# **Supporting Information**

# Regioselective $C(sp^3)$ -H Amidation of 8-methyl Quinolines with N-hydroxyphthalimides

Rohit Kumar, ab Diksha Parmar, ab Devesh Chandra, ab Sarthi and Upendra Sharma bh.\*

<sup>a</sup>Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.

E-mail: upendraihbt@gmail.com, upendra@ihbt.res.in

## Table of Contents

| Entry | Title                                                                                                              | Page No.  |
|-------|--------------------------------------------------------------------------------------------------------------------|-----------|
| 1     | General consideration                                                                                              | SI2       |
| 2     | General procedure for the preparation of starting                                                                  | SI2       |
|       | materials                                                                                                          |           |
| 3     | Optimization details                                                                                               | SI3-SI7   |
| 4     | General Procedure for $Rh(III)$ -Catalyzed $sp^3$ C-H amidation of 8-methyl quinolines with N-hydroxyphthalimides. | SI7       |
| 5     | Post synthetic transformations                                                                                     | SI7-SI8   |
| 6     | Characterization data                                                                                              | SI8-SI22  |
| 7     | References                                                                                                         | SI22      |
| 8     | Mechanistic studies                                                                                                | SI23-SI29 |
| 9     | <sup>1</sup> H and <sup>13</sup> C Spectral data                                                                   | SI29-SI72 |

<sup>&</sup>lt;sup>b</sup>Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

#### 1. General consideration

#### **Reagent Information**

Unless otherwise stated, all reactions were carried out under inert atmosphere in glove box using screw cap reaction vials. All solvents were purchased from Aldrich and TCI and used as such. All chemicals were purchased from Sigma Aldrich, Alfa-aesar and TCI. For column chromatography, silica gel (230-400 mesh) from Merck was used. A gradient elution using *n*-hexane and ethyl acetate was performed based on Merck aluminium TLC sheets (silica gel 60F<sub>254</sub>).

#### **Analytical Information**

All isolated compounds are characterized by <sup>1</sup>H NMR, <sup>13</sup>C NMR, LC-MS and IR. In addition, all the compounds are further characterized by HRMS. Mass spectra were recorded on Water Q-ToF-Micromass and maXis Impact mass spectrometer. IR was analyzed by Shimadzu IR Prestige-21with ZnSe Single reflection ATR accessory. Nuclear magnetic resonance spectra were recorded either on a Bruker-Avance 600 or 300 MHz instrument. All <sup>1</sup>H NMR experiments are reported in units, parts per million (ppm) and were measured relative to the signals for residual chloroform (7.26) deuterated solvent. All <sup>13</sup>C{1H} NMR spectra were reported in ppm relative to deuterated chloroform (77.16), all were obtained with <sup>1</sup>H decoupling. Optimization studies were done by NMR and NMR yield were calculated by using TCE as internal standard.

#### 2. General procedure for the preparation of starting materials

Compounds **1b** and **1c** were prepared according to the literature report.<sup>1</sup> Compounds **1d-f**, **1l-p**, **1t** and **1u** are already known and prepared according to literature reports.<sup>2</sup> Compounds **1g-1i** were synthesized from the reported method.<sup>3</sup> Compound **1j** was synthesized using reported method,<sup>4</sup> compounds **1q**, **1r**, **1s** and **1v** were also prepared using reported method.<sup>5</sup> All other substituted 8-methyl quinolines were used from the commercially available sources. Compounds **4b**, **4c**, **4d** and **4e** were synthesized from the already known method.<sup>6</sup> Compound **6a** was synthesized according to the known literature report.<sup>7</sup> **1a-d3** was prepared by following the literature procedure.<sup>8</sup>

## 3. Optimization Details

3.1. Catalyst screening (at 120 °C) (**Table S1**)

| S. No. | Catalyst (mol%)                                      | Solvent (ml) | Temp (°C) | 3a [NMR Yield (%)] |
|--------|------------------------------------------------------|--------------|-----------|--------------------|
| 1      | [RhCp*Cl <sub>2</sub> ] <sub>2</sub>                 | HFIP         | 120       | 93                 |
| 2      | $[RhCp*Cl_2]_2$                                      | DCE          | 120       | 61                 |
| 3      | $[CoCOCp*I_2]$                                       | HFIP         | 120       | nr                 |
| 4      | [RuCl <sub>2</sub> ( <i>p</i> -cymene)] <sub>2</sub> | HFIP         | 120       | nr                 |
| 5      | $[IrCp*Cl_2]_2$                                      | HFIP         | 120       | nr                 |
| 6      | $[RhCp*Cl_2]_2$                                      | HFIP         | rt        | nr                 |

## 3.2. Additive screening (at 120 °C) (Table S2)

| S. No. | Catalyst (mol%)                      | Additive (equiv.) | Solvent | Temp (°C) | 3a [NMR<br>Yield (%)] |
|--------|--------------------------------------|-------------------|---------|-----------|-----------------------|
| 1      | [RhCp*Cl <sub>2</sub> ] <sub>2</sub> | PivOH             | HFIP    | 120       | 66                    |
| 2      | $[RhCp*Cl_2]_2$                      | NaOPiv            | HFIP    | 120       | 55                    |
| 3      | $[RhCp*Cl_2]_2$                      | AdCOOH            | HFIP    | 120       | 42                    |
| 4      | $[\mathbf{RhCp*Cl_2}]_2$             | -                 | HFIP    | 120       | 93                    |
| 5      | $[RhCp*Cl_2]_2$                      | PivOH             | DCE     | 120       | <5                    |

| 6 | $[RhCp*Cl_2]_2$              | PivOH | TFE  | 120 | 30 |
|---|------------------------------|-------|------|-----|----|
| 7 | [CoCOCp*I <sub>2</sub> ]     | PivOH | HFIP | 120 | nr |
| 8 | $[RuCl_2(p	ext{-cymene})]_2$ | PivOH | HFIP | 120 | nr |
| 9 | $[IrCp*Cl_2]_2$              | PivOH | HFIP | 120 | nr |

# 3.3. Reaction sing cobalt catalyst (at 120 °C) (Table S3)

| S. No. | Catalyst (mol%)          | Additive 1 (1 equiv.)                      | Additive 2 (1 equiv.)           | Solvent (ml)      | Temp<br>(°C) | 3a [NMR<br>Yield (%)] |
|--------|--------------------------|--------------------------------------------|---------------------------------|-------------------|--------------|-----------------------|
| 1      | [CoCOCp*I <sub>2</sub> ] | PivOH                                      | -                               | HFIP              | 120          | -                     |
| 2      | [CoCOCp*I <sub>2</sub> ] | Sod.<br>Benzoate                           | -                               | DCE               | 120          | -                     |
| 3      | [CoCOCp*I <sub>2</sub> ] | [(CuOH) <sub>2</sub> C<br>O <sub>3</sub> ] | -                               | DMF               | 120          | -                     |
| 4      | [CoCOCp*I <sub>2</sub> ] | Sod.<br>Benzoate                           | Ag <sub>2</sub> CO <sub>3</sub> | HFIP              | 120          | -                     |
| 5      | [CoCOCp*I <sub>2</sub> ] | Ag <sub>2</sub> CO <sub>3</sub>            | $K_2CO_3$                       | HFIP              | 120          | -                     |
| 6      | [Co(OAc) <sub>2</sub> ]  | Ag <sub>2</sub> CO <sub>3</sub>            | $K_2CO_3$                       | PhCF <sub>3</sub> | 120          | -                     |
| 7      | [CoCOCp*I <sub>2</sub> ] | AdCOOH                                     | -                               | HFIP              | 120          | -                     |
| 8      | [CoCOCp*I <sub>2</sub> ] | PivOH                                      | NaOAc                           | HFIP              | 120          | -                     |

## 3.4. Temperature variation (Table S4)

| S. No. | Catalyst (mol%)                      | Temp (°C) | 3a [NMR Yield (%)] |
|--------|--------------------------------------|-----------|--------------------|
| 1      | $[RhCp*Cl_2]_2$                      | 120       | 93                 |
| 2      | $[RhCp*Cl_2]_2$                      | 110       | 94                 |
| 3      | $[RhCp*Cl_2]_2$                      | 100       | 94                 |
| 4      | [RhCp*Cl <sub>2</sub> ] <sub>2</sub> | 80        | 97                 |
| 5      | $[RhCp*Cl_2]_2$                      | 60        | 20                 |
| 6      | $[RhCp*Cl_2]_2)$                     | rt        | nr                 |

### 3.5. Solvent screening(Table S5)

| S. No. | Catalyst (mol%)                      | Solvent | NMR Yield (%) |
|--------|--------------------------------------|---------|---------------|
| 1      | [RhCp*Cl <sub>2</sub> ] <sub>2</sub> | HFIP    | 97            |

| 2 | [RhCp*Cl <sub>2</sub> ] <sub>2</sub> | DCE              | 34 |
|---|--------------------------------------|------------------|----|
| 3 | [RhCp*Cl <sub>2</sub> ] <sub>2</sub> | Trifluorotoluene | -  |
| 4 | [RhCp*Cl <sub>2</sub> ] <sub>2</sub> | Toluene          | -  |
| 5 | [RhCp*Cl <sub>2</sub> ] <sub>2</sub> | TFE              | 68 |
| 6 | $[RhCp*Cl_2]_2)$                     | Benzene          | -  |

## 3.6. Rhodium catalyst screening (Table S6)

| S. No. | Rh Catalyst (mol%)                   | Solvent | NMR Yield (%) |
|--------|--------------------------------------|---------|---------------|
| 1      | [RhCp*Cl <sub>2</sub> ] <sub>2</sub> | HFIP    | 97            |
| 2      | $[RhCp*Cl_2]_2$                      | HFIP    | 33*           |
| 3      | Rh <sub>2</sub> (OAc) <sub>4</sub>   | HFIP    | -             |
| 4      | Rh(Cl) <sub>3</sub>                  | HFIP    | -             |
| 5      | RhCl(PPh <sub>3</sub> ) <sub>3</sub> | HFIP    | -             |

<sup>\*</sup> AgBF<sub>4</sub> as silver salt

#### Control experiments (Table S7)

| S. No. | Rh Catalyst (mol%) | Silver salt        | Solvent | NMR Yield (%) |
|--------|--------------------|--------------------|---------|---------------|
| 1      | -                  | AgSbF <sub>6</sub> | HFIP    | -             |
| 2      | $[RhCp*Cl_2]_2)$   | -                  | HFIP    | 94            |
| 3      | -                  | -                  | HFIP    | -             |
| 4      | $[RhCp*Cl_2]_2)$   | $AgSbF_6$          | -       | -             |

# 4. General Procedure for Rh(III)-Catalyzed $sp^3$ C-H amidation of 8-methyl quinolines with N-hydroxyphthalimides.

To an oven-dried 15 mL Schlenk tube was added substituted 8-methyl quinoline, 1 (0.20 mmol), corresponding *N*-hydroxyphthalimide, 2a (0.3 mmol, 1.5 equiv.), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M). The tube was then stirred for 24 h at 80 °C on a preheated IKA dry block, followed by cooling to room temperature. The resulting mixture was quenched by adding EtOAc (5 mL) and H<sub>2</sub>O (5 mL). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and solvent was evaporated under the reduced pressure. The remaining residue was purified by coloumn/flash chromatography using *n*-hexane/EtOAc as the eluent to afford the product 3.

#### 5. Post synthetic transformations

#### a) Reduction of product using NaBH<sub>4</sub><sup>9</sup>

To an oven-dried screw cap reaction vial charged with a spin vane magnetic stir-bar, 2-(quinolin-8-ylmethyl)isoindoline-1,3-dione (3a) (0.1 mmol), NaBH<sub>4</sub> (3.0 equiv.) and *i*-propanol:toluene:H2O (6:1:1, 0.5 mL) were added. The subsequent reaction mixture was stirred at 0 °C for 4 hours. After completion, the reaction mixture was concentrated under the reduced pressure and crude product was purified by flash chromatography on silica gel (230–400 mesh size) with *n*-hexane:EtOAc to afford the desired product.

#### b) Ring opening reaction of 3a using benzylamine<sup>10</sup>

To an oven-dried screw cap reaction vial charged with a spin vane magnetic stir-bar, 2-(quinolin-8-ylmethyl)isoindoline-1,3-dione (3a) (0.1 mmol), benzylamine (2.0 equiv.) and H<sub>2</sub>O (0.2 mL) were added. The subsequent reaction mixture was stirred at room temperature for 12 hours. After completion, the reaction mixture was extracted with ethyl acetate, and the organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (230–400 mesh size) with n-hexane:EtOAc to afford the desired product.

#### 6. Characterization Data

2-[(quinolin-8-yl)methyl]-isoindoline-1,3-dione (Scheme 2, Entry 3a)

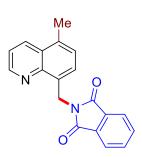
Following the general procedure for sp<sup>3</sup> C-H amidation, 8-methylquinoline (**1a**) (31.4 mg, 0.2 mmol), *N*-hydroxyphthalimide (**2a**) (28.6 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 h. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 97% (55.9 mg). Mp = 219-221 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.97 (dd, J = 4.2, 1.8 Hz, 1H), 8.15 (d, J = 8.4 Hz, 1H), 7.90 (dd, J = 5.4, 3.0 Hz, 2H), 7.75-7.72 (m, 3H), 7.45-7.42 (m, 3H), 5.65 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.5, 149.7, 146.0, 140.2, 136.3, 134.1, 132.4, 128.4, 127.5, 126.4, 126.2, 123.5, 121.4, 38.3 IR (ZnSe)  $v_{max}$  (cm<sup>-1</sup>): 3309, 3051, 2360, 2341, 1707, 1602, 1496, 1273, 1032, 939, 740. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup>; 289.0972; found, 289.0972.

2-[(3-methylquinolin-8-yl)methyl]-isoindoline-1,3-dione (Scheme 2, Entry **3b**)

Following the general procedure for sp<sup>3</sup> C-H amidation, 3,8-dimethylquinoline (1b) (31.4 mg, 0.2

mmol), *N*-hydroxyphthalimide (**2a**) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 h. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 91% (55.2 mg). Mp = 191-193 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.81 (s, 1H), 7.91-7.89 (m, 3H), 7.75-7.73 (m, 2H), 7.65 (d,

J = 7.8 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.35 (d, J = 7.2 Hz, 1H), 5.63 (s, 2H), 2.52 (s, 3H).  $^{13}\text{C}\{^{1}\text{H}\}$  NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.5, 151.7, 144.3, 135.0, 134.1, 133.9, 132.4, 130.8, 128.3, 126.9, 126.3, 125.6, 123.5, 38.3, 18.8. IR (ZnSe)  $v_{max}$  (cm<sup>-1</sup>): 2245, 2094, 1697, 1489, 1392, 1180, 1103, 952, 709. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup>; 303.1128; found, 303.1128.


#### 2-[(4-methylquinolin-8-yl)methyl]-isoindoline-1,3-dione (Scheme 2, Entry 3c)

Following the general procedure for sp<sup>3</sup> C-H amidation, 4,8-dimethylquinoline (1c) (31.4 mg, 0.2

mmol), *N*-hydroxyphthalimide (**2a**) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 h. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 87% (52.7 mg). Mp = 195-197 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.82 (d, J = 4.2 Hz, 1H), 7.93-7.89 (m, 2H), 7.75-7.74 (m, 2H), 7.47-7.44 (m, 1H), 7.41 (d, J = 7.2 Hz, 1H), 7.28 (d, J = 3.6 Hz, 1H), 5.65 (s, 2H), 2.71 (s, 3H).

<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz, CDCl<sub>3</sub>, δ): 168.5, 149.3, 142.9, 134.5, 134.1, 132.5, 128.4, 126.2, 125.9, 123.7, 123.55, 123.50, 122.3, 38.6, 19.1. IR (ZnSe)  $v_{max}$  (cm<sup>-1</sup>): 2237, 1921, 1701, 1384, 1097, 952, 844, 721, 613. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup>; 303.1128; found, 303.1129.

#### 2-[(5-methylquinolin-8-yl)methyl]-isoindoline-1,3-dione (Scheme 2, Entry 3d)



Following the general procedure for sp<sup>3</sup> C-H amidation, 5,8-dimethylquinoline (**1d**) (31.4 mg, 0.2 mmol), *N*-hydroxyphthalimide (**2a**) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 h. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 98% (59.3 mg). Mp = 127 - 129 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.98 (dd, J = 4.2, 1.2 Hz, 1H), 8.33 (d, J = 8.4 Hz, 1H), 7.89 (dd, J = 5.4, 3.0 Hz, 2H), 7.74 (dd, J = 5.4, 3.0 Hz,

2H), 7.47 (dd, J = 9.0, 4.2 Hz, 1H), 7.32 (d, J = 7.2 Hz, 1H), 7.26 (d, J = 7.2 Hz, 1H), 5.61 (s, 2H), 2.64 (s, 3H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.5, 149.2, 146.1, 134.3, 134.1, 132.9, 132.4, 132.0, 127.8, 126.7, 126.4, 123.5, 121.0, 38.4, 18.7. IR (ZnSe)  $v_{max}$  (cm<sup>-1</sup>): 3315, 3039, 2360, 2341, 1766, 1702, 1600, 1103, 746. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup>; 303.1128; found, 303.1147.

#### 2-((6-methylquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3e)

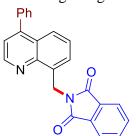
Following the general procedure for sp<sup>3</sup> C-H amidation, 6,8-dimethylquinoline (1e) (31.4 mg, 0.2

mmol), *N*-hydroxyphthalimide **(2a)** (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 95% (57.4 mg). Mp = 195 - 197 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.89-8.88 (m, 1H), 8.05 (d, J = 8.4, 1H), 7.92-7.90 (m, 2H), 7.76-7.74 (m, 2H),

7.48 (s, 1H), 7.39 (dd, J = 8.4, 4.2, 1H), 7.22 (s, 1H), 5.61 (s, 2H), 2.43 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.5, 148.8, 144.7, 136.1, 135.6, 134.1, 133.7, 132.4, 128.6, 128.5, 126.3, 123.6, 121.4, 38.2, 21.9. IR (ZnSe) vmax (cm<sup>-1</sup>): 2360, 2341, 1770, 1653, 1506, 1309, 1103, 950, 719. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup>; 303.1128; found, 303.1144.

