Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Supplementary Information for

Incorporation of a boryl pendant as the trigger in a methacrylate polymer for backbone degradation

Hiroshi Makino, Tsuyoshi Nishikawa* and Makoto Ouchi*

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan

615-8510, Japan

*To whom correspondence should be addressed.

E-mail: nishikawa.tsuyoshi.8n@kyoto-u.ac.jp ouchi.makoto.2v@kyoto-u.ac.jp

Contents

1 General	2
2 Experimental Procedures 3 Results of RAFT copolymerization	2
	3
4 Results of Degradation of Poly(alkenylboronate-co-MMA)	5
5 Thermal Properties of Obtained Polymers	12

1 General

All reactions were carried out with magnetic stirring under a nitrogen or an argon atmosphere unless stated otherwise. ¹H NMR spectra were recorded on a JEOL JNM-ECA500 operating at 500.16 MHz (¹H) at ambient temperature. ¹H NMR data are reported on the basis of the chemical shift in ppm downfield from tetramethylsilane (δ scale). The number-average molecular weight (M_n), peak top molecular weight (M_p) , and molecular weight distribution (M_w/M_n) of polymers were measured by HCL-8320GPC (TOSOH) at 40 °C in THF as an eluent on two polystyrene-gel columns (Shodex LF-404) at 0.35 mL/min of flow rate. The columns were calibrated against PMMA standard samples (PSS ReadyCal-Kit; Poly(methyl methacrylate), $M_p = 800-2200000$). Differential scanning calorimetry (DSC) was performed for polymer samples (ca. 3-6 mg in aluminum pan) under dry nitrogen flow on DSCQ200 calorimeter (TA Instruments) equipped with RCS 90 electric freezing machine. Heating and cooling of the samples were repeated at 10 °C/min between 0 °C and 150 °C and the data on the second heating was employed for the T_{g} evaluation. The second heating scans were employed as data in the work. Thermogravimetric analysis (TGA) of polymer samples (ca. 5-6 mg in aluminum pan) was performed under dry nitrogen flow on a STA 2500 Regulus (NETZSCH). Heating of the samples were repeated at 10 °C/min between 20 °C and 500 °C. T_{d5} was the temperature of 5% weight loss. Vinylboronic acid pinacol ester (VBpin), isopropenylboronic acid pinacol ester (IPBpin), methyl methacrylate (MMA) and tetralin were purified by distillation prior to use. Azobisisobutyronitrile (AIBN), 2-Cyano-2-propyl dodecyl trithiocarbonate (CPDT), tetrabutylammonium fluoride trihydrate (TBAF·3H₂O), 4-*tert*-butylpyrocatechol (TBC), manganese(III) acetate dihydrate (Mn(OAc)₃·2H₂O), tert-butylhydroquinone (TBHQ), 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and dehydrated toluene were purchased from the commercial sources and were used without further purification.

2 Experimental Procedures

RAFT copolymerization of alkenylboronates with MMA

The typical procedure for the copolymerization of alkenylboronates with MMA is as follows. A toluene solution of AIBN (205 μ L, 2.05 mg 12.5 μ mol), tetralin (34.1 μ L, 33.1 mg, 250 μ mol, internal standard), CPDT (8.73 μ L, 8.64 mg, 25.0 μ mol), VBpin (107 μ L, 96.3 mg, 630 mmol), MMA (466 μ L, 438 mg, 4.38 mmol), and toluene (429 μ L) were placed in a Schlenk tube having PTFE stopcock (J. Young) at room temperature under Ar ([VBpin]₀/[MMA]₀/[CPDT]₀/[AIBN] = 500/3500/20/10 mM condition). The reaction solution was stirred at 60 °C in an oil bath. The polymerization solution was taken at predetermined intervals for analyses by SEC and ¹H NMR. Monomer conversion was determined by ¹H NMR from the peak area of olefinic protons of the monomer with tetralin as an internal standard. The polymer was purified by preparative SEC (CHCl₃ as eluent) and the degrees of polymerization of VBpin and MMA were analyzed by ¹H NMR. The copolymerization of IPBpin with MMA and homopolymerization of MMA were performed in the similar way.

Degradation of poly(alkenylboronate-co-MMA)

The typical procedure for degradation of poly(alkenylboronate-*co*-MMA) is as follows. Poly(VBpin-*co*-MMA) (50 mg, Bpin unit = $36.0 \ \mu mol$), TBAF \cdot 3H₂O (13.6 mg, 43.2 μmol), $Mn(OAc)_3 \cdot 2H_2O$ (9.7 mg, 36.0 µmol), TBC (29.9 mg, 180 µmol), and toluene (511 µL) were placed in a Schlenk tube having PTFE stopcock (J. Young) at room temperature under Ar ([Bpin unit]₀/[TBAF]₀/[Mn(OAc)₃]₀/[TBC]₀ = 70/85/70/352 mM condition). The reaction solution was stirred at 120 °C in an oil bath for 24 h. The reaction was terminated by cooling to room temperature. The reaction mixture was diluted with CHCl₃, and washed with brine (5 mL × 3). The organic layer was filtered by aluminum oxide 90 active basic to remove Mn salt. The resultant solution was evaporated to remove solvents and the residue was analyzed by SEC.

