Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Silylium Ion-Mediated Cage Opening Functionalization of closo-

B₁₀H₁₀²⁻ Salts

Yingying Wang,^a Hui Han,^a Jia-Xin Kang,^b Jiamin Peng,^a Xiongxiong Lu,^a Hou-Ji Cao,^b Zhenxing

Liu,*a Xuenian Chen*ab

^aCollege of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China

^bHenan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of

Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China

E-mail: xuenian_chen@zzu.edu.cn liuzhenxing@zzu.edu.cn

Contents Page

1.	General methods and materials	S2
2.	Reaction of TMSOTf with NaBH ₄ , NaB ₃ H ₈ and Na ₂ B ₁₀ H ₁₀	S2
3.	General procedures and spectral data of compounds	S5
4.	Mechanistic studies	S12
5.	References	S15
6.	NMR spectra	S16

1. General Methods and Materials.

All manipulations were carried out on a Schlenk line or in a glovebox filled with high-purity nitrogen. Methanol, ethanol, isopropanol, phenol, butanol, 2-Propanethiol, isobutyl mercaptan, cyclohexyl mercaptan, *p*-toluenethiol, and 4-fluorothiophenol were purchased from Energy Chemical. Hexane, pentane, dichloromethane, and CDCl₃ (D, 99.9%) were obtained from Fisher Chemical. Na₂B₁₀H₁₀ was purchased from Yuanli Technology (Zhengzhou, China). All reagents were used as received. The ¹¹B NMR and ¹¹B{¹H} spectra were obtained at a 128 or 193 MHz spectrometer and ¹H NMR and ¹¹H{¹¹B} spectra were obtained at a 400 or 600MHz spectrometer. All ¹¹B chemical shifts are referenced to BF₃·OEt₂ in C₆D₆ ($\delta = 0.00$ ppm), with a negative sign indicating an upfield shift. All proton chemical shifts were measured relative to internal residual protons from the lock solvents (99.9% CDCl₃) and then referenced to (CH₃)₄Si (0.0 ppm). Due to the different types of B-Hs, the integration of certain peaks in the ¹H{¹¹B} spectrum is not accurate, we use both ¹H and ¹H{¹¹B} spectra to confirm the structure.

2. Reaction of TMSOTf with NaBH₄, NaB₃H₈ and Na₂B₁₀H₁₀

The reaction of TMSOTf with NaBH₄ in MeCN and THF

In a nitrogen-filled glovebox, NaBH₄ (19 mg, 0.5 mmol) was added to a 25 mL Schlenk flask. The flask was then removed from the glovebox and connected with the Schlenk line, followed by an injection of 5 mL of MeCN into the flask. TMSOTf (0.09 mL, 0.5 mmol) was added dropwise to the flask at room temperature and the mixture was allowed to stir for another 2 minutes. The reaction mixture was identified to be MeCN·BH₃ based on the ¹¹B NMR (Figure S1b). The yield of MeCN·BH₃ was quantitative, based on ¹¹B NMR and ¹¹B{¹H} NMR.

¹¹**B** NMR (128 MHz, MeCN): δ (ppm) -25.20 (q, J = 100.8 Hz).

¹¹B{¹H} NMR (128 MHz, MeCN): δ (ppm) -25.20 (s).

Under otherwise same conditions, we obtained $THF \cdot BH_3$ in the reaction solution based on ¹¹B NMR and ¹¹B{¹H} NMR.

¹¹**B** NMR (128 MHz, THF): δ (ppm) -0.64 (q, J = 106.7 Hz).

¹¹B{¹H} NMR (128 MHz, THF): δ (ppm) -0.64 (s).

Figure S1. Comparisons of the ¹¹B NMR spectra of (a) NaBH₄ in DMSO, (b) TMSOTf and

NaBH₄ (1:1) in MeCN, (c) TMSOTf and NaBH₄ (1:1) in THF

The reaction of TMSOTf with NaB₃H₈ in MeCN and THF

In a nitrogen-filled glovebox, NaB₃H₈·dioxane (15.2 mg, 0.1 mmol) was added to a 10 mL Schlenk flask. The flask was then removed from the glovebox and connected with the Schlenk line, followed by an injection of 1 mL of MeCN into the flask. TMSOTf (18 μ L, 0.1 mmol) was added dropwise to the flask and the mixture was allowed to stir for about 2 minutes. The reaction mixture was identified to be MeCN·B₃H₇ based on the ¹¹B NMR (Figure S2b). The yield of MeCN·B₃H₇ was quantitative, based on ¹¹B NMR and ¹¹B{¹H} NMR.

¹¹**B** NMR (128 MHz, MeCN): δ (ppm) -6.91 (*br*, 2B, based-B), -34.44 (*br*, B, top-B).

¹¹B{¹H} NMR (128 MHz, MeCN): δ (ppm) -6.91, -34.44.