#### 2-((7-methylquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3f)

Following the general procedure for sp<sup>3</sup> C-H amidation, 7,8-dimethylquinoline (1f) (31.4 mg, 0.2




mmol), *N*-hydroxyphthalimide **(2a)** (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 91% (55.1 mg). Mp = 146 - 148 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.85 (dd, J = 4.2, 1.8 Hz, 1H), 8.06 (dd, J = 8.4, 1.8 Hz, 1H), 7.76 (dd, J = 5.4, 3.0 Hz, 2H), 7.67 (d, J = 8.4 Hz, 1H), 7.64 (dd, J = 5.4, 3.0 Hz, 2H), 7.37

(d, J = 8.4 Hz, 1H), 7.30 (dd, J = 8.4, 4.2 Hz, 1H), 5.60 (s, 2H), 2.67 (s, 3H).  $^{13}C\{^{1}H\}$  NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.3, 149.6, 147.3, 139.2, 136.1, 133.8, 132.2, 130.8, 129.9, 127.5, 126.6, 123.1, 120.3, 35.6, 20.6. IR (ZnSe) vmax (cm<sup>-1</sup>): 2962, 2360, 2341, 1770, 1716, 1652, 1388, 1047, 710. HRMS (ESI-TOF) (m/z):  $[M + H]^{+}$  calcd for  $C_{19}H_{15}N_{2}O_{2}^{+}$ ; 303.1128; found, 303.1147.

#### 2-((4-phenylquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3g)

Following the general procedure for sp<sup>3</sup> C-H amidation, 4-phenyl-8-methylquinoline (1g) (43.8



mg, 0.2 mmol), *N*-hydroxyphthalimide **(2a)** (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/n-hexane) as white solid, yield = 94% (68.6 mg). Mp = 175 - 177 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.99 (d, J = 4.2 Hz, 1H), 7.91 (dd, J = 5.4, 3.0 Hz, 2H), 7.83 (d, J = 7.8 Hz, 1H), 7.75 (dd, J = 5.4, 3.0 Hz, 2H), 7.53-7.51 (m, 5H),

7.44-7.43 (m, 1H), 7.40-7.37 (m, 2H), 5.70 (s, 2H).  $^{13}C\{^{1}H\}$  NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.5, 149.2, 148.8, 146.4, 138.3, 134.4, 134.1, 132.4, 129.7, 128.7, 128.5, 126.9, 126.3, 126.2, 125.6, 123.5, 121.7, 38.6. IR (ZnSe) vmax (cm<sup>-1</sup>): 2360, 2341, 1770, 1706, 1652, 1463, 1386, 1114, 696. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for  $C_{24}H_{17}N_{2}O_{2}^{+}$ ; 365.1285; found, 365.1304.

2-((4-(thiophen-3-yl)quinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry **3h**)

Following the general procedure for sp<sup>3</sup> C-H amidation, 8-methyl-4-(thiophen-3-yl)quinoline (1h)

(44.8 mg, 0.2 mmol), *N*-hydroxyphthalimide **(2a)** (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 91% (67.5 mg). Mp = 162 - 164 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.96 (d, J = 4.2 Hz, 1H), 7.98 (d, J = 7.8 Hz, 1H), 7.90 (dd, J = 5.4, 3.0 Hz, 2H), 7.76 - 7.73 (m, 2H), 7.50-7.49 (m, 2H), 7.44-7.40 (m, 3H), 7.31-7.30 (m, 1H), 5.68 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.5, 149.2, 146.4, 143.5, 138.7, 134.4, 134.1, 132.4, 129.0, 126.9,

126.4, 126.35, 126.28, 125.4, 125.1, 123.5, 121.4, 38.6. IR (ZnSe) vmax (cm $^{-1}$ ): 2920, 2360, 2341, 1766, 1707, 1506, 1386, 1114, 952, 712. HRMS (ESI-TOF) (m/z): [M + H] $^{+}$  calcd for  $C_{22}H_{15}N_2O_2S^+$ ; 371.0849; found, 371.0861.

2-((4-(phenanthren-9-yl)quinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3i)

Following the general procedure for sp<sup>3</sup> C-H amidation, 8-methyl-4-(phenanthren-9-yl)quinoline

(1h) (63.8 mg, 0.2 mmol), *N*-hydroxyphthalimide (2a) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 89% (82.8 mg). Mp = 246 - 284 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 9.11 (d, J = 4.2 Hz, 1H), 8.80 (dd, J = 15.0, 8.4 Hz, 2H), 7.94-7.91 (m, 3H), 7.77-7.73 (m, 4H), 7.69-7.65 (m, 2H), 7.54 (d, J = 4.2 Hz, 1H), 7.44-7.41 (m, 3H), 7.36 (d, J = 8.4 Hz, 1H), 7.25-7.23 (m, 1H), 5.77 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.6, 149.3, 134.6, 134.5, 134.3, 134.2, 132.5,

132.3, 131.3, 131.2, 130.6, 130.4, 129.9, 129.0, 128.4, 128.3, 127.4, 127.3, 127.2, 127.0, 126.6, 126.4, 126.2, 123.6, 123.1, 122.9, 122.8, 38.6. IR (ZnSe) vmax (cm $^{-1}$ ): 3290, 3059, 2233, 1951, 1712, 1388, 1095, 729, 516. HRMS (ESI-TOF) (m/z): [M + H] $^{+}$  calcd for  $C_{32}H_{21}N_{2}O_{2}^{+}$ ; 465.1598; found, 465.1598.

 $2-((4-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)quinolin-8-yl)methyl) isoindoline-1,3-dione (Scheme 2, Entry <math>3\mathbf{j}$ )

Following the general procedure for sp<sup>3</sup> C-H amidation, 4-((1,1,1,3,3,3-hexafluoropropan-2-

yl)oxy)-8-methylquinoline **(1j)** (61.8 mg, 0.2 mmol), *N*-hydroxyphthalimide **(2a)** (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/n-hexane) as white solid, yield = 93% (82.8 mg). Mp = 182 - 184 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.89 (d, J = 5.4 Hz, 1H), 8.15 (d, J = 7.2 Hz, 1H), 7.91-7.89 (m, 2H), 7.76-7.74 (m, 2H), 7.530-7.49 (m, 2H), 6.93 (d, J = 4.8 Hz, 1H), 5.62 (s, 2H), 5.27-5.21 (m, 1H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.4, 159.9, 150.0, 147.6,

134.21, 134.17, 132.4, 131.6, 128.1, 126.7, 123.6, 121.02, 121.00, 120.9 (q,  $J_{C-F} = 282 \text{ Hz}$ ), 102.4, 74.25 (sept,  $J_{C-F} = 33.7 \text{ Hz}$ ), 38.4. <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>,  $\delta$ ): -73.11. IR (ZnSe) vmax (cm<sup>-1</sup>):2121, 2063, 1716, 1388, 1222, 1126, 1074, 960, 713. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>21</sub>H<sub>13</sub>F<sub>6</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup>; 455.0825; found, 455.0825.

#### 2-((4,6-dimethylquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry **3k**)

Following the general procedure for sp<sup>3</sup> C-H amidation, 4,6,8-trimethylquinoline (1k) (34.2 mg,

0.2 mmol), *N*-hydroxyphthalimide (**2a**) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 93% (58.8 mg). Mp = 222 - 224 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.74 (d, J = 4.2 Hz, 1H), 7.91 (dd, J = 5.4, 3.0 Hz, 2H), 7.75 (dd, J = 5.4, 3.0 Hz, 2H), 7.66 (s, 1H), 7.22 (d, J = 4.8 Hz, 1H), 7.20 (s, 1H), 5.61 (s, 5 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.5, 148.4, 144.2, 143.8,

2H), 2.66 (s, 3H), 2.45 (s, 3H).  $^{13}C\{^{1}H\}$  NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.5, 148.4, 144.2, 143.8, 135.7, 134.1, 134.09, 132.4, 128.5, 128.1, 123.5, 122.4, 122.2, 38.5, 22.2, 19.1. IR (ZnSe) vmax (cm<sup>-1</sup>): 3311. 3050, 2360, 2341, 1706, 1602, 1494, 1272, 1153, 740. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for  $C_{20}H_{17}N_2O_2^+$ ; 317.1285; found, 317.1285.

#### 2-((5-iodoquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3l)



Following the general procedure for sp<sup>3</sup> C-H amidation, 5-iodo-8-methylquinoline (**11**) (53.8 mg, 0.2 mmol), *N*-hydroxyphthalimide (**2a**) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 94% (77.8 mg). Mp = 185 - 187 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.92 (dd, J = 4.2, 1.8 Hz, 1H), 8.38 (dd, J = 8.4, 1.2 Hz, 1H), 8.00 (d, J = 7.8 Hz, 1H), 7.90 (dd, J = 5.4, 3.0 Hz,

2H), 7.75 (dd, J = 5.4, 3.0 Hz, 2H), 7.51 (dd, J = 8.4, 4.2 Hz, 1H), 7.17 (d, J = 7.2 Hz, 1H), 5.59 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.4, 150.5, 146.4, 140.6, 137.4, 135.5, 134.2, 132.3, 130.1, 127.8, 123.6, 123.1, 97.8, 38.1. IR (ZnSe) vmax (cm<sup>-1</sup>): 3311, 2360, 2341, 1604, 1486, 1270, 1153, 941, 739, 686. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>12</sub>IN<sub>2</sub>O<sub>2</sub><sup>+</sup>; 414.9938; found, 414.9956.

### 2-((5-methoxyquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3m)

Following the general procedure for sp<sup>3</sup> C-H amidation, 5-methoxy-8-methylquinoline (1m) (34.6



mg, 0.2 mmol), *N*-hydroxyphthalimide (**2a**) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 97% (61.7 mg). Mp = 140 - 142 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.96 (dd, J = 4.2, 1.8 Hz, 1H), 8.57 (dd, J = 8.4, 1.2 Hz, 1H), 7.88 (dd, J = 5.4, 3.0 Hz, 2H), 7.73 (dd, J = 5.4, 3.0 Hz, 2H), 7.42-

7.39 (m, 2H), 6.75 (d, J = 7.8 Hz, 1H), 5.53 (s, 2H), 3.96 (s, 3H).  $^{13}C\{^{1}H\}$  NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.6, 154.9, 150.0, 134.5, 134.0, 132.4, 131.2, 127.3, 125.8, 123.7, 123.5, 121.0, 120.5, 103.8, 55.8, 38.1. IR (ZnSe) vmax (cm<sup>-1</sup>): 2925, 2358, 2343, 1707, 1591, 1386, 1186, 954, 777. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for  $C_{19}H_{15}N_{2}O_{2}^{+}$ ; 319.1077; found, 319.1097.

#### 2-((5-bromoquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry **3n**)

Following the general procedure for sp<sup>3</sup> C-H amidation, 5-bromo-8-methylquinoline (1n) (44.2

Br N O mg, 0.2 mmol), *N*-hydroxyphthalimide **(2a)** (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/n-hexane) as white solid, yield = 96% (69.8 mg). Mp = 106 - 108 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.97 (dd, J = 4.2, 1.8 Hz, 1H), 8.53 (dd, J = 8.4, 1.2 Hz, 1H), 7.89 (dd, J = 4.8, 3.6 Hz, 2H), 7.75-7.73 (m, 2H), 7.71 (d, J = 7.8 Hz, 14.2 Hz, 14.3 Hz,

1H), 7.53 (dd, J = 9.0, 4.2 Hz, 1H), 7.31 (d, J = 7.8 Hz, 1H), 5.58 (s, 1H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.4, 150.3, 146.6, 135.8, 134.4, 134.2, 132.3, 129.9, 127.7, 127.1, 123.6, 122.5, 121.4, 38.1. IR (ZnSe) vmax (cm $^{-1}$ ): 2921, 2360, 2341, 1766, 1706, 1471, 1386, 1336, 1107, 902, 709. HRMS (ESI-TOF) (m/z): [M + H] $^{+}$  calcd for C<sub>18</sub>H<sub>12</sub>BrN<sub>2</sub>O<sub>2</sub> $^{+}$ ; 367.0077; found, 367.0093.

#### 2-((6-bromoquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 30)

Following the general procedure for sp<sup>3</sup> C-H amidation, 6-bromo-8-methylquinoline (10) (44.2)

Br O

mg, 0.2 mmol), *N*-hydroxyphthalimide **(2a)** (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/n-hexane) as white solid, yield = 99% (72.7 mg). Mp = 195 - 197 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.96 (dd, J = 4.2, 1.8 Hz, 1H), 8.06 (dd, J = 8.4, 1.8 Hz,

1H), 7.92 (dd, J = 5.4, 3.0 Hz, 2H), 7.90 (d, J = 1.8 Hz, 1H), 7.77 (dd, J = 5.4, 3.0 Hz, 2H), 7.47-7.45 (m, 2H), 5.61 (s, 2H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.3, 150.0, 144.7, 136.6, 135.4, 134.3, 132.3, 129.9, 129.53, 129.51, 123.7, 122.3, 120.3, 37.8. IR (ZnSe) vmax (cm<sup>-1</sup>): 2360, 2355, 1763, 1703, 1652, 1388, 1105, 949, 870, 717. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>12</sub>BrN<sub>2</sub>O<sub>2</sub><sup>+</sup>; 367.0077; found, 367.0089.

#### 2-((7-bromoquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry **3p**)

Following the general procedure for sp<sup>3</sup> C-H amidation, 7-bromo-8-methylquinoline (1p) (44.2

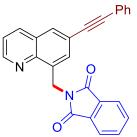
Br O

mg, 0.2 mmol), *N*-hydroxyphthalimide (**2a**) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 93% (68.3 mg). Mp = 144 - 146 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.87 (dd, J = 4.2, 1.2 Hz, 1H), 8.10 (dd, J = 7.8, 1.8 Hz, 1H), 7.76 (dd, J = 5.4, 3.6 Hz, 2H), 7.69 (d, J = 9.0 Hz, 1H),

7.65 (dd, J = 5.4, 3.0 Hz, 2H), 7.63 (d, J = 8.4 Hz, 1H), 7.39 (dd, J = 8.4, 4.2 Hz, 1H), 5.71 (s,

2H).  ${}^{13}C\{{}^{1}H\}$  NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.1, 150.4, 147.7, 136.4, 133.8, 133.0, 132.2, 131.2, 128.9, 127.2, 126.4, 123.2, 121.5, 38.8. IR (ZnSe) vmax (cm<sup>-1</sup>): 3041, 2360, 2341, 1770, 1707, 1653, 1330, 1118, 947, 833, 713. HRMS (ESI-TOF) (m/z):  $[M + H]^+$  calcd for  $C_{18}H_{12}BrN_2O_2^+$ ; 367.0077; found, 367.0081.

#### (E)-2-((6-styrylquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3q)


Following the general procedure for sp<sup>3</sup> C-H amidation, 4-phenyl-8-methylquinoline (1q) (49 mg,

0.2 mmol), N-hydroxyphthalimide (2a) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/n-hexane) as white solid, yield = 97% (75.7 mg). Mp = 207 - 209 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.91-8.89 (m, 1H), 8.13-8.11 (m, 1H), 7.93 (dd, J = 5.4, 3.0 Hz, 2H), 7.77-

7.75 (m, 3H), 7.65 (s, 1H), 7.49-7.48 (m, 2H), 7.42-7.40 (m, 1H), 7.35-7.32 (m, 2H), 7.27-7.24 (m, 1H), 7.18-7.10 (m, 2H), 5.65 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.5, 149.5, 145.8, 137.0, 136.2, 135.2, 134.5, 134.2, 132.4, 130.3, 128.8, 128.7, 128.1, 128.0, 126.7, 125.34, 125.32, 125.1, 123.6, 121.8, 38.2. IR (ZnSe) vmax (cm<sup>-1</sup>): 3028, 2360, 2341, 1766, 1703, 1653, 1494, 1388, 1107, 944, 731. HRMS (ESI-TOF) (m/z):  $[M + H]^+$  calcd for  $C_{26}H_{19}N_2O_2^+$ ; 391.1441; found, 391.1457.

#### 2-((6-(phenylethynyl)quinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3r)

Following the general procedure for sp<sup>3</sup> C-H amidation, 8-methyl-6-(phenylethynyl)quinoline (1r)




(48.6 mg, 0.2 mmol), N-hydroxyphthalimide (2a) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/n-hexane) as white solid, yield = 97% (75.3 mg). Mp = 128 - 130 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.96 (dd, J = 4.2, 1.8 Hz, 1H), 8.13 (dd, J = 8.4, 1.8 Hz, 1H), 7.93 (dd, J = 5.4, 3.0 Hz, 3H), 7.76 (dd, J = 5.4, 3.0 Hz, 3H), 7.52-

7.50 (m, 3H), 7.46 (dd, J = 8.4, 4.2 Hz, 1H), 7.33-7.32 (m, 3H), 5.63 (s, 2H).  $^{13}$ C $\{^{1}$ H $\}$  NMR (150) MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.5, 150.3, 145.4, 136.1, 134.6, 134.2, 132.4, 131.8, 130.9, 128.9, 128.7, 128.5, 128.2, 123.71, 123.67, 122.9, 122.1, 121.4, 90.7, 89.1, 38.0. IR (ZnSe) vmax (cm<sup>-1</sup>): 2931, 2360, 2341, 1707, 1388, 1317, 1110, 953, 881, 719. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for  $C_{26}H_{17}N_2O_2^+$ ; 389.1285; found, 389.1306.

## (E)-2-((7-styrylquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3s)

Following the general procedure for sp<sup>3</sup> C-H amidation, (E)-8-methyl-7-styrylquinoline (1s) (49



mg, 0.2 mmol), N-hydroxyphthalimide (2a) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/nhexane) as white solid, yield = 93% (72.7 mg). Mp = 168 - 170 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.96 (dd, J = 4.2, 1.2 Hz, 1H), 8.11 (dd, J = 8.4, 1.8 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.78-7.7 (m, 2H), 7.68 (dd, J = 5.4, 3.0 Hz, 2H), 7.57 (dd, J = 5.4, 3.0 Hz, 2H), 7.557.54 (m, 2H), 7.39-7.35 (m, 3H), 7.28-7.25 (m, 1H), 7.04 (d, J = 16.2 Hz, 1H), 5.87 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.3, 149.9, 147.6, 137.8, 137.0, 136.1, 134.4, 133.8, 132.8, 132.1, 130.9, 128.8, 128.1, 128.0, 127.5, 127.1, 126.1, 124.9, 123.7, 123.1, 121.0, 34.6. IR (ZnSe) vmax (cm<sup>-1</sup>): 3311, 3049, 2360, 2341, 1602, 1496, 1273, 939, 739, 688. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>26</sub>H<sub>18</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup>; 391.1441; found, 391.1461.

