Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Catalytic enantioselective hydrophosphinylation of in situ generated indole-derived vinylogous imines to access 3-(1-diphenylphosphoryl-arylmethyl)indoles

Yun-Qing Jia, abc Jian-Qiang Zhao, b Zhen-Hua Wang, Yong You, Yan-Ping Zhang, Xin Jin, Ming-Qiang Zhou, Chen-Zhen Geac and Wei-Cheng Yuan Ab

^aNational Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China

^bInnovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China

^cUniversity of Chinese Academy of Sciences, Beijing, 100049, China

zhaojianqiang@cdu.edu.cn yuanwc@cioc.ac.cn

Supporting Information

Table of Contents

1.	General information.	S1
2.	General procedure for the synthesis of 3	S1
3.	Scale-up experiment	S19
4.	X-ray crystal data for compounds 3s	S19
5.	Proposed reaction mechanism	S20
6.	¹ H NMR, ¹³ C NMR, ³¹ P NMR and HPLC spectra of compounds 3	S21

^dZhejiang Jinhua Conba Bio-Pharm. Co. Ltd., Jinhua, 321016, China

1. General information

Reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by TLC. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ or DMSO-*d*₆. ¹H NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃ at 7.26 ppm, DMSO-*d*₆ at 2.50 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃ at 77.16 ppm, DMSO-*d*₆ at 39.52 ppm). The enantiomeric excesses were determined by chiral HPLC analysis. HPLC analysis was performed on Shimadzu SCL-10AVP HPLC systems and Agilent 1260 Infinity II consisting of the followings: pump, LC-10AD and G7129A; detector, SPD-10A and G7114A measured at 254 nm. Melting points products were recorded on a Büchi Melting Point B-545. The HRMS were recorded by Agilent 6545 LC/Q-TOF mass spectrometer.

2. General procedure for the synthesis of 3

$$R^{2} \xrightarrow{R^{3}} + Ar \xrightarrow{R} Ar \xrightarrow{R} Ar = C_{6}H_{5}$$
2a, Ar = $C_{6}H_{5}$
2b, Ar = $4 \cdot C_{7} \cdot C_{6}H_{4}$

$$R^{1} \xrightarrow{N} Ar \xrightarrow{R^{2} \cdot C_{7} \cdot C_{6}H_{4}}$$

$$R^{2} \xrightarrow{N} R^{3} \xrightarrow{R^{3} \cdot C_{7} \cdot C_{6}H_{4}}$$

In an ordinary vial equipped with a magnetic stirring bar, diarylphosphine oxides **2** (0.11mmol, 1.1 equiv) were added to a solution of arylsulfonyl indoles **1** (0.10 mmol, 1.0 equiv), catalyst **B** (20 mol%) and K_2CO_3 (0.10 mmol, 1.0 equiv) in 1,2-dichloroethane (1mL) at 50 °C. And then, the mixture was stirred at the same temperature for the specified time. After completion of the reaction, as indicated by TLC, the products **3** were isolated by flash chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = $6/1/1 \sim 2/1/1$).

(S)-((2-methyl-1H-indol-3-yl)(phenyl)methyl)diphenylphosphine oxide (3a)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 3:1:1) to afford white solid (31.6 mg, 75% yield, 87% ee); $[\alpha]_D^{20}$ = -1.8 (c 1.00, CH₂Cl₂); m.p. 140.7-141.1 °C;

The ee was determined by HPLC (Chiralpak AD-H, *i*-PrOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 10.0$ min, $t_{\text{minor}} = 19.7$ min);

¹H NMR (300 MHz, DMSO- d_6) δ 10.74 (s, 1H), 8.35 – 8.27 (m, 1H), 8.01 – 7.91 (m, 2H), 7.78 – 7.68 (m, 2H), 7.60 – 7.53 (m, 2H), 7.42 (d, J = 6.8 Hz, 3H), 7.35 – 7.25 (m, 3H), 7.16 – 7.00 (m, 4H), 6.94 – 6.86 (m, 2H), 5.47 (d, J = 11.9 Hz, 1H), 2.42 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 137.4 (d, J = 2.8 Hz), 135.2, 133.6 (d, J = 7.9 Hz), 133.3 (d, J = 94.5 Hz), 133.1 (d, J = 99.7 Hz), 131.5 (d, J = 8.3 Hz), 131.4, 131.3 (d, J = 2.3 Hz), 131.1 (d, J = 8.8 Hz), 130.1 (d, J = 6.8 Hz), 128.5 (d, J = 11.2 Hz), 128.4, 128.3, 128.0 (d, J = 11.5 Hz), 126.6, 120.9, 119.7, 119.3, 110.2, 107.3 (d, J = 5.1 Hz), 45.0 (d, J = 69.8 Hz), 12.8.

³¹P NMR (243 MHz, DMSO- d_6) δ 27.16.

HRMS (ESI-TOF) calcd. for $C_{28}H_{24}NONaP [M + Na]^+ 444.1488$; found: 444.1493.

$(S)-((2-methyl-1H-indol-3-yl)(phenyl)methyl)bis (4-(trifluoromethyl)phenyl)phosphine \\ oxide \ (3b)$

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 4:1:1) to afford white solid (46.6 mg, 84% yield, 97% ee); $[\alpha]_D^{20} = -19.9$ (c 1.00, CH₂Cl₂); m.p. 156.2-156.6 °C;

The ee was determined by HPLC (Chiralpak AD-H, *i*-PrOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 15.0$ min, $t_{\text{minor}} = 18.7$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.82 (s, 1H), 8.30 – 8.21 (m, 3H), 8.05 – 7.95 (m, 2H), 7.81 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 7.6 Hz, 2H), 7.20 – 7.14 (m, 2H), 7.13 – 7.02 (m, 2H), 6.91 (dd, J = 6.4, 3.3 Hz, 2H), 5.68 (d, J = 11.8 Hz, 1H), 2.44 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 138.1 (d, J = 90.5 Hz), 138.0 (d, J = 94.9 Hz), 137.7 (d, J = 2.1 Hz), 135.0, 134.1 (d, J = 9.4 Hz), 132.2 (d, J = 9.2 Hz), 131.6 (qd, J = 32.3, 2.6 Hz, 2C), 131.5 (d, J = 9.2 Hz), 129.6 (d, J = 7.2 Hz), 128.2, 127.5 (d, J = 4.0 Hz), 126.6, 125.4 – 124.9 (m, 2C), 123.7 (q, J = 273.0 Hz), 123.6 (q, J = 273.4 Hz), 120.5, 120.2, 118.4, 110.2, 105.9 (d, J = 4.6 Hz), 43.0 (d, J = 71.0 Hz), 12.1.

³¹P NMR (162 MHz, DMSO- d_6) δ 28.92.

¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.69, -61.68.

HRMS (**ESI-TOF**) calcd. for $C_{30}H_{23}F_6NOP [M + H]^+ 558.1416$; found: 558.1421.

$(R) - ((2-fluor ophenyl)(2-methyl-1H-indol-3-yl)methyl) bis (4-(trifluor omethyl)phenyl) phos \\ phine oxide (3c)$

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 4.5:1:1) to afford white solid (52.3 mg, 91% yield; 97% ee); $[\alpha]_D^{20}$ = -51.8 (c 1.00, CH₂Cl₂); m.p. 213.7-214.4 °C;

The ee was determined by HPLC (Chiralpak AD-H, *i*-PrOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 12.1$ min, $t_{\text{minor}} = 19.8$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.88 (s, 1H), 8.29 – 8.11 (m, 4H), 8.08 – 7.98 (m, 2H), 7.84 (d, J = 7.6 Hz, 2H), 7.69 (d, J = 7.7 Hz, 2H), 7.20 – 7.05 (m, 3H), 7.05 – 6.97 (m, 1H), 6.91 (p, J = 7.0 Hz, 2H), 5.79 (d, J = 11.4 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 159.6 (dd, J = 245.0, 8.8 Hz), 137.5 (d, J = 90.2 Hz), 137.2 (d, J = 96.9 Hz), 135.0, 134.4 (d, J = 9.0 Hz), 132.0 (d, J = 9.2 Hz), 131.7 (d, J = 9.3 Hz), 131.6 (qd, J = 31.3, 2.7 Hz, 2C), 131.4, 129.0 (d, J = 8.1 Hz), 127.4 (d, J = 2.8 Hz), 125.5 - 125.4 (m), 125.2

- 125.0 (m), 124.4 (d, J = 14.7 Hz), 124.1 (d, J = 3.0 Hz), 123.7 (q, J = 273.7 Hz), 123.6 (q, J = 273.7 Hz), 120.2, 120.1, 118.5, 115.3 (d, J = 22.3 Hz), 110.4, 104.2 (d, J = 4.6 Hz), 35.5 (d, J = 72.7 Hz), 11.9.

³¹P NMR (**162** MHz, DMSO-*d*₆) δ 28.84.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.20, -63.27, -117.76.

HRMS (**ESI-TOF**) calcd. for $C_{30}H_{22}F_7NOP$ [M + H]⁺ 576.1322; found: 576.1317.

(S)-((4-fluorophenyl)(2-methyl-1H-indol-3-yl)methyl)bis(4-(trifluoromethyl)phenyl)phos phine oxide (3d)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 4:1:1) to afford white solid (55.4 mg, 96% yield; 97% ee); $[\alpha]_D^{20}$ = -20.1 (c 1.00, CH₂Cl₂); m.p. 192.2-192.5 °C;

The ee was determined by HPLC (Chiralpak AD-H, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 5.4$ min, $t_{\text{minor}} = 6.3$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.85 (s, 1H), 8.30 – 8.17 (m, 3H), 8.04 – 7.93 (m, 2H), 7.83 (d, J = 7.9 Hz, 2H), 7.71 (d, J = 7.8 Hz, 2H), 7.64 – 7.56 (m, 2H), 7.12 (d, J = 7.3 Hz, 1H), 7.06 – 6.97 (m, 2H), 6.96 – 6.86 (m, 2H), 5.70 (d, J = 11.9 Hz, 1H), 2.44 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 160.9 (d, J = 242.9 Hz), 137.9 (d, J = 90.1 Hz), 137.7 (d, J = 95.3 Hz), 135.1, 134.2 (d, J = 9.4 Hz), 133.9, 132.3 (d, J = 9.3 Hz), 131.8 (qd, J = 31.8, 2.9 Hz, 2C),131.6, 131.5 (d, J = 4.1 Hz), 127.4 (d, J = 3.9 Hz), 125.6 – 125.0 (m, 2C), 123.7 (q, J = 274.7 Hz), 123.6 (q, J = 273.7 Hz), 120.3 (d, J = 14.0 Hz), 115.1 (d, J = 21.3 Hz), 114.9, 110.3, 105.8 (d, J = 4.4 Hz), 42.2 (d, J = 70.6 Hz), 12.1.

³¹P NMR (162 MHz, DMSO- d_6) δ 29.11.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.17, -63.29, -115.02.

HRMS (**ESI-TOF**) calcd. for $C_{30}H_{22}F_7NOP [M + H]^+576.1322$; found: 576.1318.

(R)-((2-chlorophenyl)(2-methyl-1H-indol-3-yl) methyl) bis (4-(trifluoromethyl) phenyl) pho sphine oxide (3e)

It was purified by flash chromatography (petroleum ether / EtOAc/DCM = 3:1:1) to afford white solid (47.9 mg, 81% yield; 98% ee); $[\alpha]_D^{20}$ = -128.5 (c 1.00, CH₂Cl₂); m.p. 222.8-223.4 °C; **The ee was determined by HPLC** (Chiralpak AD-H, EtOH/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 10.9 min, t_{minor} = 22.2 min);

¹H NMR (400 MHz, CDCl₃) δ 10.88 (s, 1H), 8.40 (d, J = 7.8 Hz, 1H), 8.10 (m, 2H), 7.97 (d, J = 7.9 Hz, 1H), 7.95 – 7.87 (m, 2H), 7.85 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 7.8 Hz, 2H), 7.38 – 7.23 (m, 2H), 7.15 (dd, J = 18.0, 8.0 Hz, 2H), 6.88 (dt, J = 24.5, 7.2 Hz, 2H), 5.71 (d, J = 11.2 Hz, 1H), 2.25 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.2 (d, J = 89.1 Hz), 136.8 (d, J = 98.1 Hz), 135.0, 134.8 (d, J = 86.6 Hz), 134.6, 133.3 (d, J = 10.1 Hz), 132.0 (d, J = 9.1 Hz), 131.9 (d, J = 9.2 Hz), 131.7 (qd, J = 32.3, 2.8 Hz, 2C), 129.7, 128.8, 127.5 (d, J = 36.6 Hz), 126.9, 125.6 - 125.4 (m), 125.1 - 125.0 (m), 123.6 (q, J = 275.5 Hz), 123.5 (q, J = 271.5 Hz), 120.2, 120.0, 118.5, 110.4, 103.1 (d, J = 5.2 Hz), 40.2 (d, J = 79.8 Hz), 12.2.

³¹P NMR (**162** MHz, CDCl₃) δ 32.15.

¹⁹F NMR (376 MHz, CDCl₃) δ -56.92, -56.99.

HRMS (**ESI-TOF**) calcd. for $C_{30}H_{22}^{35}Cl$ F_6NOP [M + H]⁺ 592.1026, found: 592.1024; calcd. for $C_{30}H_{22}^{37}Cl$ F_6NOP [M + H]⁺ 594.1011, found: 594.1007.

(R)-((2-chlorophenyl)(2-methyl-1H-indol-3-yl)methyl)diphenylphosphine oxide (3f)

It was purified by flash chromatography (petroleum ether/MTBE = 2:1) to afford white solid (25.9 mg, 57% yield; 94% ee); $[\alpha]_D^{20} = -79.1$ (c 1.00, CH₂Cl₂); m.p. 133.2-133.7 °C;

The ee was determined by HPLC (Chiralpak AD-H, *i*-PrOH/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 7.4$ min, $t_{\text{minor}} = 15.5$ min);

¹H NMR (300 MHz, DMSO- d_6) δ 10.81 (s, 1H), 8.47 (d, J = 7.2 Hz, 1H), 8.09 – 7.89 (m, 1H), 7.78 (dd, J = 9.8, 7.7 Hz, 2H), 7.67 – 7.54 (m, 2H), 7.51 – 7.36 (m, 4H), 7.36 – 7.18 (m, 4H), 7.13 (d, J = 7.3 Hz, 2H), 6.96 – 6.75 (m, 2H), 5.56 (d, J = 11.2 Hz, 1H), 2.22 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 135.5, 135.0, 133.9 (d, J = 94.8 Hz), 133.8 (d, J = 102.2 Hz), 133.2 (d, J = 5.6 Hz), 132.5, 132.3, 132.1 (d, J = 5.3 Hz), 131.5 (d, J = 11.4 Hz), 130.8 (d, J = 9.1 Hz), 130.7, 129.4, 128.5 (d, J = 11.0 Hz), 128.4, 128.2 (d, J = 11.3 Hz), 127.6 (d, J = 3.3 Hz), 126.7, 120.4, 119.9, 118.3, 110.2, 104.0 (d, J = 5.0 Hz), 40.4 (d, J = 71.1 Hz), 12.1.

³¹P NMR (243 MHz, DMSO- d_6) δ 31.05.

HRMS (**ESI-TOF**) calcd. for $C_{28}H_{24}^{35}ClNOP$ [M + H]⁺ 456.1284, found: 456.1281; calcd. for $C_{28}H_{24}^{37}ClNOP$ [M + H]⁺458.1249, found: 458.1263.

(S)-((3-chlorophenyl)(2-methyl-1H-indol-3-yl)methyl)bis(4-(trifluoromethyl)phenyl)phos phine oxide (3g)

It was purified by flash chromatography (petroleum ether/MTBE = 2:1) to afford white solid (57.3 mg, 97% yield; 95% ee); $[\alpha]_D^{20} = -23.53$ (c 1.00, CH₂Cl₂); m.p. 126.6-127.0 °C;

The ee was determined by HPLC (Chiralpak AD-H, EtOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 7.6$ min, $t_{\text{minor}} = 5.2$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.89 (s, 1H), 8.31 – 8.16 (m, 3H), 8.05 – 7.93 (m, 2H), 7.85 (d, J = 7.6 Hz, 2H), 7.73 (d, J = 7.5 Hz, 2H), 7.55 (s, 2H), 7.24 – 7.18 (m, 1H), 7.18 – 7.10 (m, 2H), 6.98 – 6.87 (m, 2H), 5.72 (d, J = 11.6 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 140.1 (d, J = 1.9 Hz), 137.6 (d, J = 90.2 Hz), 137.4 (d, J = 95.5 Hz), 135.1, 134.5 (d, J = 9.3 Hz), 132.6, 132.3 (d, J = 9.2 Hz), 131.9 (qd, J = 30.9, 2.0 Hz, 2C), 131.5 (d, J = 9.0 Hz), 130.1, 129.4 (d, J = 7.3 Hz), 128.2 (d, J = 6.7 Hz), 127.4 (d, J = 3.6 Hz), 126.7, 125.6 – 125.0 (m, 2C), 123.7 (q, J = 273.7 Hz), 123.6 (q, J = 274.0 Hz), 120.3, 118.6, 110.4, 105.2 (d, J = 4.6 Hz), 42.7 (d, J = 70.3 Hz), 12.1.

³¹P NMR (162 MHz, CDCl₃) δ 29.66.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.21, -63.30.

HRMS (**ESI-TOF**) calcd. for $C_{30}H_{22}^{35}Cl$ F_6NOP $[M + H]^+$ 592.1026, found: 592.1032; calcd. for $C_{30}H_{22}^{37}Cl$ F_6NOP $[M + H]^+$ 594.1011, found: 594.1015.

(S)-((4-chlorophenyl)(2-methyl-1H-indol-3-yl)methyl)bis(4-(trifluoromethyl)phenyl)phos phine oxide (3h)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 4:1:1) to afford white solid (48.5 mg, 82% yield; 97% ee); $[\alpha]_D^{20} = -15.9$ (c 1.00, CH₂Cl₂); m.p. 134.4-134.8 °C;

The ee was determined by HPLC (Chiralpak AD-H, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 7.0$ min, $t_{\text{minor}} = 10.1$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.87 (s, 1H), 8.37 – 8.18 (m, 3H), 8.02 – 7.93 (m, 2H), 7.84 (d, J = 7.7 Hz, 2H), 7.71 (d, J = 7.7 Hz, 2H), 7.59 (d, J = 6.9 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 5.9 Hz, 1H), 6.97 – 6.86 (m, 2H), 5.72 (d, J = 11.4 Hz, 1H), 2.43 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 137.8 (d, J = 90.3 Hz), 137.6 (d, J = 95.7 Hz), 136.8 (d, J = 1.8 Hz), 135.1, 134.3 (d, J = 9.2 Hz), 132.3 (d, J = 9.2 Hz), 131.8 (qd, J = 15.4, 3.8 Hz, 2C), 131.5, 131.4 (d, J = 7.3 Hz), 128.3, 127.4 (d, J = 3.5 Hz), 125.6 - 125.3 (m), 125.2 - 125.0 (m), 123.7 (q, J = 273.4 Hz), 123.6 (q, J = 273.4 Hz), 120.3, 118.5, 110.3, 105.4 (d, J = 4.5 Hz), 42.4 (d, J = 70.6 Hz), 12.1.

³¹P NMR (162 MHz, DMSO- d_6) δ 28.93.

¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.67, -61.76.

HRMS (**ESI-TOF**) calcd. for $C_{30}H_{22}^{35}Cl$ F_6NOP $[M + H]^+$ 592.1026, found: 592.1034; calcd. for $C_{30}H_{22}^{37}Cl$ F_6NOP $[M + H]^+$ 594.1011, found: 594.1016.

(S)-((4-bromophenyl)(2-methyl-1H-indol-3-yl)methyl)diphenylphosphine oxide (3i)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 3:1:1) to afford white solid (31.0 mg, 62% yield; 84% ee); $\lceil \alpha \rceil_D^{20} = -5.8$ (c 1.00, CH₂Cl₂); m.p. 155.8-156.3 °C;

The ee was determined by HPLC (Chiralpak AD-H, *i*-PrOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 11.1$ min, $t_{\text{minor}} = 21.4$ min);

¹H NMR (600 MHz, DMSO- d_6) δ 10.80 (s, 1H), 8.26 (d, J = 7.6 Hz, 1H), 8.02 – 7.92 (m, 2H), 7.73 (dd, J = 10.0, 8.0 Hz, 2H), 7.53 (d, J = 8.3 Hz, 2H), 7.48 – 7.43 (m, 3H), 7.37 – 7.32 (m, 3H), 7.31 – 7.28 (m, 2H), 7.12 (d, J = 7.7 Hz, 1H), 6.91 (m, 2H), 5.49 (d, J = 11.6 Hz, 1H), 2.41 (s, 3H).

¹³C NMR (151 MHz, DMSO- d_6) δ 138.1 (d, J = 1.3 Hz), 135.1, 133.9, 133.6 (d, J = 83.4 Hz), 133.5 (d, J = 98.1 Hz), 131.9 (d, J = 6.6 Hz), 131.4, 131.3, 131.2 (d, J = 8.6 Hz), 130.9, 130.4 (d, J = 8.6 Hz), 128.9 (d, J = 12.7 Hz), 128.5 (d, J = 10.9 Hz), 128.2 (d, J = 11.2 Hz), 127.6, 120.1, 119.6, 118.4, 110.2, 106.3 (d, J = 4.3 Hz), 42.8 (d, J = 69.3 Hz), 12.1.

³¹P NMR (243 MHz, DMSO-d₆) δ 29.94.

HRMS (**ESI-TOF**) calcd. for $C_{28}H_{24}^{79}BrNOP$ [M + H]⁺ 500.0780, found: 500.0779; calcd. for $C_{28}H_{24}^{81}BrNOP$ [M + H]⁺ 502.0753; found: 502.0763.

(S)-((4-iodophenyl)(2-methyl-1H-indol-3-yl)methyl)bis(4-(trifluoromethyl)phenyl)phosp hine oxide (3j)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 5:1:1) to afford orange solid (63.6 mg, 93% yield; 99% ee); $[\alpha]_D^{20}$ = -7.9 (c 1.00, CH₂Cl₂); m.p. 141.2-141.5 °C;

The ee was determined by HPLC (Chiralpak AD-H, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 6.4$ min, $t_{\text{minor}} = 12.2$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.85 (s, 1H), 8.33 – 8.22 (m, 2H), 8.19 (d, J = 7.2 Hz, 1H), 8.02 – 7.91 (m, 2H), 7.84 (d, J = 7.9 Hz, 2H), 7.70 (d, J = 7.9 Hz, 2H), 7.54 (d, J = 7.9 Hz, 2H), 7.37 (d, J = 7.9 Hz, 2H), 7.11 (d, J = 7.3 Hz, 1H), 6.90 (p, J = 7.0 Hz, 2H), 5.67 (d, J = 11.5 Hz, 1H), 2.40 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 137.8 (d, J = 89.9 Hz), 137.7 (d, J = 95.7 Hz), 137.6 (d, J = 1.8 Hz), 137.0, 135.1, 134.3 (d, J = 9.1 Hz), 132.2 (d, J = 9.2 Hz), 131.9 (d, J = 7.1 Hz), 131.7 (qd, J = 32.1, 2.5 Hz), 131.5 (d, J = 9.1 Hz), 127.4 (d, J = 3.8 Hz), 125.6 - 125.3 (m), 125.3 - 125.0 (m), 123.7 (q, J = 273.7 Hz), 123.6 (q, J = 274.0 Hz), 120.3, 118.5, 110.3, 105.4 (d, J = 4.7 Hz), 92.8, 42.4 (d, J = 70.2 Hz), 12.1.

³¹P NMR (162 MHz, CDCl₃) δ 29.52.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.15, -63.28.

Methyl (S)-4-((bis(4-(trifluoromethyl)phenyl)phosphoryl) (2-methyl-1H-indol-3-yl)methyl)benzate (3k)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 4:1:1) to afford red solid (55.9 mg, 91% yield; 97% ee); $[\alpha]_D^{20} = -13.5$ (c 1.00, CH₂Cl₂); m.p. 150.4-150.8 °C;

The ee was determined by HPLC (Chiralpak AD-H, EtOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 5.4$ min, $t_{\text{minor}} = 8.5$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.88 (s, 1H), 8.29 – 8.15 (m, 3H), 8.05 – 7.95 (m, 2H), 7.82 (d, J = 7.7 Hz, 2H), 7.76 (d, J = 7.9 Hz, 2H), 7.74 – 7.67 (m, 4H), 7.12 (d, J = 7.0 Hz, 1H), 6.91 (p, J = 7.2 Hz, 2H), 5.80 (d, J = 11.3 Hz, 1H), 3.74 (s, 3H), 2.41 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 166.0, 143.3, 137.7 (d, J = 89.7 Hz), 137.5 (d, J = 95.4 Hz), 135.1, 134.5 (d, J = 9.1 Hz), 132.3 (d, J = 9.3 Hz), 131.9 (qd, J = 32.3, 2.6 Hz, 2C), 131.6 (d, J = 9.2 Hz), 130.0 (d, J = 7.1 Hz), 129.1, 127.9, 127.5 (d, J = 3.4 Hz), 125.5 – 125.1 (m, 2C), 123.7 (q, J = 273.7Hz), 123.6 (q, J = 273.7 Hz) 120.3, 118.6, 110.3, 105.0 (d, J = 5.0 Hz), 52.1, 43.1 (d, J = 71.0 Hz), 12.2.