Under otherwise same conditions, we obtained $THF \cdot B_3H_7$ in the reaction solution based on ¹¹B NMR and ¹¹B{¹H} NMR.

¹¹**B NMR** (128 MHz, THF): δ (ppm) -7.13 (*br*, 2B, based-B), -12.01 (*br*, B, top-B).

¹¹B{¹H} NMR (128 MHz, CH₃CN): δ (ppm) -7.13, -12.01.

Figure S2. Comparisons of the ¹¹B NMR spectra of (a) NaB_3H_8 in THF, (b) TMSOTf and NaB_3H_8 (1:1) in MeCN, (c) TMSOTf and NaB_3H_8 (1:1) in THF

The reaction of TMSOTf with $Na_2B_{10}H_{10}$ in MeCN and THF

In a nitrogen-filled glovebox, $Na_2B_{10}H_{10}$ (8.3 mg, 0.05 mmol) was added to a 10 mL Schlenk flask. The flask was then removed from the glovebox and connected with the Schlenk line, followed by an injection of 1 mL of MeCN into the flask. TMSOTf (9 µL, 0.05 mmol) was added dropwise to the flask and stirred for about 2 minutes. ¹¹B NMR of the reaction solution is shown in Figure S3b. When THF is used as the solvent, ¹¹B NMR of the reaction solution is shown in Figure S3c.

Figure S3. Comparisons of the ¹¹B NMR spectra of (a) Na₂B₁₀H₁₀ in THF, (b) TMSOTf and

 $Na_2B_{10}H_{10}$ (1:1) in MeCN, (c) TMSOTf and $Na_2B_{10}H_{10}$ (1:1) in THF

3. General Procedures and Spectral Date of Compounds.

Preparation of 6-CH₃O-B₁₀H₁₃ (1)¹ from closo-Na₂B₁₀H₁₀.

A mixture containing $Na_2B_{10}H_{10}$ (33.2 mg, 0.2 mmol), methanol (19.2 mg, 0.6 mmol), and TMSOTF (89 mg, 0.4 mmol) in 5 mL of hexane was stirred at room temperature for 5 h. The reaction solution was filtered, and another 5 mL hexane was used to extract the remaining residue. The solutions were combined, and the solvent was evaporated under vacuum at 0 °C to give 1 (26.5 mg, 85%) as a clear oil.

¹¹B NMR (193 MHz, CDCl₃) δ (ppm) 26.36 (s, 1B), 4.58-2.96 (m, 5B), -15.74 (d, J = 155.6 Hz, 2B), -32.14 (d, J = 156.3 Hz, 1B), -43.81 (d, J = 156.3 Hz, 1B).

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ (ppm) 26.35 (1B), 4.65 (1B), 4.21 (2B), 3.36 (2B), -15.74 (2B), -32.14 (1B), -43.82 (1B).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 3.88 (s, 3H). Hydrides were not integrated due to multiple B-H couplings.

¹H{¹¹B} NMR (600 MHz, CDCl₃) δ (ppm) 3.89 (s, 3CH), 3.80 (s, 1BH), 3.21 (s, 4BH), 2.13 (s, 2BH), 1.40 (s, 1BH), 0.22 (s, 1BH), -0.54 (s, 2BHB), -1.83 (s, 2BHB).

¹³C NMR (151 MHz, CDCl₃) δ (ppm) 58.50.

Preparation of 6-C₂H₅O-B₁₀H₁₃ (2)¹ from closo-Na₂B₁₀H₁₀.

A mixture containing $Na_2B_{10}H_{10}$ (83 mg, 0.5 mmol), ethanol (69 mg, 1.5 mmol), and TMSOTf (222 mg, 1 mmol) in 10 mL of hexane was stirred at room temperature for 6 h. The reaction solution was filtered, and another 5 mL hexane was used to extract the remaining residue. The solutions were combined, and the solvent was evaporated under vacuum at 0 °C to give **2** (57 mg, 67%) as a clear oil.

¹¹B NMR (193 MHz, CDCl₃) δ (ppm) 25.89 (s, 1B), 4.24-2.88 (m, 5B), -16.20 (d, J = 145.6 Hz, 2B), -32.06 (d, J = 155.2 Hz, 1B), -44.04 (d, J = 152.6 Hz, 1B).

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ (ppm) 25.91 (1B), 4.23(1B), 3.88 (2B), 3.25 (2B), -16.19 (2B), -32.06 (1B), -44.03 (1B).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 4.15 (q, *J* = 7.0 Hz, 2H), 1.38 (t, *J* = 7.0 Hz, 3H). Hydrides were not integrated due to multiple B-H couplings.