#### 2-((7-fluoroquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3t)

Following the general procedure for sp<sup>3</sup> C-H amidation, 7-fluoro-8-methylquinoline (1t) (32.2 mg,

F<sub>O</sub>

0.2 mmol), *N*-hydroxyphthalimide **(2a)** (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/n-hexane) as white solid, yield = 94% (57.6 mg). Mp = 156 - 158 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.90 (dd, J = 4.2, 1.8 Hz, 1H), 8.10 (dd, J = 8.4, 1.8 Hz, 1H), 7.81-7.79 (m, 2H), 7.75 (dd, J = 9.0, 6.0 Hz, 1H), 7.66 (dd, J = 5.4, 3.0 Hz, 1H), 7.35

(dd, J = 8.4, 4.2 Hz, 1H), 7.31-7.28 (m, 1H), 5.59 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.1, 161.4 (d,  $J_{C-F} = 250.5$  Hz), 150.8, 147.4 (d,  $J_{C-F} = 9.0$  Hz), 136.2, 133.8, 133.3, 129.5 (d,  $J_{C-F} = 11.2$  Hz), 125.2, 123.3, (d,  $J_{C-F} = 3.0$  Hz), 118.3 (d,  $J_{C-F} = 12.0$  Hz), 117.0 (d,  $J_{C-F} = 27.0$  Hz), 32.3 (d,  $J_{C-F} = 3.0$  Hz). <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>,  $\delta$ ): -111.52. IR (ZnSe) vmax (cm<sup>-1</sup>): 3311, 3028, 2360, 2343, 1770, 1703, 1602, 1496, 1249, 1113, 939, 688. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>12</sub>FN<sub>2</sub>O<sub>2</sub><sup>+</sup>; 307.0877; found, 307.0888.

#### 2-((7-chloroquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry **3u**)

Following the general procedure for sp<sup>3</sup> C-H amidation, 7-chloro-8-methylquinoline (1u) (35.6



mg, 0.2 mmol), *N*-hydroxyphthalimide **(2a)** (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 96% (62 mg). Mp = 138 - 140 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.90 (s, 1H), 8.11 (d, J = 5.4 Hz, 1H), 7.76-7.65 (m, 5H), 7.51 (d, J = 8.4 Hz, 1H), 7.39-7.37 (m, 1H), 5.70 (s, 2H). <sup>13</sup>C{<sup>1</sup>H}

NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.1, 150.5, 147.5, 136.4, 136.0, 133.8, 132.2, 131.0, 128.8, 128.3, 126.8, 123.2, 121.3, 36.0. IR (ZnSe) vmax (cm<sup>-1</sup>): 3051, 2360, 2341, 1772, 1710, 1489, 1392, 1334, 1105, 952, 711. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>12</sub>ClN<sub>2</sub>O<sub>2</sub><sup>+</sup>; 323.0582; found, 323.0589.

2-((7-(phenylethynyl)quinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3v)

Following the general procedure for sp<sup>3</sup> C-H amidation, 8-methyl-7-(phenylethynyl)quinoline (1v)

(48.6 mg, 0.2 mmol), *N*-hydroxyphthalimide (2a) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (25% EtOAc/n-hexane) as white solid, yield = 90% (69.8 mg). Mp = 142 - 144 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.87 (dd, J = 4.2, 1.8 Hz, 1H), 8.10 (dd, J

= 8.4, 1.8 Hz, 1H), 7.77-7.75 (m, 2H), 7.69 (d, J = 9.0 Hz, 1H), 7.66-7.64 (m, 2H), 7.63 (d, J = 9.0 Hz, 1H), 7.39 (d, J = 7.8, 1.8 Hz, 1H), 5.71 (s, 2H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.1, 150.4, 147.7, 136.4, 133.8, 133.0, 132.2, 131.1, 128.9, 127.2, 126.4, 123.2, 121.5, 38.8. IR (ZnSe) vmax (cm $^{-1}$ ): 2358, 2353, 1770, 1709, 1652, 1435, 1390, 1122, 947, 713. HRMS (ESITOF) (m/z): [M + H] $^{+}$  calcd for C<sub>26</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub> $^{+}$ ; 389.1285; found, 389.1283.

5-methyl-2-(quinolin-8-ylmethyl)isoindoline-1,3-dione (Scheme 2, Entry 3w)

Following the general procedure for sp<sup>3</sup> C-H amidation, 8-methylquinoline **(1a)** (28.6 mg, 0.2 mmol), 2-hydroxy-5-methylisoindoline-1,3-dione **(2b)** (53.2 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as

white solid, yield = 87% (52.7 mg). Mp = 208 - 210 °C. ¹H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.95 (dd, J = 4.2, 1.8 Hz, 1H), 8.14 (dd, J = 8.4, 1.8 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 7.2 Hz, 1H), 7.69 (s, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.43-7.39 (m, 3H), 5.63 (s, 2H), 2.51 (s, 3H).  $^{13}$ C{¹H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.7, 168.6, 149.7, 146.0, 145.4, 136.3, 134.6, 134.3, 132.8, 129.8, 128.3, 127.4, 126.3, 126.2, 124.1, 123.4, 121.4, 38.2, 22.1. IR (ZnSe) vmax (cm<sup>-1</sup>): 3278, 1337, 2148, 1955, 1708, 1411, 1226, 918, 721. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup>; 303.1128; found, 303.1128.

2-(quinolin-8-ylmethyl)-1H-benzo[e]isoindole-1,3(2H)-dione (Scheme 2, Entry 3x)



Following the general procedure for  $\rm sp^3$  C-H amidation, 8-methylquinoline (1a) (28.6 mg, 0.2 mmol), 2-hydroxy-1H-benzo[e]isoindole-1,3(2H)-dione (2c) (63.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/n-

hexane) as white solid, yield = 84% (57 mg). Mp = 198 - 200 °C.  $^{1}$ H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.99 - 8.98 (m, 1H), 8.97 (d, J = 8.4 Hz, 1H), 8.20 - 8.17 (m, 2H), 7.97 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.75 - 7.71 (m, 2H), 7.66 (t, J = 7.8 Hz, 1H), 7.52 (d, J = 7.2 Hz, 1H), 7.46 - 7.44 (m, 2H), 5.71 (s, 2H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 169.6, 169.0, 149.5, 136.7, 136.4, 135.0, 134.3, 131.5, 129.5, 128.8, 128.7, 128.3, 128.1, 127.6, 127.4, 126.6, 126.3, 125.1, 121.3, 118.6, 38.0. IR (ZnSe) vmax (cm $^{-1}$ ):3133, 2198, 1994, 1693, 1388, 1103, 948, 779. HRMS (ESITOF) (m/z): [M + H] $^{+}$  calcd for C<sub>22</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub> $^{+}$ ; 339.1128; found, 339.1127.


#### 1-(quinolin-8-ylmethyl)pyrrolidine-2,5-dione (Scheme 3, Entry 3y)

Following the general procedure for sp<sup>3</sup> C-H amidation, 8-methylquinoline (**1a**) (28.6 mg, 0.2 mmol), n-hydroxysuccinimide (**2d**) (34.5 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 80 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/n-hexane) as white solid, yield = 58% (28 mg). Mp = 212 - 214 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.95 (d, J

= 4.2 Hz, 1H), 8.15 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.43 (dd, J = 8.4, 4.2 Hz, 1H), 7.37 (d, J = 7.2 Hz, 1H), 5.46 (s, 2H), 2.84 (s, 4H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 177.3, 149.8, 146.1, 136.3, 133.4, 130.7, 128.4, 127.7, 126.7, 126.2, 121.4, 39.1, 28.5. IR (ZnSe) vmax (cm $^{-1}$ ): 3251, 2137, 1705, 1377, 1083, 948, 717. HRMS (ESI-TOF) (m/z): [M + H] $^{+}$  calcd for C<sub>14</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub> $^{+}$ ; 241.0972; found, 241.0971.

#### 2-(1-(quinolin-8-yl)ethyl)isoindoline-1,3-dione (Scheme 3, Entry 5a)

Following the general procedure for sp<sup>3</sup> C-H amidation, 8-ethylquinoline (4a) (31.4 mg, 0.2



mmol), *N*-hydroxyphthalimide **(2a)** (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 120 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 77% (46.6 mg). Mp = 122 - 124 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.88 (dd, J = 4.2, 1.8 Hz, 1H), 8.10 (dd, J = 8.4, 1.8 Hz, 1H), 8.01 (d, J = 7.2

Hz, 1H), 7.78 (dd, J = 5.4, 3.6 Hz, 2H), 7.75-7.74 (m, 1H), 7.65 (dd, J = 6.0, 3.0 Hz, 2H), 7.54 (t, J = 7.8 Hz, 1H), 7.34 (dd, J = 7.8, 4.2 Hz, 1H), 6.82 (dd, J = 14.4, 7.2 Hz, 1H), 2.05 (d, J = 7.2 Hz, 3H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>, δ): 168.6, 149.8, 145.8, 138.3, 136.3, 134.4, 133.8, 132.8, 132.2, 128.2, 128.1, 127.8, 126.1, 123.7, 123.1, 121.1, 45.5, 18.4. IR (ZnSe) vmax (cm<sup>-1</sup>): 3047, 2360, 2353, 1772, 1699, 1599, 1496, 1354, 1053, 791, 713. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup>; 303.1128; found, 303.1144.

#### 2-(1-(6-methylquinolin-8-yl)ethyl)isoindoline-1,3-dione (Scheme 3, Entry 5b)

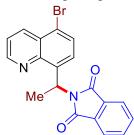
Following the general procedure for sp<sup>3</sup> C-H amidation, 6-methyl-8-ethylquinoline (4b) (34.2 mg,



0.2 mmol), *N*-hydroxyphthalimide (**2a**) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 120 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/n-hexane) as white solid, yield = 63% (39.8 mg). Mp = 127 - 129 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.80-8.79 (m, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.82 (s, 1H), 7.80-7.78 (m, 2H),

7.66-7.65 (m, 2H), 7.50 (s, 1H), 7.30 (dd, J = 8.4, 4.2 Hz, 1H), 6.77 (dd, J = 14.4, 7.2 Hz, 1H), 2.54 (s, 3H), 2.01 (d, J = 7.8 Hz, 3H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.6, 148.9, 144.5, 138.0, 135.9, 135.6, 134.4, 133.8, 132.3, 130.3, 128.4, 126.6, 123.7, 123.2, 121.1, 45.5, 22.0, 18.4. IR (ZnSe) vmax (cm<sup>-1</sup>): 3314, 2359, 2021, 1705, 1365, 1060, 705, 493. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>20</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup>; 317.1285; found, 317.1286.

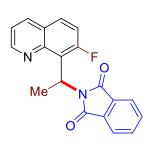
#### 2-(1-(6-bromoguinolin-8-yl)ethyl)isoindoline-1,3-dione (Scheme 3, Entry 5c)


Following the general procedure for sp<sup>3</sup> C-H amidation, 6-bromo-8-ethylquinoline (4c) (46.4 mg,

0.2 mmol), *N*-hydroxyphthalimide (**2a**) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 120 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 57% (22.9 mg). Mp = 163 - 165 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.86 (dd, J = 4.2, 1.8 Hz, 1H), 8.06 (s, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.91

(d, J = 2.4 Hz, 1H), 7.87 (dd, J = 5.4, 3.0 Hz, 1H), 7.80 (dd, J = 5.4, 3.0 Hz, 2H), 7.76 (dd, J = 5.4, 3.0 Hz, 1H), 7.67 (dd, J = 5.4, 3.0 Hz, 2H), 7.36 (dd, J = 8.4, 4.2 Hz, 1H), 6.75 (dd, J = 14.4, 7.2 Hz, 1H), 2.00 (d, J = 7.8 Hz, 3H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.4, 150.1, 144.5, 140.6, 135.3, 134.5, 133.9, 132.8, 132.2, 131.8, 129.8, 129.4, 123.7, 123.3, 121.9, 120.3, 45.1, 18.3. IR (ZnSe) vmax (cm<sup>-1</sup>):3120, 2360, 2199, 1712. 1342, 1029, 844, 694, 478. HRMS (ESITOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>14</sub>BrN<sub>2</sub>O<sub>2</sub><sup>+</sup>; 381.0233; found, 381.0234.

#### 2-(1-(5-bromoquinolin-8-yl)ethyl)isoindoline-1,3-dione (Scheme 3, Entry 5d)


Following the general procedure for sp<sup>3</sup> C-H amidation, 5-bromo-8-ethylquinoline (4d) (46.4 mg,



0.2 mmol), *N*-hydroxyphthalimide (**2a**) (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 120 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as white solid, yield = 68% (27.3 mg). Mp = 167 - 169 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ):  $\delta$  8.87 (dd, J = 4.2, 1.8 Hz, 1H), 8.48 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 7.8 Hz, 1H), 7.78-7.77 (m, 2H), 7.66-7.64 (m, 2H), Hz, 1H), 6.75 (dd, J = 7.8 Hz, 1H), 1.00 (d, J = 7.2 Hz, 2H), J (1.10)

7.44 (dd, J = 8.4, 4.2 Hz, 1H), 6.75 (dd, J = 14.4, 7.2 Hz, 1H), 1.99 (d, J = 7.2 Hz, 3H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.4, 150.3, 146.5, 138.3, 135.7, 133.9, 132.2, 129.9, 128.7, 127.5, 123.2, 122.2, 121.8, 45.2, 18.2. IR (ZnSe) vmax (cm $^{-1}$ ): 3614, 1708, 1350, 1041, 844, 725, 678. HRMS (ESI-TOF) (m/z): [M + H] $^{+}$  calcd for C<sub>19</sub>H<sub>14</sub>BrN<sub>2</sub>O<sub>2</sub> $^{+}$ ; 381.0233; found, 381.0230.

#### 2-(1-(7-fluoroquinolin-8-yl)ethyl)isoindoline-1,3-dione (Scheme 3, Entry 5e)



Following the general procedure for sp<sup>3</sup> C-H amidation, 8-ethyl-7-fluoroquinoline (**4e**) (35 mg, 0.2 mmol), N-hydroxyphthalimide (**2a**) (48.9 mg, 0.3 mmol),  $[RhCp*Cl_2]_2$  (6.1 mg, 5 mol%),  $AgSbF_6$  (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 120 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/n-hexane) as white solid, yield = 43% (27.6 mg). Mp = 125 - 127 °C.  $^1H$  NMR (600 MHz,  $CDCl_3$ ,  $\delta$ ): 8.91 (d, J = 4.2 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.88 - 7.86 (m, 2H), 7.78 - 7.73 (m, 2H), 7.65 - 7.64 (m, 1H),

7.35 (dd, J = 8.4, 4.2 Hz, 1H), 7.32 (t, J = 10.2 Hz, 1H), 6.84 - 7.81 (m, 1H), 2.09 (dd, J = 7.8, 3.0 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.2 (d,  $J_{C-F} = 51.0$  Hz), 150.5, 136.4, 134.5, 133.8, 132.8, 132.3, 129.40 (d,  $J_{C-F} = 10.5$  Hz), 125.3, 123.8, 123.1, 122.3 (d,  $J_{C-F} = 10.5$  Hz), 120.4 (d,  $J_{C-F} = 3.0$  Hz), 118.03 (d,  $J_{C-F} = 27.0$  Hz), 44.53, 18.60 (d,  $J_{C-F} = 6.0$  Hz). <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>,  $\delta$ ): -107.64. IR (ZnSe) vmax (cm<sup>-1</sup>): 3182, 2923, 2044, 1716, 1342, 1029, 686. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>14</sub>FN<sub>2</sub>O<sub>2</sub><sup>+</sup>; 321.1034; found, 321.1034.

8-(methoxyimino)-3,5a-dimethyl-2-oxo-2,3,3a,4,5,5a,8,9b-octahydronaphtho[1,2-b]furan-9-yl)methyl)isoindoline-1,3-dione (Scheme 4, Entry **7a**)

Following the general procedure for sp<sup>3</sup> C-H amidation, santonin oxime (6a) (55 mg, 0.2 mmol),

*N*-hydroxyphthalimide **(2a)** (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), HFIP (1 mL, 0.2 M) were used and reaction was run at 120 °C for 72 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as light green solid, yield = 87% (73.3 mg). Mp = 84 - 86 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.76 - 7.75 (m, 2H), 7.65 - 7.63 (m, 2H), 6.68 (d, J = 10.2 Hz, 1H), 5.93 (d, J = 9.6 Hz, 1H), 5.13

(d, J = 13.8 Hz, 1H), 5.03 (d, J = 13.8 Hz, 1H), 4.98 (d, J = 10.4 Hz, 1H), 3.73 (s, 3H), 2.44 - 2.37 (m, 2H), 2.04 (d, J = 12.6 Hz, 1H), 1.76 (d, J = 13.2 Hz, 1H), 1.70 (dd, J = 12.0, 3.6 Hz, 1H), 1.64 (d, J = 42 Hz, 1H), 1.32 (d, J = 9.0 Hz, 6H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 177.8, 168.1, 147.4, 144.9, 143.9, 133.6, 132.6, 122.9, 120.6, 112.6, 82.6, 62.2, 51.8, 41.7, 41.2, 38.6, 34.6, 26.1, 24.1, 12.6. IR (ZnSe) vmax (cm<sup>-1</sup>):2931, 1774, 1705, 1396, 1138, 1037, 802, 713, 516. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>5</sub><sup>+</sup>; 421.1758; found, 421.1759.