³¹P NMR (162 MHz, DMSO- d_6) δ 28.78.

¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.68, -61.75.

HRMS (**ESI-TOF**) calcd. for $C_{32}H_{25}F_6NO_3P$ [M + H]⁺ 616.1471; found: 616.1472.

$(S)-((2-methyl-1H-indol-3-yl)(4-nitrophenyl)methyl)bis (4-(trifluoromethyl)phenyl)phosp\\ hine oxide (3l)$

It was purified by flash chromatography (petroleum ether/EtOAc/DCM, 4:1:1) to afford yellow solid (56.1 mg, 93% yield; 90% ee); $[\alpha]_D^{20} = +5.1$ (c 1.00, CH_2Cl_2); m.p. 132.1-132.3 °C;

The ee was determined by HPLC (Chiralpak AD-H, EtOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 5.5$ min, $t_{\text{minor}} = 11.5$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.94 (s, 1H), 8.38 – 8.17 (m, 3H), 8.12 – 7.94 (m, 4H), 7.84 (d, J = 8.3 Hz, 4H), 7.72 (d, J = 7.9 Hz, 2H), 7.24 – 7.04 (m, 1H), 6.93 (dd, J = 6.5, 3.0 Hz, 2H), 5.91 (d, J = 11.5 Hz, 1H), 2.44 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 146.1, 145.6 (d, J = 1.8 Hz), 137.4 (d, J = 90.5 Hz), 137.2 (d, J = 96.8 Hz), 135.1, 134.8 (d, J = 8.9 Hz), 132.3 (d, J = 9.3 Hz), 131.9 (qd, J = 31.1, 3.4 Hz, 2C), 131.6 (d, J = 9.3 Hz), 130.8 (d, J = 6.9 Hz), 127.3 (d, J = 4.4 Hz), 125.8 - 125.4 (m), 125.4 - 125.1

(m), 123.7 (q, J = 273.7 Hz), 123.6 (q, J = 273.7 Hz), 123.5, 122.3 (d, J = 8.3 Hz), 120.4, 118.7, 110.4, 104.7 (d, J = 4.8 Hz), 43.0 (d, J = 69.8 Hz), 12.1.

³¹P NMR (162 MHz, DMSO- d_6) δ 28.73.

¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.75, -61.81.

HRMS (ESI-TOF) calcd. for $C_{30}H_{22}F_6N_2O_3P$ [M + H]⁺ 603.1267; found: 603.1274.

$(R)-((2,5-dichlorophenyl)(2-methyl-1H-indol-3-yl)methyl)bis(4-(trifluoromethyl)phenyl)\\ phosphine oxide (3m)$

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 6:1:1) to afford white solid (55.9 mg, 89% yield; 99% ee); $[\alpha]_D^{20} = -69.7$ (c 1.00, CH₂Cl₂); m.p. 137.1-137.5 °C;

The ee was determined by HPLC (Chiralpak AD-H, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 6.3$ min, $t_{\text{minor}} = 8.1$ min);

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.43 (s, 1H), 8.07 (s, 1H), 7.94 – 7.79 (m, 3H), 7.69 (d, J = 8.0 Hz, 2H), 7.63 (t, J = 9.4 Hz, 2H), 7.48 (d, J = 7.9 Hz, 2H), 7.19 – 7.13 (m, 2H), 7.11 – 6.99 (m, 3H), 5.53 (d, J = 11.4 Hz, 1H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 136.5, 135.9 (d, J = 93.4 Hz), 135.5 (d, J = 93.6 Hz), 134.2 (d, J = 7.8 Hz), 133.9, 133.8 (qd, J = 35.3, 3.0 Hz, 2C), 133.1 (d, J = 1.2 Hz), 132.4 (d, J = 5.2 Hz), 132.2 (d, J = 9.6 Hz), 131.9 (d, J = 9.2 Hz), 131.6 (d, J = 9.2 Hz), 130.7, 129.0, 128.1 (d, J = 4.3 Hz), 125.7 (dq, J = 11.4, 3.7 Hz), 125.2 (dq, J = 11.6, 3.7 Hz), 123.7 (q, J = 273.7 Hz), 123.5 (q, J = 273.7 Hz), 121.7, 120.2, 119.7, 110.3, 104.3 (d, J = 5.4 Hz), 41.0 (d, J = 71.2 Hz), 13.1.

³¹P NMR (162 MHz, CDCl₃) δ 30.36.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.21, -63.29.

HRMS (**ESI-TOF**) calcd. for $C_{30}H_{21}^{35}Cl_2F_6NOP$ [M + H]⁺ 626.0637, found: 626.0639; calcd. for $C_{30}H_{21}^{35}Cl$ ³⁷ClF₆NOP [M + H]⁺ 628.0615, found: 628.0618; calcd. for $C_{30}H_{21}^{37}Cl_2F_6NOP$ [M + H]⁺ 630.0602, found: 630.0602.

$(S)-([1,1'-biphenyl]-4-yl(2-methyl-1H-indol-3-yl)methyl)bis(4-(trifluoromethyl)phenyl)p\\ hosphine oxide (3n)$

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 4:1:1) to afford white solid (62.5 mg, 99% yield; 97% ee); $[\alpha]_D^{20} = +8.1$ (c 1.00, CH_2Cl_2); m.p. 130.2-130.6 °C; **The ee was determined by HPLC** (Chiralpak AD-H, i-PrOH/hexane = 20/80, flow rate 1.0

mL/min, $\lambda = 254$ nm, $t_{major} = 6.7$ min, $t_{minor} = 9.5$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.86 (s, 1H), 8.37 – 8.28 (m, 3H), 8.00 (d, J = 8.9 Hz, 2H), 7.84 (d, J = 7.6 Hz, 2H), 7.75 – 7.64 (m, 4H), 7.51 (dd, J = 19.0, 7.6 Hz, 4H), 7.41 – 7.32 (m, 2H), 7.29 (d, J = 7.1 Hz, 1H), 7.13 (s, 1H), 6.98 – 6.89 (m, 2H), 5.76 (d, J = 10.9 Hz, 1H), 2.49 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 139.4, 138.2, 138.1 (d, J = 89.6 Hz), 138.0 (d, J = 95.1 Hz), 137.0 (d, J = 2.0 Hz), 135.1, 134.2 (d, J = 9.4 Hz), 132.3 (d, J = 9.2 Hz), 131.7 (qd, J = 32.3, 3.0 Hz, 2C), 131.5 (d, J = 9.1 Hz), 130.2 (d, J = 7.0 Hz), 128.9, 127.5 (d, J = 3.8 Hz), 127.4, 126.5, 126.4, 125.5 – 125.3 (m), 125.2 – 125.0 (m), 123.7 (q, J = 273.7 Hz), 123.6 (q, J = 273.7 Hz), 120.5, 120.2, 118.5, 110.3, 105.9 (d, J = 4.4 Hz), 42.6 (d, J = 71.1 Hz), 12.2.

³¹P NMR (162 MHz, CDCl₃) δ 29.93.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -63.12, -63.23.

HRMS (**ESI-TOF**) calcd. for $C_{36}H_{27}F_6NOP$ [M + H]⁺ 634.1729; found: 634.1731.

(S)-((2-methyl-1H-indol-3-yl)(m-tolyl)methyl)bis(4-(trifluoromethyl)phenyl)phosphine oxide (3o)

$$\begin{array}{c} \mathsf{F_3C} \\ \mathsf{Me} \\ & \mathsf{C} \\ \mathsf{F_3} \\ \mathsf{C} \\ \mathsf{C} \\ \mathsf{C} \\ \mathsf{H} \end{array}$$

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 4:1:1) to afford white solid (57.0 mg, 99% yield; 97% ee); $[\alpha]_D^{20} = -34.4$ (c 1.00, CH₂Cl₂); m.p. 124.4-124.9 °C; **The ee was determined by HPLC** (Chiralpak AD-H, i-PrOH/hexane = 20/80, flow rate 1.0

mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 11.7$ min, $t_{\text{minor}} = 20.7$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.82 (s, 1H), 8.39 – 8.13 (m, 3H), 8.04 – 7.94 (m, 2H), 7.81 (d, J = 7.3 Hz, 2H), 7.70 (d, J = 7.7 Hz, 2H), 7.43 (d, J = 6.8 Hz, 1H), 7.29 (s, 1H), 7.11 (d, J = 6.3 Hz, 1H), 7.08 – 6.99 (m, 1H), 6.95 – 6.82 (m, 3H), 5.63 (d, J = 11.6 Hz, 1H), 2.43 (s, 3H), 2.10 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 138.2 (d, J = 89.9 Hz), 138.0 (d, J = 89.9 Hz), 137.6 (d, J = 2.5 Hz), 137.1, 135.0, 134.1 (d, J = 9.3 Hz), 132.2 (d, J = 9.1 Hz), 131.6 (qd, J = 32.3, 2.0 Hz, 2C), 131.5 (d, J = 9.1 Hz), 130.4 (d, J = 7.5 Hz), 128.0, 127.6 (d, J = 3.2 Hz), 127.3, 126.7 (d, J = 6.8 Hz), 125.7 – 124.3 (m, 2C), 123.8 (q, J = 273.7), 123.7 (q, J = 273.7), 120.5, 120.2, 118.4, 110.2, 105.9 (d, J = 4.6 Hz), 43.0 (d, J = 70.8 Hz), 21.0, 12.2.

³¹P NMR (162 MHz, CDCl₃) δ 30.05.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.17, -63.25.

HRMS (**ESI-TOF**) calcd. for $C_{31}H_{25}F_6NOP [M + H]^+$ 572.1572; found: 572.1575.

$(S)-((2-methyl-1H-indol-3-yl)(p-tolyl)methyl)bis (4-(trifluoromethyl)phenyl)phosphine \\ oxide (3p)$

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 5:1:1) to afford white solid (42.7 mg, 75% yield; 91% ee); $[\alpha]_D^{20}$ = -25.9 (c 1.00, CH₂Cl₂); m.p. 134.0-134.4 °C;

The ee was determined by HPLC (Chiralpak AD-H, *i*-PrOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 9.5$ min, $t_{\text{minor}} = 12.4$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.80 (s, 1H), 8.41 – 8.17 (m, 3H), 8.05 – 7.92 (m, 2H), 7.82 (d, J = 7.9 Hz, 2H), 7.69 (d, J = 7.9 Hz, 2H), 7.46 (d, J = 7.7 Hz, 2H), 7.10 (d, J = 7.3 Hz, 1H), 6.96 (d, J = 7.6 Hz, 2H), 6.94 – 6.81 (m, 2H), 5.64 (d, J = 11.7 Hz, 1H), 2.41 (s, 3H), 2.12 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 138.2 (d, J = 91.4 Hz), 138.1 (d, J = 94.4 Hz), 135.6, 135.0, 134.7 (d, J = 2.1 Hz), 134.0 (d, J = 9.4 Hz), 132.2 (d, J = 9.1 Hz), 131.5 (qd, J = 31.3, 2.5 Hz, 2C),131.4 (d, J = 9.0 Hz), 129.5 (d, J = 7.2 Hz), 128.8, 127.6 (d, J = 4.0 Hz), 125.6 – 124.7 (m, 2C), 123.7 (q, J = 273.7 Hz), 123.6 (q, J = 273.7 Hz), 120.5, 120.1, 118.4, 110.2, 106.1 (d, J = 4.4 Hz), 42.5 (d, J = 70.9 Hz), 20.5, 12.1.

³¹P NMR (**162 MHz, DMSO-***d*₆) δ 28.88.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.14, -63.25.

HRMS (**ESI-TOF**) calcd. for $C_{31}H_{24}F_6NOPNa$ [M + Na]⁺ 594.1392; found: 594.1386.

(R)-((2-methoxyphenyl)(2-methyl-1H-indol-3-yl)methyl)diphenylphosphine oxide (3q)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 4:1:1) to afford yellow solid (22.6 mg, 50% yield; 86% ee);[α] $_{\rm D}^{20}$ = -46.0 (c 1.00, CH $_{\rm 2}$ Cl $_{\rm 2}$); m.p. 148.9-149.1 °C; **The ee was determined by HPLC** (Chiralpak AD-H, i-PrOH/hexane = 25/75, flow rate 1.0 mL/min, λ = 254 nm, $t_{\rm major}$ = 11.9 min, $t_{\rm minor}$ = 27.9 min);

¹H NMR (300 MHz, DMSO- d_6) δ 10.68 (s, 1H), 8.26 – 8.19 (m, 1H), 8.15 (d, J = 7.8 Hz, 1H), 7.78 – 7.68 (m, 2H), 7.66 – 7.57 (m, 2H), 7.45 – 7.35 (m, 3H), 7.35 – 7.26 (m, 3H), 7.12 – 7.01 (m, 2H), 6.92 – 6.86 (m, 2H), 6.84 – 6.75 (m, 2H), 5.75 (d, J = 12.0 Hz, 1H), 3.63 (s, 3H), 2.33 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 156.0 (d, J = 7.5 Hz), 135.1, 133.9 (d, J = 9.5 Hz), 133.8 (d, J = 93.8 Hz), 133.7 (d, J = 97.5 Hz).131.3, 130.9 (d, J = 5.1 Hz), 130.7 (d, J = 8.6 Hz), 130.5 (d, J = 8.6 Hz), 128.4, 128.3, 128.2, 127.9, 127.8, 126.3, 120.8, 120.7, 120.0 (d, J = 5.6 Hz), 118.3, 110.7, 110.2, 106.1 (d, J = 4.1 Hz), 55.5, 35.2 (d, J = 72.3 Hz), 11.9.

³¹P NMR (162 MHz, DMSO- d_6) δ 30.99.

HRMS (**ESI-TOF**) calcd. for $C_{29}H_{27}NO_2P$ [M + H]⁺ 452.1779; found: 452.1765.

(S)-((4-methoxyphenyl)(2-methyl-1H-indol-3-yl)methyl)bis(4-(trifluoromethyl)phenyl)phosphine oxide (3r)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 4:1:1) to afford white solid (58.0 mg, 99% yield; 91% ee); $[\alpha]_D^{20}$ = -51.8 (c 1.00, CH₂Cl₂); m.p. 213.7-213.9 °C;

The ee was determined by HPLC (Chiralpak AD-H, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 7.7$ min, $t_{\text{minor}} = 9.5$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.81 (s, 1H), 8.35 – 8.18 (m, 3H), 8.07 – 7.94 (m, 2H), 7.82 (d, J = 7.7 Hz, 2H), 7.69 (d, J = 7.6 Hz, 2H), 7.51 (d, J = 6.7 Hz, 2H), 7.11 (s, 1H), 6.95 – 6.87 (m, 2H), 6.73 (d, J = 7.9 Hz, 2H), 5.63 (d, J = 11.7 Hz, 1H), 3.60 (s, 3H), 2.44 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 157.8, 138.3 (d, J = 90.3 Hz), 138.1 (d, J = 93.9 Hz), 135.1, 133.9 (d, J = 9.5 Hz), 132.2 (d, J = 9.1 Hz), 131.6 (qd, J = 30.3, 2.0 Hz, 2C), 131.5 (d, J = 9.0 Hz), 130.7 (d, J = 7.1 Hz), 130.1, 129.6 (d, J = 2.2 Hz), 127.5 (d, J = 3.8 Hz), 125.6 – 124.9 (m, 2C), 123.7 (q, J = 273.7 Hz), 123.6 (q, J = 273.7 Hz), 120.2, 118.4, 113.6, 110.2, 106.3 (d, J = 4.2 Hz), 54.9, 42.1 (d, J = 71.1 Hz), 12.1.

³¹P NMR (**162 MHz, DMSO-***d*₆) δ 29.09.

¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.64, -61.73.

HRMS (**ESI-TOF**) calcd. for $C_{31}H_{24}F_6NO_2PNa$ [M + Na]⁺ 610.1341; found: 610.1340.

(S)-((4-methoxyphenyl)(2-methyl-1H-indol-3-yl)methyl)diphenylphosphine oxide (3s)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM, 4:1:1) to afford white solid (28.4 mg, 63% yield; 88% ee); $[\alpha]_D^{20} = -8.4$ (c 1.00, CH₂Cl₂); m.p. 110.2-110.5 °C;

The ee was determined by HPLC (Chiralpak AD-H, *i*-PrOH/hexane = 40/60, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 7.1$ min, $t_{\text{minor}} = 19.6$ min);

¹H NMR (300 MHz, DMSO- d_6) δ 10.74 (s, 1H), 8.37 – 8.25 (m, 1H), 8.08 – 7.90 (m, 2H), 7.80 – 7.67 (m, 2H), 7.56 – 7.40 (m, 5H), 7.37 – 7.21 (m, 3H), 7.15 – 7.08 (m, 1H), 6.95 – 6.87 (m, 2H), 6.71 (d, J = 8.6 Hz, 2H), 5.43 (d, J = 12.1 Hz, 1H), 3.59 (s, 3H), 2.42 (s, 3H).

¹³C NMR (75 MHz, DMSO- d_6) δ 157.6, 135.1, 134.1 (d, J = 93.3 Hz), 134.0 (d, J = 91.2 Hz), 133.4, 133.5, 131.2 (d, J = 8.7 Hz), 130.8 (d, J = 6.7 Hz), 130.5, 130.4, 128.4 (d, J = 11.1 Hz), 128.1 (d, J = 11.2 Hz), 127.8 (d, J = 4.0 Hz), 120.7, 120.0, 118.3, 113.4, 110.1, 107.3 (d, J = 4.1 Hz), 54.9, 42.4 (d, J = 70.6 Hz), 12.2.

³¹P NMR (243 MHz, CDCl₃) δ 31.81.

HRMS (**ESI-TOF**) calcd. for $C_{29}H_{27}NO_2P$ [M + H]⁺ 452.1779; found: 452.1774.

(S)-((2-methyl-1H-indol-3-yl)(naphthalen-1-yl)methyl)bis(4-(trifluoromethyl)phenyl)pho sphine oxide (3t)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 5:1:1) to afford colorless oil (51.5 mg, 85% yield; 95% ee); $[\alpha]_D^{20} = -354.8$ (c 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak AD-H, *i*-PrOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 7.6$ min, $t_{\text{minor}} = 14.7$ min);

¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 7.2 Hz, 1H), 8.45 (s, 1H), 7.89 – 7.82 (m, 3H), 7.77 (d, J = 8.2 Hz, 1H), 7.70 (d, J = 8.3 Hz, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.48 – 7.39 (m, 2H), 7.38 – 7.29 (m, 4H), 7.29 – 7.22 (m, 2H), 7.07 (d, J = 8.0 Hz, 1H), 6.97 – 6.89 (m, 1H), 6.84 – 6.76 (m, 1H), 5.73 (d, J = 11.0 Hz, 1H), 2.16 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.0 (d, J = 100.0 Hz), 136.6 (d, J = 89.9 Hz), 135.6 (d, J = 6.9 Hz), 134.5,134.2, 133.6 (qd, J = 32.6, 2.7 Hz, 2C), 132.2, 132.0 (d, J = 8.9 Hz), 131.9, 131.8 (d, J = 9.4 Hz), 129.3 (d, J = 9.9 Hz), 128.5 (d, J = 3.5 Hz), 128.3, 126.7, 125.7, 125.8 – 125.5 (m), 125.0 – 124.6 (m), 125.2, 123.5 (q, J = 273.7 Hz), 123.0, 122.2, 121.0, 119.7, 117.6, 110.3, 103.8 (d, J = 6.9 Hz), 40.1 (d, J = 72.7 Hz), 13.2.

³¹P NMR (162 MHz, CDCl₃) δ 32.15.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.22, -63.27.

HRMS (**ESI-TOF**) calcd. for $C_{34}H_{24}F_6NOPNa [M + Na]^+ 630.1392$; found: 630.1398.

(S)-((2-methyl-1H-indol-3-yl)(naphthalen-2-yl)methyl)bis(4-(trifluoromethyl)phenyl)pho sphine oxide (3u)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 4.5:1:1) to afford white soild (59.0 mg, 97% yield; 96% ee); $[\alpha]_D^{20}$ = -63.6 (c 1.00, CH₂Cl₂); m.p. 182.7-183.1 °C **The ee was determined by HPLC** (Chiralpak AD-H, EtOH/hexane = 30/70, flow rate 1.0

The ee was determined by HPLC (Chiralpak AD-H, EtOH/nexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 15.0$ min, $t_{\text{minor}} = 8.3$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.88 (s, 1H), 8.40 – 8.25 (m, 3H), 8.15 (s, 1H), 8.09 – 7.97 (m, 2H), 7.79 (d, J = 7.5 Hz, 2H), 7.73 (d, J = 7.3 Hz, 5H), 7.70 – 7.64 (m, 1H), 7.45 – 7.32 (m, 2H), 7.13 (d, J = 7.7 Hz, 1H), 6.98 – 6.86 (m, 2H), 5.90 (d, J = 11.5 Hz, 1H), 2.48 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 138.1 (d, J = 89.8 Hz), 138.0 (d, J = 95.5 Hz), 135.5, 135.1, 134.3 (d, J = 9.0 Hz), 132.6, 132.3 (d, J = 9.2 Hz), 131.8 (qd, J = 32.3, 2.1 Hz, 2C), 131.6 (d, J = 8.7 Hz), 131.5, 128.2 (d, J = 7.3 Hz), 127.9 (d, J = 7.4 Hz), 127.7, 127.5 (d, J = 8.8 Hz), 126.3, 125.9, 125.6 – 124.6 (m, 2C), 125.0, 123.8 (q, J = 274.7 Hz), 123.7 (q, J = 273.7 Hz), 120.4, 120.2, 118.5, 110.3, 105.7 (d, J = 4.6 Hz), 43.0 (d, J = 70.9 Hz), 12.2.

³¹P NMR (162 MHz, DMSO- d_6) δ 29.06.

¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.71, -61.78.

HRMS (**ESI-TOF**) calcd. for $C_{34}H_{24}F_6NOPNa$ [M + Na]⁺ 630.1392; found: 630.1391.

(R)-((2-methyl-1H-indol-3-yl)(thiophen-2-yl)methyl)diphenylphosphine oxide (3v)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 3:1:1) to afford yellow soild (28.2 mg, 66% yield; 83% ee); $[\alpha]_D^{20} = -55.9$ (c 1.00, CH₂Cl₂); m.p. 113.7-114.2 °C; **The ee was determined by HPLC** (Chiralpak AD-H, i-PrOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 10.5$ min, $t_{minor} = 23.5$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.77 (s, 1H), 8.17 (d, J = 7.6 Hz, 1H), 8.15 – 8.03 (m, 2H), 7.76 – 7.59 (m, 2H), 7.51 (s, 3H), 7.31 (d, J = 6.6 Hz, 1H), 7.30 – 7.22 (m, 2H), 7.20 (d, J = 5.1 Hz, 1H), 7.14 – 7.07 (m, 2H), 6.96 – 6.86 (m, 2H), 6.78 (dd, J = 5.0, 3.6 Hz, 1H), 5.78 (d, J = 12.1 Hz, 1H), 2.38 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 140.3 (d, J = 1.4 Hz), 135.0, 133.9 (d, J = 8.2 Hz), 133.7 (d, J = 93.0 Hz), 133.3 (d, J = 98.3 Hz), 131.5 (d, J = 2.1 Hz), 131.3, 131.2, 130.4 (d, J = 8.7 Hz), 128.5 (d, J = 11.2 Hz), 128.0 (d, J = 11.1 Hz), 126.7 (d, J = 6.0 Hz), 127.5 (d, J = 3.2 Hz), 126.3, 125.0, 124.9, 120.1, 118.1, 110.0, 106.4 (d, J = 4.4 Hz), 38.7 (d, J = 66.9 Hz), 12.1.

³¹P NMR (162 MHz, DMSO- d_6) δ 29.61.

HRMS (**ESI-TOF**) calcd. for $C_{26}H_{23}NOPS$ [M + H]⁺ 428.1238; found: 428.1226.

(S)-(1-(2-methyl-1H-indol-3-yl)pentyl)bis(4-(trifluoromethyl)phenyl)phosphine oxide (3w)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 4:1:1) to afford white solid (46.2 mg, 86% yield; 95% ee); $[\alpha]_D^{20} = -151.3$ (c 1.00, CH₂Cl₂); m.p. 142.7-143.1 °C; **The ee was determined by HPLC** (Chiralpak IA, EtOH/hexane = 5/95, flow rate 1.0 mL/min, λ = 254 nm, $t_{major} = 13.2$ min, $t_{minor} = 15.8$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.91 (s, 1H), 8.69 – 8.52 (m, 2H), 8.26 – 8.12 (m, 3H), 8.06 – 7.96 (m, 2H), 7.88 (d, J = 7.3 Hz, 2H), 7.38 – 7.29 (m, 1H), 7.18 – 7.03 (m, 2H), 4.35 – 4.23 (m, 1H), 2.87 – 2.77 (m, 1H), 2.40 (s, 3H), 1.93 – 1.77 (m, 1H), 1.35 – 1.13 (m, 4H), 0.84 (t, J = 6.6 Hz, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 139.0, 138.6 (d, J = 92.7 Hz), 135.9 (d, J = 2.9 Hz), 135.4 (d, J = 96.7 Hz), 132.6 (d, J = 8.7 Hz), 132.2 (qd, J = 31.8, 2.1 Hz, 2C), 131.7 (d, J = 9.1 Hz), 127.5, 126.2 – 125.9 (m), 125.5 – 125.1 (m), 124.3 (q, J = 273.7 Hz), 124.1 (q, J = 273.7 Hz), 121.7, 120.5, 118.5, 110.7, 103.8 (d, J = 6.4 Hz), 37.4 (d, J = 74.6 Hz), 29.7 (d, J = 13.1 Hz), 26.7, 21.9, 14.1.