¹H{¹¹B} NMR (600 MHz, CDCl₃) δ (ppm) 4.15 (q, J = 6.9 Hz, 2CH), 3.79 (s, 1BH), 3.20 (s, 4BH),
2.09 (s, 2BH), 1.39-1.37 (m, 1BH, 3CH), 0.20 (s, 1BH), -0.50 (s, 2BHB), -1.84 (s, 2BHB).
¹³C NMR (151 MHz, CDCl₃) δ (ppm) 67.41, 16.51.

Preparation of 6-(CH₃)₂CHO-B₁₀H₁₃ (3) from *closo*-Na₂B₁₀H₁₀.

A mixture containing $Na_2B_{10}H_{10}$ (33.2 mg, 0.2 mmol), isopropanol (36 mg, 0.6 mmol), and TMSOTF (89 mg, 0.4 mmol) in 10 mL of hexane was stirred at room temperature for 4 h. The reaction solution was filtered, and another 5 mL hexane was used to extract the remaining residue. The solutions were combined, and the solvent was evaporated under vacuum at 0 °C to give **3** (24 mg, 66%) as a light-yellow oil.

¹¹B NMR (193 MHz, CDCl₃) δ (ppm) 25.73 (s, 1B), 4.01-3.33 (m, 5B), -16.52 (d, J = 148.9 Hz, 2B), -31.81 (d, J = 152.9 Hz, 1B), -44.11 (d, J = 158.9 Hz, 1B).

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ (ppm) 25.72 (1B), 4.02-3.65 (m, 5B), -16.56 (2B), -31.81 (1B), -44.11 (1B).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 4.52-4.46 (m, 1H), 1.35 (d, *J* = 6.1 Hz, 6H). Hydrides were not integrated due to multiple B-H couplings.

¹H{¹¹B} NMR (600 MHz, CDCl₃) δ (ppm) 4.52-4.46 (m, 1CH), 3.78 (s, 1BH), 3.19 (s, 4BH), 2.05 (s, 2BH), 1.41 (s, 1BH), 1.35 (d, *J* = 6.1 Hz, 6CH), 0.19 (s, 1BH), -0.46 (s, 2BHB), -1.83 (s, 2BHB).

¹³C NMR (101 MHz, CDCl₃) δ (ppm) 74.90, 23.66.

HRMS (ESI): $[M-H]^-$: calculated for ${}^{11}B_{10}C_3H_{19}O$: 181.2366; found: 181.2363.

Preparation of 6-CH₃(CH₂)₃O-B₁₀H₁₃ (4)² from *closo*-Na₂B₁₀H₁₀.

A mixture containing $Na_2B_{10}H_{10}$ (33.2 mg, 0.2 mmol), n-butanol (44.4 mg, 0.6 mmol), and TMSOTF (89 mg, 0.4 mmol) in 10 mL of hexane was stirred at room temperature for 7 h. The reaction solution was filtered, and another 5 mL hexane was used to extract the remaining residue. The solutions were combined, and the solvent was evaporated under vacuum at 0 °C to give a yellow oil. The flask with the yellow oil was then put in a -78 °C cold bath and 1 mL pentane was added to wash the oil for one time. The pentane was removed under vacuum to obtain **4** (36 mg, 92%) as an oil.

¹¹B NMR (193 MHz, CDCl₃) δ (ppm) 26.13 (s, 1B), 4.34-3.02 (m, 5B), -16.03 (d, J = 145.6 Hz, 2B), -31.93 (d, J = 154.8 Hz, 1B), -43.93 (d, J = 155.9 Hz, 1B).

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ (ppm) 26.16 (1B), 4.38 (1B), 3.97 (2B), 3.40 (2B), -16.06 (2B), -31.94 (1B), -43.93 (1B).

¹H NMR (600 MHz, CDCl₃) δ (ppm) 4.07 (t, J = 6.5 Hz, 2H), 1.72-1.68 (m, 2H), 1.46-1.40 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H). Hydrides were not integrated due to multiple B-H couplings.
¹H{¹¹B} NMR (600 MHz, CDCl₃) δ (ppm) 4.07 (t, J = 6.5 Hz, 2CH), 3.77 (s, 1BH), 3.20 (s, 4BH), 2.09 (s, 2BH), 1.72-1.68 (m, 2CH), 1.46-1.39(m, 1BH, 2CH), 0.96 (t, J = 7.4 Hz, 3CH), 0.20 (s, 1BH), -0.49 (s, 2BHB), -1.84 (s, 2BHB).

¹³C NMR (151 MHz, CDCl₃) δ (ppm) 71.45, 32.83, 18.86, 13.69.

Preparation of 6-PhO-B₁₀H₁₃ (5)² from closo-Na₂B₁₀H₁₀.