8-(methoxyimino)-3,5a-dimethyl-2-oxo-2,3,3a,4,5,5a,8,9b-octahydronaphtho[1,2-b]furan-9-yl)methyl)-5-methylisoindoline-1,3-dione (Scheme 4, Entry **7b**)

Following the modified procedure for sp<sup>3</sup> C-H amidation, santonin oxime (6a) (55 mg, 0.2 mmol),

2-hydroxy-5-methylisoindoline-1,3-dione (**2w**) (53.1 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), AgOAc (16.7 mg. 0.5 equiv) HFIP (1 mL, 0.2 M) were used and reaction was run at 120 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/n-hexane) as white solid, yield = 76% (61.2 mg). Mp = 124 - 126 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.62 (d, J = 7.8 Hz, 1H), 7.55 (s, 1H), 7.42 (d, J = 7.8 Hz, 1H), 6.67 (d, J = 10.2 Hz, 1H), 5.92 (d,

J = 10.2 Hz, 1H), 5.10 (d, J = 14.4 Hz, 1H), 5.01 - 4.96 (m, 2H), 3.72 (s, 3H), 2.46 (s, 3H), 2.41 - 2.38 (m, 2H), 2.03 - 2.01 (m, 1H), 1.76 - 1.73 (m, 1H), 1.70 - 1.76 (m, 1H), 1.62 (dd, J = 12.6, 4.2 Hz, 1H), 1.32 - 1.29 (m, 6H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 177.9, 168.3, 168.2, 147.3, 144.9, 144.6, 143.8, 134.1, 132.9, 129.9, 123.4, 122.8, 120.7, 112.5, 82.6, 62.2, 51.8, 41.6, 41.1, 38.5, 34.5, 26.1, 24.1, 22.0, 12.6. IR (ZnSe) vmax (cm<sup>-1</sup>): 2511, 2407, 2229, 2048, 1963, 1774, 1701, 1381,941. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>25</sub>H<sub>26</sub>N<sub>2</sub>O<sub>5</sub>Na<sup>+</sup>; 457.1734; found, 457.1748.

8-((benzyloxy)imino)-3,5a-dimethyl-2-oxo-2,3,3a,4,5,5a,8,9b-octahydronaphtho[1,2-b]furan-9-yl)methyl)isoindoline-1,3-dione (Scheme 4, Entry **7c**)

Following the modified procedure for sp<sup>3</sup> C-H amidation, 8-((benzyloxy)imino)-3,5a,9-trimethyl-

3a,4,5,5a,8,9b-hexahydronaphtho[1,2-b]furan-2(3H)-one **(6b)** (70.2 mg, 0.2 mmol), *N*-hydroxyphthalimide **(2a)** (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), AgOAc (16.7 mg. 0.5 equiv) HFIP (1 mL, 0.2 M) were used and reaction was run at 120 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/n-hexane) as light yellow solid, yield = 71% (71.6 mg). Mp = 96 - 98 °C. <sup>1</sup>H NMR

(600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.69 (dd, J = 5.4, 3.0 Hz, 2H), 7.61 (dd, J = 5.4, 3.0 Hz, 2H), 7.22 - 7.21 (m, 2H), 7.15 - 7.09 (m, 3H), 6.78 (d, J = 10.2 Hz, 1H), 5.93 (d, J = 10.2 Hz, 1H), 5.11 (d, J = 13.8 Hz, 1H), 5.04 - 4.97 (m, 4H), 2.42 - 2.37 (m, 2H), 2.05 - 2.01 (m, 1H), 1.77 - 1.74 (m, 1H), 1.71 - 1.66 (m, 1H), 1.65 - 1.62(m, 1H), 1.31 (d, J = 7.2 Hz, 6H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 177.8, 168.1, 147.8, 144.9, 144.2, 138.1, 133.5, 132.4, 128.2, 128.0, 127.6, 122.9, 120.6, 112.9, 82.6, 76.4, 51.8, 41.7, 41.1, 38.5, 34.7, 26.0, 24.1, 12.6. IR (ZnSe) vmax (cm<sup>-1</sup>): 2881, 2353, 2175, 1982, 1770, 1689, 1381, 1029, 941. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub><sup>+</sup>; 497.2071; found, 497.2080.

2-((6-(methoxyimino)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)methyl)isoindoline-1,3-dione (Scheme 4, Entry **7d**)

Following the modified procedure for sp<sup>3</sup> C-H amidation, 2-methyl-5-(prop-1-en-2-yl)cyclohex-

2-en-1-one *O*-methyl oxime **(6c)** (36 mg, 0.2 mmol), *N*-hydroxyphthalimide **(2a)** (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), AgOAc (16.7 mg. 0.5 equiv) HFIP (1 mL, 0.2 M) were used and reaction was run at 120 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as light white solid, yield = 62% (40.3 mg). Mp = 103 - 105 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.87 (dd, J = 5.4, 3.0 Hz, 2H), 7.73 (dd, J = 5.4, 3.0 Hz, 2H), 5.88 - 5.86 (m, 1H), 4.76 (t, J = 1.8 Hz, 1H), 4.74 - 4.73 (m, 1H), 4.56 - 4.54 (m, 2H), 3.87 (s, 3H), 3.15 - 3.11

(m, 1H), 2.36 - 2.31 (m, 1H), 2.67 - 2.22 (m, 1H), 2.09 - 1.99 (m, 2H), 1.71 (s, 3H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.3, 153.8, 147.7, 134.1, 132.3, 130.8, 128.6, 123.4, 110.2, 62.0, 40.0, 38.1, 30.1, 27.7, 20.7. IR (ZnSe) vmax (cm $^{-1}$ ): 2403, 2160, 2048, 1921, 1774, 1701, 1381, 1029, 941. HRMS (ESI-TOF) (m/z): [M + H] $^{+}$  calcd for C<sub>19</sub>H<sub>21</sub>N<sub>2</sub>O<sub>3</sub> $^{+}$ ; 325.1547; found, 325.1562.

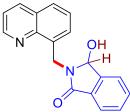
2-((6-(methoxyimino)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)methyl)-5-methylisoindoline-1,3-dione (Scheme 4, Entry **7e**)

Following the modified procedure for sp<sup>3</sup> C-H amidation, 2-methyl-5-(prop-1-en-2-yl)cyclohex-

2-en-1-one O-methyl oxime **(6c)** (36 mg, 0.2 mmol), 2-hydroxy-5-methylisoindoline-1,3-dione **(2w)** (53.1 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), AgOAc (16.7 mg. 0.5 equiv) HFIP (1 mL, 0.2 M) were used and reaction was run at 120 °C for 24 hours. Title compound was isolated from flash chromatography (20% EtOAc/n-hexane) as white solid, yield = 67% (45.3 mg). Mp = 111 - 113 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.74 (d, J = 7.8 Hz, 1H), 7.67 (s, 1H), 7.51 (d, J = 7.8 Hz, 1H), 5.84 (dd, J = 6.0, 1.8 Hz, 1H), 4.75 (d, J = 14.4 Hz, 2H), 4.53 (s, 2H), 3.87 (s, 3H), 3.15 - 3.11 (m, 1H), 2.51 (s, 3H), 2.35 - 2.30 (m, 1H), 2.26 - 2.21

(m, 1H), 2.08 - 1.99 (m, 2H), 1.71 (s, 3H).  $^{13}C\{^{1}H\}$  NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 177.8, 168.1, 147.4, 144.9, 143.9, 133.6, 132.6, 122.9, 120.6, 112.6, 82.6, 62.2, 51.8, 41.7, 41.2, 38.6, 34.6, 26.1, 24.1, 12.6. IR (ZnSe) vmax (cm<sup>-1</sup>): 2920, 2314, 2184, 2048, 1978, 1716, 1384, 1107, 729. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for  $C_{20}H_{23}N_2O_3^+$ ; 339.1703; found, 339.1712.

2-((6-((benzyloxy)imino)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)methyl)isoindoline-1,3-dione (Scheme 4, Entry **7**f)


Following the modified procedure for sp<sup>3</sup> C-H amidation, 2-methyl-5-(prop-1-en-2-yl)cyclohex-

2-en-1-one *O*-benzyl oxime **(6d)** (51.6 mg, 0.2 mmol), *N*-hydroxyphthalimide **(2a)** (48.9 mg, 0.3 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (6.1 mg, 5 mol%), AgSbF<sub>6</sub> (13.7 mg, 20 mol%), AgOAc (16.7 mg. 0.5 equiv) HFIP (1 mL, 0.2 M) were used and reaction was run at 120 °C for 36 hours. Title compound was isolated from flash chromatography (20% EtOAc/*n*-hexane) as colorless viscous liquid, yield = 69% (55.2 mg). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.85 (dd, J = 5.4, 3.0 Hz, 2H), 7.72 (dd, J = 5.4, 3.0 Hz, 2H), 7.35 - 7.30 (m, 4H), 7.28 - 7.27 (m, 1H), 5.91 - 5.89 (m, 1H), 5.11 (s, 2H), 4.74 (d, J = 11.4 Hz, 2H), 4.55 (s, 2H), 3.19 -

3.16 (m, 1H), 2.38 - 2.32 (m, 1H), 2.27 - 2.21 (m, 1H), 2.09 - 2.04 (m, 2H), 1.71 (s, 3H).  $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 168.2, 154.1, 147.6, 137.9, 133.9, 132.2, 131.1, 128.5, 128.3, 128.2, 127.7, 123.3, 110.2, 76.2, 39.9, 38.1, 30.0, 27.8, 20.5. IR (ZnSe) vmax (cm $^{-1}$ ): 2924, 2337, 2144, 2040, 2036, 1716, 1427, 1384, 948. HRMS (ESI-TOF) (m/z): [M + H] $^{+}$  calcd for C<sub>25</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub> $^{+}$ ; 401.1860; found, 401.1862.

3-hydroxy-2-(quinolin-8-ylmethyl)isoindolin-1-one (Scheme 5, Entry 8a)

Following the general procedure of post synthetic transformations (a), 3a (28.8 mg, 0.1 mmol),



NaBH<sub>4</sub> (11.4 mg, 3 equiv), *i*-propanol:toluene:H<sub>2</sub>O (6:1:1, 0.5 mL) were used and reaction was run at 0 °C in ice bath for 4 hours. Title compound was isolated from flash chromatography (25% EtOAc/n-hexane) as brown solid, yield = 83% (48.3 mg). Mp = 190 - 192 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.99 - 8.98 (m, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 7.2 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.58 (t, J = 8.4

Hz, 1H), 7.54 - 7.49 (m, 3H), 7.46 - 7.43 (m, 1H), 5.68 (s, 1H), 5.42 (d, J = 14.4 Hz, 1H), 5.21 (d, J = 14.4 Hz), 21 (d, 31), 31

J = 13.8 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz, CDCl<sub>3</sub>,  $\delta$ ): 167.0, 149.9, 146.7, 143.4, 137.9, 134.4, 133.2, 132.5, 131.9, 129.5, 128.7, 128.7, 127.5, 123.4, 123.2, 121.5, 81.1, 39.4. IR (ZnSe) vmax (cm<sup>-1</sup>):2924, 1685, 1419, 1060, 763, 721, 540. HRMS (ESI-TOF) (m/z): [M + H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup>; 291.1128; found, 291.1128.

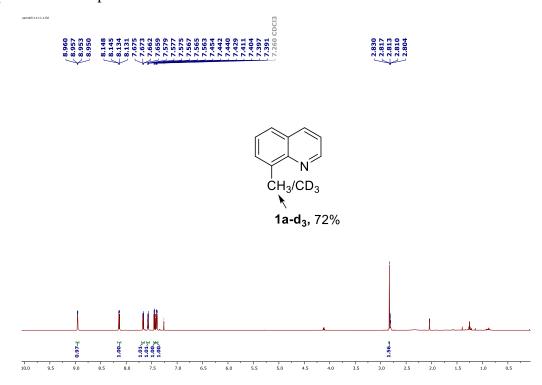
 $N^1$ -benzyl- $N^2$ -(quinolin-8-ylmethyl)phthalamide (Scheme 5, Entry **8b**)

Following the general procedure of post synthetic transformations (b), 3a (28.8 mg, 0.1 mmol),

benzylamine (21.1 mg, 2.0 equiv.) and  $H_2O$  (0.2 mL) were used and reaction was run at room temperature 12 hours. Title compound was isolated from flash chromatography (30% EtOAc/n-hexane) as white solid, yield = 87% (75.2 mg). Mp = 181 - 183 °C.  $^1$ H NMR (600 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.90 (d, J = 4.2 Hz, 1H), 8.20 (d, J = 7.8 Hz, 1H), 7.80 - 7.75 (m, 4H), 7.52 - 7.50 (m, 1H), 7.46 - 7.39 (m, 4H), 7.29 (t, J = 7.2 Hz, 3H), 7.25 - 7.23 (m, 1H), 5.11 (d, J = 6.0 Hz, 2H), 4.31 (d, J = 5.4 Hz, 2H).

 $^{13}$ C{ $^{1}$ H} NMR (150 MHz, CDCl<sub>3</sub>, δ): 169.6, 168.3, 159.1, 156.2, 143.5, 138.1, 135.2, 134.5, 130.5, 130.2, 129.6, 129.4, 128.8, 128.73, 128.72, 128.0, 127.84, 127.79, 127.5, 126.7, 121.5, 44.0, 42.0. IR (ZnSe) vmax (cm $^{-1}$ ): 2333, 2017, 1693, 1384, 1366, 1091, 952, 528. HRMS (ESI-TOF) (m/z): [M + Na] $^{+}$  calcd for C<sub>25</sub>H<sub>21</sub>N<sub>3</sub>O<sub>2</sub>Na $^{+}$ ; 418.1526; found, 418.1526.

#### 7. References

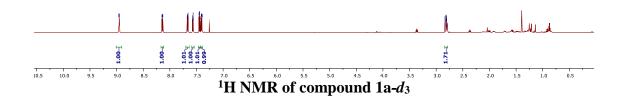

- 1. B. Wang, C. Li and H. Liu, *Adv. Synth. Catal.*, 2017, **359**, 3029-3034.
- 2. N. Wang, R. Li, L. Li, S. Xu, H. Song and B. Wang, J. Org. Chem., 2014, 79, 5379-5385.
- 3. D. Chandra, A. K. Dhiman, R. Kumar and U. Sharma, Eur. J. Org. Chem., 2019, 2019, 2753-2758.
- 4. A. K. Dhiman, R. Kumar and U. Sharma, *Synthesis*, 2021, **53**, 4124-4130.
- 5. S. Y. Yan, P. X. Ling and B. F. Shi, *Adv. Synth. Catal.*, 2017, **359**, 2912-2917.
- 6. R. Kumar, R. Sharma, R. Kumar and U. Sharma, *Org. Lett.*, 2019, **22**, 305-309.
- 7. T. Kang, Y. Kim, D. Lee, Z. Wang and S. Chang, J. Am. Chem. Soc., 2014, **136**, 4141-4144.
- 8. N. KumaráMishra, J. HwanáKwak and I. SuáKim, Chem. Commun., 2017, 53, 3006-3009.
- 9. T. Fichert and U. Massing, *Tetrahedron Lett.*, 1998, **39**, 5017-5018.
- 10. L. Bai, X. Zhang and N. Ma, *Chinese J. Chem.*, 2014, **32**, 871-877.

#### 8. Mechanistic studies

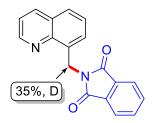
#### 8.1. H/D exchange reaction (Scheme S2)

$$\begin{array}{c|c} & & & & & & & & & \\ \hline \text{CH}_3 & & & & & & & \\ \hline 0.1 \text{ mmol} & & & & & \\ \hline 1a & & & & & \\ \end{array}$$

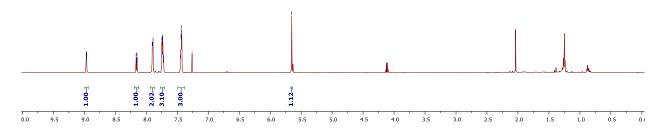
To an oven-dried 15 mL Schlenk tube was added substituted 8-methyl quinoline 1 (0.10 mmol), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (3 mg, 5 mol%), AgSbF<sub>6</sub> (6.8 mg, 20 mol%), DCE (0.5 mL, 0.2 M) and D<sub>2</sub>O (20 mg, 1 equiv.). The tube was then stirred for 5 h at 80 °C on a preheated IKA dry block followed by cooling and the contents were dried under reduced pressure. The contents were subjected to flash chromatography (5% EtOAc/n-hexane) to give the product as colorless oil with 72% d incorporation at C-8 position.




<sup>1</sup>H NMR of isolated 8-methyl quinoline-*d*<sub>3</sub> (1a-d<sub>3</sub>)

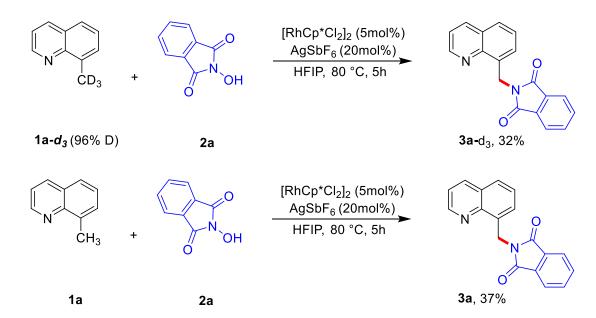

6.2 H/D exchange reaction with N-hydroxy phthalimide 2a (Scheme S3)

To an oven-dried 15 mL Schlenk tube was added substituted 8-methyl quinoline **1a** (0.20 mmol, 28.6 mg), *N*-hydroxy phthalimide **2a** (48 mg, 1.5 equiv.), [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (3 mg, 5 mol%), AgSbF<sub>6</sub> (6.8 mg, 20 mol%), DCE (0.5 mL, 0.2 M) and D<sub>2</sub>O (20 mg, 1 equiv.). The tube was then stirred for 5 h at 80 °C on a preheated IKA dry block followed by cooling and the contents were dried under reduced pressure. The contents were subjected to flash chromatography, the reactant (1a) was recovered in 69% yield with 55% *d*-incorporation and product (3a) was obtained in 24% yield with 24% *d*-incorporation at benzylic position.