³¹P NMR (162 MHz, DMSO- d_6) δ 31.04.

¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.64, -61.71.

HRMS (**ESI-TOF**) calcd. for $C_{28}H_{27}F_6NOP [M + H]^+ 538.1729$; found: 538.1732.

$(S)-((2,5-dimethyl-1H-indol-3-yl)(phenyl)methyl)bis (4-(trifluoromethyl)phenyl)phosphin\\ e\ oxide\ (3x)$

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 4:1:1) to afford white solid (52.8 mg, 92% yield, 95% ee); $[\alpha]_D^{20} = -27.3$ (c 1.00, CH₂Cl₂); m.p. 144.2-144.6 °C; **The ee was determined by HPLC** (Chiralpak AD-H, EtOH/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 7.1$ min, $t_{minor} = 5.7$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.69 (s, 1H), 8.35 – 8.19 (m, 2H), 7.98 (s, 3H), 7.81 (d, J = 7.7 Hz, 2H), 7.70 (d, J = 7.6 Hz, 2H), 7.57 (s, 2H), 7.21 – 7.12 (m, 2H), 7.10 – 7.04 (m, 1H), 7.00 (d, J = 7.2 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 5.65 (d, J = 11.4 Hz, 1H), 2.41 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 138.1(d, J = 94.4 Hz), 138.0 (d, J = 94.9 Hz), 137.8 (d, J = 2.5 Hz), 134.2 (d, J = 9.1 Hz), 133.4, 132.3 (d, J = 9.2 Hz), 131.6 (qd, J = 31.3, 2.6 Hz, 2C), 131.5 (d, J = 9.1 Hz), 129.7 (d, J = 7.1 Hz), 127.9 (d, J = 4.2 Hz), 128.2, 126.6 (d, J = 10.4 Hz), 125.4 – 124.9 (m, 2C), 123.8 (q, J = 272.7 Hz), 123.7 (q, J = 273.7 Hz), 122.4 (d, J = 9.5 Hz), 121.7, 120.0, 109.9, 105.3 (d, J = 4.7 Hz), 43.0 (d, J = 71.0 Hz), 21.6, 12.3.

³¹P NMR (**162** MHz, DMSO-*d*₆) δ 28.93.

¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.66, -61.74.

HRMS (ESI-TOF) calcd. for $C_{31}H_{25}F_6NOP$ [M + H]⁺ 572.1572; found: 572.1574.

(S)-((5-bromo-2-methyl-1H-indol-3-yl)(phenyl)methyl)bis(4-(trifluoromethyl)phenyl)pho sphine oxide (3y)

$$F_3C$$
 CF_3
 CF_3
 CH_3

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 4:1:1) to afford white solid (60.5 mg, 95% yield; 95% ee); $[\alpha]_D^{20}$ = -11.2 (c 1.00, CH₂Cl₂); m.p. 260.6-260.9 °C;

The ee was determined by HPLC (Chiralpak OJ, EtOH/hexane = 5/95, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 10.3 min, t_{minor} = 7.1 min);

¹H NMR (400 MHz, DMSO- d_6) δ 11.08 (s, 1H), 8.42 (s, 1H), 8.33 – 8.19 (m, 2H), 8.05 – 7.92 (m, 2H), 7.82 (d, J = 7.8 Hz, 2H), 7.72 (d, J = 7.7 Hz, 2H), 7.54 (d, J = 7.4 Hz, 2H), 7.22 – 7.14 (m, 2H), 7.11 – 7.05 (m, 2H), 7.02 (d, J = 8.5 Hz, 1H), 5.70 (d, J = 11.6 Hz, 1H), 2.42 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 137.8 (d, J = 92.8 Hz), 137.5 (d, J = 2.0 Hz), 136.2 (d, J = 9.2 Hz), 133.7, 132.3 (d, J = 9.3 Hz), 131.8 (qd, J = 32.3, 2.4 Hz, 2C), 131.5 (d, J = 9.2 Hz), 129.6 (d, J = 7.3 Hz), 129.4 (d, J = 3.8 Hz), 128.3, 126.7, 125.5 – 125.1 (m, 2C), 123.8 (q, J = 273.7 Hz),

123.7 (q, J = 273.7 Hz), 122.7, 122.6, 112.2, 111.4, 105.8 (d, J = 4.7 Hz), 42.7 (d, J = 70.4 Hz), 12.2.

³¹P NMR (**162** MHz, DMSO-*d*₆) δ 29.23.

¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.65, -61.73.

HRMS (**ESI-TOF**) calcd. for $C_{28}H_{22}^{79}BrF_6NOP$ [M + H]⁺ 636.0521, found: 636.0525; calcd. for $C_{28}H_{22}^{81}BrF_6NOP$ [M + H]⁺ 638.0505; found: 638.0510.

(S)-((4-bromo-2-methyl-1H-indol-3-yl)(phenyl)methyl)bis(4-(trifluoromethyl)phenyl)pho sphine oxide(3z)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 3:1:1) to afford white solid (37.5 mg, 62% yield, 83% ee); $[\alpha]_D^{20} = 55.6$ (c 1.00, CH₂Cl₂); m.p. 289.3-289.8 °C;

The ee was determined by HPLC (Chiralpak AD-H, EtOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 4.6$ min, $t_{\text{minor}} = 5.5$ min);

¹H NMR (400 MHz, CDCl₃) δ 11.34 (s, 1H), 8.13 (dd, J = 10.1, 8.1 Hz, 2H), 7.92 (d, J = 7.1 Hz, 2H), 7.79 (dd, J = 10.5, 8.1 Hz, 2H), 7.57 (d, J = 7.0 Hz, 2H), 7.49 (d, J = 7.8 Hz, 2H), 7.25 – 7.15 (m, 3H), 7.14 (d, J = 7.3 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 6.87 – 6.80 (m, 2H), 2.61 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.7 (d, J = 90.2 Hz), 137.5 (d, J = 5.0 Hz), 137.4 (d, J = 97.1 Hz), 137.2 (d, J = 1.9 Hz), 136.3, 132.0 (d, J = 8.9 Hz), 131.8 (qd, J = 32.2, 2.8 Hz, 2C), 131.5 (d, J = 9.1 Hz), 129.6 (d, J = 7.2 Hz), 128.5, 126.8, 126.2 – 125.8 (m, 1C), 125.2 – 124.8 (m, 1C), 124.3 (d, J = 6.6 Hz), 124.0, 123.8 (q, J = 273.7 Hz), 123.6 (q, J = 274.0 Hz), 121.6, 111.3, 110.7, 105.7 (d, J = 4.9 Hz), 40.3 (d, J = 69.8 Hz), 14.0.

³¹P NMR (162 MHz, CDCl₃) δ 33.80.

¹⁹F NMR (376 MHz, CDCl₃) δ -57.01, -57.08.

HRMS (**ESI-TOF**) calcd. for $C_{28}H_{22}^{79}BrF_6NOP$ [M + H]⁺ 636.0521, found: 636.0526; calcd. for $C_{28}H_{22}^{81}BrF_6NOP$ [M + H]⁺ 638.0505; found: 638.0507.

ethyl~(S)-3-((bis(4-(trifluoromethyl)phenyl)phosphoryl)(phenyl)methyl)-1 H-indole-2-carboxylate~(3a')

It was purified by flash chromatography (petroleum ether/EtOAc = 5:1) to afford white solid (42.8 mg, 71% yield; 45% ee); $[\alpha]_D^{20} = -36.4$ (c 1.00, CH₂Cl₂); m.p. 133.6-133.9 °C;

The ee was determined by HPLC (Chiralpak AD-H, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 8.3$ min, $t_{\text{minor}} = 10.2$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 11.76 (s, 1H), 8.53 (d, J = 8.3 Hz, 1H), 8.13 – 8.00 (m, 2H), 7.91 (d, J = 7.8 Hz, 2H), 7.82 – 7.73 (m, 2H), 7.69 (d, J = 7.8 Hz, 2H), 7.60 (d, J = 7.5 Hz, 2H), 7.35 (d, J = 8.3 Hz, 1H), 7.20 (q, J = 6.8 Hz, 3H), 7.16 – 7.01 (m, 2H), 6.85 (d, J = 11.1 Hz, 1H), 4.42 (q, J = 7.0 Hz, 2H), 1.39 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 161.8, 137.2 (d, J = 92.6 Hz), 136.9 (d, J = 95.7 Hz), 136.5 (d, J = 3.5 Hz), 136.3, 132.0 (qd, J = 32.5,2.3 Hz, 2C), 131.8 (d, J = 8.9 Hz), 131.2 (d, J = 9.0 Hz), 129.7 (d, J = 7.0 Hz), 128.6, 127.2, 126.1 - 125.8 (m), 126.0, 125.3 - 125.1 (m), 125.2, 124.0, 123.7 (q, J = 273.7 Hz), 123.5 (q, J = 273.7 Hz), 123.3 (d, J = 9.3 Hz), 120.2, 117.8 (d, J = 4.8 Hz), 112.5, 60.9, 42.5 (d, J = 70.1 Hz), 14.3.

³¹P NMR (**162** MHz, DMSO-*d*₆) δ 28.37.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.18, -63.26.

HRMS (**ESI-TOF**) calcd. for $C_{32}H_{25}F_6NO_3P$ [M + H]⁺ 616.1471; found: 616.1474.

(S)-((1H-indol-3-yl)(phenyl)methyl)bis(4-(trifluoromethyl)phenyl)phosphine oxide (3b`)

It was purified by flash chromatography (petroleum ether/EtOAc/DCM = 4:1:1) to afford white solid (28.9 mg, 53% yield, 5% ee); $[\alpha]_D^{20} = 1.4$ (c 1.00, CH₂Cl₂); m.p. 109.8-110.3 °C;

The ee was determined by HPLC (Chiralpak AD-H, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 6.6$ min, $t_{\text{minor}} = 8.9$ min);

¹H NMR (400 MHz, CDCl₃) δ 9.06 (s, 1H), 7.86 (dd, J = 17.0, 8.2 Hz, 3H), 7.64 – 7.54 (m, 4H), 7.51 (d, J = 7.2 Hz, 2H), 7.43 (d, J = 7.9 Hz, 1H), 7.35 – 7.23 (m, 3H), 7.17 – 7.11 (m, 1H), 7.11 – 7.05 (m, 3H), 7.05 – 7.01 (m, 1H), 5.13 (d, J = 9.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 136.5 (d, J = 96.0 Hz), 136.5 (d, J = 95.2 Hz), 135.8,135.4 (d, J = 5.2 Hz), 133.7 (qd, J = 32.8, 2.9 Hz, 2C), 131.8 (d, J = 6.9 Hz), 131.7 (d, J = 6.7 Hz), 129.8 (d, J = 5.8 Hz), 128.5 (d, J = 1.8 Hz), 127.4 (d, J = 2.5 Hz), 127.0 (d, J = 9.9 Hz), 125.6 (dq, J = 11.3, 3.7 Hz), 125.2 (dq, J = 11.6, 3.6 Hz), 125.0 (d, J = 5.9 Hz),123.6 (q, J = 273.7 Hz), 123.5 (q, J = 273.7 Hz), 122.5, 119.9, 117.8, 111.7, 110.2 (d, J = 5.2 Hz), 43.7 (d, J = 68.0 Hz).

³¹P NMR (**162** MHz, CDCl₃) δ 31.22.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.20, -63.31.

HRMS (ESI-TOF) calcd. for $C_{29}H_{21}F_6NOP$ [M + H]⁺ 544.1259; found: 544.1262.

$(S) - bis (4-fluor ophenyl) ((2-methyl-1H-indol-3-yl)(naphthalen-2-yl)methyl) phosphine \\ oxide (3c`)$

It was purified by flash chromatography (petroleum ether/EtOAc = 2:1) to afford white solid (41.3 mg, 81% yield, 87% ee); $[\alpha]_D^{20} = -57.6$ (c 1.00, CH₂Cl₂); m.p. 135.2-135.6°C;

The ee was determined by HPLC (Chiralpak AD-H, *i*-PrOH/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{minor}} = 13.3$ min, $t_{\text{major}} = 18.2$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.85 (s, 1H), 8.30 (d, J = 6.3 Hz, 1H), 8.11 (d, J = 9.0 Hz, 3H), 7.87 – 7.78 (m, 2H), 7.76 – 7.66 (m, 4H), 7.42 – 7.34 (m, 2H), 7.30 – 7.22 (m, 2H), 7.22 – 7.10 (m, 3H), 6.97 – 6.86 (m, 2H), 5.70 (d, J = 11.6 Hz, 1H), 2.47 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 164.1 (d, $J_{\text{C-F}} = 250.2$ Hz), 164.0 (d, $J_{\text{C-F}} = 250.3$ Hz), 135.7 (d, J = 87.3 Hz), 135.6 (d, J = 89.0 Hz), 134.1 (d, J = 9.4 Hz), 134.0, 133.4 (d, J = 9.3 Hz), 133.3, 132.7, 131.6, 130.3, 129.4 (dd, $J_{\text{C-P}} = 7.4$, $J_{\text{C-F}} = 2.8$ Hz), 128.4 (d, J = 6.3 Hz), 128.0 (dd, $J_{\text{C-P}} = 7.3$, $J_{\text{C-F}} = 3.4$ Hz), 127.8, 127.6, 127.4, 126.2, 125.8, 120.5, 120.2, 118.4 (d, J = 3.0 Hz), 115.8 (dd, $J_{\text{C-P}} = 12.2$ Hz, $J_{\text{C-F}} = 21.5$), 115.6 (dd, $J_{\text{C-P}} = 12.2$ Hz, $J_{\text{C-F}} = 21.5$), 110.3, 106.3 (d, J = 4.4 Hz), 43.6 (d, J = 73.9 Hz), 12.2.

³¹P NMR (162 MHz, DMSO- d_6) δ 29.64.

¹⁹F NMR (376 MHz, DMSO- d_6) δ -108.25, -108.29.

HRMS (**ESI-TOF**) calcd. for $C_{32}H_{25}F_2NOP [M + H]^+ 508.1636$ found: 508.1640.

(S)-((2-methyl-1H-indol-3-yl)(naphthalen-2-yl)methyl)diphenylphosphine oxide (3d`)

$$\bigcap_{\substack{P \\ Ph_2 \\ N \\ H}} O$$

It was purified by flash chromatography (petroleum ether/EtOAc = 2:1) to afford yellow solid (21.2 mg, 45% yield; 91% ee); $[\alpha]_D^{20} = -91.5$ (c 1.00, THF); m.p. 149.4-150.2 °C;

The ee was determined by HPLC (Chiralpak AD-H, *i*-PrOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 16.3$ min, $t_{\text{minor}} = 23.1$ min);

¹H NMR (300 MHz, DMSO- d_6) δ 10.76 (s, 1H), 8.39 – 8.25 (m, 1H), 8.11 (s, 1H), 8.06 – 7.95 (m, 2H), 7.81 – 7.70 (m, 3H), 7.70 – 7.64 (m, 3H), 7.43 – 7.36 (m, 5H), 7.36 – 7.28 (m, 3H), 7.15 – 7.05 (m, 1H), 6.95 – 6.81 (m, 2H), 5.66 (d, J = 11.7 Hz, 1H), 2.44 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) δ 136.3 (d, J = 2.2 Hz), 135.0, 133.9 (d, J = 93.1 Hz), 133.9 (d, J = 8.8 Hz), 133.8 (d, J = 97.7 Hz), 132.6, 131.5, 131.3, 131.2, 131.1, 130.5 (d, J = 8.6 Hz), 128.5, 128.4, 128.3, 128.1 (d, J = 11.2 Hz), 127.9 (d, J = 7.4 Hz), 127.8 (d, J = 4.1 Hz), 127.5, 127.4, 126.1, 125.7, 120.6, 120.0, 118.3, 110.1, 106.7 (d, J = 4.5 Hz), 43.3 (d, J = 70.3 Hz), 12.2.

³¹P NMR (162 MHz, DMSO- d_6) δ 30.11.

HRMS (ESI-TOF) calcd. for $C_{32}H_{27}NOP [M + H]^+ 472.1830$; found: 472.1824.

(S)-((2-methyl-1H-indol-3-yl)(naphthalen-2-yl)methyl)di-p-tolylphosphine oxide (3e`)

It was purified by flash chromatography (petroleum ether/EtOAc = 2:1) to afford yellow solid (15.9 mg, 32% yield; 56% ee); $[\alpha]_D^{20} = -27.3$ (c 1.00, THF); m.p. 144.2-144.8 °C;

The ee was determined by HPLC (Chiralpak AD-H, EtOH/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 17.0$ min, $t_{\text{minor}} = 14.1$ min);

¹H NMR (400 MHz, DMSO- d_6) δ 10.78 (s, 1H), 8.42 – 8.28 (m, 1H), 8.15 (s, 1H), 7.92 – 7.84 (m, 2H), 7.73 (d, J = 7.9 Hz, 2H), 7.70 – 7.62 (m, 4H), 7.42 – 7.33 (m, 2H), 7.18 (d, J = 7.2 Hz, 2H), 7.11 (d, J = 7.1 Hz, 3H), 6.96 – 6.87 (m, 2H), 5.62 (d, J = 11.5 Hz, 1H), 2.47 (s, 3H), 2.20 (d, J = 9.5 Hz, 6H).

¹³C NMR (101 MHz, DMSO- d_6) δ 142.7 (d, J = 2.7 Hz), 141.1 (d, J = 2.3 Hz), 141.0 (d, J = 2.3 Hz), 136.6 (d, J = 2.2 Hz), 135.1, 133.8 (d, J = 8.8 Hz), 132.7, 131.1 (d, J = 8.9 Hz), 131.0 (d, J = 94.9 Hz), 130.9 (d, J = 94.8 Hz), 130.4, 129.5 (d, J = 13.4 Hz), 129.0 (d, J = 11.4 Hz), 128.7 (d, J = 11.5 Hz), 128.5 (d, J = 6.7 Hz), 127.9, 127.8, 127.5, 127.4, 126.1, 125.6, 120.6, 120.0, 118.3, 110.1, 107.0 (d, J = 4.3 Hz), 43.4 (d, J = 70.1 Hz), 21.0, 20.9, 12.3.

³¹P NMR (162 MHz, DMSO-d₆) δ 30.42.

HRMS (**ESI-TOF**) calcd. for $C_{34}H_{31}NOP [M + H]^+ 500.2138$; found: 500.2143.

(2-methyl-1H-indol-3-yl)(phenyl)methyl)(phenyl)(4-(trifluoromethyl)phenyl)phosphine oxide (3f`)

It was purified by flash chromatography (petroleum ether/EtOAc = 3:1) to afford white solid (43.4 mg, 88% yield, 1.25:1 dr; isomer 1: 23.6 mg, 48% yield, 96% ee; $[\alpha]_D^{20}$ = 2.78 (c 1.00, CH₂Cl₂); m.p. 117.2-117.9 °C; isomer 2: 19.8 mg, 40% yield, 97% ee); $[\alpha]_D^{20}$ = -45.2 (c 1.00, CH₂Cl₂); m.p. 119.6-120.0 °C;

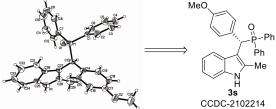
The ee was determined by HPLC (isomer 1 : Chiralpak AD-H, EtOH/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 16.5$ min, $t_{\text{minor}} = 22.5$ min); (isomer 2: Chiralpak IA, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{\text{major}} = 5.3$ min, $t_{\text{minor}} = 5.9$ min).

¹H NMR (400 MHz, DMSO- d_6) isomer 1: δ 10.79 (s, 1H), 8.31 (d, J = 5.8 Hz, 1H), 8.24 – 8.15 (m, 2H), 7.84 – 7.73 (m, 4H), 7.57 (d, J = 7.1 Hz, 2H), 7.41 – 7.28 (m, 3H), 7.18 – 7.08 (m, 3H), 7.08 – 7.01 (m, 1H), 6.96 – 6.86 (m, 2H), 5.58 (d, J = 11.9 Hz, 1H), 2.45 (s, 3H). isomer 2: δ 10.78 (s, 1H), 8.26 (d, J = 7.1 Hz, 1H), 8.05 – 7.98 (m, 2H), 7.98 – 7.89 (m, 2H), 7.67 (d, J = 7.2 Hz, 2H), 7.57 (d, J = 7.8 Hz, 2H), 7.47 (t, J = 6.7 Hz, 3H), 7.19 – 7.12 (m, 2H), 7.12 – 7.02 (m, 2H), 6.95 – 6.85 (m, 2H), 5.56 (d, J = 11.8 Hz, 1H), 2.41 (s, 3H).

¹³C NMR (101 MHz, DMSO- d_6) isomer 1: δ 139.2 (d, J = 89.9 Hz), 138.2 (d, J = 2.0 Hz), 135.1, 133.9 (d, J = 9.3 Hz), 132.8 (d, J = 98.2 Hz), 132.1 (d, J = 9.0 Hz), 131.6 (d, J = 2.0 Hz), 131.1 (d, J = 2.0 Hz), 130.5 (d, J = 8.8 Hz), 129.7 (d, J = 6.8 Hz), 128.3 (d, J = 11.3 Hz), 128.1, 127.7 (d, J = 4.1 Hz), 126.4, 125.3 – 124.6 (m), 123.8 (q, J = 273.7 Hz), 120.6, 120.1, 118.4, 110.2, 106.5 (d, J = 4.5 Hz), 43.2 (d, J = 68.4 Hz), 12.2. isomer 2: δ 139.0 (d, J = 94.1 Hz), 138.1 (d, J = 2.1 Hz), 135.0, 133.9 (d, J = 9.2 Hz), 132.9 (d, J = 93.8 Hz), 131.7 (d, J = 2.2 Hz), 131.4 (d, J = 9.1 Hz), 131.2 (d, J = 8.9 Hz), 131.0 (d, J = 2.7 Hz), 129.7 (d, J = 7.0 Hz), 128.6 (d, J = 11.2 Hz), 128.1,

127.6 (d, J = 3.7 Hz), 126.4, 125.0 – 124.8 (m), 123.7 (q, J = 273.7 Hz), 120.6, 120.1, 118.4, 110.2, 106.4 (d, J = 4.7 Hz), 43.1 (d, J = 70.6 Hz), 12.1.

³¹P NMR (162 MHz, CDCl₃) isomer 1 δ 30.82; isomer 2 δ 31.03.

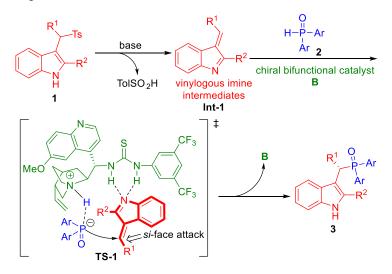

¹⁹**F NMR (376 MHz, CDCl₃)** isomer 1 δ -63.05; isomer 2 δ -63.17.

HRMS (**ESI-TOF**) calcd. for $C_{29}H_{23}F_3NOP$ [M + H]⁺ 490.1542; found: 490.1543.

3. Scale-up experiment

In an ordinary vial equipped with a magnetic stirring bar, the bis(4-(trifluoromethyl)phenyl) -phosphine oxide **2b** (2.75 mmol, 930 mg) were added to a solution of arylsulfonyl indoles **1a** (2.5 mmol, 1.06 g), catalyst **B** (20 mol%) and K_2CO_3 (2.5 mmol, 1.0 equiv) in 1,2-dichloroethane (25 mL) at 50 °C. And then, the whole was stirred for 5 h until the completion of the reaction, as indicated by TLC. Finally the reaction mixture was directly purified by flash chromatography on silica gel (PE/EA/DCM=4:1:1) and obtained the products **3u** (1.44 g, 95% yield, 96% ee).