A mixture containing $Na_2B_{10}H_{10}$ (83 mg, 0.5 mmol), phenol (0.141 g, 1.5 mmol), and TMSOTf (222 mg, 1 mmol) in 10 mL of hexane was stirred at room temperature for 7 h. The reaction solution was filtered, and another 5 mL hexane was used to extract the remaining residue. The solutions were combined, and the solvent was evaporated under vacuum at 0 °C to give a light-yellow oil. The flask

with the yellow oil was then put in a -78 °C cold bath and 1 mL pentane was added to wash the oil for one time. The pentane was removed under vacuum to obtain **5** (95 mg, 88%) as a white solid. ¹¹**B** NMR (193 MHz, CDCl₃) δ (ppm) 23.52 (s, 1B), 6.42-4.70 (m, 3B), 3.10 (d, *J* = 153.0 Hz, 2B),

-12.94 (d, *J* = 154.8 Hz, 2B), -32.30 (d, *J* = 158.3 Hz, 1B), -42.98 (d, *J* = 156.1 Hz, 1B).

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ (ppm) 23.55 (1B), 6.02 (1B), 5.08 (2B), 3.12 (2B), -12.94 (2B), -32.30 (1B), -42.98 (1B).

¹**H** NMR (600 MHz, CDCl₃) δ (ppm) 7.36 (t, *J* = 8.0 Hz, 2H), 7.17-7.13 (m, 3H). Hydrides were not integrated due to multiple B-H couplings.

¹H{¹¹B} NMR (600 MHz, CDCl₃) δ (ppm) 7.36 (t, *J* = 8.0 Hz, 2CH), 7.17-7.13 (m, 3CH), 3.87 (s, 1BH), 3.31 (s, 2BH), 3.21 (s, 2BH), 2.30 (s, 2BH), 1.58-1.57 (m, 1BH), 0.32 (s, 1BH), -0.32 (s, 2BHB), -1.75 (s, 2BHB).

¹³C NMR (151 MHz, CDCl₃) δ (ppm) 155.31, 129.99, 124.40, 119.09.

HRMS (ESI): [M+H]⁺: calculated for ¹⁰B₂¹¹B₈C₆H₁₉O: 215.2436; found: 215.2435.

Preparation of 6-(CH₃)₃SiO-B₁₀H₁₃ (6)³ from closo-Na₂B₁₀H₁₀.

A mixture containing $Na_2B_{10}H_{10}$ (83 mg, 0.5 mmol), H_2O (27 mg, 1.5 mmol), and TMSOTf (222 mg, 1 mmol) in 10 mL of hexane was stirred at room temperature for 3.5 h. The reaction solution was filtered, and another 5 mL hexane was used to extract the remaining residue. The solutions were combined, and the solvent was evaporated under vacuum at 0 °C to give **6** (89.7 mg, 85%) as a needle-like solid.

¹¹B NMR (193 MHz, CDCl₃) δ (ppm) 24.23 (s, 1B), 5.27-2.75 (m, 5B), -14.20 (d, J = 150.7 Hz, 2B), -32.72 (d, J = 154.8 Hz, 1B), -44.54 (d, J = 152.7 Hz, 1B).

¹¹B{¹H} NMR (193 MHz, CDCl₃)δ (ppm) 24.23 (1B), 4.88 (1B), 3.71 (2B), 3.13 (2B), -14.28 (2B), -32.69 (1B), -44.52 (1B).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 0.29 (s, 9CH). Hydrides were not integrated due to multiple B-H couplings.

¹H{¹¹B} NMR (600 MHz, CDCl₃) δ (ppm) 3.79 (s, 1BH), 3.16 (s, 4BH), 2.10 (s, 2BH), 1.31 (s,

1BH), 0.29 (s, 9CH), 0.15 (s, 1BH), -0.40 (s, 2BHB), -1.82 (s, 2BHB).

¹³C NMR (151 MHz, CDCl₃) δ (ppm) 0.00.

General Procedure for Syntheses of 6-RS-B₁₀H₁₃ (7 – 9).

A mixture containing $Na_2B_{10}H_{10}$, thiols, and TMSOTf in hexane was stirred for different of time (18 h for Comp. 7, 7 h for Comp. 8, and 40 h for Comp. 9) at room temperature. The reaction solution was filtered, and another 5 mL hexane was used to extract the remaining residue. The solutions were combined, and the solvent was evaporated under vacuum. All products were chromatographed over silica gel using a 10 % dichloromethane in PE as an eluent.

6-(CH₃)₂CHS-B₁₀H₁₃ (7). Na₂B₁₀H₁₀ (33.2 mg, 0.2 mmol), 2-propanethiol (45.6 mg, 0.6 mmol), TMSOTf (89 mg, 0.4 mmol) and hexane (5 mL).

For 7: colorless oil, 19.8 mg (0.1 mmol, 50%).