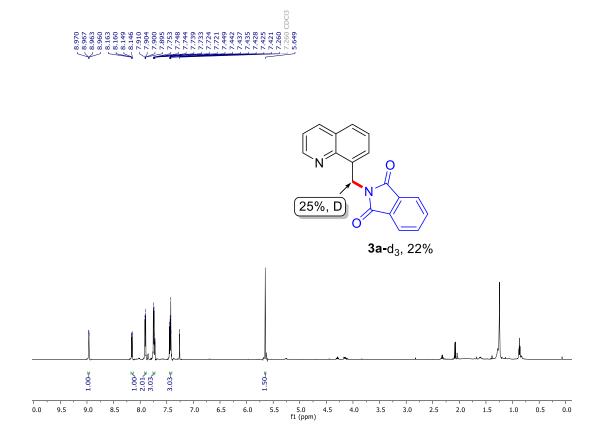



**3a-**d<sub>3</sub>, 24%

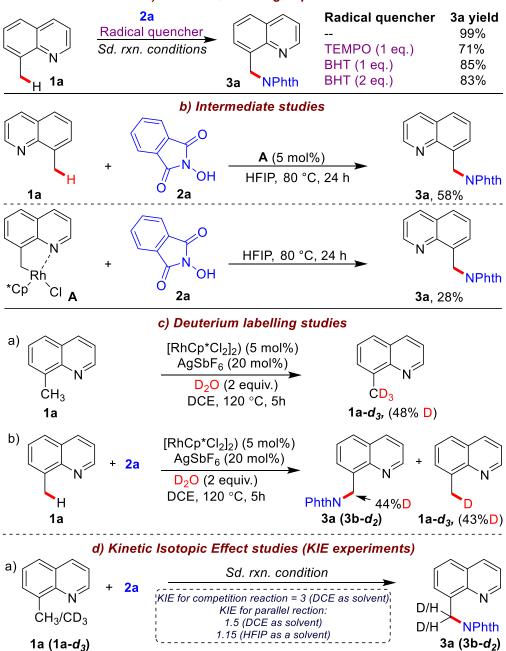


## <sup>1</sup>H NMR of compound 3a


## 6.3. Parallel experiments for KIE (Kinetic Isotopic Effect) (Scheme S4)

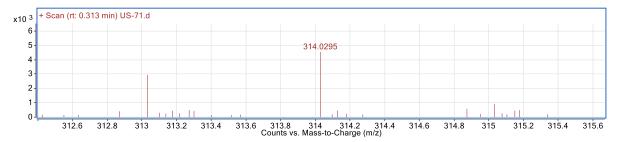


Two independent reactions were carried out using isotopically labelled 8-methylquinoline- $d_3$  (0.1 mmol) and 8-methyl quinoline (0.1 mmol), N-hydroxy phthalimide (2a, 1.5 eq.) [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (5mol%, 3.1 mg), AgSbF<sub>6</sub> (20 mol%, 6.8 mg) and in HFIP (0.5 mL) was stirred at 80 °C for 5 hours. After cooling to room temperature, the solvent was removed under reduced pressure. The contents were subjected to flash chromatography, product (3a- $d_3$ ) was obtained in 32% yield and product (3a) was obtained in 37% yield indicating that  $K_H/K_D$  value is 1.15.


#### 6.4. Competetion experiments for KIE (Kinetic Isotopic Effect) (Scheme S5)

A reaction was carried out using isotopically labelled 8-methylquinoline-d3 (0.1 mmol) and 8-methyl quinoline (0.1 mmol), N-hydroxy phthalimide (2a, 1.5 eq.) [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (5mol%, 6.12 mg), AgSbF<sub>6</sub> (20 mol%, 6.8 mg) and in DCE (1 mL) was stirred at 80 °C for 5 hours. After cooling to room temperature, the solvent was removed under reduced pressure. The contents were subjected to flash chromatography, product (3a-d<sub>3</sub>) was obtained in 22% yield with 25% d-incorporation at benzylic position indicating that KH/KD value is 3.




#### 6.5. Overall mechanistic studies (Scheme S6)

#### a) Radical Quenching Experiments



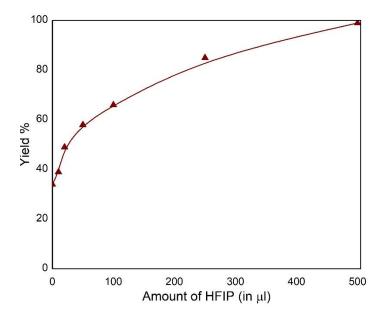
#### 6.5. Experiment for in-situ exchange of HFIP with N-hydroxyphthalimide (2a) (Scheme S7)

A reaction was carried out using *N*-hydroxy phthalimide (2a, 0.1 mmol) in HFIP (0.5 mL) at 80 °C for 24 hours. After cooling to room temperature, the contents of the reactions were subjected for ESI-MS analysis. The predicted intermediate was detected in ESI-MS analysis suggesting HFIP may have a role in the in-situ exchange with -OH.



#### 6.6 Experiment with hypothesized intermediate

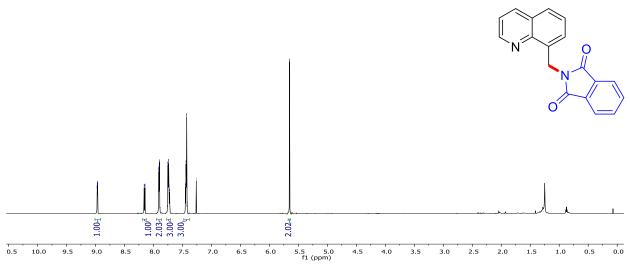
In order to prove the hypothesis, we synthesized product which was formed by the exchange of TFE with the –OH of *N*-hydroxyphthalimide (**2a**). When we subjected the synthesized product in our standard reaction conditions similar results were obtained when the reaction was carried out in TFE as a solvent.


#### 6.7 Studies for exchange of **2a** with HFIP

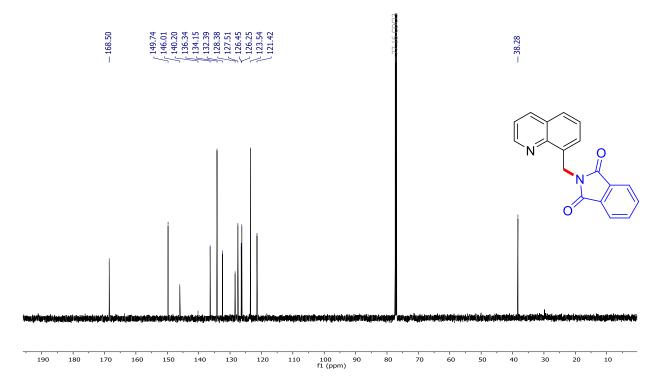
In order to confirm that an exchange between 2a and HFIP takes place during the reaction, series of experiments were carried out by varying the amount of HFIP in DCE as a solvent. The obtained results indicate that HFIP is accelerating the leaving tendency of hydroxyl group which has a profound effect on the yield of product.

#### Results:

| S. No | Quantity of HFIP in DCE | NMR Yield of <b>3a</b> |
|-------|-------------------------|------------------------|
| 1     | -                       | 34%                    |
| 2     | 10.5 μL (1 equiv)       | 39%                    |
| 3     | 21.0 μL (2 equiv)       | 49%                    |
| 4     | 52.6 μL (5 equiv)       | 58%                    |
| 5     | 105.0 μL (10 equiv)     | 66%                    |
| 6     | 250 μL (1:1)            | 85%                    |
| 7     | 500 (HFIP only)         | 99%                    |

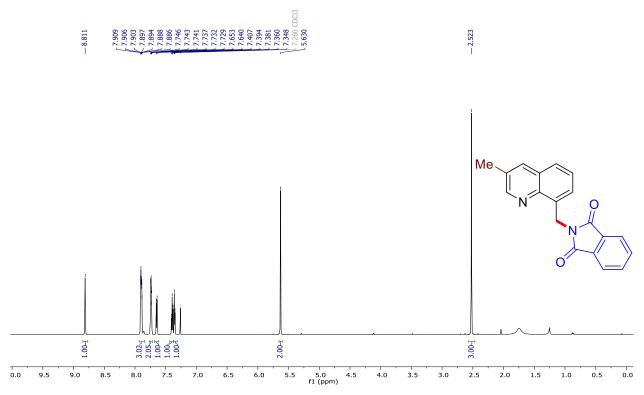

## Graph:



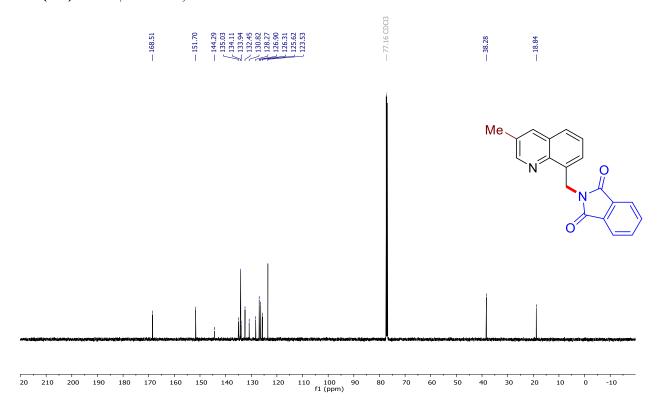

## 9. <sup>1</sup>H and <sup>13</sup>C Spectral data

2-(quinolin-8-ylmethyl)isoindoline-1,3-dione (Scheme 2, Entry 3a)



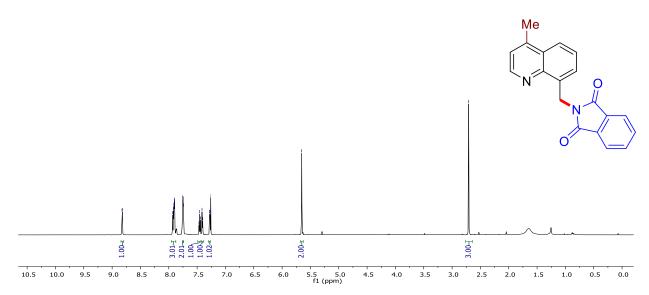



<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

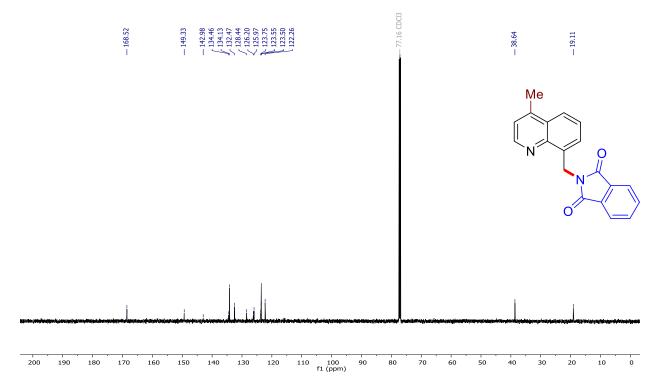



## 2-((3-methylquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry **3b**)

# <sup>1</sup>H NMR (600 MHz)

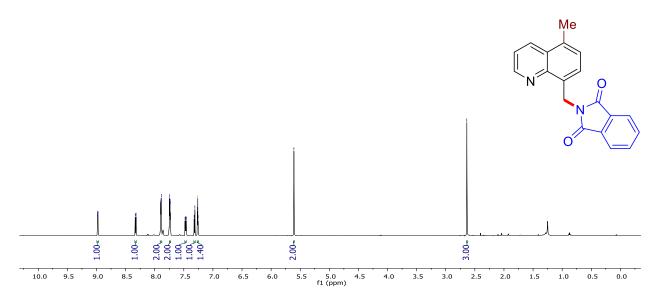



# <sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

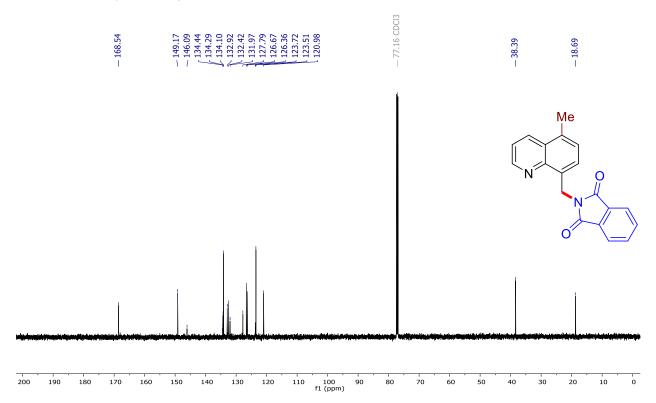



## 2-((4-methylquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry **3c**)



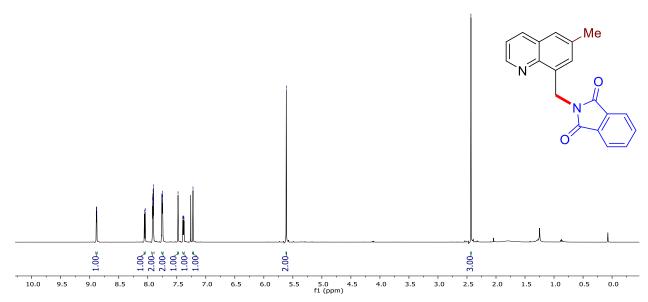



<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

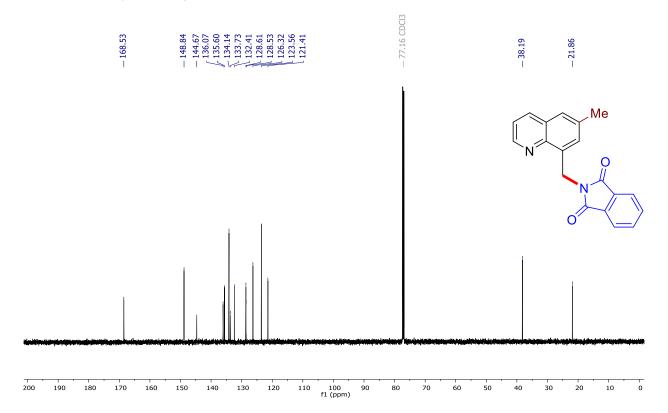



## 2-((5-methylquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3d)



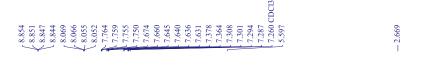


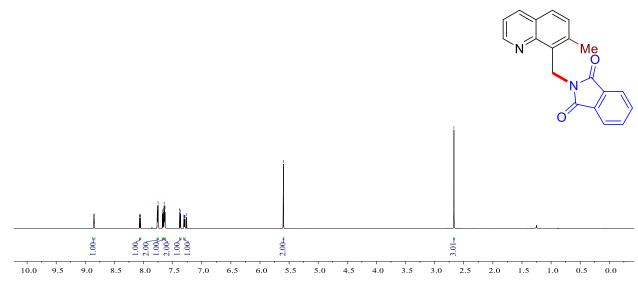

<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)



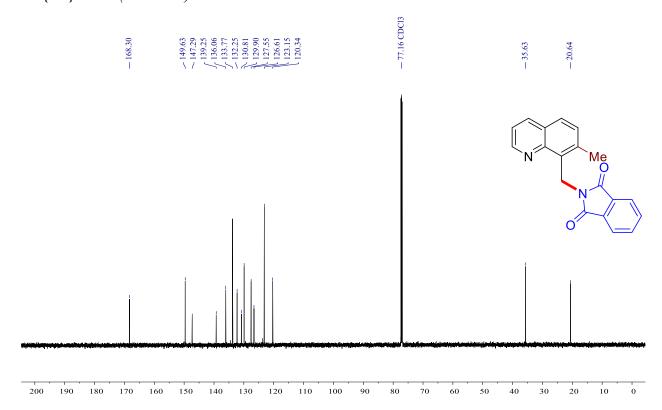

## 2-((6-methylquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry **3e**)



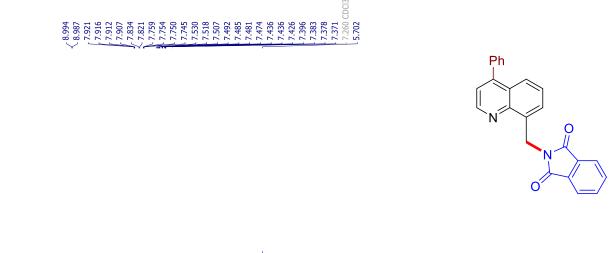


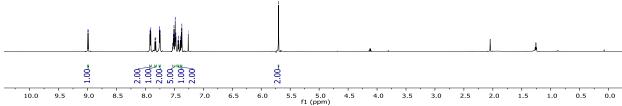


<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)



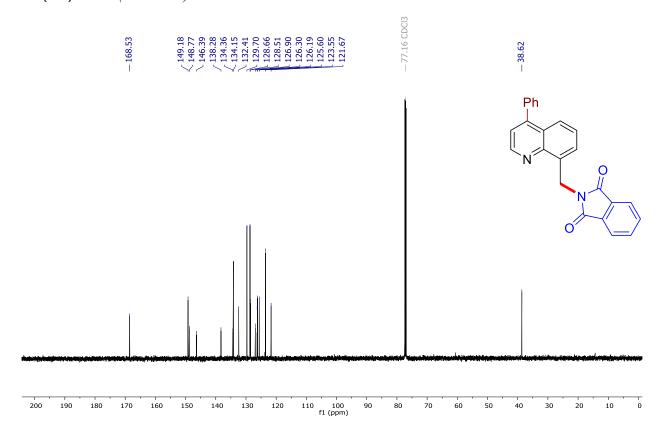

# $2\hbox{-}((7\hbox{-}methylquino lin-8-yl) methyl) is oindo line-1, 3\hbox{-}dione\ (Scheme\ 2,\ Entry\ \textbf{3f})$

## <sup>1</sup>H NMR (600 MHz)



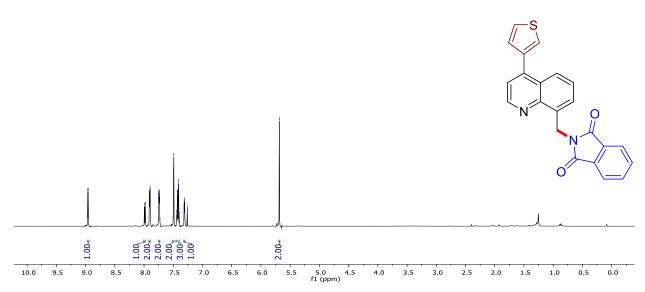




## <sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

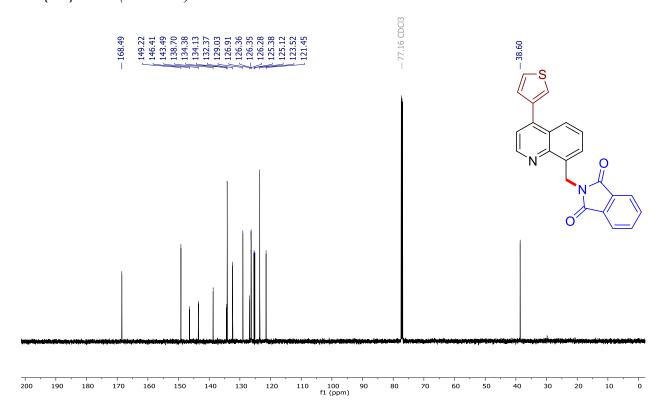



## 2-((4-phenylquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3g)

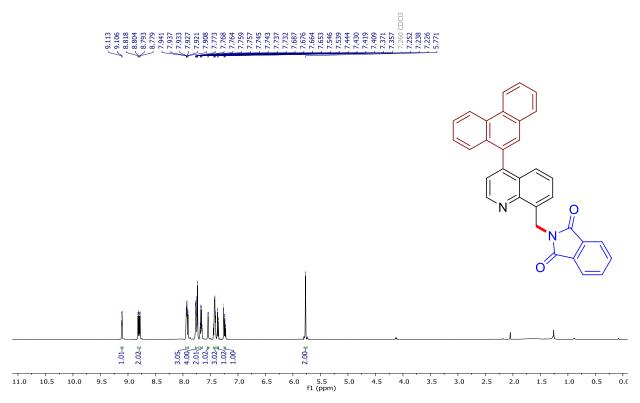


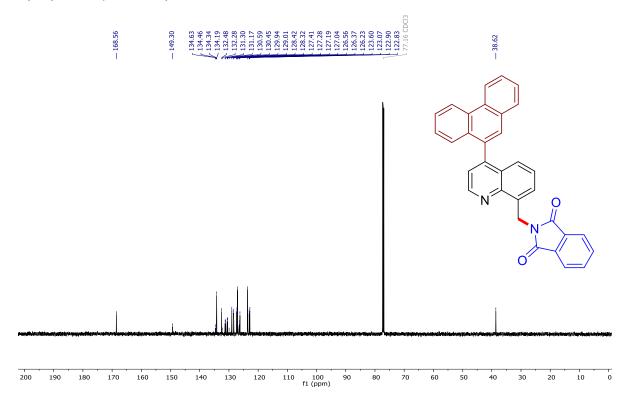



<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)