4. X-ray crystal data for compound 3s



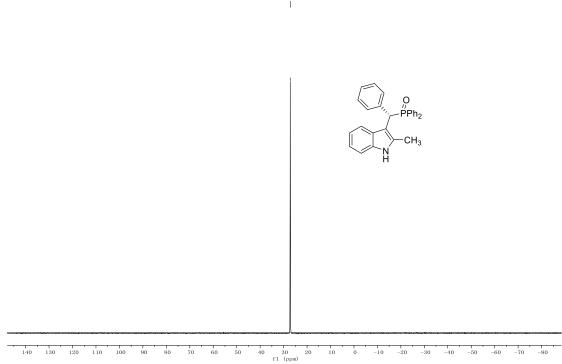
		CCDC-2102214	
Identification code		202009174	
Empirical formula		$C_{31}H_{32}NO_3P$	
Formula weight		497.54	
Temperature/K		293(2)	
Crystal system		orthorhombic	
Space group		P212121	
a/Å		10.45953(19)	
b/Å		13.5092(3)	
c/Å		19.3396(4)	
α/°		90	
β/°		90	
γ/°		90	
Volume/Å3		2732.69(10)	
Z		4	
pcalcg/cm3		1.209	
	\$10		

μ/mm-1	1.138
F(000)	1056.0
Crystal size/mm3	$0.16\times0.13\times0.09$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	7.984 to 134.138
Index ranges	$-12 \le h \le 12$, $-16 \le k \le 15$, $-22 \le l \le 23$
Reflections collected	24771
Independent reflections	4884 [Rint = 0.0406, Rsigma = 0.0269]
Data/restraints/parameters	4884/1/333
Goodness-of-fit on F2	1.032
Final R indexes [$I \ge 2\sigma(I)$]	R1 = 0.0391, $wR2 = 0.1048$
Final R indexes [all data]	R1 = 0.0420, $wR2 = 0.1077$
Largest diff. peak/hole / e Å-3	0.22/-0.20
Flack parameter	-0.006(10)

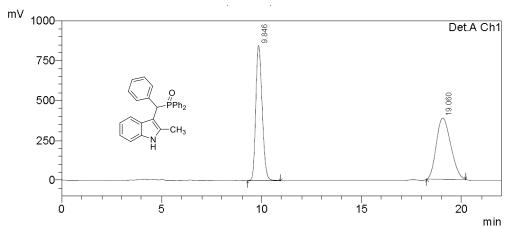
5. Proposed reaction mechanism

In the presence of base, an elimination of *p*-methyl benzenesulfinic acid from sulfonyl indoles **1** leads to the *in situ* generation of indole-derived vinylogous imine intermediates **Int-1**, which is oriented by the double hydrogen bonds of thiourea moiety of the catalyst **B**. Concurrently, the tertiary nitrogen of the quinine moiety in catalyst **B** would provide suitable basicity to enhance the nucleophilicity of the diarylphosphine oxides **2**. Under the stereoselective control via transition state **TS-1**, the phospha-Michael conjugated addition of diarylphosphine oxides **2** to the *Si*-face of intermediates **A** leads to the expected 3-(1-diphenylphosphoryl-arylmethyl)indole products **3** with stereospecific configuration.

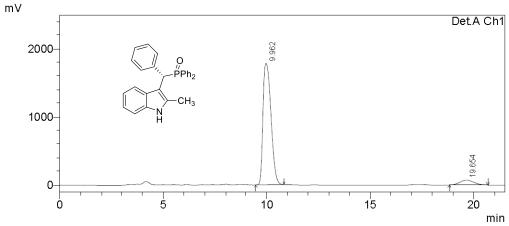
Proposed reaction mechanism


5. NMR and HPLC Spectra of compounds of 3

¹H NMR spectrum of compound 3a



HPLC spectra of 3a

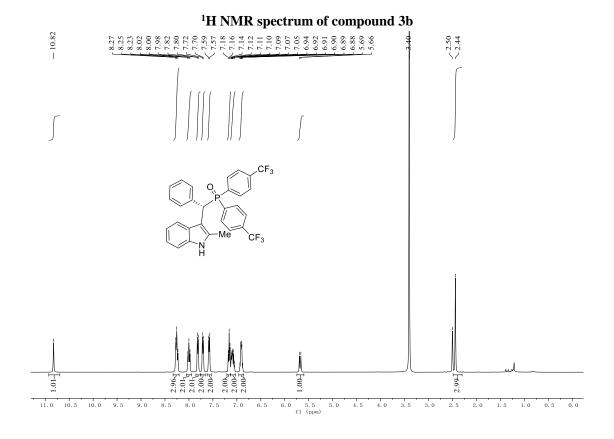


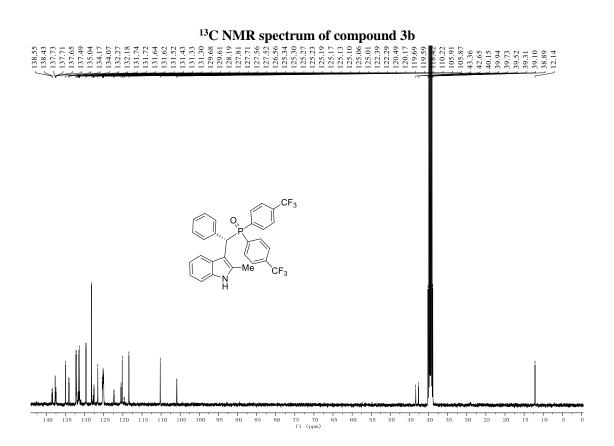
1 Det.A Ch1/254nm

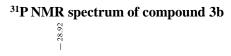
PeakTable

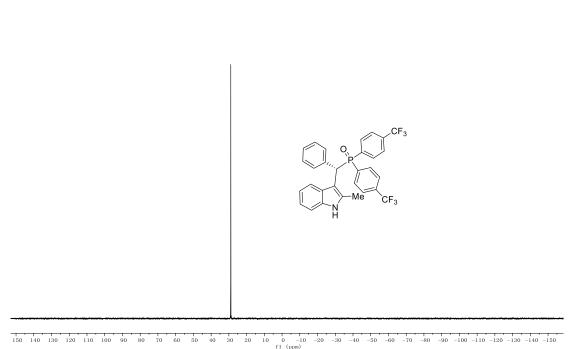
Detector A Ch1 254nm

Botoccor it carr 25 main						
Peak#	Ret. Time	Area	Height	Area %		
1	9.846	19041230	850143	49.709		
2	19.060	19264527	384045	50.291		
Total		38305756		100.000		

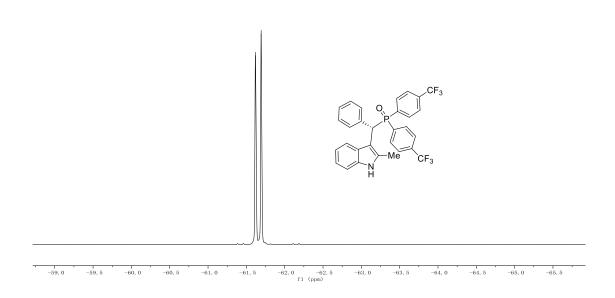


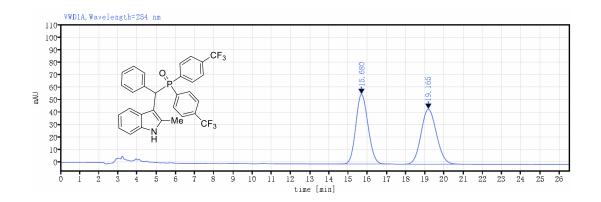

1 Det.A Ch1/254nm


PeakTable

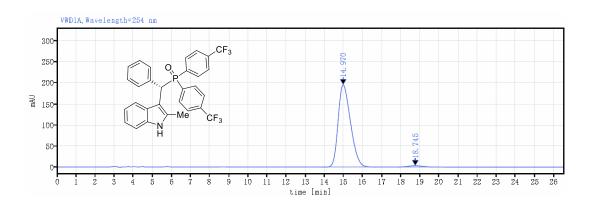

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %
1	9.962	48032271	1782155	93.456
2	19.654	3363384	71124	6.544
Total		51395655		100.000

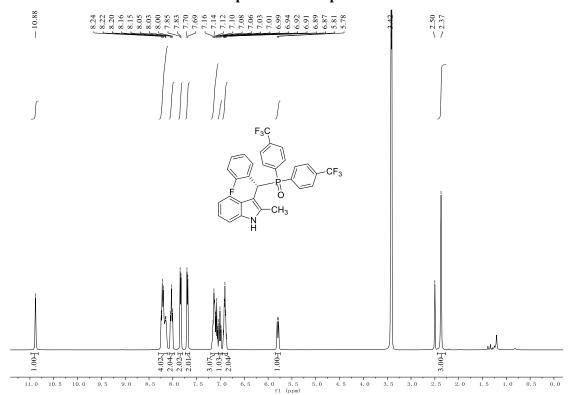




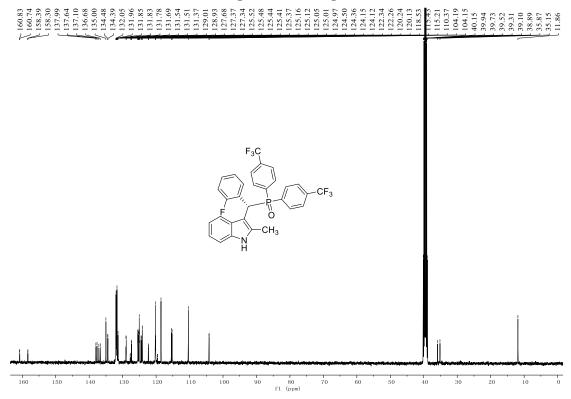
¹⁹F NMR spectrum of compound 3b

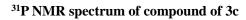

7-61.62

HPLC spectra of 3b



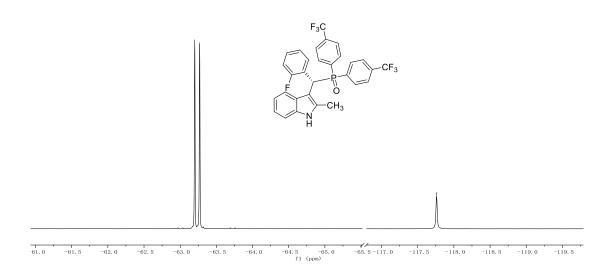
Detector	VWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	15.680	2479.31	55.94	50.07	
	19.165	2472.60	44.21	49.93	
		4951.91		100.00	



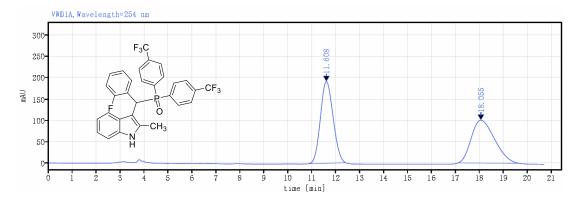

Detector	VWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	14.970	8776.53	195.98	98.27	
	18.745	154.48	3.07	1.73	
		8931.00		100.00	

¹H NMR spectrum of compound of 3c

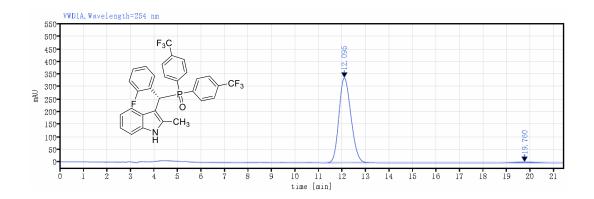
$^{13}\mathrm{C}$ NMR spectrum of compound of 3c

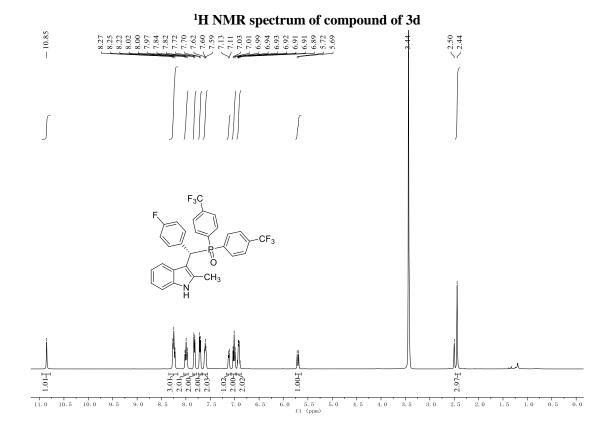

- 28.84

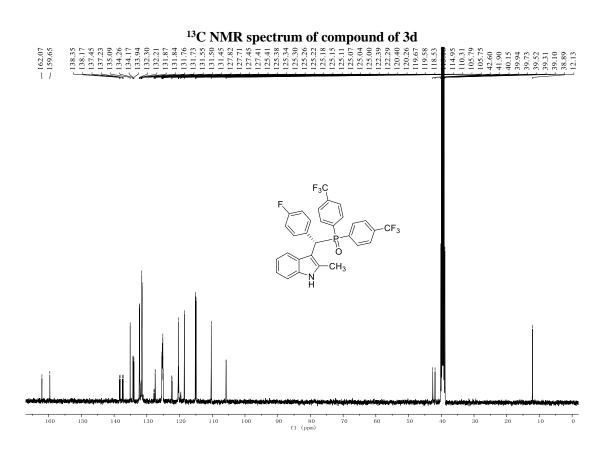
F₃C CF₃ CH₃ H


$^{19}\mathrm{F}\ \mathrm{NMR}\ \mathrm{spectrum}\ \mathrm{of}\ \mathrm{compound}\ \mathrm{of}\ \mathrm{3c}$

-63.27

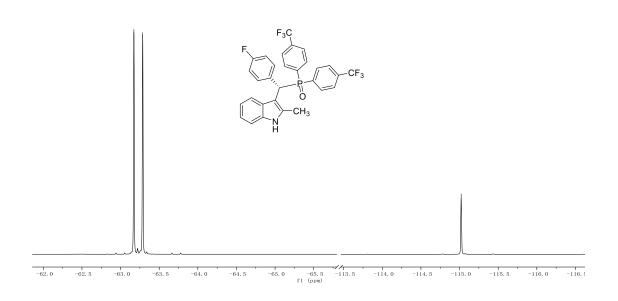

---117.76


HPLC spectra of 3c

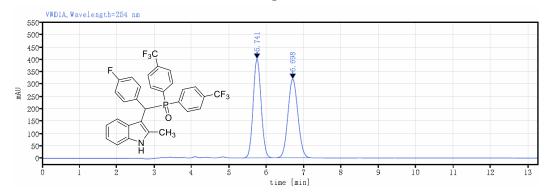


Detector	vWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	11.608	7077.73	192.32	50.94	
	18.055	6815.55	100.96	49.06	
		13893.28		100.00	

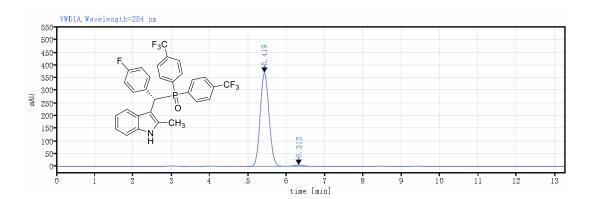
Detector	VWD1A,Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	12.095	12038.19	338.44	98.41	
	19.760	194.44	3.24	1.59	
		12232.63		100.00	

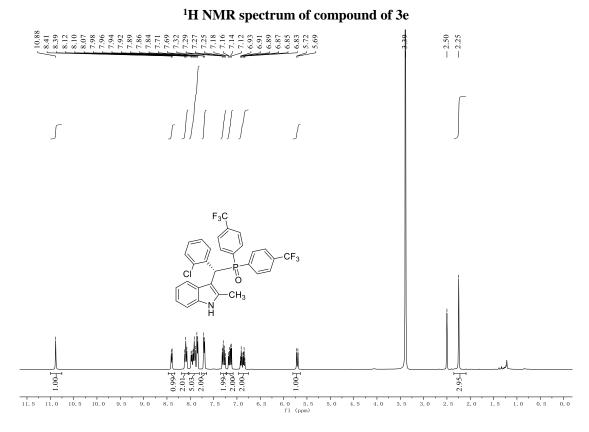

$^{31}\!P$ NMR spectrum of compound of 3d

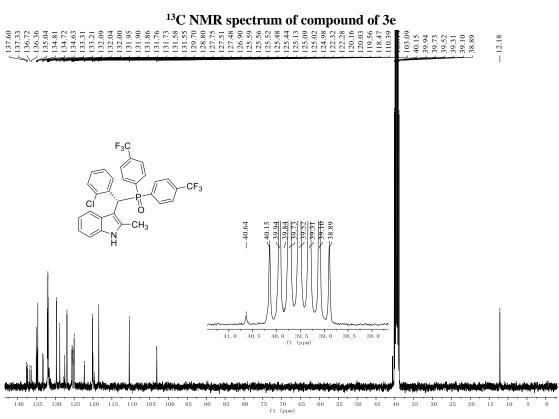
-29.11


 F_3C CF_3 CH_3

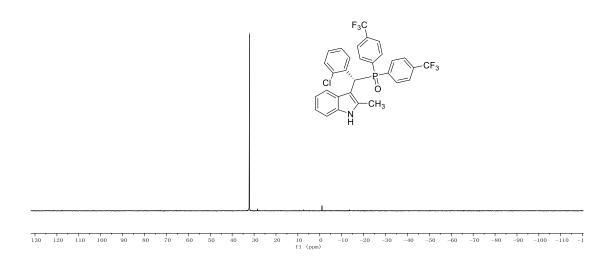
¹⁹F NMR spectrum of compound of 3d


- - -63.12 - - -63.29

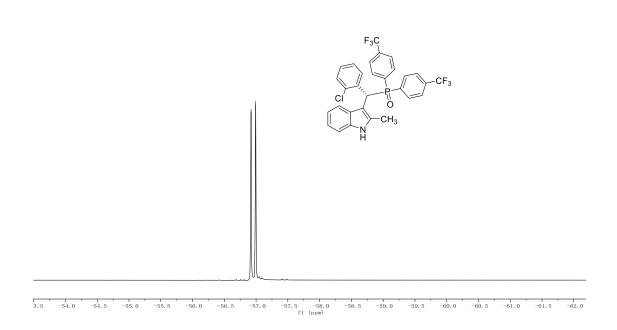

HPLC spectra of 3d



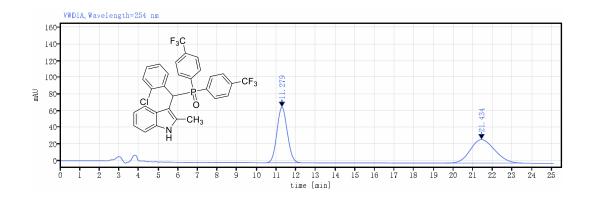
Detector	VWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	5.741	5943.69	400.56	50.26	
	6.698	5883.29	318.48	49.74	
		11826.99		100.00	



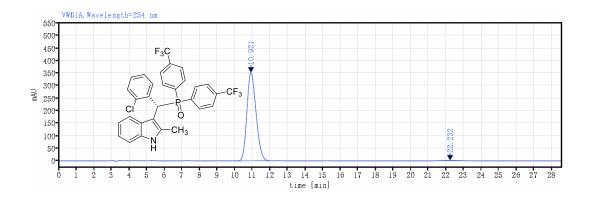
Detector	VWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	5.419	5908.84	369.02	98.64	
	6.312	81.32	4.63	1.36	
		5990.16		100.00	



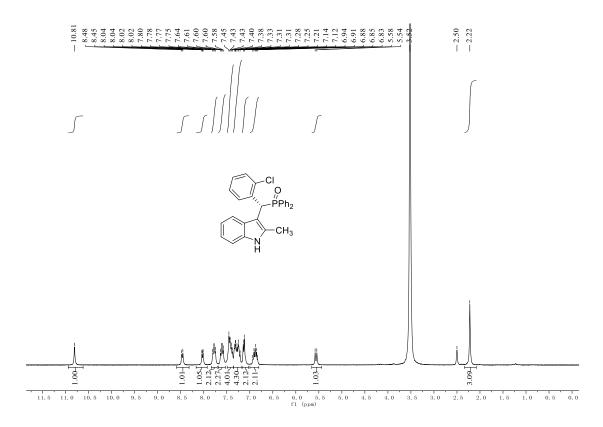
^{31}P NMR spectrum of compound of 3e $^{\begin{subarray}{c} 31 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 22 \\ 22 \\ 23 \\ 24 \\ $$



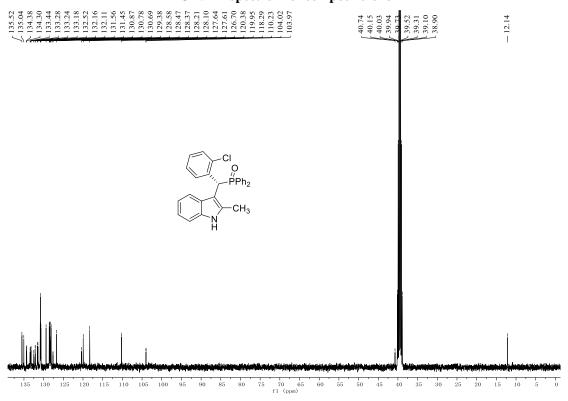
¹⁹F NMR spectrum of compound of 3e



HPLC spectra of 3e

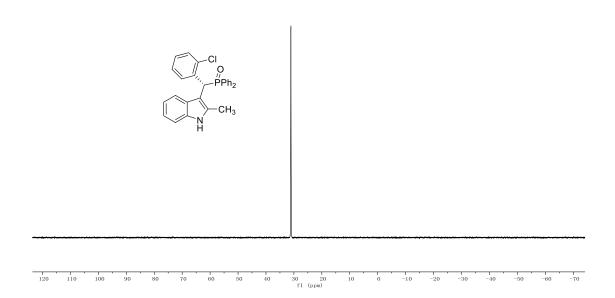


Detector	VWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	11.279	2452.44	66.90	50.21	
	21.434	2431.53	28.23	49.79	
		4883.97		100.00	

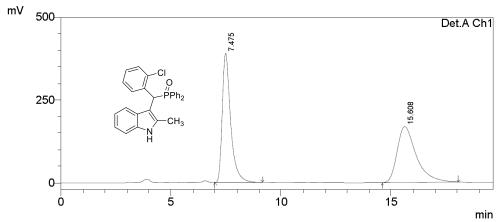



Detector	VWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	10.921	12689.30	352.10	99.08	
	22.232	117.61	1.63	0.92	
		12806.92		100.00	

¹H NMR spectrum of compound of 3f

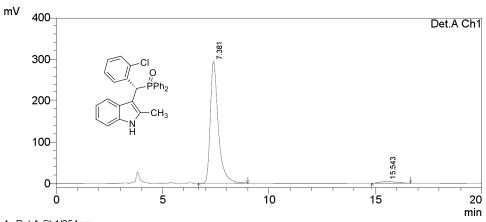


¹³C NMR spectrum of compound of 3f



- 31.05

HPLC spectra of 3f

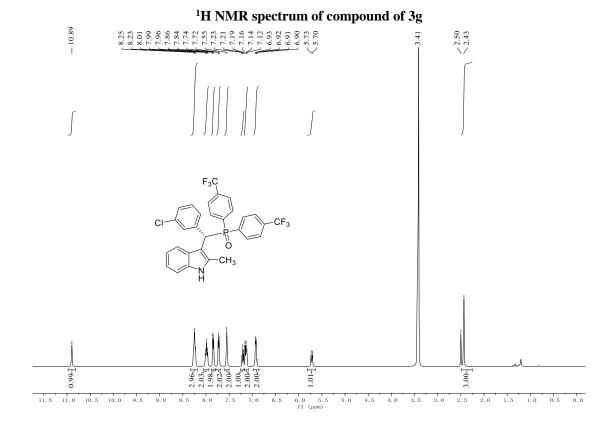


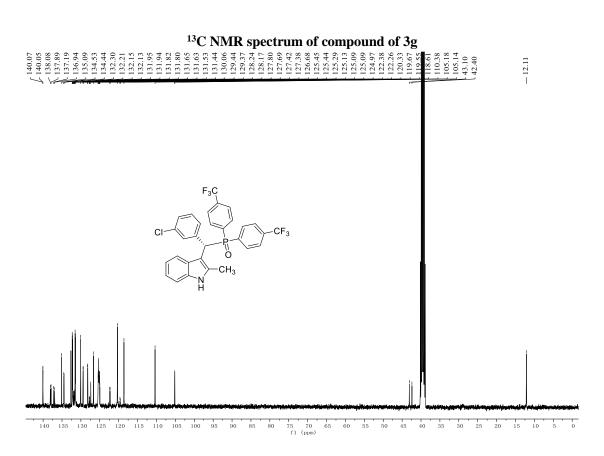
1 Det.A Ch1/254nm

PeakTable

Detector	A Ch1	254nm	

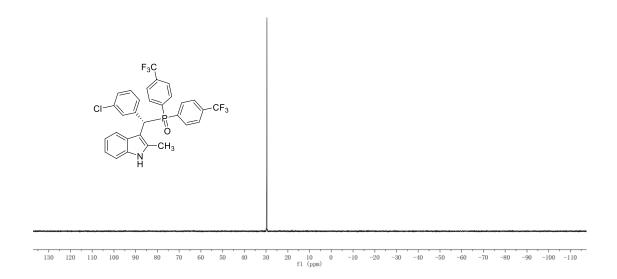
Peak#	Ret. Time	Area	Height	Area %
1	7.475	10358144	389612	50.371
2	15.608	10205365	168527	49.629
Total		20563508		100.000