¹¹B NMR (193 MHz, CDCl₃) δ (ppm) 24.55 (s, 1B), 8.50 (d, J = 148.6 Hz, 2B), 7.01 (d, J = 158.3 Hz, 1B), 2.19 (d, J = 158.8 Hz, 2B), -7.88 (d, J = 151.6 Hz, 2B), -30.34 (d, J = 157.8 Hz, 1B), -38.83 (d, J = 157.7 Hz, 1B).

¹¹B{¹H} NMR (193 MHz, CDCl₃) δ (ppm) 24.56 (1B), 8.50 (2B), 6.97 (1B), 2.19 (2B), -7.86 (2B), -30.33 (1B), -38.84 (1B).

¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 3.47-3.42 (m, 1H), 1.44 (d, *J* = 6.7 Hz, 6H). Hydrides were not integrated due to multiple B-H couplings.

¹H{¹¹B} NMR (600 MHz, CDCl₃) δ (ppm) 3.85 (s, 1BH), 3.52 (s, 2BH), 3.47-3.43 (m, 1CH), 3.15 (s, 2BH), 2.59 (s, 2BH), 1.44 (d, *J* = 6.7 Hz, 6CH), 1.36 (s, 1BH), 0.48 (s, 1BH), -0.62 (s, 2BHB), -1.88 (s, 2BHB).

¹³C NMR (101 MHz, CDCl₃) δ (ppm) 38.51, 25.76.

HRMS (ESI): $[M-H]^-$: calculated for ${}^{10}B_2{}^{11}B_8C_3H_{19}S$: 195.2207; found: 195.2209.

 $6-(CH_2)_5CHS-B_{10}H_{13}$ (8). Na₂B₁₀H₁₀ (0.083 g, 0.5 mmol), cyclohexyl mercaptan (174 mg, 1.5 mmol), TMSOTf (222 mg, 1 mmol) and hexane (10 mL).

For 8: white solid, 59 mg (0.25 mmol, 50%).

¹¹B NMR (128 MHz, CDCl₃) δ (ppm) 24.71 (s, 1B), 8.96-6.21 (m, 3B), 2.16 (d, *J* = 159.2 Hz, 2B),
-8.03 (d, *J* = 151.5 Hz, 2B), -30.20 (d, *J* = 155.1 Hz, 1B), -38.94 (d, *J* = 155.0 Hz, 1B).
¹¹B{¹H} NMR (128 MHz, CDCl₃) δ (ppm) 24.70 (1B), 8.39 (2B), 6.87 (1B), 2.17 (2B), -8.05 (2B), -30.22 (1B), -38.93 (1B).

¹H NMR (600 MHz, CDCl₃) δ (ppm) 3.26-3.21 (m, 1H), 2.09 (d, *J* = 12.0 Hz, 2H), 1.79 (d, *J* = 12.8 Hz, 2H), 1.66-1.28 (m, 6H). Hydrides were not integrated due to multiple B-H couplings.
¹H{¹¹B} NMR (600 MHz, CDCl₃) δ (ppm) 3.85 (s, 1BH), 3.51 (s, 2BH), 3.21-3.19 (m, 1CH), 3.14 (s, 2BH), 2.56 (s, 2BH), 2.09 (d, *J* = 12.0 Hz, 2CH), 1.79 (d, *J* = 12.8 Hz, 2CH), 1.62 (d, *J* = 11.8 Hz, 1CH), 1.53-1.48 (m, 2CH), 1.40-1.26 (m, 1BH, 3CH), 0.47 (s, 1BH), -0.60 (s, 2BHB), -1.88 (s, 2BHB).

¹³C NMR (101 MHz, CDCl₃) δ (ppm) 46.58, 35.70, 26.13, 25.37.

HRMS (ESI): $[M-H]^-$: calculated for ${}^{10}B_2{}^{11}B_8C_6H_{23}S$: 235.2521; found: 235.2523.

 $6-(CH_3)_2CHCH_2S-B_{10}H_{13}$ (9). Na₂B₁₀H₁₀ (33.2 mg, 0.2 mmol), isobutyl mercaptan (54 mg, 0.6 mmol), TMSOTf (89 mg, 0.4 mmol) and hexane (10 mL).

For 9: colorless oil, 15.3 mg (0.072 mmol, 36%).

¹¹B NMR (128 MHz, CDCl₃) δ (ppm) 25.05 (s, 1B), 9.04-6.41 (m, 3B), 2.19 (d, *J* = 153.2 Hz, 2B),
-7.80 (d, *J* = 155.4 Hz, 2B), -30.40 (d, *J*= 160.3 Hz, 1B), -38.98 (d, *J* = 159.0 Hz, 1B).

¹¹B{¹H} NMR (128 MHz, CDCl₃) δ (ppm) 25.05 (1B), 8.43 (2B), 6.93 (1B), 2.13 (2B), -7.80 (2B), -30.44 (1B), -38.97 (1B).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 2.80 (d, *J* = 6.7 Hz, 2H), 1.97-1.87 (m, 1H), 1.03 (d, *J* = 6.6 Hz, 6H). Hydrides were not integrated due to multiple B-H couplings.