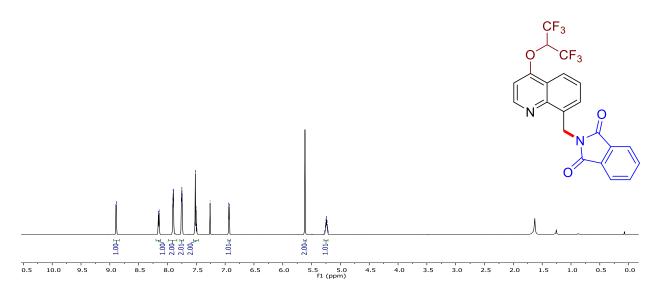

## $2\hbox{-}((4\hbox{-}(thiophen-3\hbox{-}yl)quinolin-8\hbox{-}yl)methyl) is oindoline-1, 3\hbox{-}dione~(Scheme~2,~Entry~{\it 3h})\\ {}^1\hbox{H~NMR~(600~MHz)}$



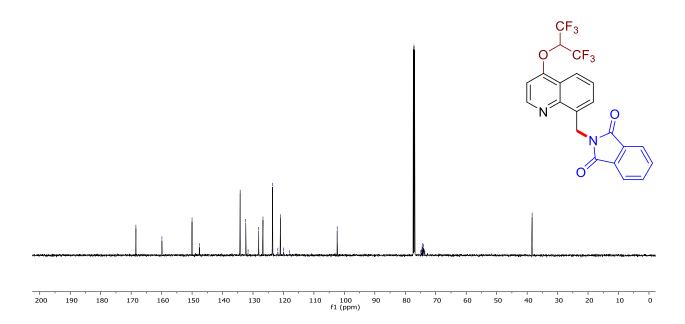



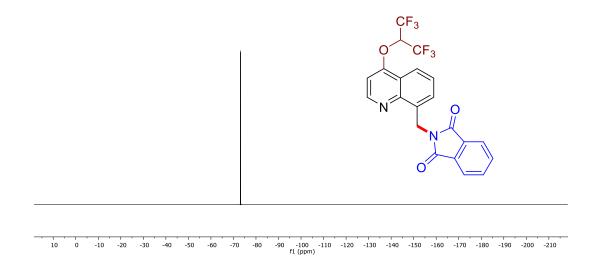

<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)




# $2\hbox{-}((4\hbox{-}(phenanthren-9\hbox{-}yl)quinolin-8\hbox{-}yl)methyl) is oindoline-1, 3\hbox{-}dione~(Scheme~2,~Entry~{\it 3i})\\ \hbox{^1H~NMR~(600~MHz)}$



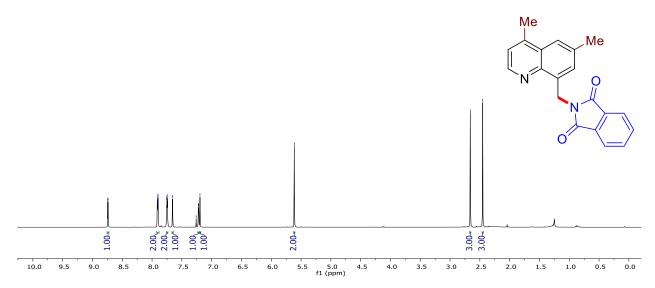


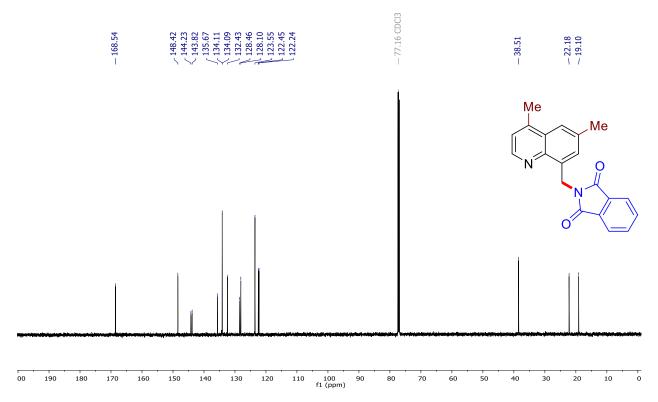


 $2-((4-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)quinolin-8-yl)methyl) isoindoline-1,3-dione (Scheme 2, Entry <math>3\mathbf{j}$ )





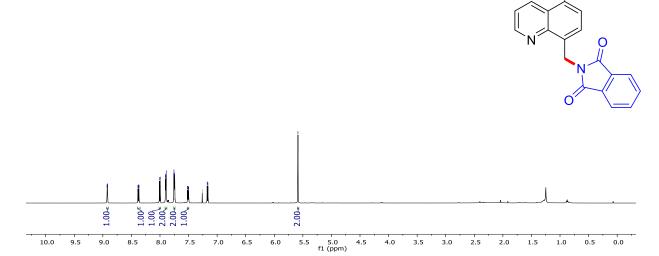
<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)



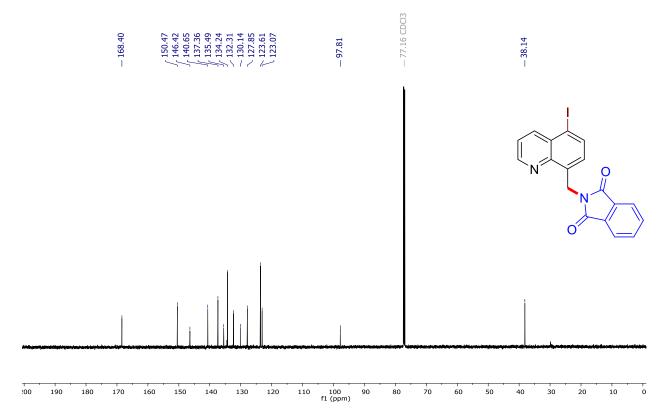




#### 2-((4,6-dimethylquinolin-8-yl)methyl) isoindoline-1,3-dione (Scheme 2, Entry <math>3k)

#### <sup>1</sup>H NMR (600 MHz)



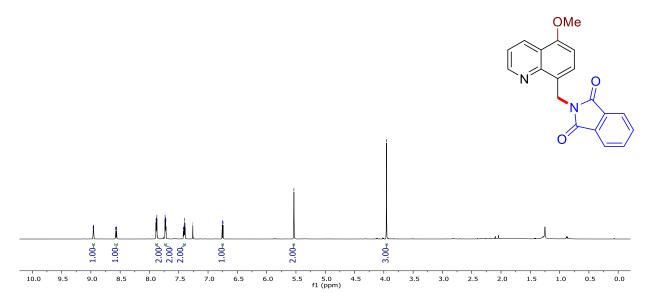


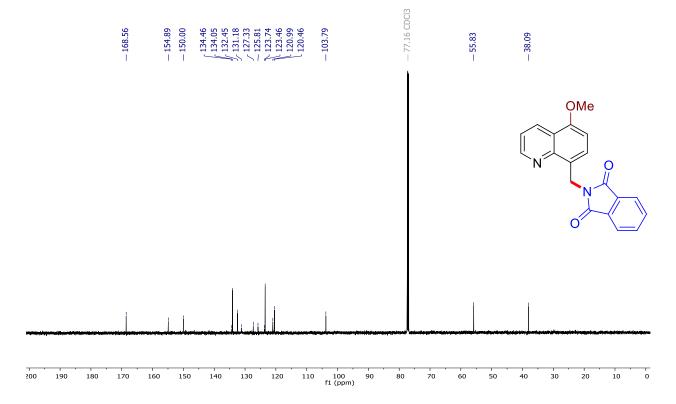




#### 2-((5-iodooquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3l)

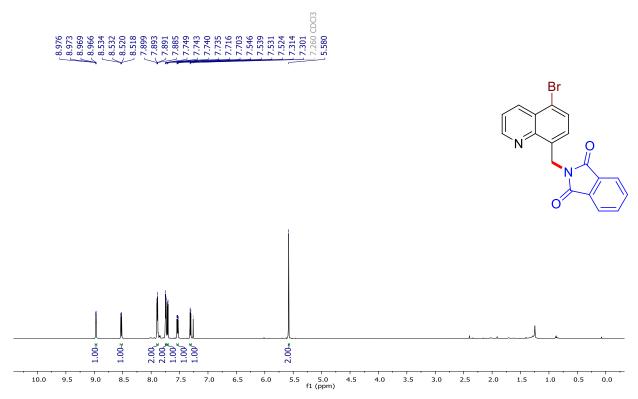




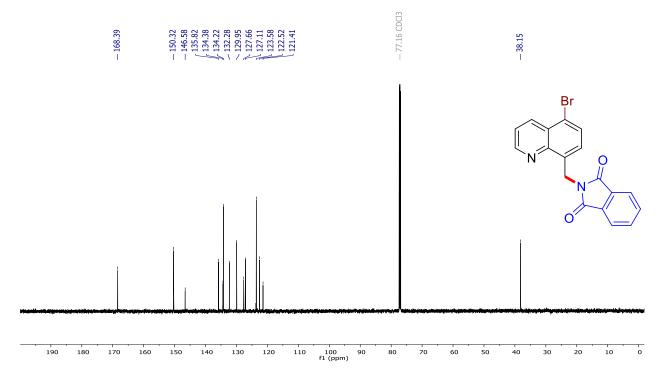

<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)




#### 2-((5-methoxyquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3m)


## <sup>1</sup>H NMR (600 MHz)

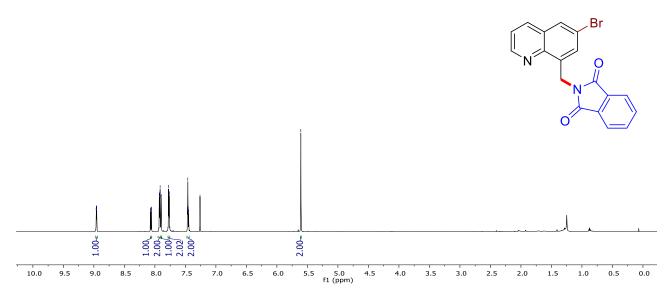


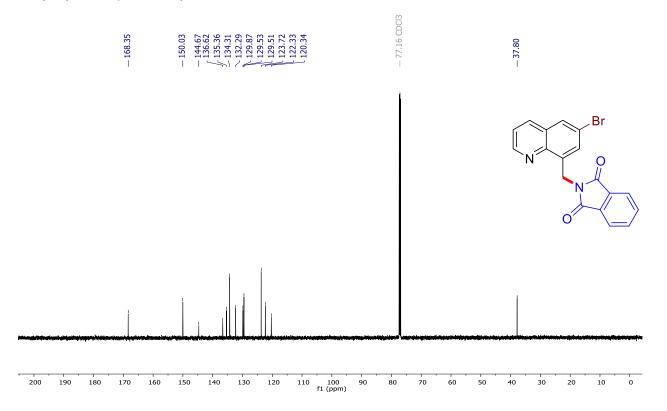





#### 2-((7-bromoquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3n)

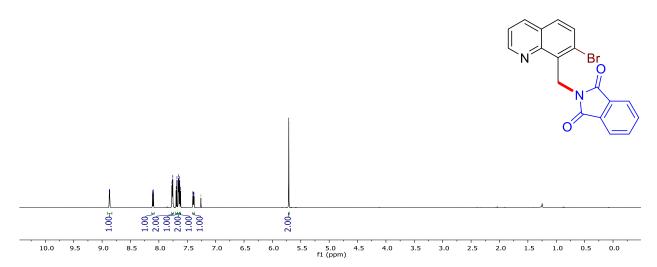



<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

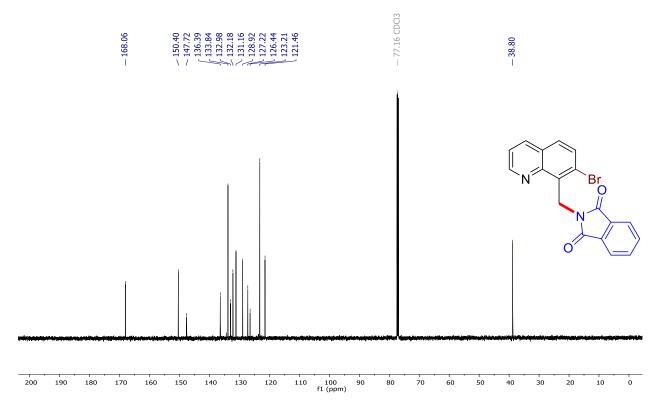



2-((6-bromoquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 30)

## <sup>1</sup>H NMR (600 MHz)

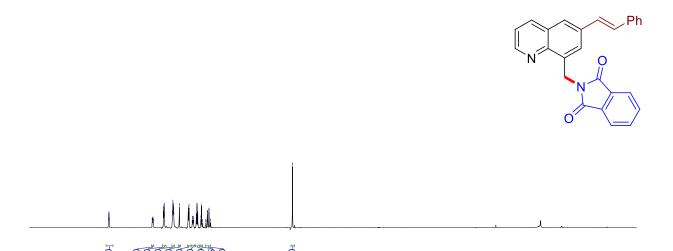




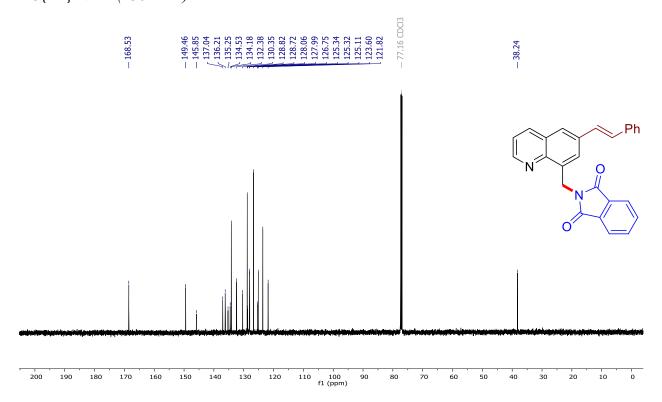




#### 2-((7-bromoquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry **3p**)

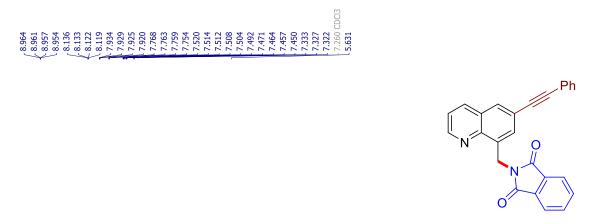


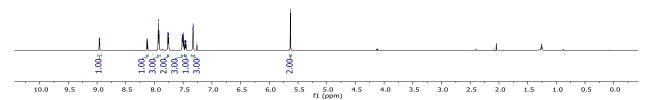



<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

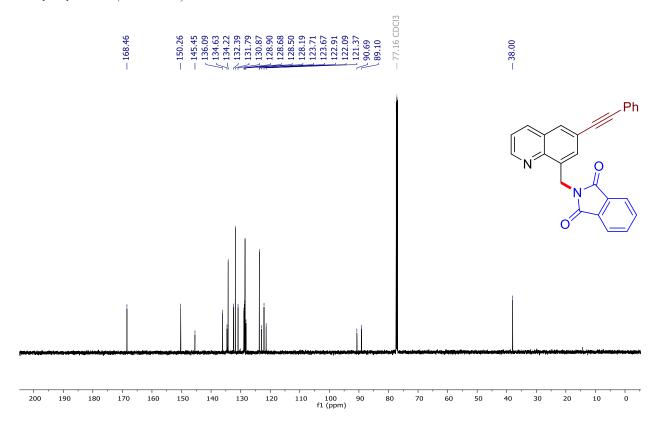



(E)-2-((6-styrylquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry  $\bf 3q$ )  $^1{\rm H~NMR}$  (600 MHz)



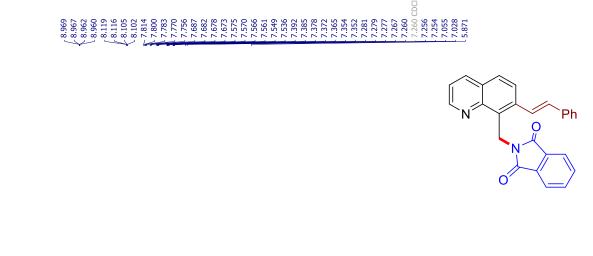



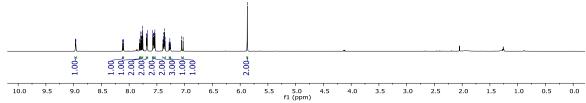

<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)