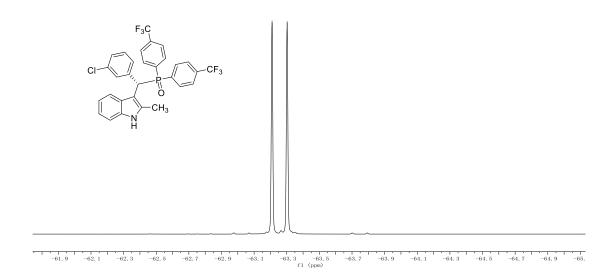



1 Det.A Ch1/254nm

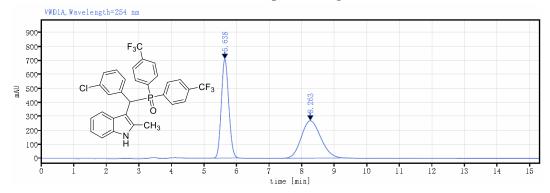
PeakTable

Detector A Ch1 254nm

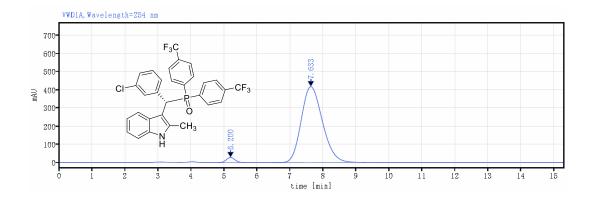

Peak#	Ret. Time	Area	Height	Area %
1	7.381	7710278	294015	96.915
2	15.543	245458	4860	3.085
Total		7955736		100.000

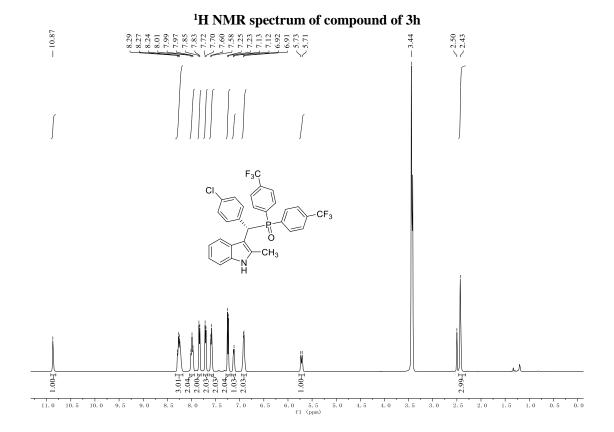


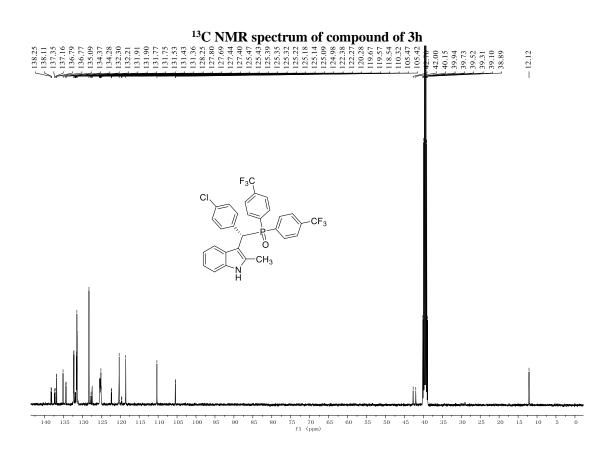
-29.66



$^{19}\mbox{F}$ NMR spectrum of compound of $3\mbox{g}$

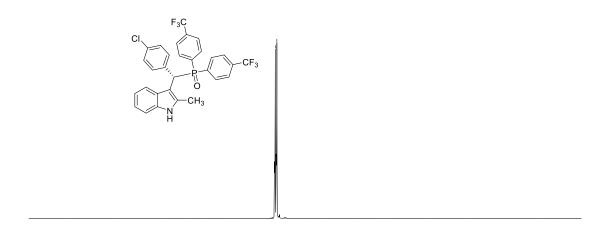

--63.21


HPLC spectra of 3g



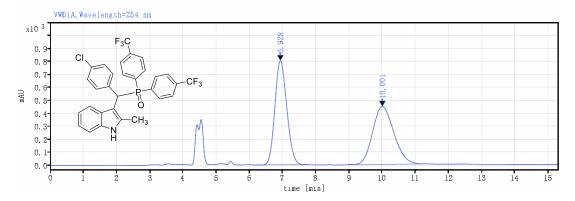
Detector VWD1A, Wavelength=254 nm Peak Ret.Time [min] Height Area% 5.638 50.17 11173.50 706.36 8.263 11099.23 266.97 49.83 22272.73 100.00

Detector	VWD1A, Wave1	ength=254 nm		
Peak	Ret.Time [min]	Area	Height	Area%
	5.200	499.95	28.00	2.60
	7.633	18696.87	418.48	97.40
		19196.82		100.00

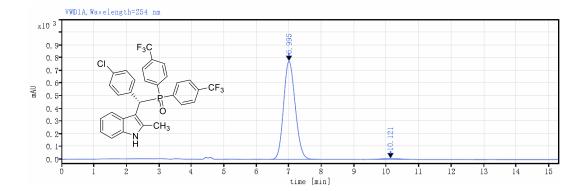

^{31}P NMR spectrum of compound of 3h

- 28.93

$$F_3C$$
 CF_3
 CF_3
 CH_3

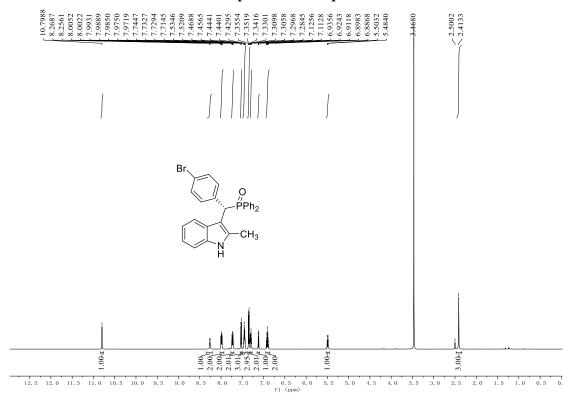

¹⁹F NMR spectrum of compound of 3h

7-61.67 --61.76

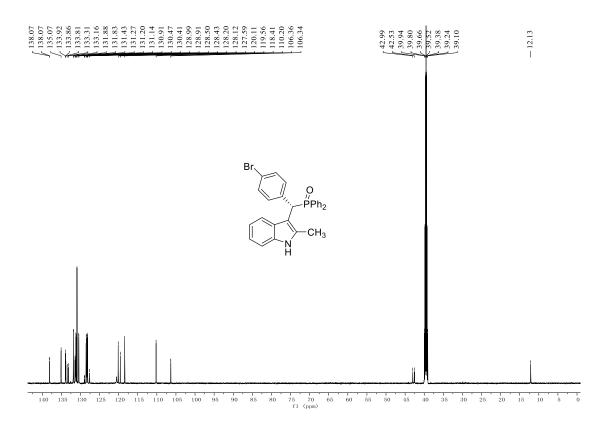


-49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -5 -71 (ppm)

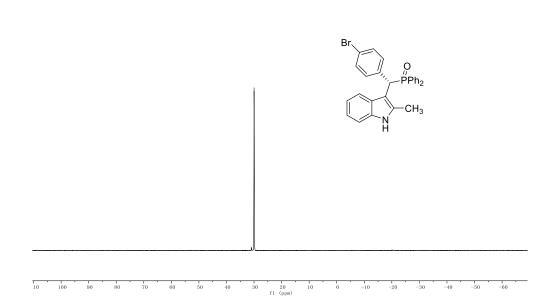
HPLC spectra of 3h



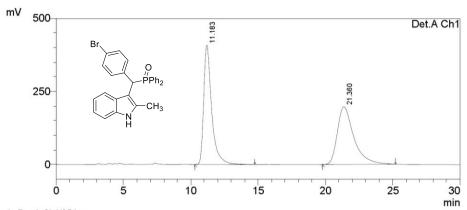
Detector	VWD1A, Wavel	ength=254 nm			
Peak	Ret.Time [min]	Area	Height	Area%	
	6.928	20018.29	803.17	50.23	
	10.001	19836.09	446.10	49.77	
		39854.38		100.00	



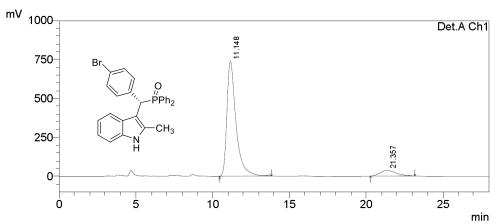
Detector	VWD1A, Wavel	ength=254 nm			
Peak	Ret.Time [min]	Area	Height	Area%	
	6.995	19282.07	775.14	98.69	
	10.121	256.65	6.68	1.31	
		19538.71		100.00	



¹³C NMR, ³¹P NMR spectrum of compound of 3i



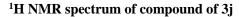
^{31}P NMR spectrum of compound of 3i

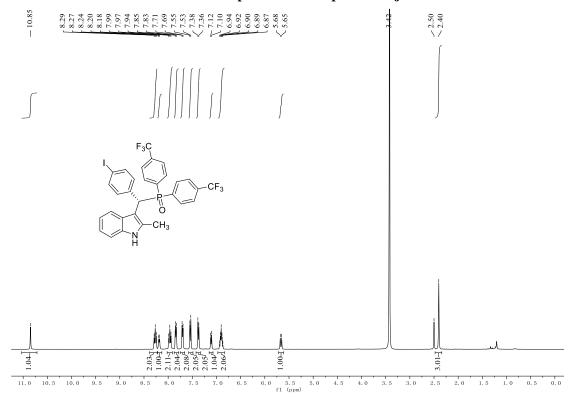

HPLC spectra of 3i

1 Det.A Ch1/254nm

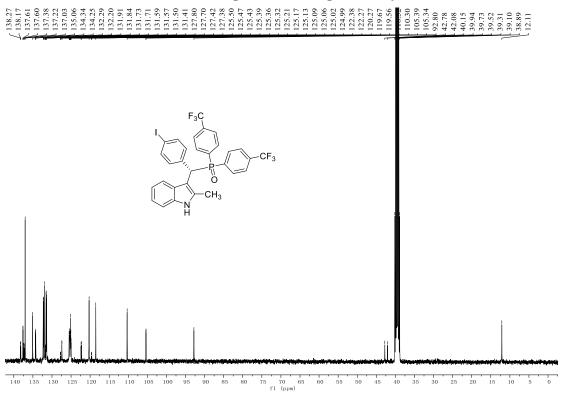
PeakTable

Peak#	Ret. Time	Area	Height	Area %
1	11.183	16759495	407762	50.003
2	21.360	16757151	197187	49.997
Total	21.000	33516646	157107	100.00

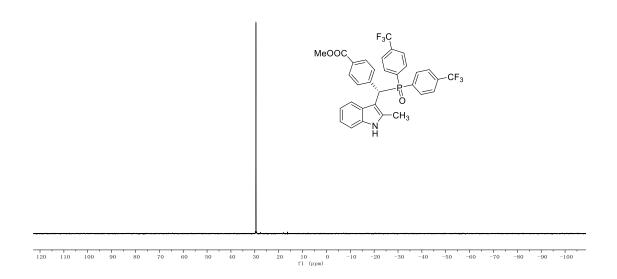


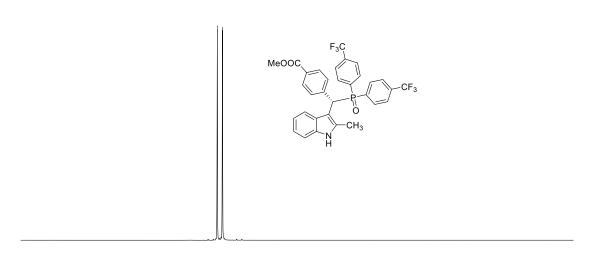

1 Det.A Ch1/254nm

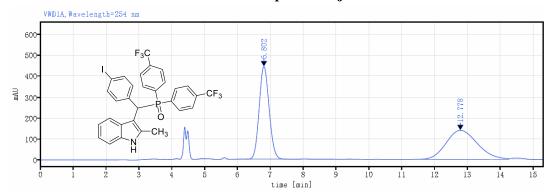
PeakTable

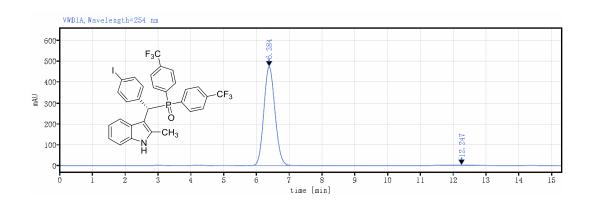

Area % 92.033 7.967 100.000

Detector A	Ch1 254nm		
Peak#	Ret. Time	Area	Height
1	11.148	30379044	736268
2	21.357	2629828	36006
Total		33008871	

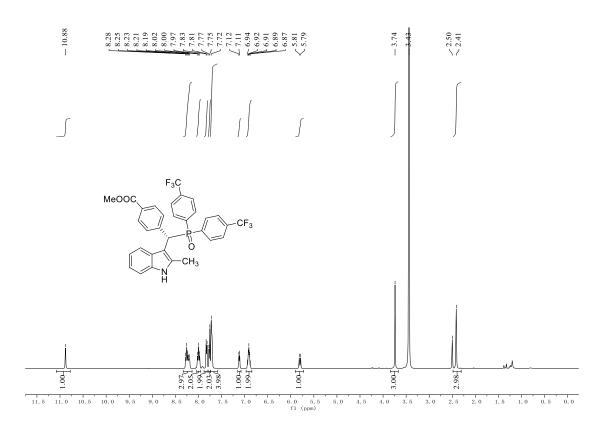



^{13}C NMR spectrum of compound of 3j

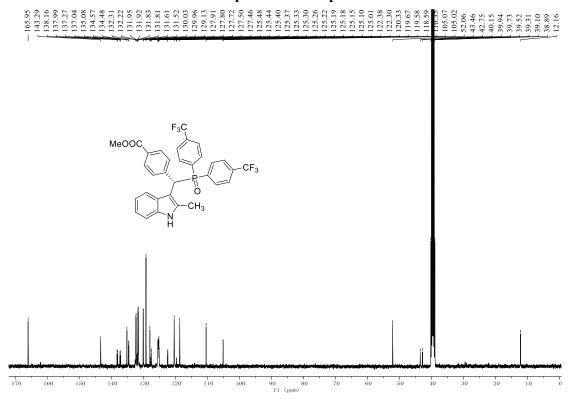

^{31}P NMR spectrum of compound of 3j


^{19}F NMR spectrum of compound of 3j $^{\circ}$, $^{\circ}$, $^{\circ}$

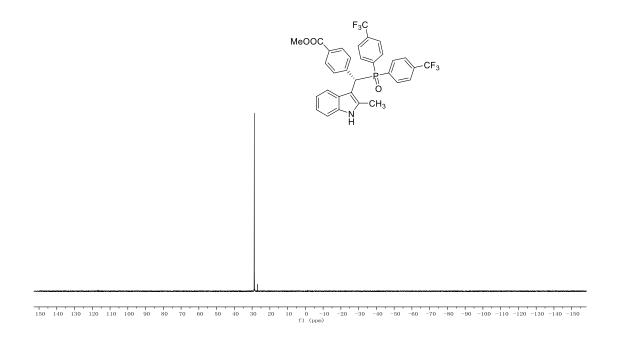
HPLC spectra of 3j

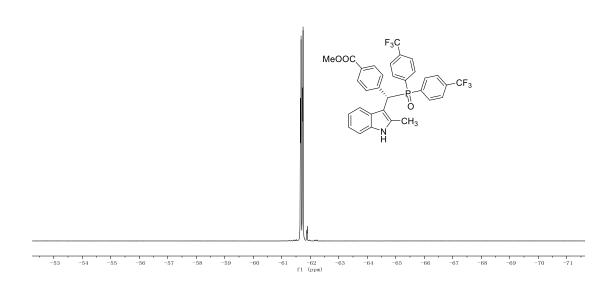


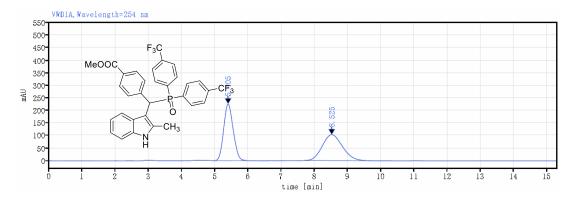
Detector	VWD1A, Wavele	ength=254 nm		
Peak	Ret.Time [min]	Area	Height	Area%
	6.802	9310.46	443.71	50.24
	12.778	9219.89	139.16	49.76
		18530.35		100.00

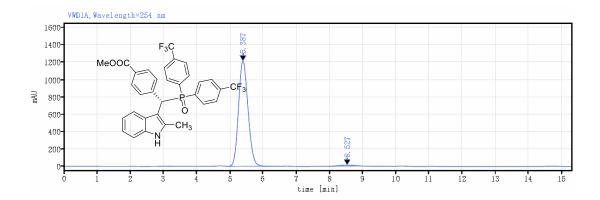


Detector	VWD1A, Wavele	ength=254 nm			
Peak	Ret.Time [min]	Area	Height	Area%	
	6.384	11166.38	475.56	99.48	
	12.247	57.88	1.36	0.52	
		11224.25		100.00	

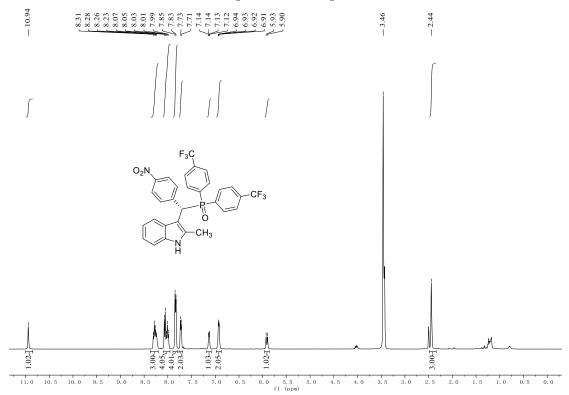

¹H NMR spectrum of compound of 3k


¹³C NMR spectrum of compound of 3k

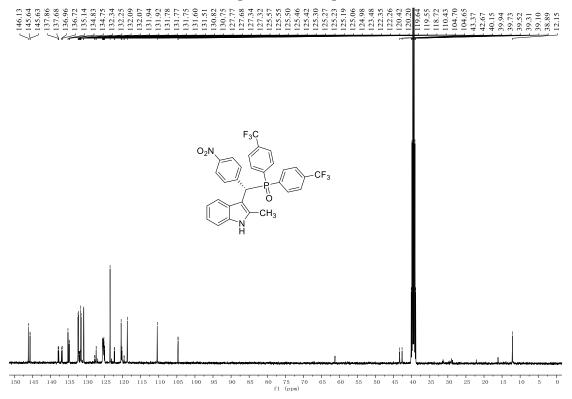

^{31}P NMR spectrum of compound of 3k


^{19}F NMR spectrum of compound of 3k $^{89}\stackrel{?}{\stackrel{?}{_{\sim}}}_{\stackrel{?}{\sim}}_{\stackrel{?}{\sim}}$

HPLC spectra of 3k

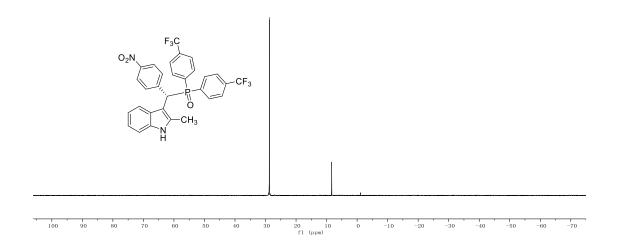


Detector	VWD1A, Wave1	ength=254 nm			
Peak	Ret.Time [min]	Area	Height	Area%	
	5.405	4494.04	226.05	50.79	
	8.525	4353.49	103.23	49.21	
		8847.52		100.00	

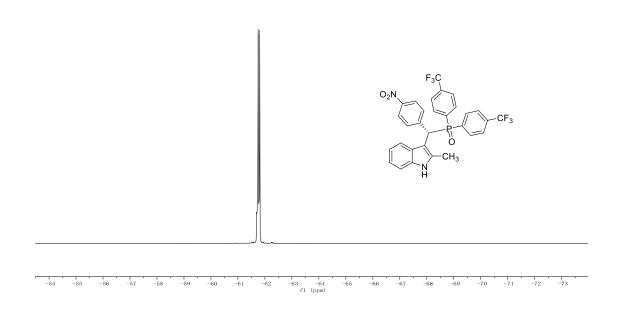


Detector	VWD1A, Wavel	ength=254 nm			
Peak	Ret.Time [min]	Area	Height	Area%	
	5.387	24134.97	1214.50	98.40	
	8.527	391.67	11.97	1.60	
		24526.64		100.00	

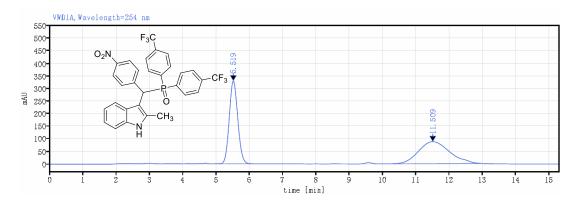
¹H NMR spectrum of compound of 3l



^{13}C NMR spectrum of compound of 3l

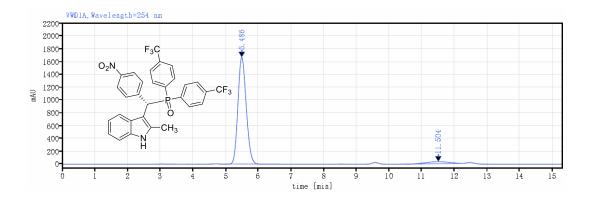

 $^{31}\mbox{P NMR}$ spectrum of compound of 31

-28.73



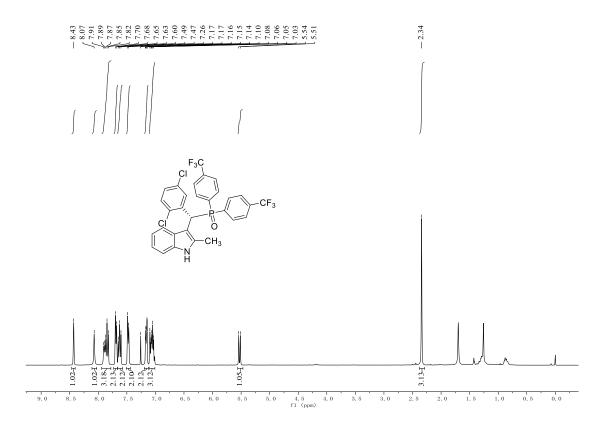
$^{19}\mathrm{F}$ NMR spectrum of compound of 3l

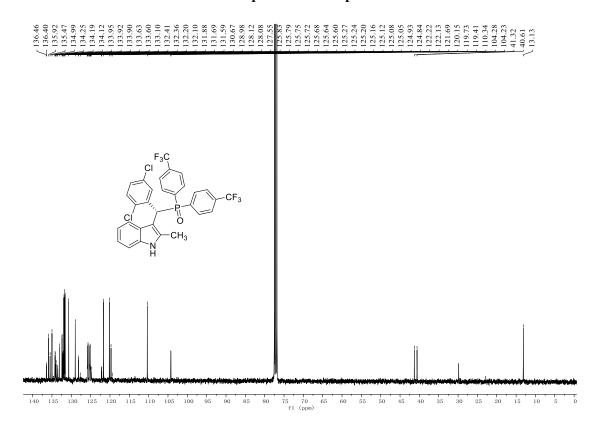
-61.75

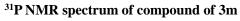


HPLC spectra of 3l

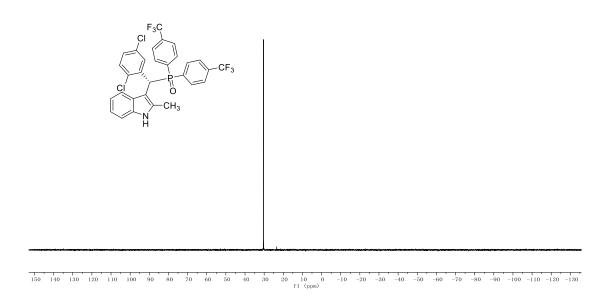
Detector VWD1A, Wavelength=254 nm


Peak	Ret.Time [min]	Area	Height	Area%
	5.519	5819.81	329.10	50.77
	11.509	5643.33	87.36	49.23
		11463.14		100.00

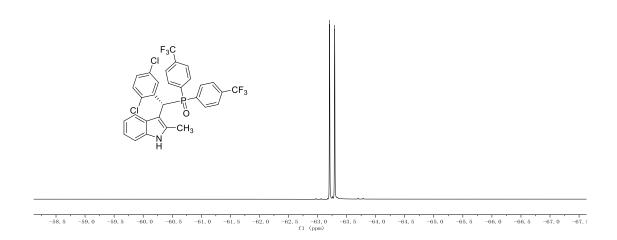

Detector VWD1A, Wavelength=254 nm


Peak	Ret.Time [min]	Area	Height	Area%
	5.486	29429.58	1665.49	94.81
	11.504	1612.39	31.40	5.19
		31041.98		100.00