3 Results of RAFT copolymerization

Figure S1. RAFT copolymerization of VBpin and MMA. (A) ¹H NMR spectrum of poly(VBpin-*co*-MMA) in CDCl₃ after purification. (B) Time-conversion curves. (C) Time-course SEC traces in the copolymerization.

Figure S2. RAFT copolymerization of IPBpin and MMA. (A) ¹H NMR spectrum of poly(IPBpin-*co*-MMA) in CDCl₃ after purification. (B) Time-conversion curves. (C) Time-course SEC traces in copolymerization.

Figure S3. RAFT polymerization of MMA. (A) ¹H NMR spectrum of PMMA in CDCl₃ after purification. (B) Timeconversion curve. (C) Time-course SEC traces in copolymerization.

4 Results of Degradation of Poly(alkenylboronate-co-MMA)

Figure S4. (A) Reaction condition for the degradation of poly(VBpin-*co*-MMA) (run 1 in Table 1). (B) ¹H NMR spectra of the precursor (upper) and the resultant polymer (bottom). (C) SEC traces of the precursor (black) and the resultant polymer (red).

Figure S5. (A) Reaction condition for the degradation of poly(VBpin-*co*-MMA) (run 2 in Table 1). (B) ¹H NMR spectra of the precursor (upper) and the resultant polymer (bottom). (C) SEC traces of the precursor (black) and the resultant polymer (red).

Figure S6. (A) Reaction condition for the degradation of poly(VBpin-*co*-MMA) (run 3 in Table 1). (B) ¹H NMR spectra of the precursor (upper) and the resultant polymer (bottom). (C) SEC traces of the precursor (black) and the resultant polymer (red).

Figure S7. (A) Reaction condition for the degradation of poly(VBpin-*co*-MMA) (run 4 in Table 1). (B) ¹H NMR spectra of the precursor (upper) and the resultant polymer (bottom). (C) SEC traces of the precursor (black) and the resultant polymer (red).

Figure S8. (A) Reaction condition for the degradation of poly(VBpin-*co*-MMA) (run 5 in Table 1). (B) ¹H NMR spectra of the precursor (upper) and the resultant polymer (bottom). (C) SEC traces of the precursor (black) and the resultant polymer (red).

Figure S9. (A) Reaction condition for the degradation of poly(VBpin-*co*-MMA) (run 6 in Table 1). (B) ¹H NMR spectra of the precursor (upper) and the resultant polymer (bottom). (C) SEC traces of the precursor (black) and the resultant polymer (red).

Figure S10. (A) Reaction condition for the degradation of poly(VBpin-*co*-MMA) at 80 °C. (B) ¹H NMR spectra of the precursor (upper) and the resultant polymer (bottom). (C) SEC traces of the precursor (black) and the resultant polymer (red).

Figure S11. (A) Reaction condition for the degradation of poly(VBpin-*co*-MMA) with TBAF (3.6 eq.). (B) ¹H NMR spectra of the precursor (upper) and the resultant polymer (bottom). (C) SEC traces of the precursor (black) and the resultant polymer (red).

Figure S12. (A) Reaction condition for the degradation of poly(VBpin-*co*-MMA) with Mn(OAc)₃ (5.0 eq.). (B) ¹H NMR spectra of the precursor (upper) and the resultant polymer (bottom). (C) SEC traces of the precursor (black) and the resultant polymer (red).

Figure S13. (A) Reaction condition for the degradation of PMMA (Figure 2C). (B) ¹H NMR spectra of the precursor (upper) and the resultant polymer (bottom). (C) SEC traces of the precursor (black) and the resultant polymer (red).

Figure S14. (A) Reaction condition for the degradation of poly(VBpin-*co*-MMA) (Figure 2D). (B) ¹H NMR spectra of the precursor (upper) and the resultant polymer (bottom). (C) SEC traces of the precursor (black) and the resultant polymer (red).

Figure S15. (A) Reaction condition for the degradation of poly(VBpin-*co*-MMA) (Figure 2E). (B) ¹H NMR spectra of the precursor (upper) and the resultant polymer (bottom). (C) SEC traces of the precursor (black) and the resultant polymer (red).

Figure S16. (A) Reaction condition for the degradation of poly(VBpin-*co*-MMA) (Figure 2F). (B) ¹H NMR spectra of the precursor (upper) and the resultant polymer (bottom). (C) SEC traces of the precursor (black) and the resultant polymer (red).

Figure S17. (A) Reaction condition for the degradation of poly(IPBpin-*co*-MMA) (Figure 3C). (B) ¹H NMR spectra of the precursor (upper) and the resultant polymer (bottom). (C) SEC traces of the precursor (black) and the resultant polymer (red).

5 Thermal Properties of Obtained Polymers

Figure S18. DSC curves of poly(IPBpin-*co*-MMA) ($M_n = 18,600, M_w/M_n = 1.36$, IPBpin = 9.6%), poly(VBpin-*co*-MMA) ($M_n = 17,700, M_w/M_n = 1.46$, VBpin = 7.4%), and PMMA ($M_n = 17,600, M_w/M_n = 1.15$).

Figure S19. TGA curves of poly(IPBpin-*co*-MMA) ($M_n = 18,600, M_w/M_n = 1.36$, IPBpin = 9.6%), poly(VBpin-*co*-MMA) ($M_n = 17,700, M_w/M_n = 1.46$, VBpin = 7.4%), and PMMA ($M_n = 17,600, M_w/M_n = 1.15$).