(2-(4-bromophenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)oxazolidin-2-one (2r)

67 mg scale, White powdery solid, 41 mg, 43%. 1H NMR (400 MHz, CD$_2$Cl$_2$) δ 7.43 (d, $J = 8.3$ Hz, 2H), 7.33 (s, 1H), 7.03 (d, $J = 8.3$ Hz, 2H), 4.16 (t, $J = 8.0$ Hz, 2H), 3.15 (t, $J = 8.0$ Hz, 2H), 1.25 (s, 12H). 13C NMR (126 MHz, CD$_2$Cl$_2$) δ 157.1, 138.0, 135.6, 132.3, 131.2, 120.9, 84.4, 63.4, 45.3, 25.1. 11B NMR (128 MHz, CD$_2$Cl$_2$) δ 30.6. HRMS: (ESI$^+$) m/z calcd for C$_{17}$H$_{22}$BBrNO$_4$ [M+H]$^+$ 394.0825; Found: 394.0823.
(Z)-3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(4-(trifluoromethyl)phenyl)vinyl)oxazolidin-2-one (2s)

64 mg scale, White powdery solid, 45 mg, 47%.

1H NMR (400 MHz, CDCl$_3$) δ 7.55 (d, $J = 8.0$ Hz, 2H), 7.51 (s, 1H), 7.26 (d, $J = 8.0$ Hz, 2H), 4.20 (t, $J = 8.0$ Hz, 2H), 3.13 (t, $J = 8.0$ Hz, 2H), 1.25 (s, 12H).

13C NMR (126 MHz, CDCl$_3$) δ 156.5, 142.3, 135.6, 130.1, 128.9 - 128.2 (q, $J = 28.9$ Hz), 127.4 - 120.9 (q, $J = 270.8$ Hz), 124.5 (q, $J = 3.7$ Hz), 83.9, 62.7, 44.8, 24.7. 11B NMR (128 MHz, CDCl$_3$) δ 30.5. 19F NMR (376 MHz, CDCl$_3$) δ -62.38. HRMS: (ESI$^+$) m/z calcd for C$_{18}$H$_{22}$BF$_3$NO$_4$ [M+H]$^+$ 384.1594; Found: 384.1584.

IV Applications

I Suzuki- Miyaura coupling reaction

0.3 mmol (130 mg) of 2a, 0.3 mmol (70 mg) of iodobenzene, 0.03 mmol (9 mg) of triphenylphosphine, 0.60 mmol (130 mg) of potassium phosphate tribasic, and Pd (OAc)$_2$ (0.04 equiv, 4 mg) was heated at 80 $^\circ$C in DMF (1.5 mL) for 12 h. After the completion of the reaction, 10 mL of water was added. To this (2 x 10 mL) of EtOAc was added and separated. The organic layer was dried under sodium sulfate and concentrated under a reduced vacuum. The resulting crude mixture was purified under column chromatography with EtOAc/Hexanes gradient with a yield of 91% (85 mg).
3-(2,2-diphenylvinyl) oxazolidin-2-one (3a)

Yellow powder, 85 mg, 91%. 1H NMR (400 MHz, CDCl$_3$) δ 7.42 – 7.17 (m, 11H), 4.20 (t, J = 8.0 Hz, 2H), 3.14 (t, J = 8.0 Hz, 2H). 13C NMR (151 MHz, CDCl$_3$) δ 157.2, 140.8, 137.9, 130.8, 128.2, 128.2, 127.8, 127.0, 126.0, 122.3, 62.6, 44.8. HRMS: (ESI$^+$) m/z calcd for C$_{17}$H$_{16}$NO$_2$ [M+H]$^+$ 266.1181; Found: 266.1177.

II Oxidation Reaction

1o (25 mg, 0.072 mmol) was dissolved in THF (0.5 mL) at room temperature. To this NaOH (14 mg, 0.36 mmol) and 30% TBHP (37 µL, 0.36 mmol) was added at room temperature for 2h. After the completion of the reaction, monitored by TLC, 10 mL of water was added. This was extracted with EtOAc (2 x 10 mL). The organic layer was combined, dried over sodium sulfate, and concentrated under reduced vacuum. Purification was performed via column chromatography using hexanes/EtOAc gradient to yield 3b.

3-(2-(4-chlorophenyl)-2-oxoethyl) oxazolidin-2-one (3b)

Pale yellow powder, 12 mg, 70%. 1H NMR (400 MHz, CDCl$_3$) δ 7.90 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 4.69 (s, 2H), 4.45 (t, J = 8.0 Hz, 2H), 3.85 – 3.64 (m, 2H). 13C NMR (126 MHz, CDCl$_3$) δ 192.7, 159.3, 141.1, 133.3, 129.8, 129.7, 62.7, 50.6, 45.5. HRMS: (ESI$^+$) m/z calcd for C$_{11}$H$_{11}$ClNO$_3$ 240.0427; Found: 240.0430.