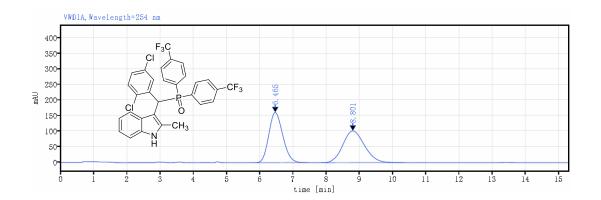
¹H NMR spectrum of compound of 3m



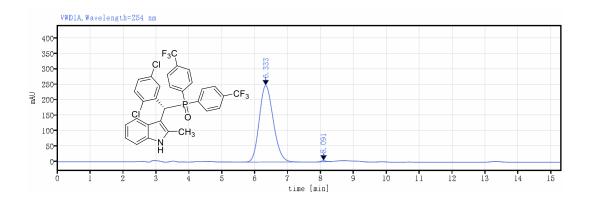
 ^{13}C NMR spectrum of compound of 3m

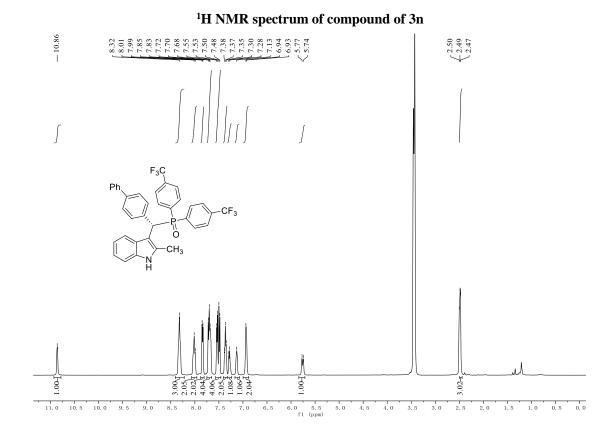


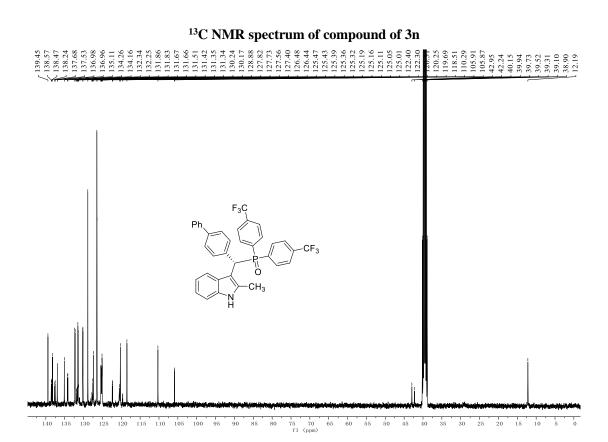
- 30.36



^{19}F NMR spectrum of compound of 3m


--63.21 --63.29

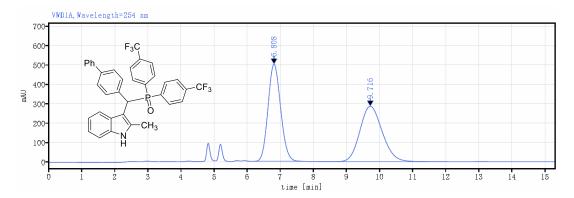

HPLC spectra of 3m



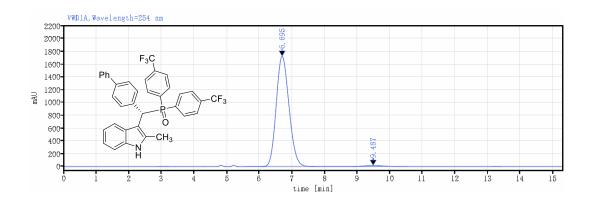
Detector	VWD1A, Wavelength=254 nm					
Peak	Peak Ret.Time [min]		Height	Area%		
	6.465	4747.71	162.02	50.28		
	8.801	4694.36	102.51	49.72		
		9442.07		100.00		

Detector	r VWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	6.333	7326.90	248.08	99.49	
	8.091	37.41	3.42	0.51	
		7364.31		100.00	

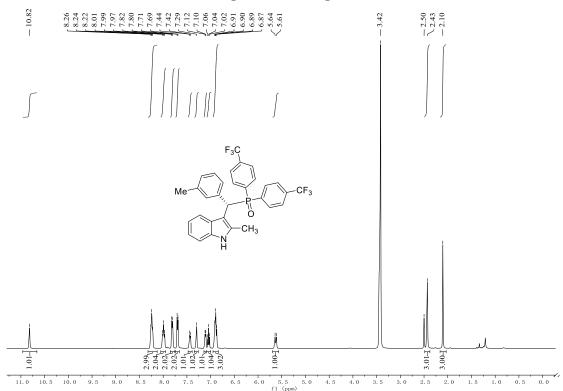
 $^{31}\!P$ NMR spectrum of compound of 3n


- 29.93

$^{19}\mbox{F}$ NMR spectrum of compound of 3n


-63.12

HPLC spectra of 3n

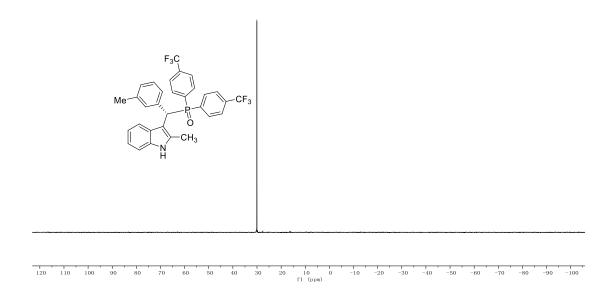


Detector	r VWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	6.808	13183.75	499.39	49.78	
	9.716	13301.58	285.03	50.22	
		26485.33		100.00	

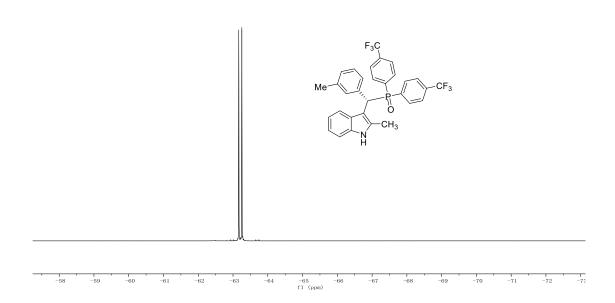


Detector	VWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	6.695	47059.85	1722.33	98.67	
	9.487	632.90	16.23	1.33	
		47692.75		100.00	

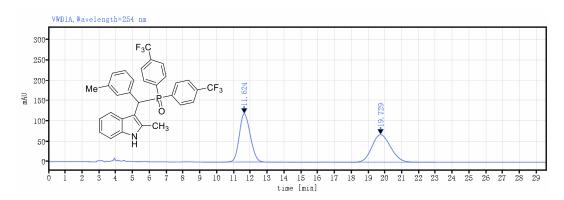
¹H NMR spectrum of compound of 3o



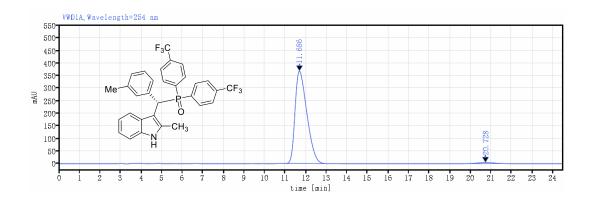
$^{13}\mathrm{C}$ NMR spectrum of compound of $3\mathrm{o}$

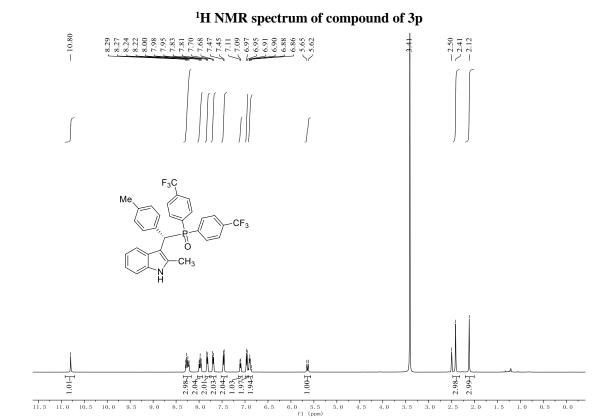

 $^{31}\!P$ NMR spectrum of compound of 30

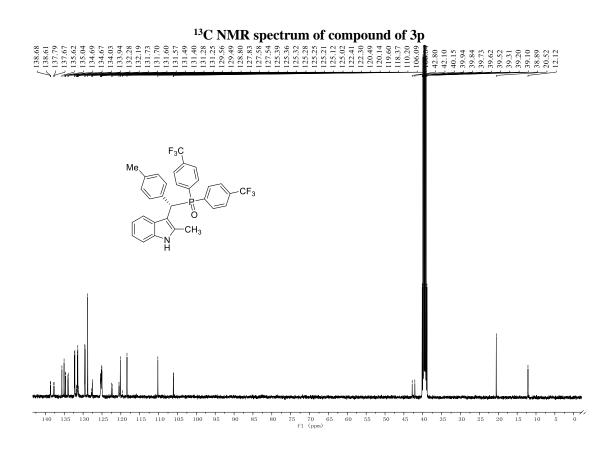
- 30.05

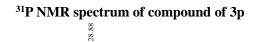


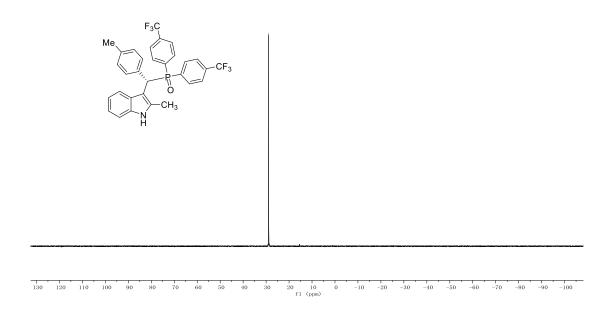
$^{19}\!F$ NMR spectrum of compound of 30


-63.17


HPLC spectra of 3o

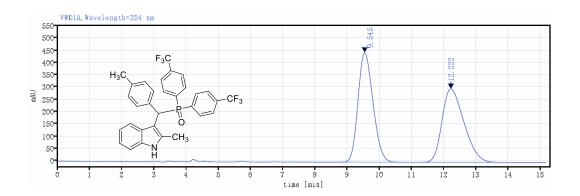



Detector	· VWD1A, Wavelength=254 nm					
Peak	Ret.Time [min]	Area	Height	Area%		
	11.624	5403.46	119.20	50.71		
	19.729	5252.13	68.11	49.29		
		10655.59		100.00		

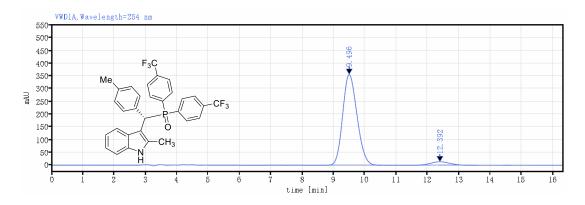


Detector	Detector VWD1A, Wavelength=254 nm					
Peak	Ret.Time [min]	Area	Height	Area%		
	11.686	14648.85	367.70	98.46		
	20.728	229.82	3.99	1.54		
		14878.67		100.00		



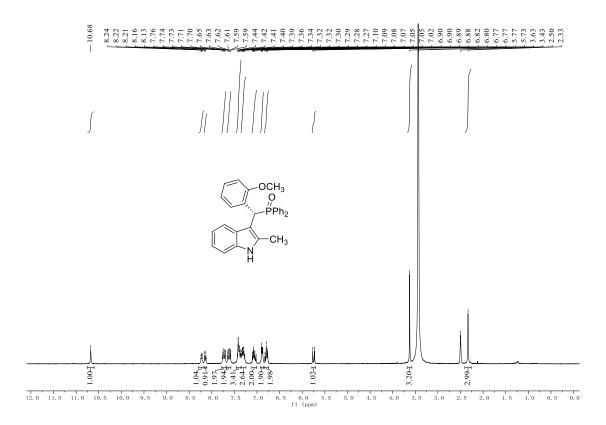


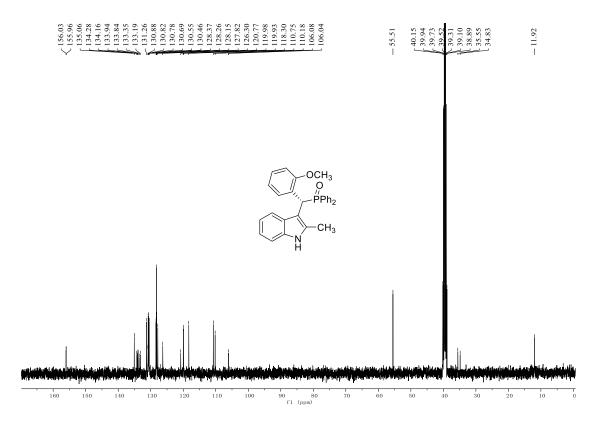
$^{19}\mbox{F}$ NMR spectrum of compound of $3\mbox{p}$



HPLC spectra of 3p

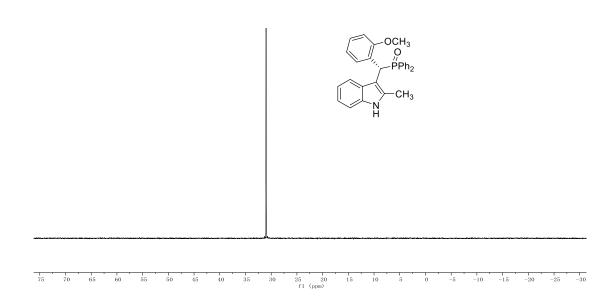
Detector VWD1A, Wavelength=254 nm


Peak	Ret.Time [min]	Area	Height	Area%
	9.545	14407.21	445.97	50.54
	12.222	14101.83	298.79	49.46
		28509.04		100.00

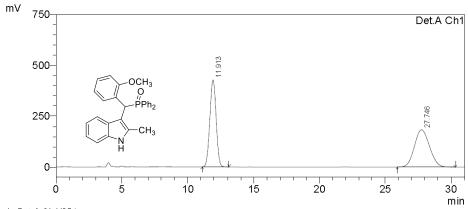

Detector VWD1A, Wavelength=254 nm

Peak	Ret.Time [min]	Area	Height	Area%
	9.496	11307.76	356.38	95.44
	12.392	540.65	13.08	4.56
		11848.42		100.00

¹H NMR spectrum of compound of 3q



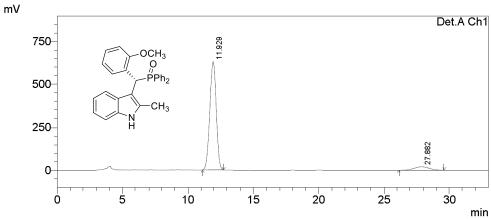
¹³C NMR spectrum of compound of 3q



^{31}P NMR spectrum of compound of 3q

-30.99

HPLC spectra of 3q

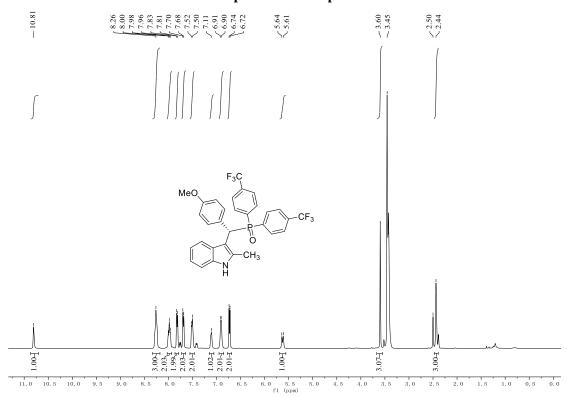


1 Det.A Ch1/254nm

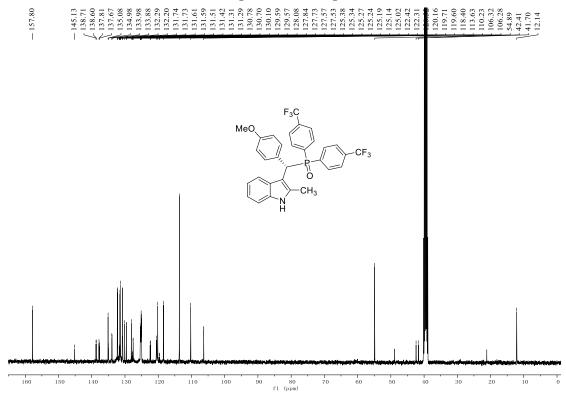
PeakTable

Detector A	Chl	254nm
Doole#	D	at Time

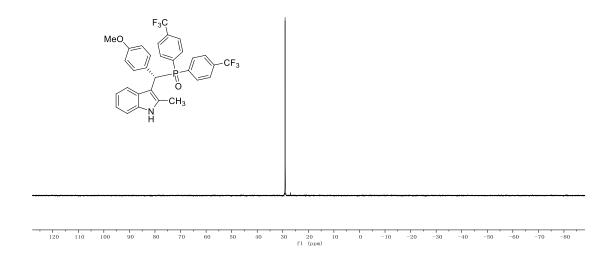
Peak#	Ret. Time	Area	Height	Area %
1	11.913	14245037	428304	49.435
2	27.746	14570404	183101	50.565
Total		28815440		100.000

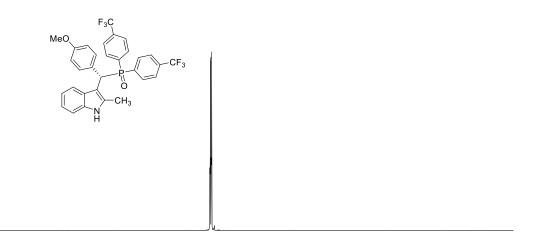

1 Det.A Ch1/254nm

PeakTable

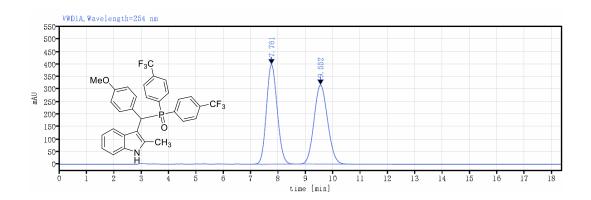

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %
1	11.929	21612526	630238	93.245
2	27.882	1565803	19847	6.755
Total		23178329		100 000

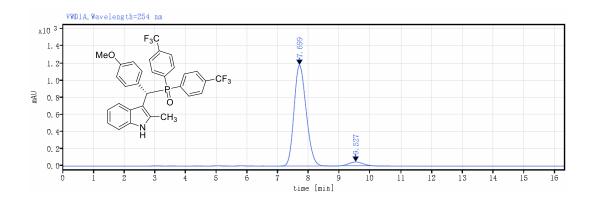

¹H NMR spectrum of compound of 3r


^{13}C NMR spectrum of compound of 3r

$^{31}\!P$ NMR spectrum of compound of 3r

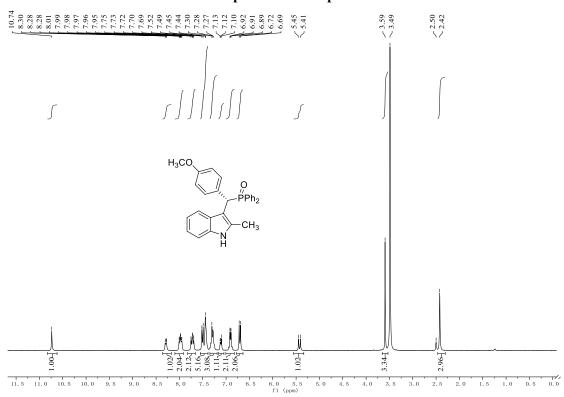


^{19}F NMR spectrum of compound of 3r $^{\frac{9}{9},\frac{\rho}{\rho},\frac{\rho}{\rho}}$

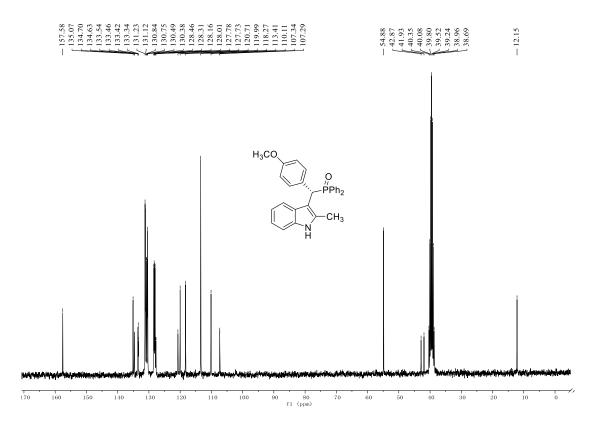


-46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81 fl (ppm)

HPLC spectra of 3r

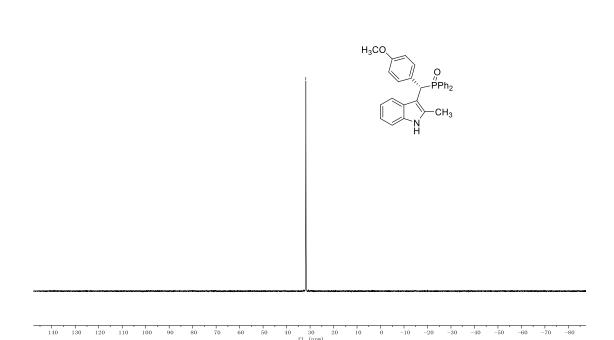


Detector	VWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	7.761	10901.13	397.90	50.05	
	9.552	10877.79	315.67	49.95	
		21778.92		100.00	

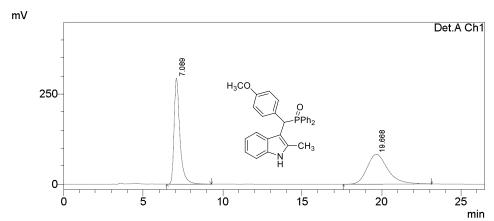


Detector	VWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	7.699	32252.72	1175.43	95.70	
	9.527	1447.55	45.13	4.30	
		33700.27		100.00	

¹H NMR spectrum of compound of 3s

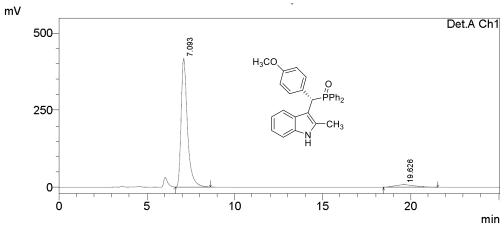


¹³C NMR spectrum of compound of 3s



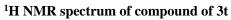
^{31}P NMR spectrum of compound of 3s

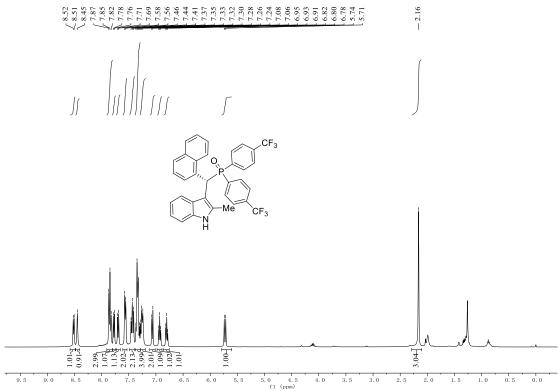
- 31.81


HPLC spectra of 3s

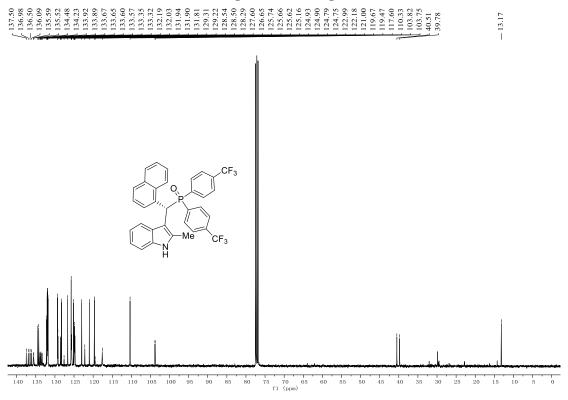
1 Det.A Ch1/254nm

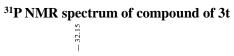
PeakTable

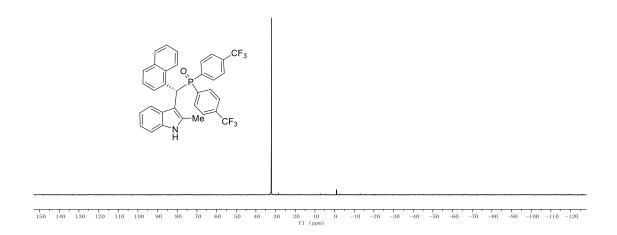

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %			
1	7.089	7441200	293311	50.058			
2	19.668	7423923	82279	49.942			
Total		14865122		100.000			