¹H{¹¹B} NMR (400 MHz, CDCl₃) δ (ppm) 3.86 (s, 1BH), 3.52 (s, 2BH), 3.15 (s, 2BH), 2.80 (d, *J* = 6.7 Hz, 2CH), 2.59 (s, 2BH), 1.97-1.87 (m, 1CH), 1.35-1.33 (m, 1BH), 1.04 (d, *J* = 6.6 Hz, 6CH), 0.48-0.47 (m, 1BH), -0.65 (s, 2BHB), -1.89 (s, 2BHB).

¹³C NMR (101 MHz, CDCl₃) δ (ppm) 41.69, 30.14, 21.72.

HRMS (ESI): $[M-H]^-$: calculated for ${}^{10}B_2{}^{11}B_8C_4H_{21}S$: 209.2364; found: 209.2364.

Preparation of 6-*p*-CH₃C₆H₄S-B₁₀H₁₃ (10) and 6-*p*-FC₆H₄S-B₁₀H₁₃ (11) from *closo*-Na₂B₁₀H₁₀. A mixture containing Na₂B₁₀H₁₀, thiophenols, and TMSOTf in hexane was stirred for different of time (40 h for comp. 10 and 34 h for comp. 11) at room temperature. The reaction solution was filtered, and another 5 mL hexane was used to extract the remaining residue. The solutions were combined, and the solvent was evaporated under vacuum. All products were chromatographed over silica gel using PE as eluent.

6-*p*-CH₃C₆H₄S-B₁₀H₁₃ (**10**). Na₂B₁₀H₁₀ (33.2 mg, 0.2 mmol), p-toluenethiol (74.4 mg, 0.6 mmol), TMSOTf (89 mg, 0.4 mmol) and hexane (5 mL).

For **10**: light yellow solid, 28.7 mg (0.116 mmol, 58%).

¹¹B NMR (128 MHz, CDCl₃) δ (ppm) 24.55 (s, 1B), 9.50-7.39 (m, 3B), 1.90 (d, *J* = 166.1 Hz, 2B), 6.02 (d, *J* = 151.6 Hz, 2B), -31.03 (d, *J* = 157.8 Hz, 1B), -38.62 (d, *J* = 157.7 Hz, 1B).

¹¹B{¹H} NMR (128 MHz, CDCl₃) δ (ppm) 23.81 (1B), 9.01 (2B), 7.99 (1B), 2.00 (2B), -5.99 (2B), -30.98 (1B), -38.52 (1B).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.40 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 7.9 Hz, 2H), 2.35 (s, 3H). Hydrides were not integrated due to multiple B-H couplings.

¹H{¹¹B} NMR (400 MHz, CDCl₃) δ (ppm) 7.40 (d, *J* = 8.1 Hz, 2CH), 7.15 (d, *J* = 7.9 Hz, 2CH), 3.86 (s, 1BH), 3.51 (s, 2BH), 3.08 (s, 2BH), 2.48 (s, 2BH), 2.35 (s, 3CH), 1.37-1.34 (m, 1BH), 0.48-0.47 (m, 1BH), -0.59 (s, 2BHB), -1.90 (s, 2BHB).

¹³C NMR (101 MHz, CDCl₃) δ (ppm) 138.67, 134.15, 130.41, 127.32, 21.15.

6-*p*-FC₆H₄S-B₁₀H₁₃ (**11**). Na₂B₁₀H₁₀ (33.2 mg, 0.2 mmol), 4-fluorothiophenol (76.2 mg, 0.6 mmol), TMSOTf (89 mg, 0.4 mmol) and hexane (5 mL).

For 11: light yellow solid, 15.7 mg (0.063 mmol, 31%).

¹¹B NMR (128 MHz, CDCl₃) δ (ppm) 23.35 (s, 1B), 9.69-7.65 (m, 3B), 1.97 (d, *J* = 159.9 Hz, 2B). 5.82 (d, *J* = 151.6 Hz, 2B), -31.16 (d, *J* = 157.8 Hz, 1B), -38.46 (d, *J* = 157.7 Hz, 1B).
¹¹B{¹H} NMR (128 MHz, CDCl₃) δ (ppm) 23.31 (1B), 9.13 (2B), 8.28 (1B), 1.97 (2B), -5.82 (2B), -31.16 (1B), -38.47 (1B).

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) 7.50-7.53 (m, 2H), 7.08-7.03 (m, 2H). Hydrides were not integrated due to multiple B-H couplings.