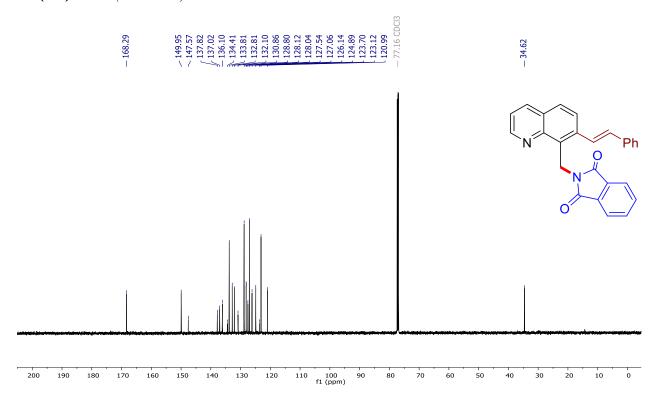

## 2-((6-(phenylethynyl)quinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3r)



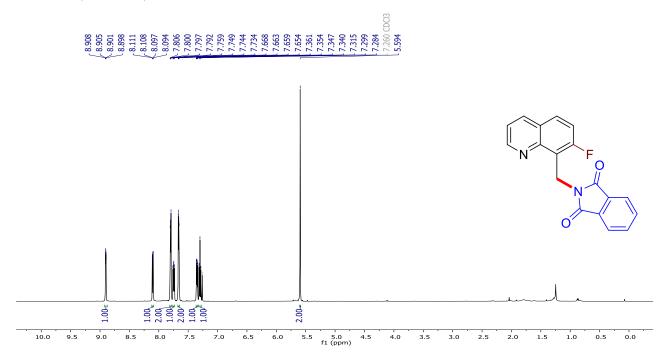




<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

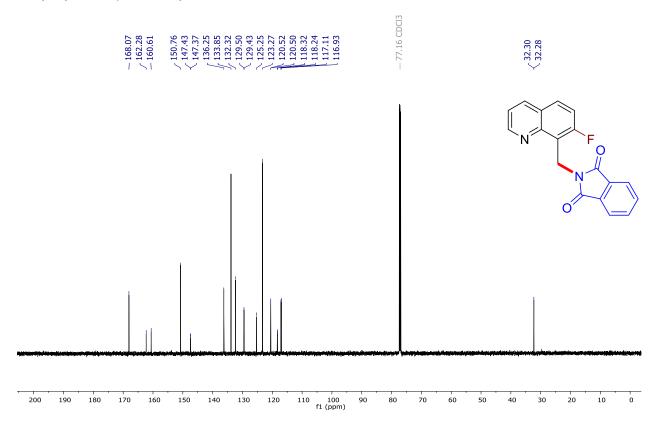


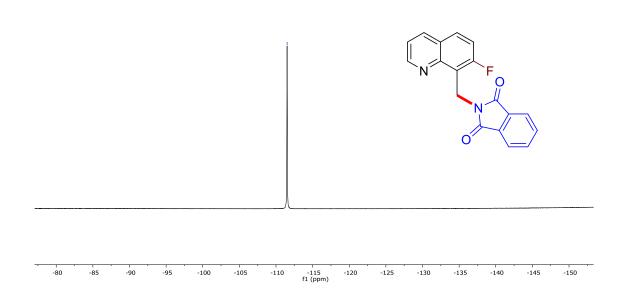

(E)-2-((7-styrylquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3s)

¹H NMR (600 MHz)







<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

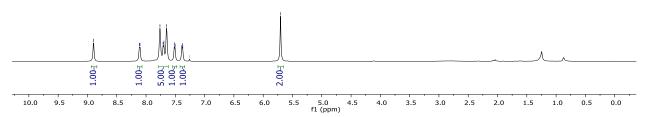


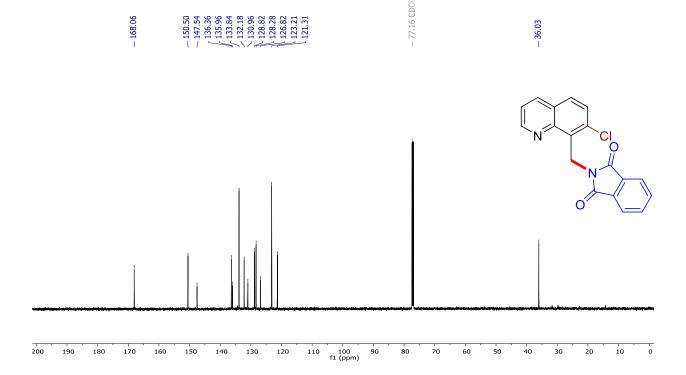

#### 2-((7-fluoroquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry 3t)



<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

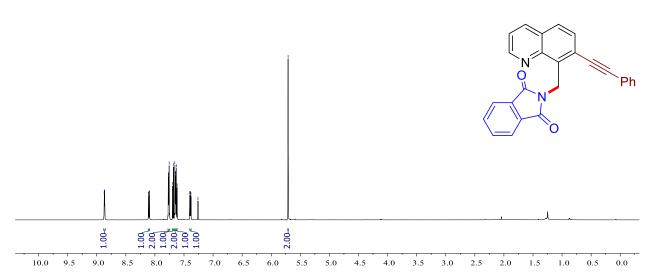




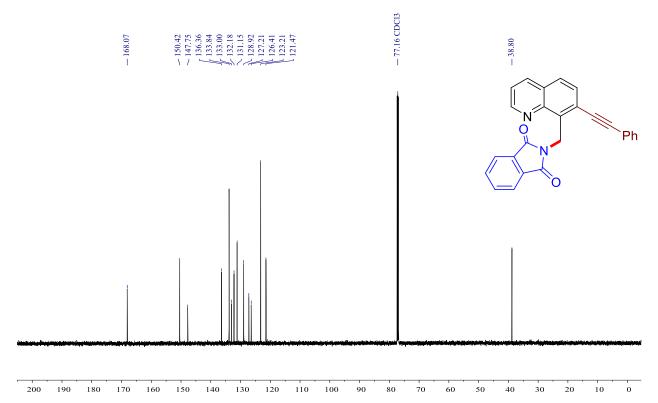


#### 2-((7-chloroquinolin-8-yl)methyl)isoindoline-1,3-dione (Scheme 2, Entry **3u**)

#### <sup>1</sup>H NMR (600 MHz)

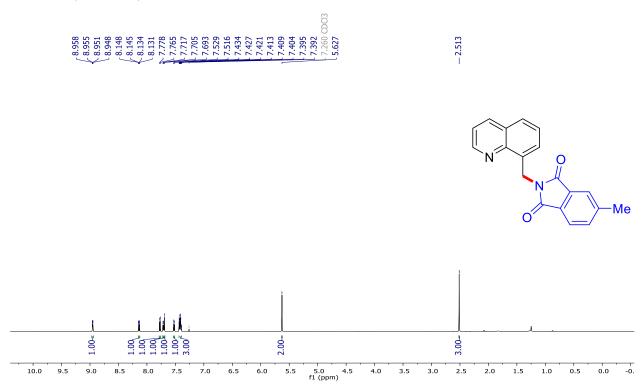


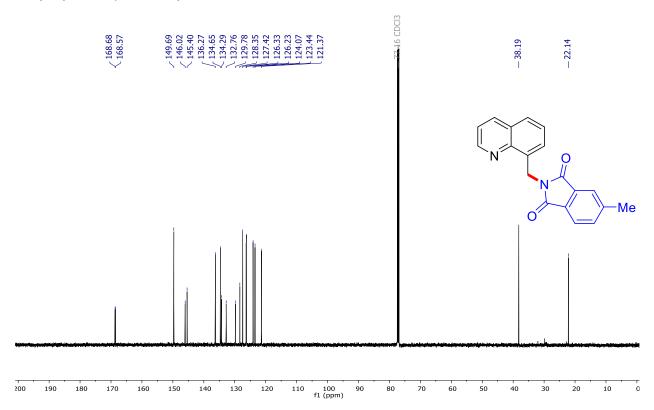





2-((7-(phenylethynyl)quinolin-8-yl)methyl)isoindoline-1,3-dione (Table 6, Entry <math>3v)  $^1H$  NMR (600 MHz)

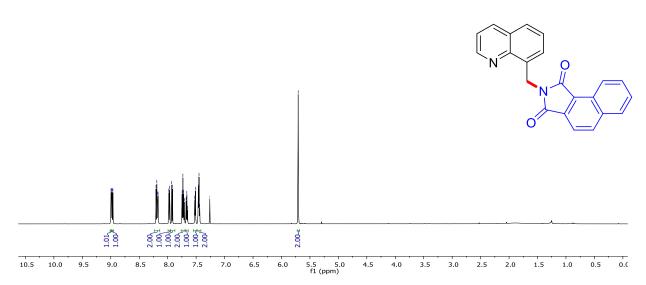


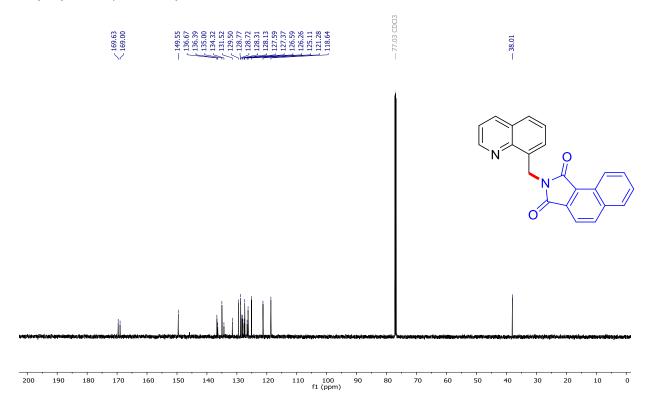




<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)



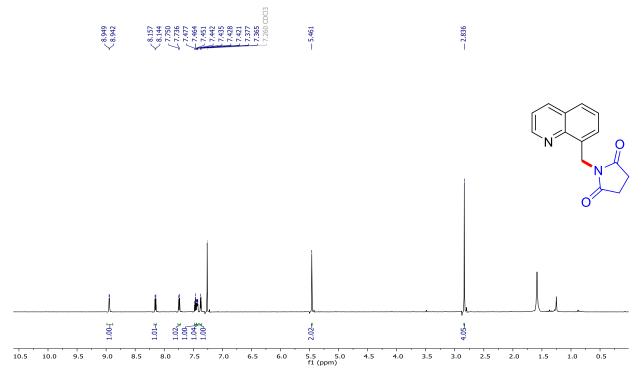
## <sup>1</sup>H NMR (600 MHz)

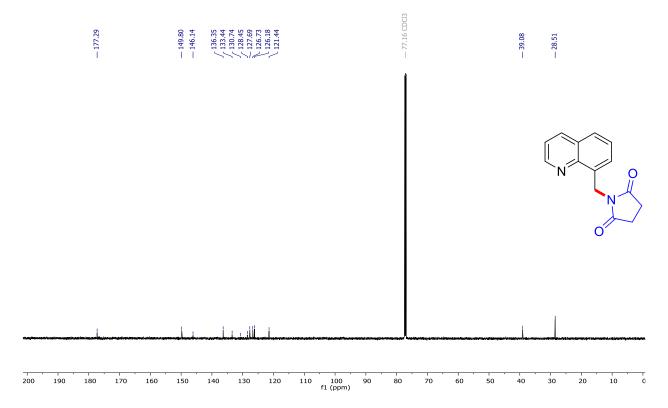


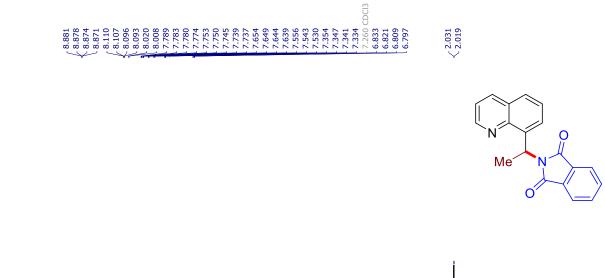

## $2\hbox{-}(quino lin-8\hbox{-}ylmethyl)\hbox{-}1H\hbox{-}benzo[e] iso indole-1,3(2H)\hbox{-}dione\ (Scheme\ 2,\ Entry\ {\it 3x})$

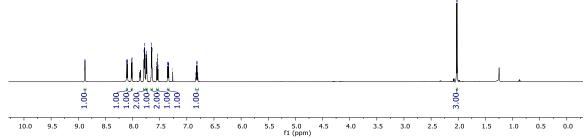
## <sup>1</sup>H NMR (600 MHz)



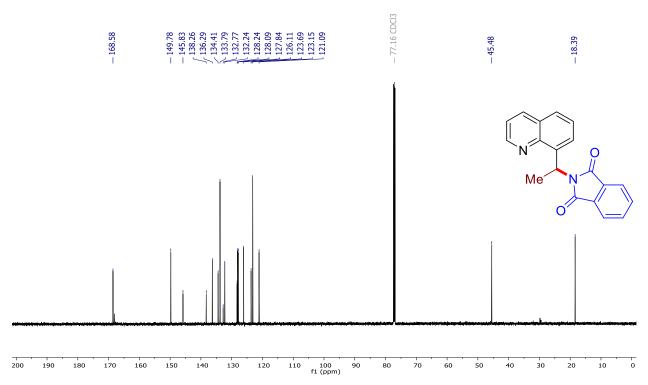







#### 1-(quinolin-8-ylmethyl)pyrrolidine-2,5-dione (Scheme 4, Entry 3y)


## <sup>1</sup>H NMR (600 MHz)

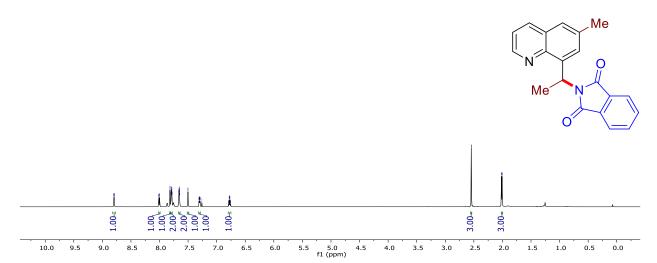


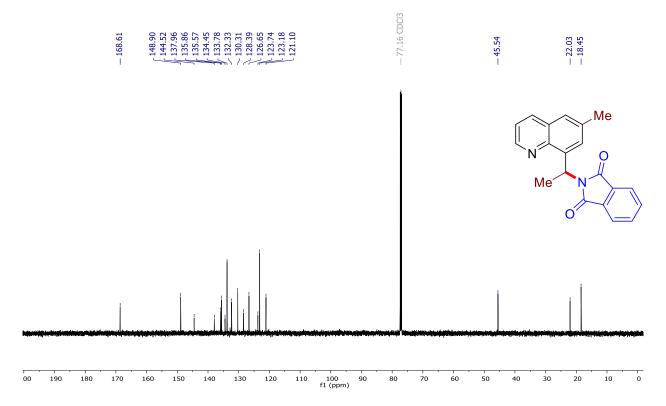



#### 2-(1-(quinolin-8-yl)ethyl)isoindoline-1,3-dione (Scheme 4, Entry 5a)



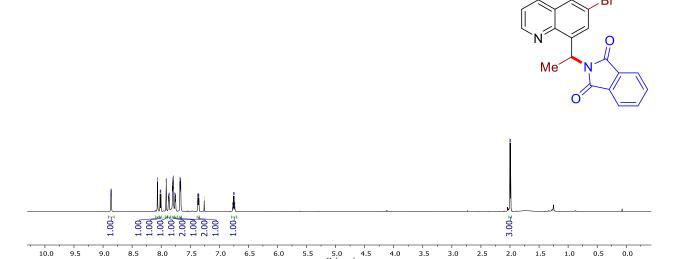



<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

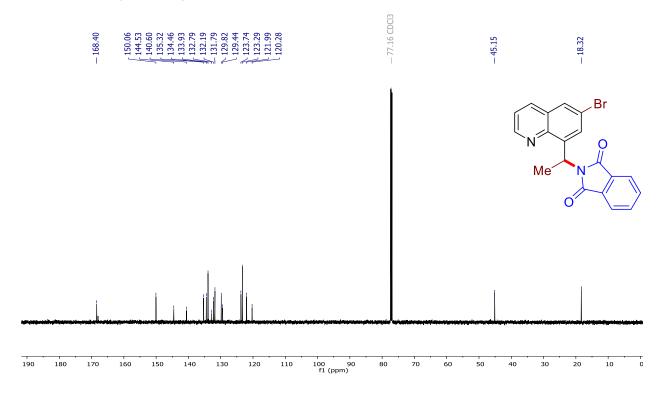



#### 2-(1-(6-methylquinolin-8-yl)ethyl)isoindoline-1,3-dione (Scheme 2, Entry 5b)

## <sup>1</sup>H NMR (600 MHz)



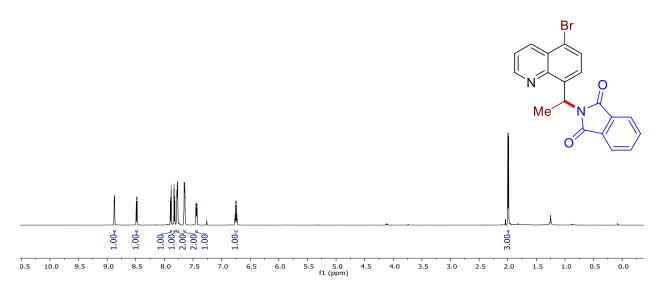


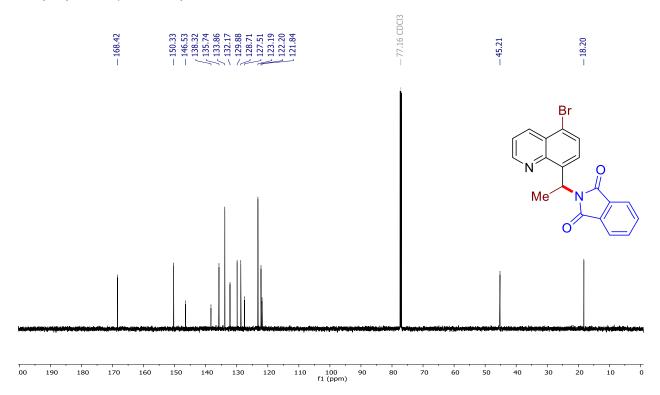




#### 2-(1-(5-bromoquinolin-8-yl)ethyl)isoindoline-1,3-dione (Scheme 2, Entry **5c**)



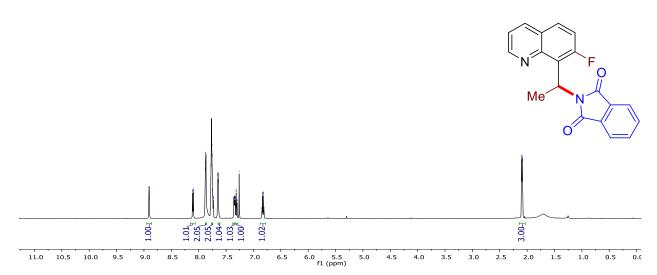



<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

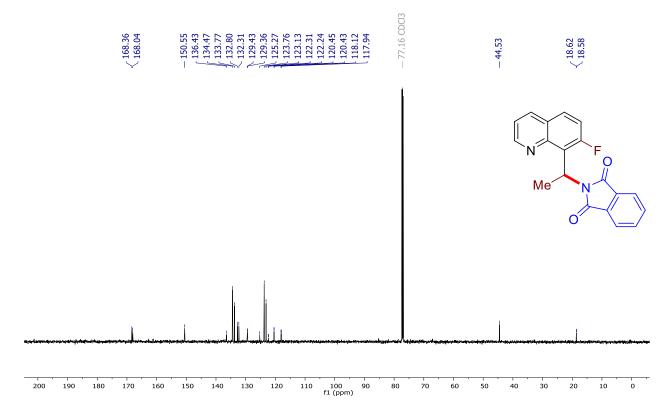



#### 2-(1-(5-bromoquinolin-8-yl)ethyl)isoindoline-1,3-dione (Scheme 4, Entry 5d)

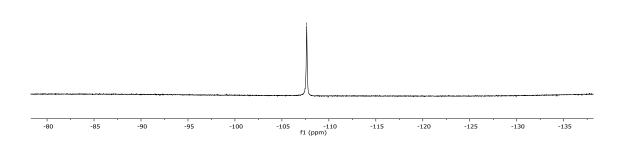
#### <sup>1</sup>H NMR (600 MHz)