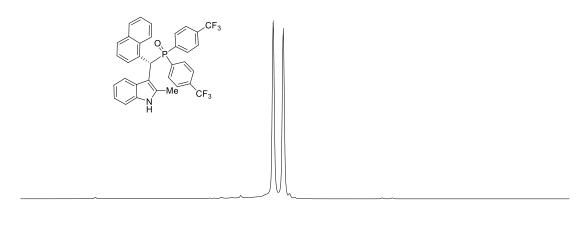


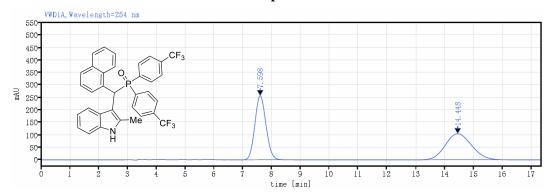
1 Det.A Ch1/254nm


PeakTable

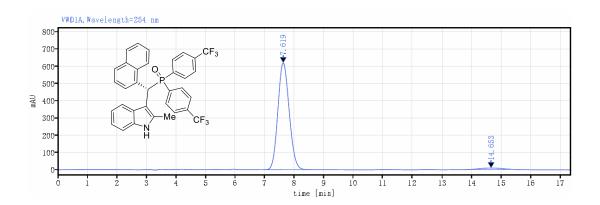

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %			
1	7.093	10407014	416400	94.197			
2	19.626	641132	7943	5.803			
Total		11048146		100.000			




^{13}C NMR spectrum of compound of 3t

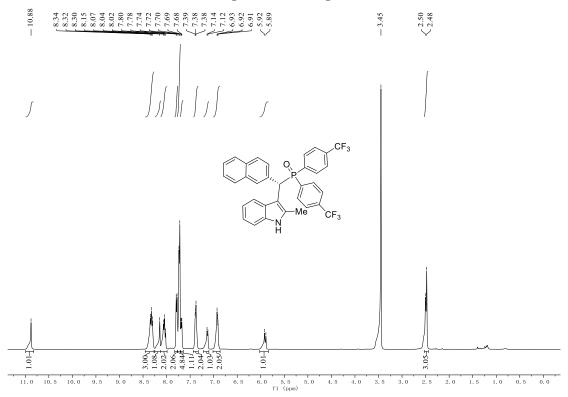


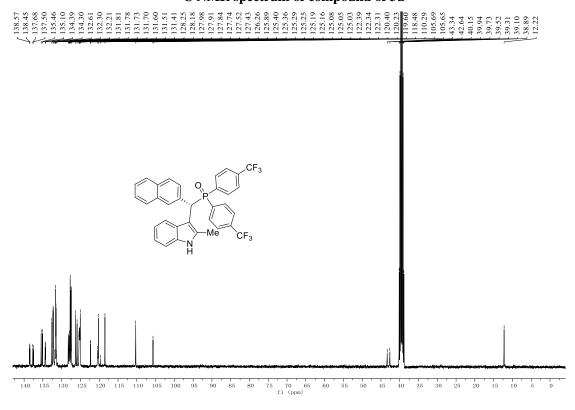
^{19}F NMR spectrum of compound of 3t


-62.1 -62.2 -62.3 -62.4 -62.5 -62.6 -62.7 -62.8 -62.9 -63.0 -63.1 -63.2 -63.3 -63.5 -63.6 -63.7 -63.8 -63.9 -64.0 -64.1 -64.2 -64.3 -64.4 -64.5 ft (ppm)

HPLC spectra of 3t

Detector VWD1A, Wavelength=254 nm


Peak	Ret.Time [min]	Area	Height	Area%	
	7.598	6877.73	257.32	50.89	
	14.448	6635.95	104.83	49.11	
		13513.68		100.00	


Detector VWD1A, Wavelength=254 nm

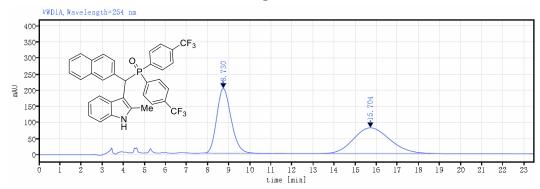
Peak	Ret.Time [min]	Area	Height	Area%
	7.619	16455.83	621.14	97.33
	14.653	451.82	8.71	2.67
		16907.65		100.00

¹H NMR spectrum of compound of 3u

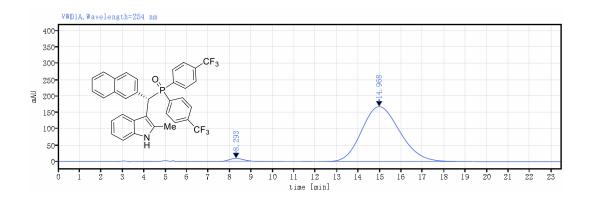
$^{13}\mathrm{C}$ NMR spectrum of compound of 3u

$^{31}\!P$ NMR spectrum of compound of 3u

- 29.06

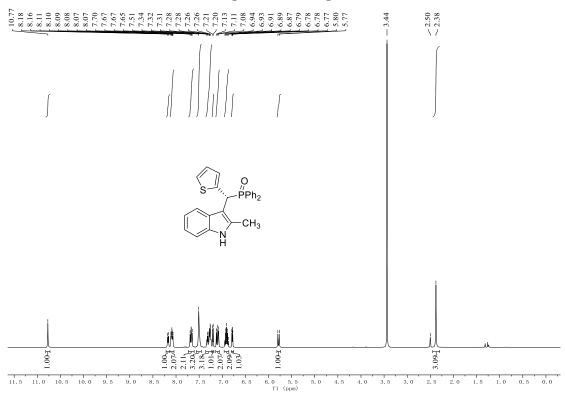

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -13 f1 (ppm)

^{19}F NMR spectrum of compound of 3u

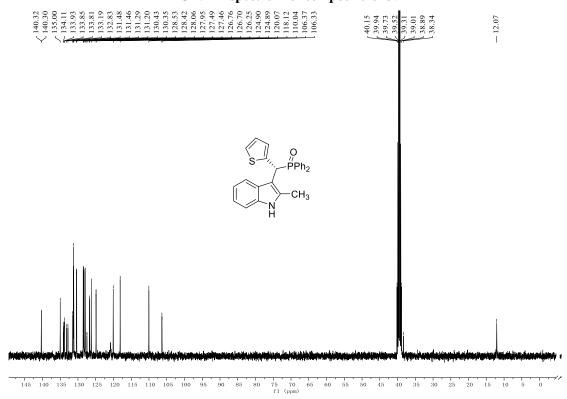

Z-61.71

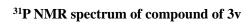
-51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 f1 (ppm)

HPLC spectra of 3u

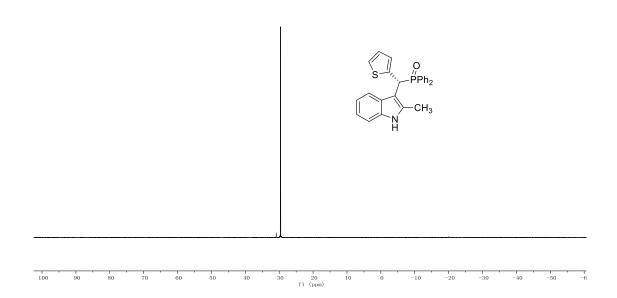


Detector VWD1A, Wavelength=254 nm Peak Ret.Time [min] Area Height Area% 8.730 9496.34 200.93 50.24 15.704 9407.37 79.39 49.76 18903.71 100.00

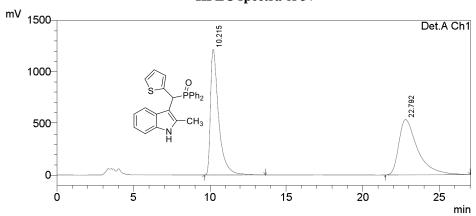



Detector	VWD1A, Wavelength=254 nm			
Peak	Ret.Time [min]	Area	Height	Area%
	8.293	396.18	8.84	1.87
	14.968	20748.20	168.06	98.13
		21144.39		100.00

¹H NMR spectrum of compound of 3v

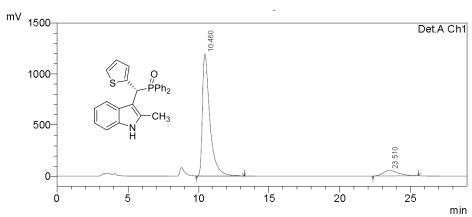


^{13}C NMR spectrum of compound of 3v



- 29.61

HPLC spectra of 3v

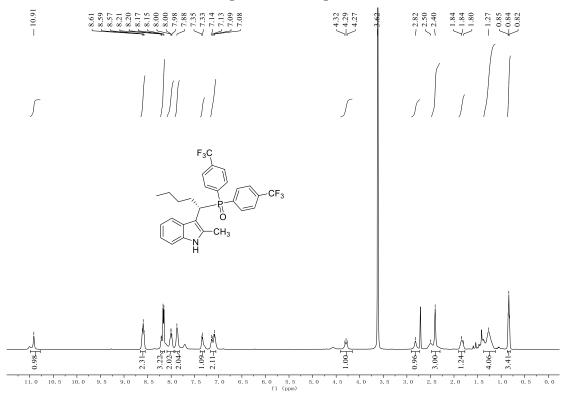


1 Det.A Ch1/254nm

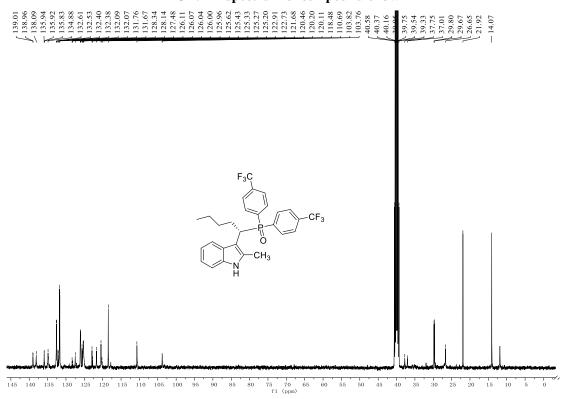
PeakTable

T) /		A1 1	254
Detector	A	Cni	2.54nm

Peak#	Ret. Time	Area	Height	Area %
1	10.215	45131829	1215595	49.641
2	22.792	45783776	536250	50.359
Total		90915605		100.000


1 Det.A Ch1/254nm

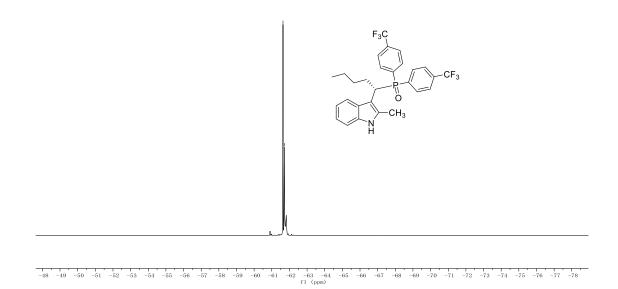
PeakTable


|--|

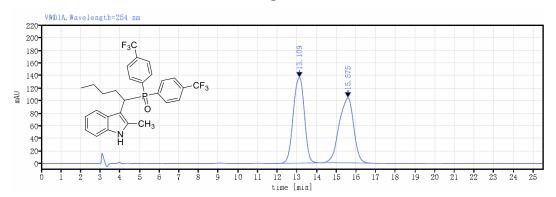
Delection 11 Carr 25 min						
Peak#	Ret. Time	Area	Height	Area %		
1	10.460	43612215	1192442	91.521		
2	23.510	4040504	53477	8.479		
Total		47652719		100.000		

¹H NMR spectrum of compound of 3w

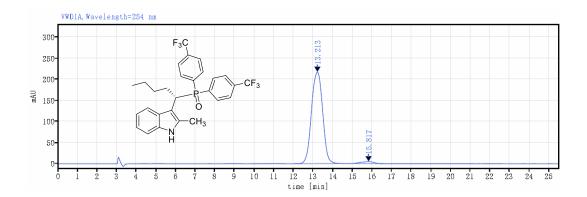
^{13}C NMR spectrum of compound of 3w

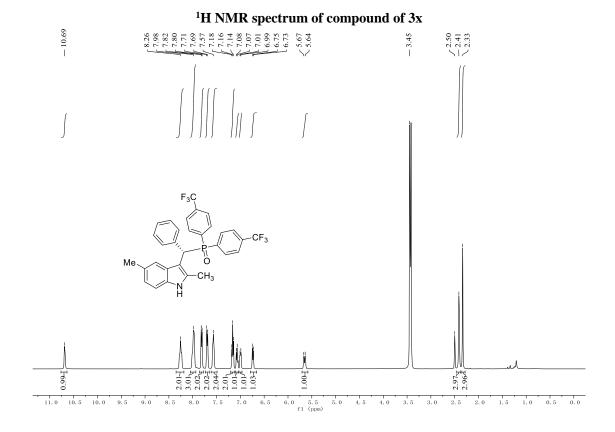


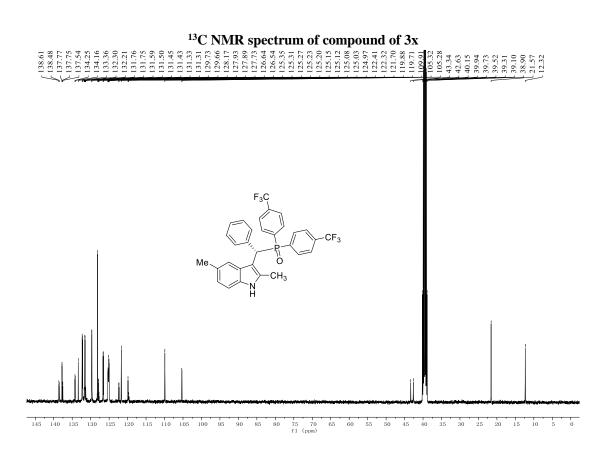
³¹P NMR spectrum of compound of 3w


-31.04

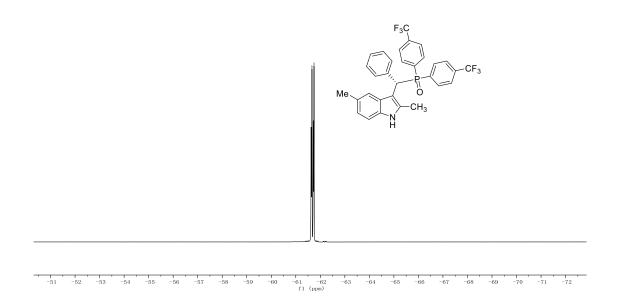
$^{19}FNMR$ spectrum of compound of 3w

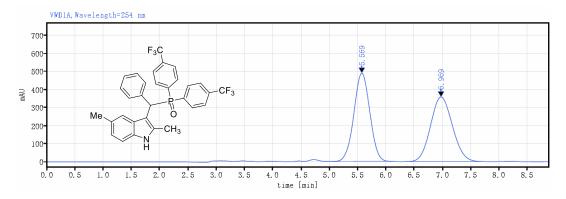

-61.64


HPLC spectra of 3w

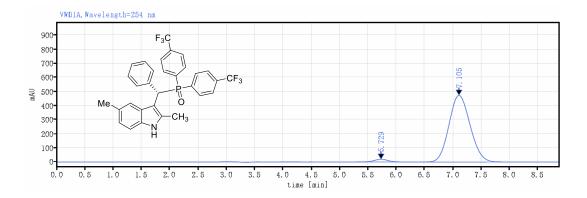


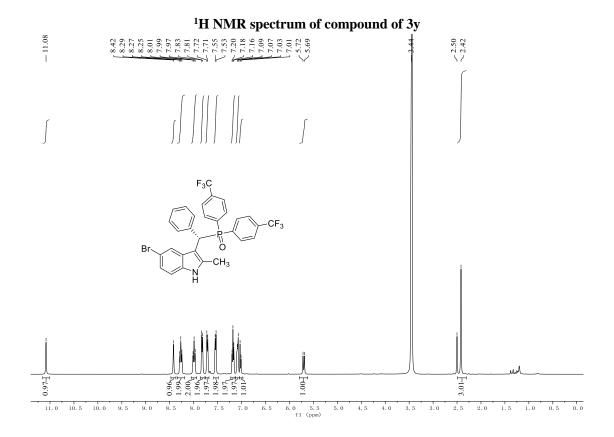
Detector VWD1A, Wavelength=254 nm Peak Ret.Time [min] Height Area% Area 13.109 5358.93 136.38 50.45 15.575 5263.71 103.55 49.55 10622.64 100.00

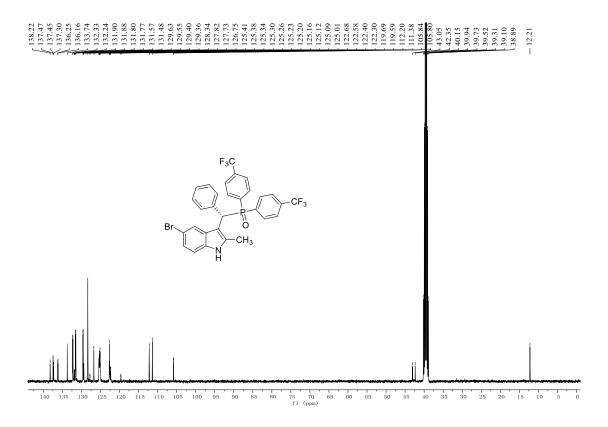

Detector	VWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	13.213	8595.05	217.05	97.40	
	15.817	229.73	4.85	2.60	
		8824.77		100.00	



^{31}P NMR spectrum of compound of 3x

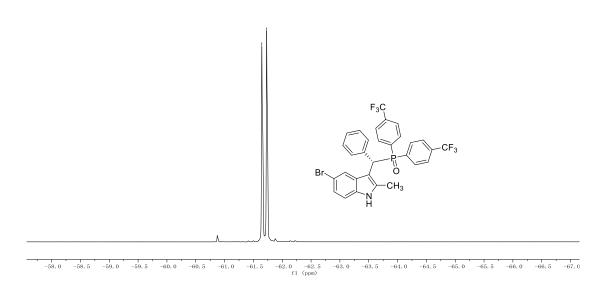

^{19}F NMR spectrum of compound of 3x $^{99}_{\begin{subarray}{c} 5\\ \hline 19\\ \hline 9\\ \hline 9\\ \hline \end{array}$


HPLC spectra of 3x

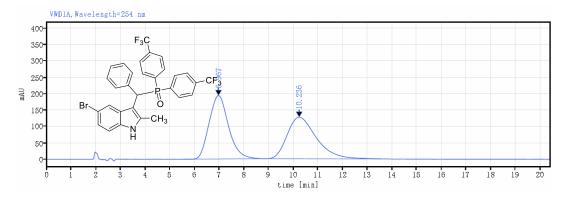

Detector	VWD1A, Wavelength=254 nm					
Peak	Ret.Time [min]	Area	Height	Area%		
	5.569	9581.66	489.26	49.84		
	6.969	9644.02	358.58	50.16		
		19225.69		100.00		

Detector	VWD1A, Wavelength=254 nm					
Peak	Ret.Time [min]	Area	Height	Area%		
	5.729	308.58	18.89	2.45		
	7.105	12292.60	473.62	97.55		
		12601.18		100.00		

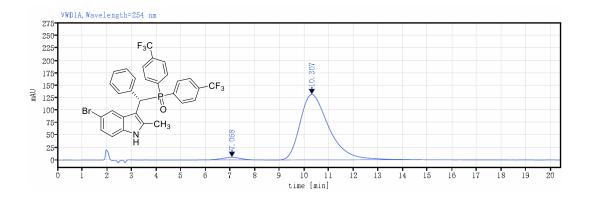
¹³C NMR spectrum of compound of 3y


³¹P NMR spectrum of compound of 3y

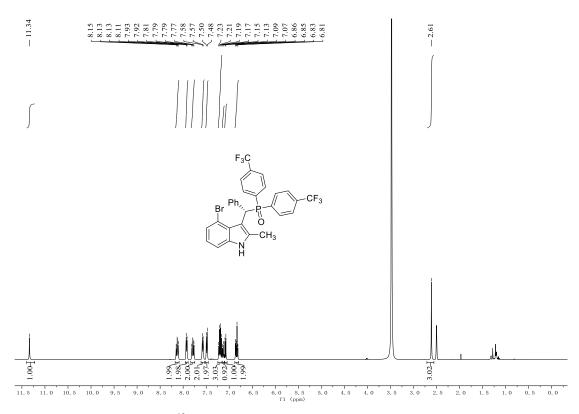
-29.23


$$F_3C$$
 CF_3
 CF_3

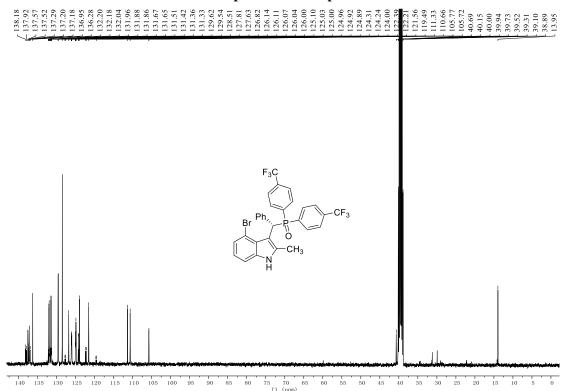
$^{19}\!F$ NMR spectrum of compound of 3y


Z-61.65 Z-61.73

HPLC spectra of 3y

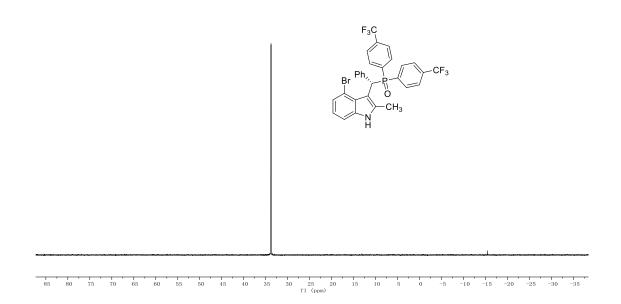


Detector VWD1A, Wavelength=254 nm Peak Ret.Time [min] Area Height Area% 6.967 10574.67 193.72 50.32 10.236 10442.22 126.86 49.68 21016.89 100.00

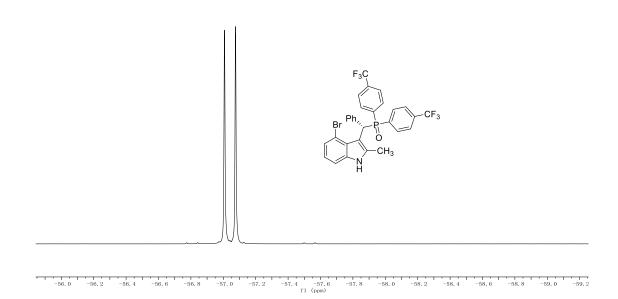


Detector	VWD1A, Wavelength=254 nm					
Peak	Ret.Time [min]	Area	Height	Area%		
	7.068	262.80	5.25	2.40		
	10.307	10687.75	131.66	97.60		
		10950.56		100.00		

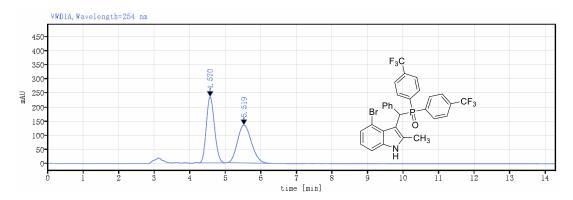
¹H NMR spectrum of compound of 3z



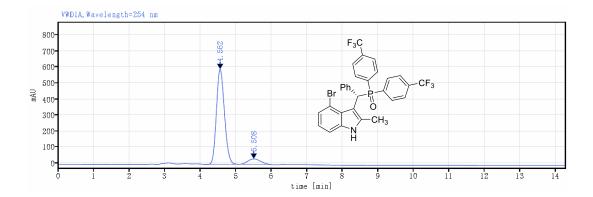
$^{13}\mbox{C}$ NMR spectrum of compound of 3z