¹H{¹¹B} NMR (400 MHz, CDCl₃) δ (ppm) 7.50-7.53 (m, 2H), 7.08-7.03 (m, 2H), 3.89 (s, 1BH), 3.52 (s, 2BH), 3.09 (s, 2BH), 2.48 (s, 2BH), 1.35-1.32 (m, 1BH), 0.51-0.49 (m, 1BH), -0.64 (s, 2BHB), -1.89 (s, 2BHB).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ (ppm) 163.04 (d, J = 249.2 Hz), 136.29 (d, J = 8.4 Hz), 125.94 (d, J = 3.3 Hz), 116.81 (d, J = 22.1 Hz).

HRMS (ESI): $[M-H]^-$: calculated for ${}^{11}B_{10}C_6H_{16}FS$: 249.1887; found: 249.1892.

4. Mechanistic studies

(a) Variable-Temperature NMR experiments.

Na₂B₁₀H₁₀ (4.1 mg, 0.025 mmol) was added to a 10 mL reaction flask in a glove box, then 1 mL of CD₃CN was injected. TMSOTf (5 μ L, 0.025 mmol) was added dropwise to the flask and stirred for about 2 minutes. The reaction solution was monitored by ¹H{¹¹B} NMR at room temperature, 30 °C, 40 °C, 50 °C, and 60 °C, respectively. The spectra were also monitored at 50 °C, 40 °C, 30 °C, and room temperature when the temperature cooled down (from up to down, Fig. **S4**).

The spectra showed similar results to Prof. Shore's report when the mixture was heated (1:5:4 peaks to one single peak). However, the unidentified peaks around 0 ppm and -30 to -20 ppm indicated decomposition when the mixture was cooled down. The structure of the decomposed compounds was not clear at this moment. Besides, the single peak at 60 °C went back to 1:5:4 peaks when cooled down, suggesting the reversibility of the reaction between TMSOTf and Na₂B₁₀H₁₀.

Figure S4. ¹¹B{¹H} Variable-Temperature NMR spectra of the reaction mixture

 $(TMSOTf/Na_2B_{10}H_{10} = 1:1)$ in CD₃CN

(b) ²⁹Si NMR spectra of TMSOTf under different conditions.

For figure S5a, pure TMSOTf was added to the NMR tube and measured. For figures S5b-d, TMSOTf (222 mg, 1.0 mmol) was added to an NMR tube containing 0.6 mL solvents (hexane for 5b, MeCN for 5c, and THF for 5d). All the NMR spectra were measured at room temperature.

Figure S5. ²⁹Si NMR spectra of TMSOTf under different conditions

(c) ²⁹Si NMR spectra of TMSOTf :Na2B10H10 (1:1) under different conditions.

 $Na_2B_{10}H_{10}$ (49.8 mg, 0.03 mmol) was added to a NMR tube. Solvents (0.6 mL, MeCN for 6a and THF for 6b) and TMSOTf (66.7 mg, 0.03 mmol) were added successively. The mixture was shaken with hands for about 2 minutes. All the NMR spectra were measured at room temperature.

(a) TMSOTf/Na₂B₁₀H₁₀ (1:1) in MeCN

Figure S6. ²⁹Si NMR spectra of TMSOTf:Na₂ $B_{10}H_{10}$ (1:1) with different solvents

Preparation of 6-CD₃O-B₁₀H₁₀D₃ from *closo*-Na₂B₁₀H₁₀.

A mixture containing Na₂B₁₀H₁₀ (0.0332 g, 0.2 mmol), CD₃OD (21.6 mg, 0.6 mmol), and TMSOTF (89 mg, 0.4 mmol) in 5 mL hexane was stirred at room temperature for 5 h. The reaction solution was filtered, and another 5 mL hexane was used to extract the remaining residue. The solutions were combined, and the solvent was evaporated under vacuum at 0 °C to give 6-CD₃O-B₁₀H₁₀D₃ (28.2 mg, 88%) as a clear oil.

The yield calculation was based on the assumed structure with 3 bridging D atoms, which is the most possible structure.

¹¹B NMR (128 MHz, CDCl₃) δ (ppm) 26.28 (s, 1B), 4.72-2.71 (m, 5B), -15.78 (d, J = 132.3 Hz, 2B), -32.22 (d, J = 148.9 Hz, 1B), -43.90 (d, J = 148.4 Hz, 1B).

¹¹B{¹H} NMR (128 MHz, CDCl₃) δ (ppm) 26.23 (1B), 4.18 (3B), 3.26 (2B), -15.80 (2B), -32.27 (1B), -43.91 (1B).

¹H NMR (400 MHz, CDCl₃) Hydrides were not integrated due to multiple B-H couplings.

¹H{¹¹B} NMR (400 MHz, CDCl₃) δ (ppm) 3.79 (s, 1BH), 3.20 (s, 4BH), 2.12 (s, 2BH), 1.38 (s, 1BH), 0.21 (s, 1BH), -0.56 (s, BHB), -1.85 (s, BHB).