II Trifluoromethylation Reaction $^{[2]}$

To a 1-dram vial with a septum and stir-bar was added the borylated alkenyl amide (1.0 equiv, 0.079 mmol), imidazole (1.5 equiv), Cu (OAc)$_2$ (1.0 equiv), and NaSO$_2$CF$_3$ (7.0 equiv) at room temperature. To the resulting mixture, 3:1 DCM/H$_2$O was added. The reaction was stirred for 2 min prior to the addition of TBHP (16.0 equiv) in portions. The septum was pierced a small-tip needle and the reaction mixture was stirred for 20 h at room temperature and quenched with a saturated solution of NaHCO$_3$. The mixture was extracted with DCM. The combined organic
layers were dried over sodium sulfate then concentrated in vacuo to afford a liquid that was purified by column chromatography.

\[
\text{(E)-3-(3,3,3-trifluoro-2-phenylprop-1-en-1-yl)oxazolidin-2-one (3c)}
\]

25 mg scale, White powdery solid, 20 mg, 58%, \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.49 (s, 1H), 7.44 – 7.29 (m, 5H), 4.20 (t, \(J = 8.0\) Hz, 2H), 3.09 (t, \(J = 8.0\) Hz, 2H). \(^{13}C\) NMR (126 MHz, CDCl\(_3\)) \(\delta\) 156.2, 131.5, 130.2, 129.3, 128.1, 127.7 (q, \(J = 6.9\) Hz), 127.1 - 121.0 (q, \(J = 271.4\) Hz), 111.8 (q, \(J = 30.9\) Hz), 62.7, 44.0. \(^{19}F\) NMR (376 MHz, CDCl\(_3\)) \(\delta\) -64.12 (d, \(J = 1.7\) Hz). HRMS: (ESI\(^{+}\)) m/z calcd for C\(_{12}\)H\(_{11}\)F\(_3\)NO\(_2\) [M+H\(^{+}\)]\(^{+}\) 258.0742; Found: 258.0746.

\[
\text{(E)-3-(2-(4-chlorophenyl)-3,3,3-trifluoroprop-1-en-1-yl)oxazolidin-2-one (3d)}
\]

28 mg scale, White powdery solid, 40%, \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.51 (s, 1H), 7.38 (d, \(J = 8.4\) Hz, 2H), 7.32 – 7.19 (m, 2H), 4.24 (t, \(J = 7.9\) Hz, 2H), 3.13 (t, \(J = 8.0\) Hz, 2H). \(^{13}C\) NMR (126 MHz, CDCl\(_3\)) \(\delta\) 156.4, 136.0, 133.2, 129.0, 128.9, 128.7 (q, \(J = 6.8\) Hz), 127.6 – 121.1 (q, \(J = 271.5\) Hz), 110.8 (q, \(J = 31.2\) Hz), 63.1, 44.5. \(^{19}F\) NMR (376 MHz, CDCl\(_3\)) \(\delta\) -64.08. HRMS: (ESI\(^{+}\)) m/z calcd for C\(_{12}\)H\(_{10}\)ClF\(_3\)NO\(_2\) [M+H\(^{+}\)]\(^{+}\) 292.0352; Found: 292.0385.
V GC-MS Phenyl substituent (2a)

A) Reaction mixture:

![Reaction mixture graph]

2a – GC-MS

![2a GC-MS graph]

Figure 1: a) Reaction mixture b) 2a alone

VI References:

VIII X-Ray Crystallography - Experimental

2a (A colorless plate (0.05 x 0.13 x 0.15 mm3)) 2n (A colorless prism (0.17 x 0.18 x 0.26 mm3) and 3c (a colorless plate (0.05 x 0.23 x 0.31 mm3)) was centered on the goniometer of a Rigaku Oxford Diffraction Synergy-S diffractometer equipped with a HyPix6000HE detector and operating with MoKα radiation. The data collection routine, unit cell refinement, and data processing were carried out with the program CrysAlisPro. The Laue was consistent with the triclinic space groups P1 and P-1. The centrosymmetric space group, P-1, was chosen. The structure was solved using SHELXT and refined using SHELXL via Olex2. The compound crystallizes with two molecules in the asymmetric unit. The final refinement model involved anisotropic displacement parameters for non-hydrogen atoms and a riding model for all hydrogen atoms. Olex2 AND/OR Mercury was used for molecular graphics generation.

VIII NMR spectra

1H-1f

13C-1f
11B-2b

1H- 2c
$^{13}\text{C}-2\text{c}$

$^{11}\text{B}-2\text{c}$
HSQC

HMBC
13C-2i

11B-2i

S33
$^{11}\text{B-}2n$

$^{19}\text{F-}2n$
13C-2p

11B-2p
$^{11}\text{B-2t}$

$^{19}\text{F-2t}$
13C-3b

1H-3c
\[^1\text{H}-3d\]

\[^{13}\text{C}-3d\]
19F- 3d

Crude NMR’s for the protodeborylations (1H NMR’s).

3aa - Crude NMR
3b- Crude NMR

3i- Crude NMR
3m-Crude NMR

3o-Crude NMR
3p-Crude NMR