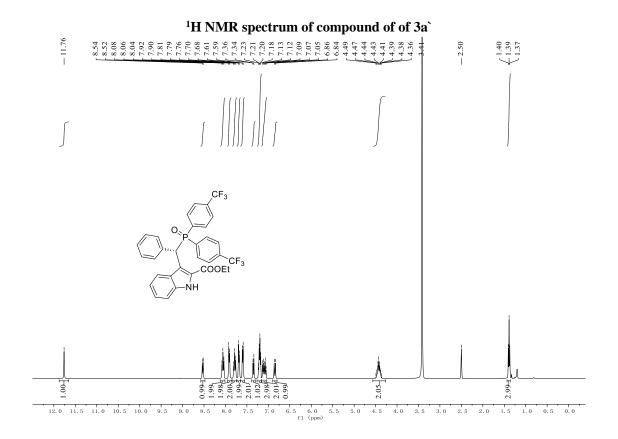

^{31}P NMR spectrum of compound of 3z

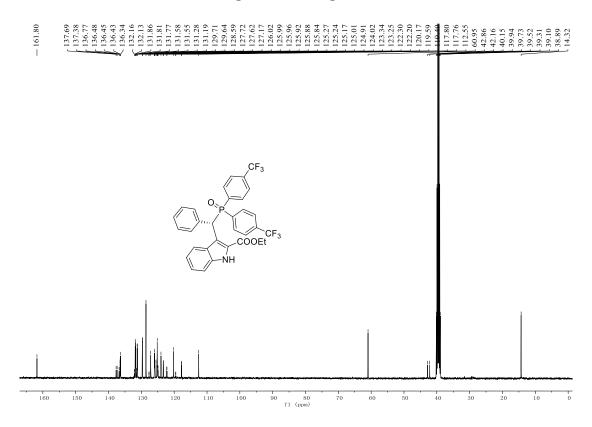
- 33.80



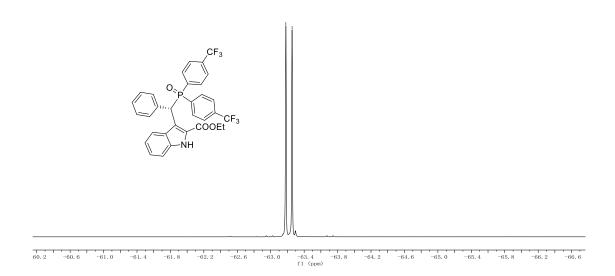
^{19}F NMR spectrum of compound of 3z

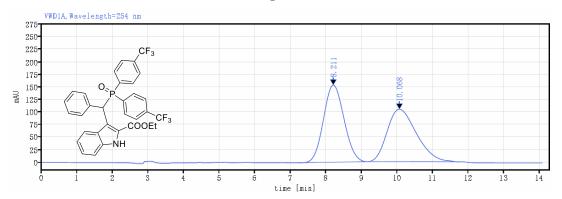

--57.01 --57.08


HPLC spectra of 3z

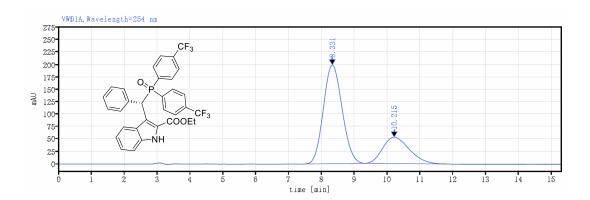

Detector	VWD1A, Wavelength=254 nm					
Peak	Ret.Time [min]	Area	Height	Area%		
	4.570	3727.64	234.89	50.52		
	5.519	3650.82	134.32	49.48		
		7378.46		100.00		

Detector	VWD1A, Wavelength=254 nm					
Peak	Ret.Time [min]	Area	Height	Area%		
	4.562	9303.56	593.87	91.71		
	5.508	840.73	33.38	8.29		
		10144.30		100.00		

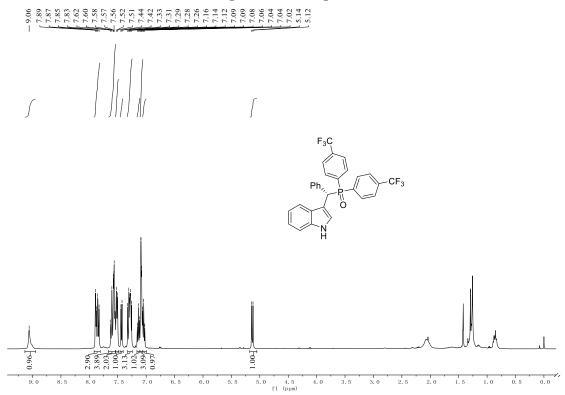

¹³C NMR spectrum of compound of of 3a`


³¹P NMR spectrum of compound of of 3a`

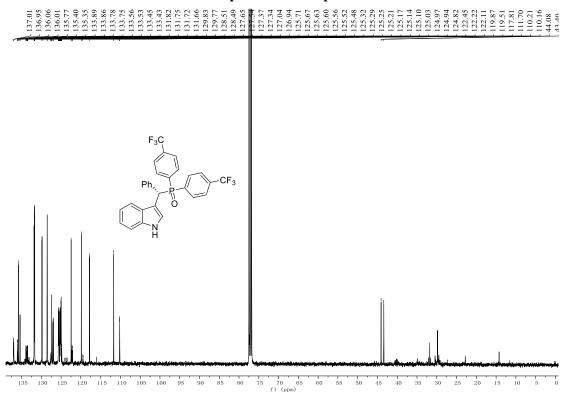
-28.37


^{19}F NMR spectrum of compound of of 3a' $\stackrel{g:}{\underset{\xi \in \mathcal{G}}{\mathbb{F}^{0}}}$

HPLC spectra of 3a`

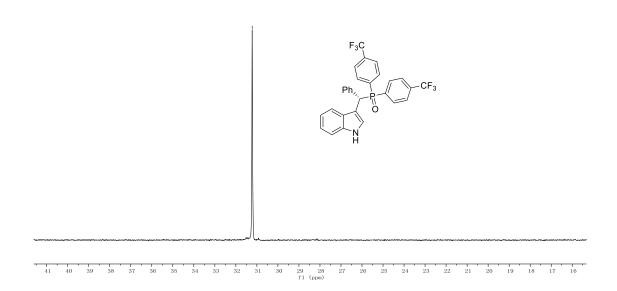


Detector VWD1A, Wavelength=254 nm Ret.Time [min] Peak Area% Area Height 8.211 6145.97 153.50 50.92 10.068 5924.66 104.14 49.08 12070.63 100.00

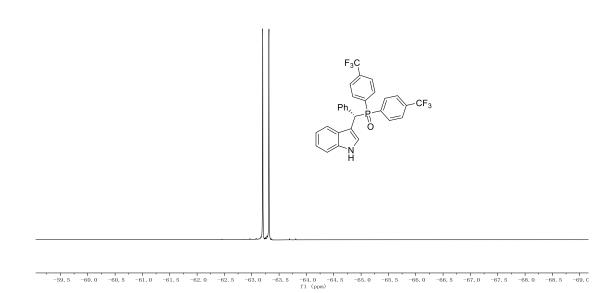


Detector	r vwdia, wavei	VWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%		
	8.331	7853.37	198.64	72.51		
	10.215	2976.79	52.77	27.49		
		10830.16		100.00		

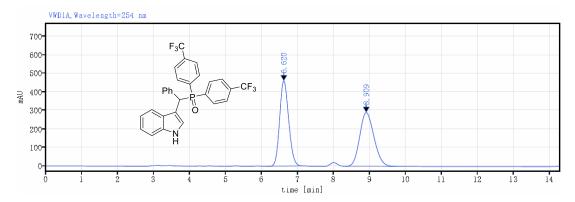
¹H NMR spectrum of compound of 3b`



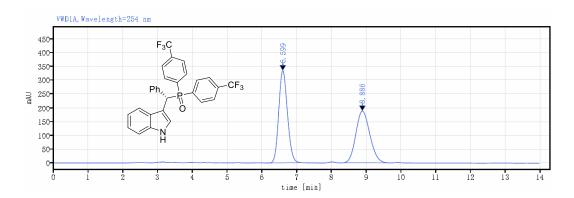
$^{13}\mathrm{C}$ NMR spectrum of compound of 3b`


³¹P NMR spectrum of compound of 3b`

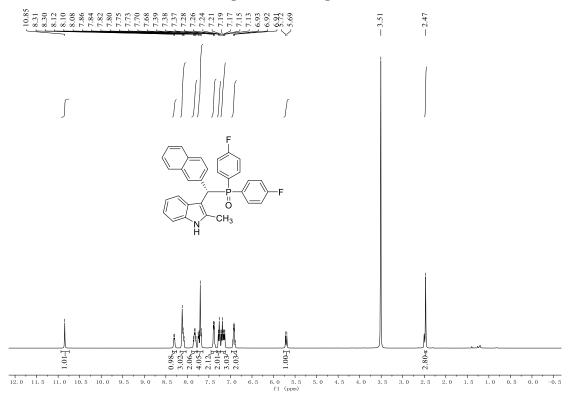
-31.22



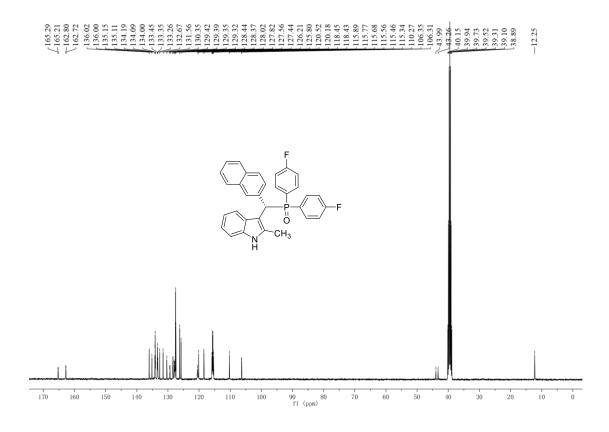
$^{19}\mathrm{F}\ \mathrm{NMR}$ spectrum of compound of 3b`


~ -63.20 ~ -63.31

HPLC spectra of 3b`

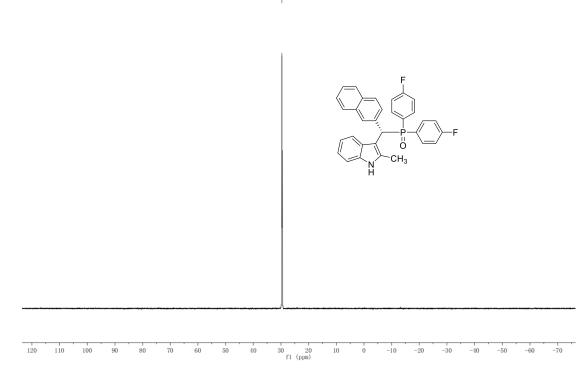


Detector	VWD1A,Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	6.620	8019.17	461.33	49.99	
	8.909	8021.02	291.39	50.01	
		16040.19		100.00	

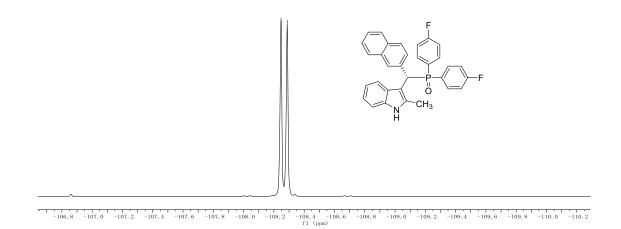


Detector	VWDIA, wavelength=254 nm					
Peak	Ret.Time [min]	Area	Height	Area%		
	6.599	5827.97	335.86	52.52		
	8.886	5267.86	188.62	47.48		
		11095.83		100.00		

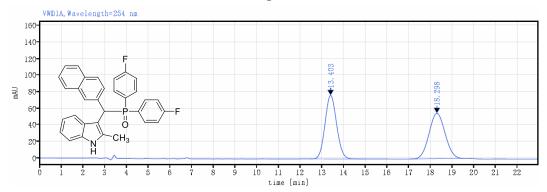
¹H NMR spectrum of compound of 3c`



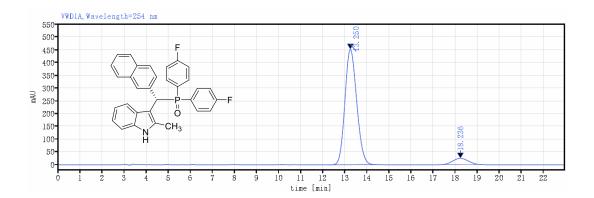
¹³C NMR spectrum of compound of 3c`


³¹P NMR spectrum of compound of 3c`

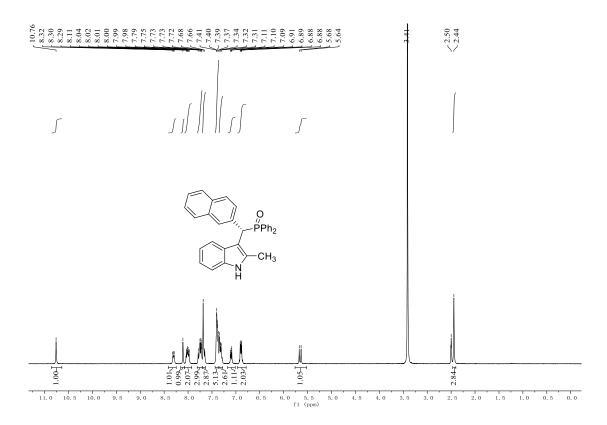
-29.64



¹⁹F NMR spectrum of compound of 3c`


7-108.25

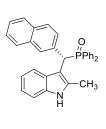
HPLC spectra of 3c`



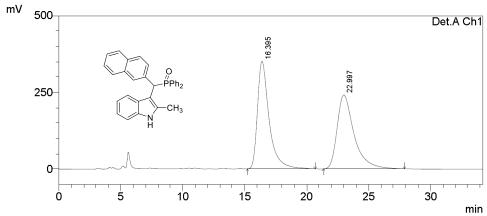
Detector VWD1A, Wavelength=254 nm Peak Ret.Time [min] Area Height Area% 13.403 2851.05 76.92 50.33 18.298 2813.38 54.95 49.67 5664.44 100.00


Detector	VWD1A, Wave1	ength=254 nm			
Peak	Ret.Time [min]	Area	Height	Area%	
	13.250	16760.02	452.28	93.60	
	18.236	1145.47	24.03	6.40	
		17905.49		100.00	

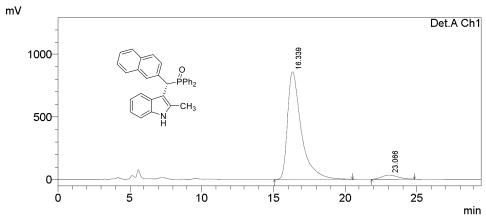
¹H NMR spectrum of compound of 3d`



¹³C NMR spectrum of compound of 3d`



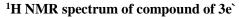
140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 f1 (ppm)

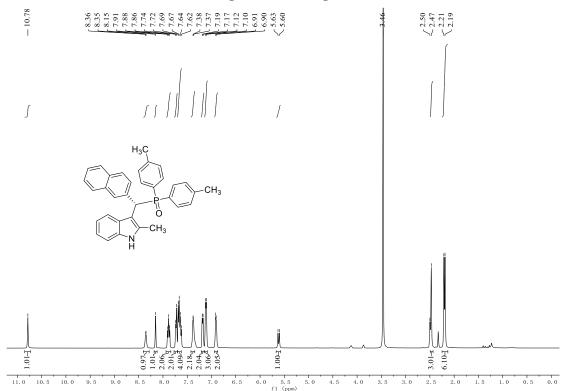

HPLC spectra of 3d`

1 Det.A Ch1/254nm

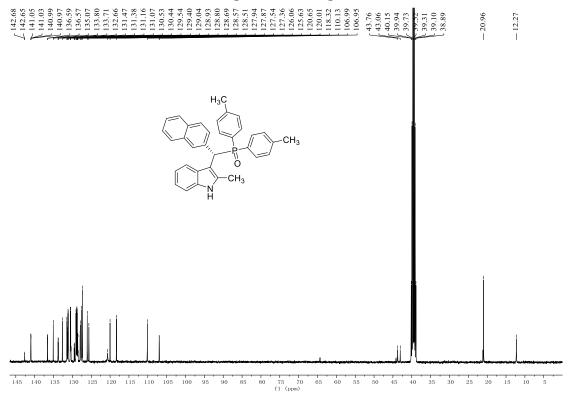
PeakTable

D 4444001 12 CH12 20 H2H1						
Peak#	Ret. Time	Area	Height	Area %		
1	16.395	22910503	350204	50.112		
2	22.997	22808415	240380	49.888		
Total		45718918		100.000		



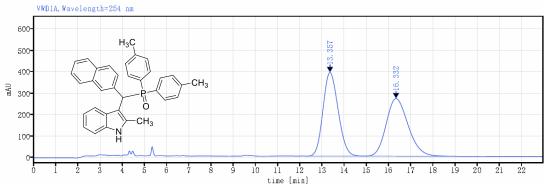

1 Det.A Ch1/254nm

PeakTable


Detector A Ch1 254nm

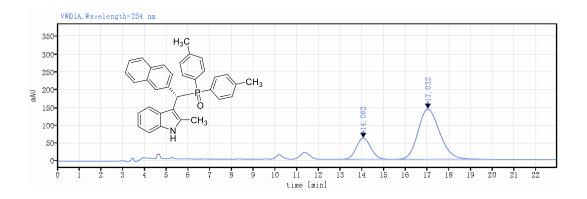
Peak#	Ret. Time	Area	Height	Area %
1	16.339	57395855	860938	95.633
2	23.066	2620900	32997	4.367
Total		60016754		100.000

$^{13}\mathrm{C}$ NMR spectrum of compound of 3e`



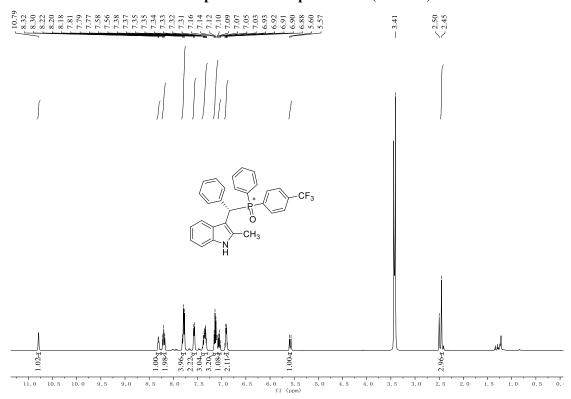
$^{31}\mbox{P NMR}$ spectrum of compound of 3e`

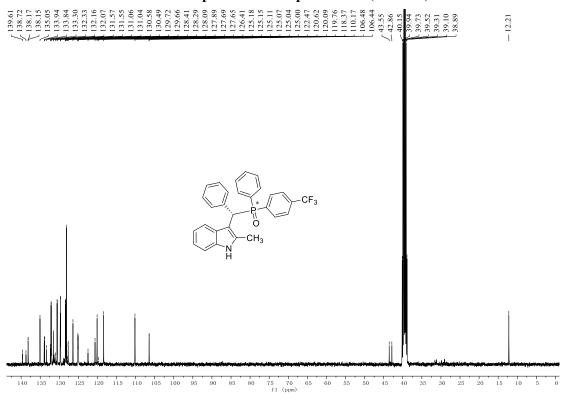
- 30.42


150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -15

HPLC spectra of 3e`

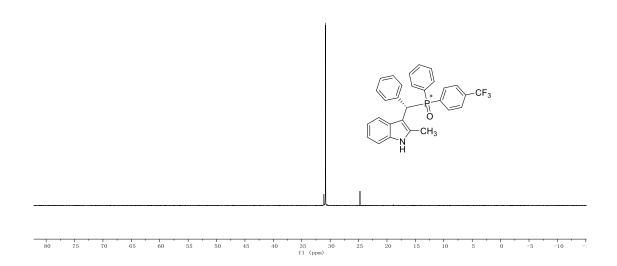
Detector VWD1A, Wavelength=254 nm


Peak	Ret.Time [min]	Area	Height	Area%	
	13.357	18511.72	390.52	50.03	
	16.332	18491.29	268.81	49.97	
		37003.01		100.00	

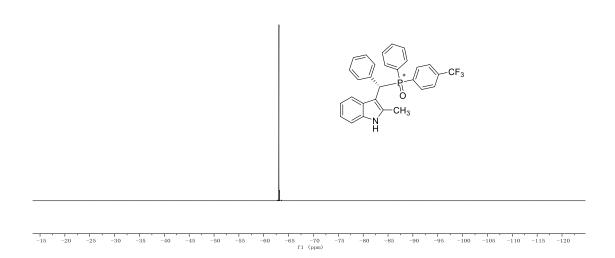

Detector VWD1A, Wavelength=254 nm

Peak	Ret.Time [min]	Area	Height	Area%	
	14.062	2710.80	59.07	21.91	
	17.032	9660.43	140.85	78.09	
		12371.23		100.00	

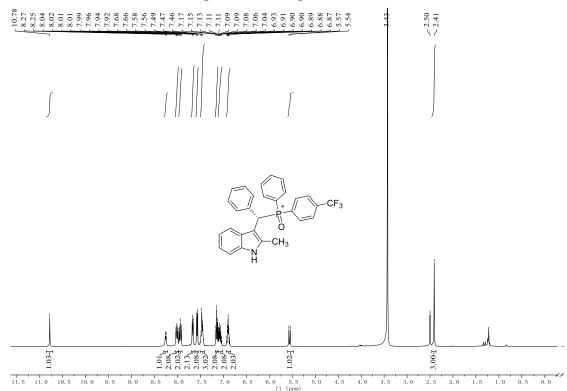
^{1}H NMR spectrum of compound of 3f (isomer 1)



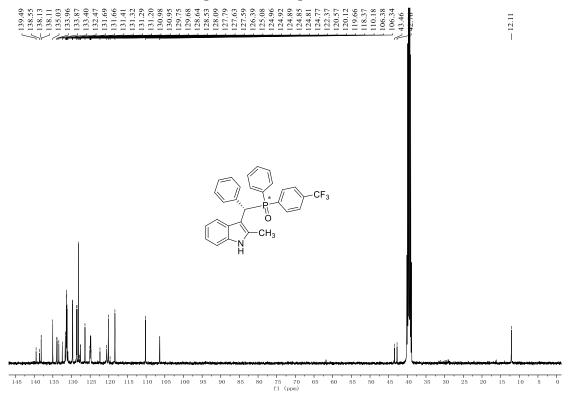
^{13}C NMR spectrum of compound of 3f (isomer 1)


$^{31}P\ NMR$ spectrum of compound of 3f (isomer 1)

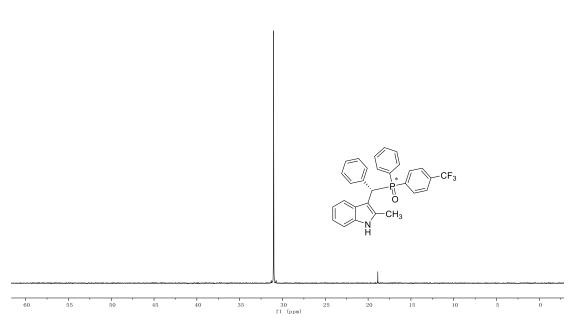
- 30.82



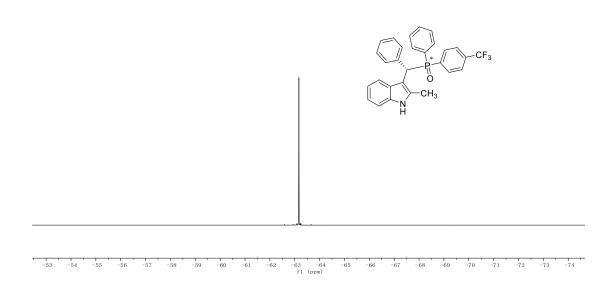
¹⁹F NMR spectrum of compound of 3f (isomer 1)


--63.05

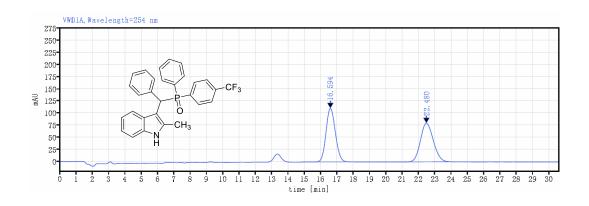
¹H NMR spectrum of compound of 3f (isomer 2)



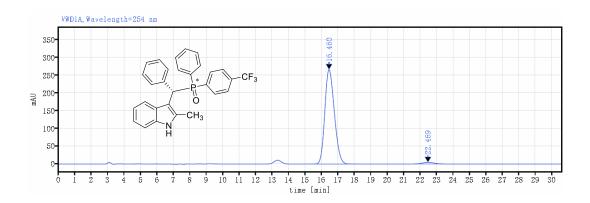
$^{13}\mbox{C NMR}$ spectrum of compound of 3f (isomer 2)


 ^{31}P NMR spectrum of compound of 3f (isomer 2)

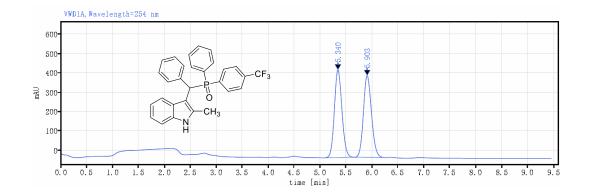
- 31 03



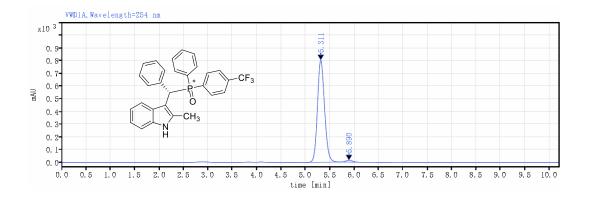
 ^{19}F NMR spectrum of compound of 3f (isomer 2)


.1

HPLC spectra of 3f (isomer 1)



Detector VWD1A, Wavelength=254 nm Peak Ret.Time [min] Area Height Area% 16.594 4407.04 110.85 49.97 22.480 4412.62 80.04 50.03 8819.66 100.00



Detector	VWD1A,Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	16.460	10703.62	266.67	98.06	
	22.469	211.84	4.32	1.94	
		10915.46		100.00	

HPLC spectra of 3f (isomer 2)

Detector	VWD1A,Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	5.340	4580.27	453.26	50.10	
	5.903	4561.89	422.84	49.90	
		9142.15		100.00	

Detector	VWD1A, Wavelength=254 nm				
Peak	Ret.Time [min]	Area	Height	Area%	
	5.311	8131.50	803.39	98.36	
	5.890	135.29	13.76	1.64	
		8266.79		100.00	