²H NMR (61 MHz, CHCl₃): δ (ppm) 3.88 (s, CD₃), -0.57 (s, B²HB), -1.93 (s, B²HB).

5. References

- [1] W. C. Ewing, P. J. Carroll, L. G. Sneddon, Inorg. Chem. 2011, 50, 4054-4064.
- [2] M. F. Hawthorne, J. J. Miller, J. Am. Chem. Soc. 1960, 82, 500-500.
- [3] R. E. Loffredo, L. F. Drullinger, J. A. Slater, C. A. Turner, A. D. Norman, *Inorg. Chem.* 1976, 15, 478-480.

6. NMR Spectra

Figure S10. ${}^{1}H{}^{11}B{}$ NMR spectrum of *nido*-6-CH₃O-B₁₀H₁₃ (1) in CDCl₃

Figure S13. ¹¹B $\{^{1}H\}$ NMR spectrum of *nido*-6-CH₃CH₂O-B₁₀H₁₃ (2) in CDCl₃

Figure S15. ${}^{1}H{}^{11}B{}$ NMR spectrum of *nido*-6-CH₃CH₂O-B₁₀H₁₃ (2) in CDCl₃

Figure S18. ¹¹B $\{^{1}H\}$ NMR spectrum of *nido*-6-(CH₃)₂CHO-B₁₀H₁₃ (3) in CDCl₃

Figure S20. ${}^{1}H{}^{11}B{}$ NMR spectrum of *nido*-6-(CH₃)₂CHO-B₁₀H₁₃ (3) in CDCl₃

Figure S23. ¹¹B $\{^{1}H\}$ NMR spectrum of *nido*-6-CH₃(CH₂)₃O-B₁₀H₁₃ (4) in CDCl₃

Figure S25. ${}^{1}H{}^{11}B{}$ NMR spectrum of *nido*-6-CH₃(CH₂)₃O-B₁₀H₁₃ (4) in CDCl₃

Figure S28. ¹¹B $\{^{1}H\}$ NMR spectrum of *nido*-6-PhO-B₁₀H₁₃ (5) in CDCl₃

Figure S30. ${}^{1}H{}^{11}B{}$ NMR spectrum of *nido*-6-PhO-B₁₀H₁₃ (5) in CDCl₃

Figure S35. ${}^{1}H{}^{11}B{}$ NMR spectrum of *nido*-6-(CH₃)₃SiO-B₁₀H₁₃ (6) in CDCl₃

S33

0.0--

Figure S38. ¹¹B $\{^{1}H\}$ NMR spectrum of *nido*-6-(CH₃)₂CHS-B₁₀H₁₃ (7) in CDCl₃

Figure S40. ¹H{¹¹B} NMR spectrum of *nido*-6-(CH₃)₂CHS-B₁₀H₁₃ (7) in CDCl₃

Figure S43. ¹¹B $\{^{1}H\}$ NMR spectrum of *nido*-6-C₆H₁₁S-B₁₀H₁₃ (8) in CDCl₃

Figure S45. ${}^{1}H{}^{11}B{}$ NMR spectrum of *nido*-6-C₆H₁₁S-B₁₀H₁₃ (8) in CDCl₃

Figure S48. ¹¹B $\{^{1}H\}$ NMR spectrum of *nido*-6-(CH₃)₂CHCH₂S-B₁₀H₁₃ (9) in CDCl₃

Figure S50. ¹H{¹¹B} NMR spectrum of *nido*-6-(CH₃)₂CHCH₂S-B₁₀H₁₃ (9) in CDCl₃

Figure S53. ¹¹B{¹H} NMR spectrum of *nido*-6-*p*-CH₃-PhS-B₁₀H₁₃ (10) in CDCl₃

Figure S55. ${}^{1}H{}^{11}B{}$ NMR spectrum of *nido*-6-*p*-CH₃-PhS-B₁₀H₁₃ (10) in CDCl₃

Figure S58. ¹¹B $\{^{1}H\}$ NMR spectrum of *nido*-6-*p*-F-PhS-B₁₀H₁₃ (11) in CDCl₃

Figure S60. ${}^{1}H{{}^{11}B}$ NMR spectrum of *nido*-6-*p*-F-PhS-B₁₀H₁₃ (11) in CDCl₃

Figure S62. ¹¹B NMR spectrum of *nido*-6-CD₃O-B₁₀H₁₀D₃ in CDCl₃

Figure S63. ¹¹B{¹H} NMR spectrum of *nido*-6-CD₃O-B₁₀H₁₀D₃ in CDCl₃

Figure S65. ¹H{¹¹B} NMR spectrum of *nido*-6-CD₃O-B₁₀H₁₀D₃ in CDCl₃

S51