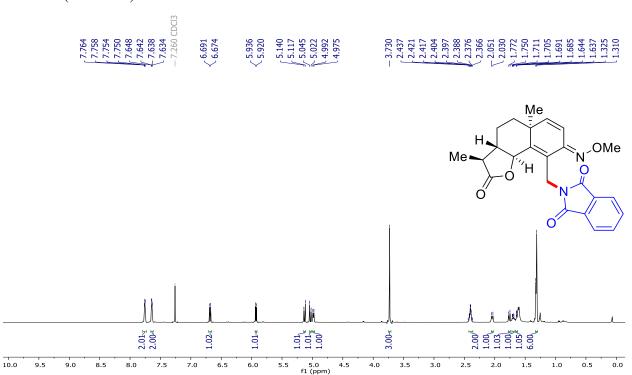


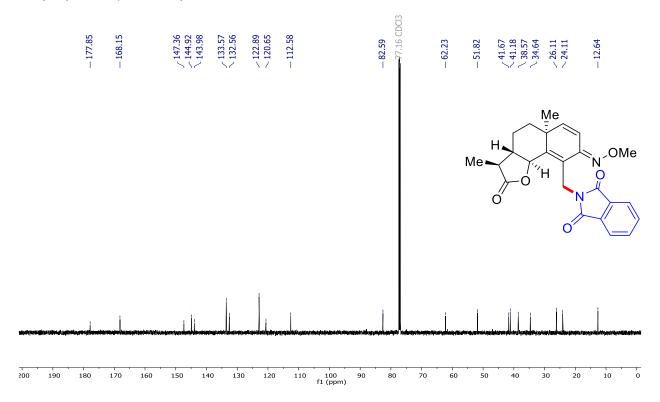

 $2\hbox{-}(1\hbox{-}(7\hbox{-}fluoroquinolin-8\hbox{-}yl)ethyl) is oindoline-1, 3\hbox{-}dione\ (Scheme\ 4,\ Entry\ {\bf 5e})$ 



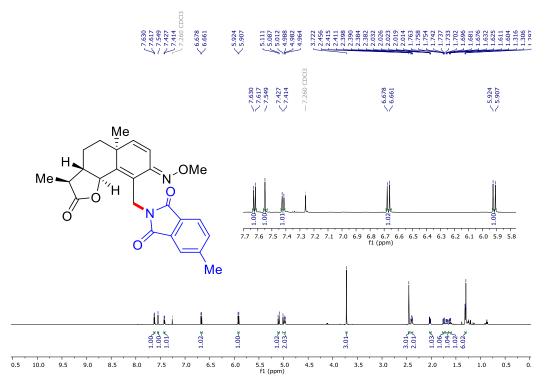




<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

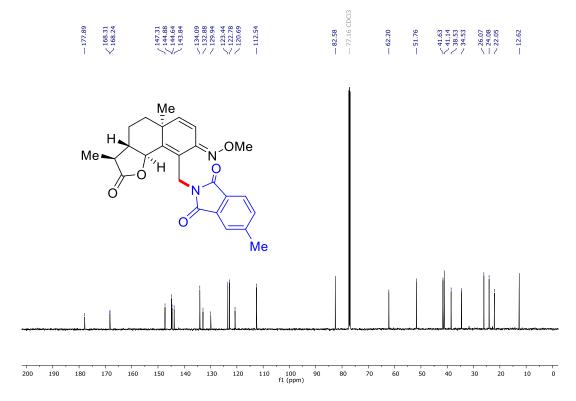








8-(methoxyimino)-3,5a-dimethyl-2-oxo-2,3,3a,4,5,5a,8,9b-octahydronaphtho[1,2-b]furan-9-yl)methyl)isoindoline-1,3-dione (Scheme 4, Entry **7a**)

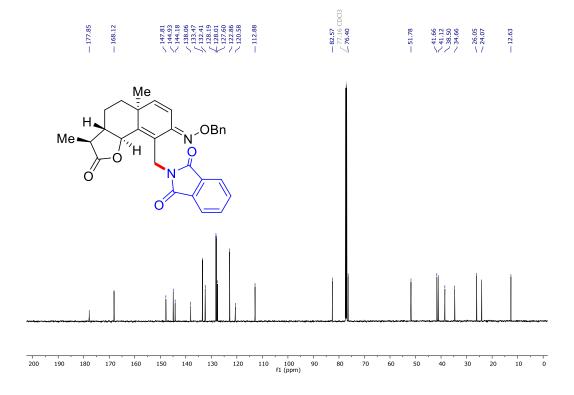



<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

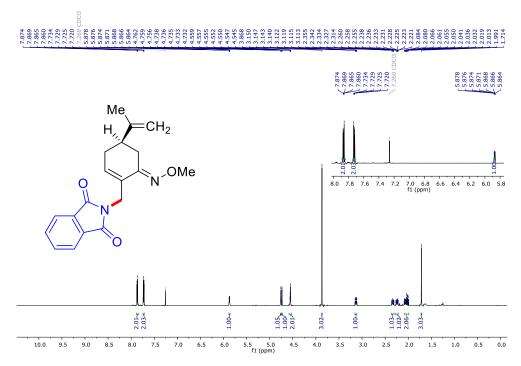



8-(methoxyimino)-3,5a-dimethyl-2-oxo-2,3,3a,4,5,5a,8,9b-octahydronaphtho[1,2-b]furan-9-yl)methyl)-5-methylisoindoline-1,3-dione (Scheme 4, Entry **7b**)



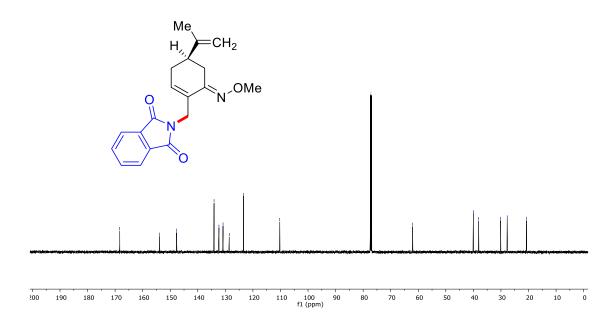

<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)



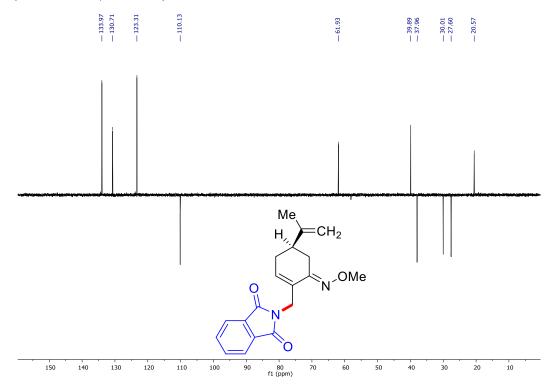

8-((benzyloxy)imino)-3,5a-dimethyl-2-oxo-2,3,3a,4,5,5a,8,9b-octahydronaphtho[1,2-b] furan-9-yl) methyl) isoindoline-1,3-dione (Scheme 4, Entry**7c**)



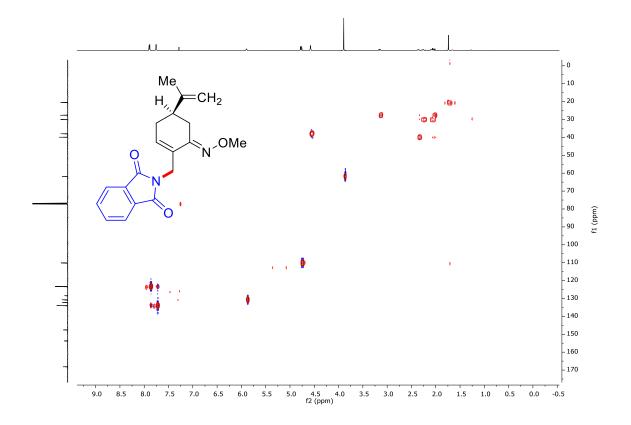
<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)



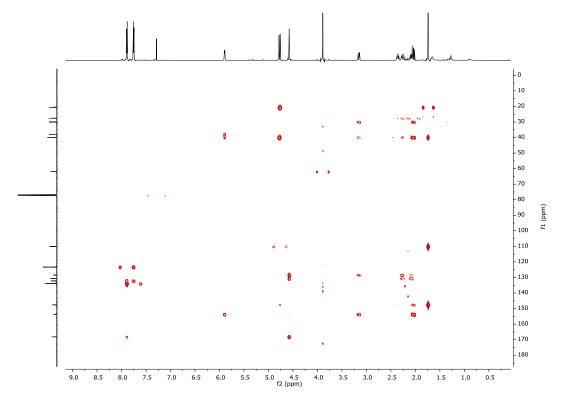

## 2-((6-(methoxyimino)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)methyl)isoindoline-1,3-dione (Scheme 4, Entry **7d**)



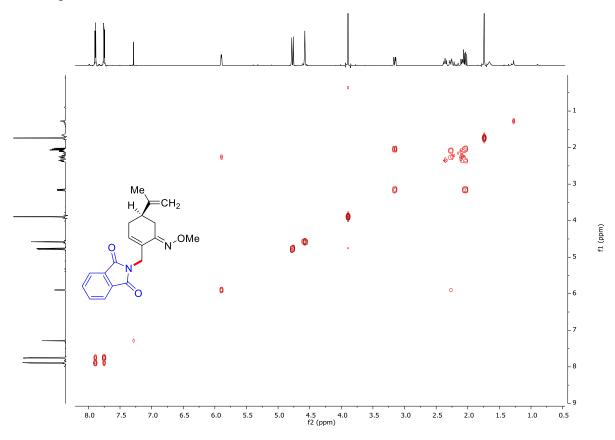

<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)





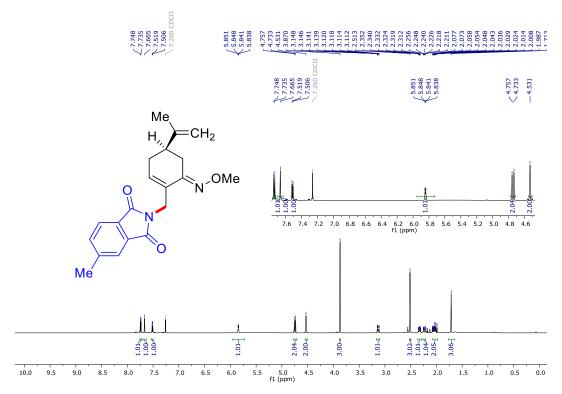


## <sup>13</sup>C{<sup>1</sup>H} DEPT-135 (150 MHz)



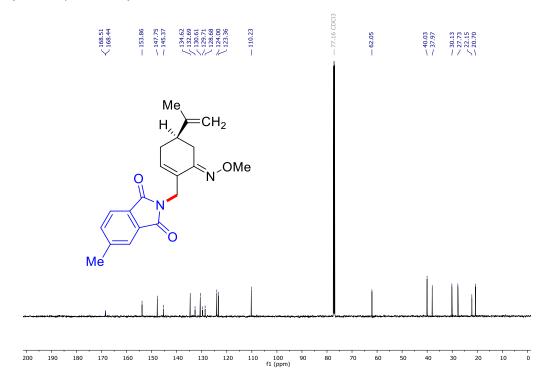

## HSQC experiment



## HMBC experiment

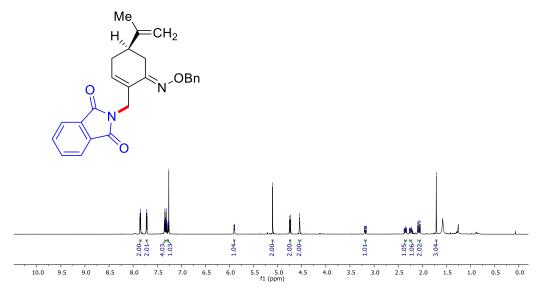



## COSY experiment

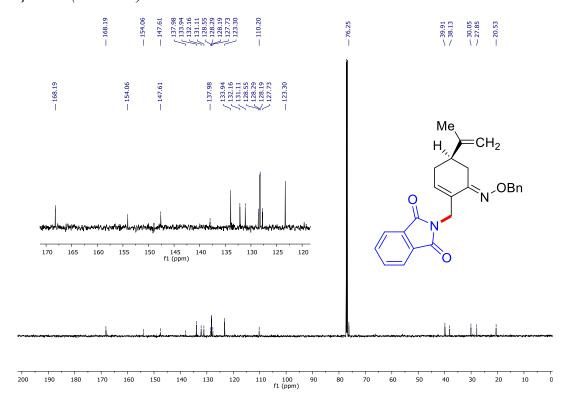



S168

2-((6-(methoxyimino)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)methyl)-5-methylisoindoline-1, 3-dione~(Scheme~4,~Entry~7e)

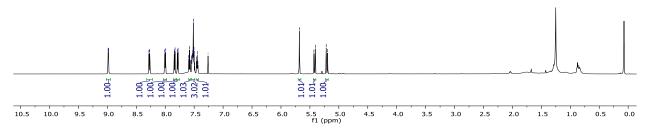



<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

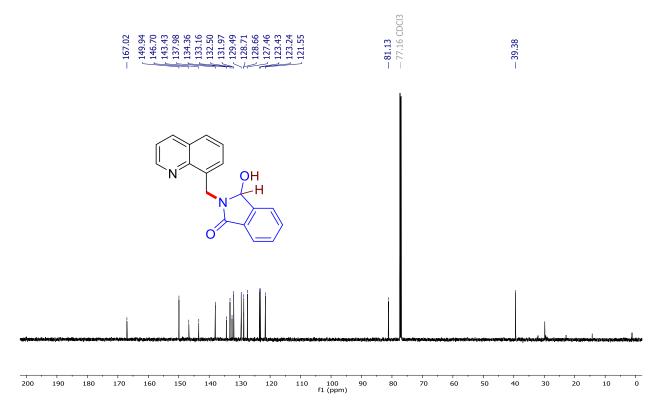


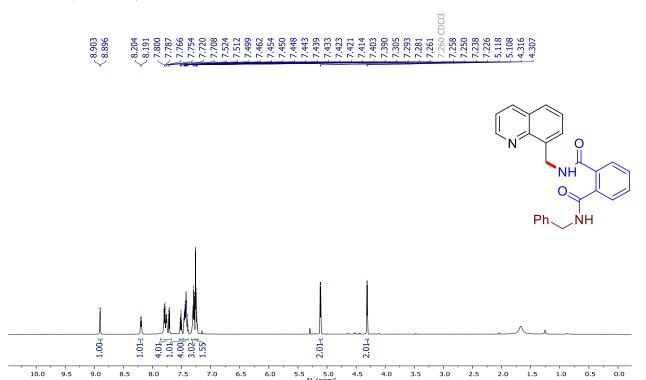

2-((6-((benzyloxy)imino)-4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)methyl)isoindoline-1,3-dione (Scheme 4, Entry **7f**)



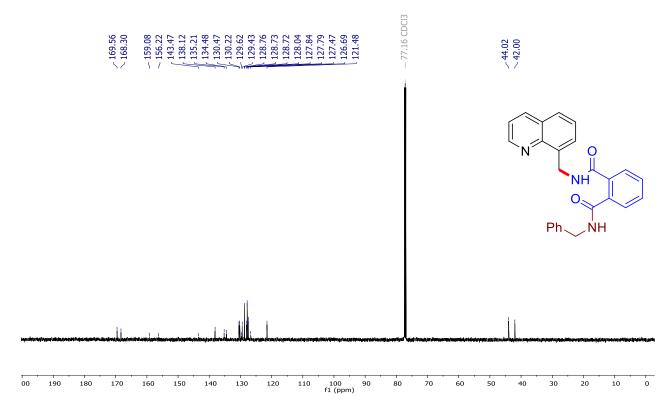



<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)





#### 3-hydroxy-2-(quinolin-8-ylmethyl)isoindolin-1-one (Scheme 5, Entry 8a)






<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)





<sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz)

