Supporting Information

Cooperative Cu/Pd-Catalyzed Borocarbonylation of Ethylene

Yang Yuan,^a Jian-Xing Xu,^a and Xiao-Feng Wu*^{a,b}

^aDalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, Liaoning, China.

^bLeibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.

Contents

1. General Information	S2
2. General Procedures	S3
2.1 General Procedure	
2.2 Procedure for 1.0 mmol scale reaction	S4
2.3 General for Compound 4	S4
2.4 Procedure for Compound 5	S5
4. Characterization Data	S6
5. NMR Spectra	S20

1. General information

Unless otherwise noted, all reactions were carried out under carbon monoxide (CO) or nitrogen atmosphere. All reagents were from commercial sources and used as received without further purification. All solvents were dried by standard techniques and distilled prior to use. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (bp. 60~90 °C), dichloromethane and ethyl acetate as eluent. All NMR spectra were recorded at ambient temperature using Bruker Avance III 400 MHz NMR, Bruker Avance III HD 700 MHz NMR spectrometers. ¹H NMR chemical shifts are reported relative to TMS and were referenced via residual proton resonances of the corresponding deuterated solvent (CDCl₃: 7.26 ppm; d₆-DMSO: 2.50 ppm) whereas ${}^{13}C{}^{1}H$ NMR spectra are reported relative to TMS via the carbon signals of the deuterated solvent (CDCl₃: 77.0 ppm; d₆-DMSO: 39.5 ppm. Data for ¹H are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, br = broad), coupling constant (Hz), and integration. All ¹³C NMR spectra were broad-band 1H decoupled. All reactions were monitored by GC-FID or NMR analysis, GC-yields were calculated using hexadecane as internal standard. All measurements were carried out at room temperature unless otherwise stated. HRMS data was obtained with Micromass HPLC-Q-TOF mass spectrometer (ESI) or Agilent 6540 Accurate-MS spectrometer (Q-TOF).

Because of the high toxicity of carbon monoxide, all the reactions should be performed in an autoclave. The laboratory should be well-equipped with a CO detector and alarm system.

2. General Procedures

2.1 General Procedure

A vial (4 mL) was charged with DPPF (5.0 mol%), $[(\eta^3-C_3H_5)PdCl]_2$ (2.0 mol%), SIPrCuCl (5.0 mol%), B₂pin₂ (76.2 mg, 1.5 equiv), NaO'Bu (28.8 mg, 1.5 equiv), and a stirring bar. The vial was closed by PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and connected with atmosphere with a needle. The vial was evacuated under vacuum and recharged with argon for three times. Then, toluene (1.0 mL) was injected under argon by using a syringe. After that 1 (0.2 mmol, 1.0 equiv) was added, and the vial (or several vials) was placed in an alloy plate, which was transferred into a 300 mL autoclave of the 4560 series from Parr Instruments. After flushing the autoclave three times with CO, a pressure of 5 bar of CO and 10 bar of ethylene were adjusted at ambient temperature. Then, the reaction was performed for 24 h at 70 °C. After the reaction was complete, the autoclave was cooled down with ice water to room temperature and the pressure was released carefully. The reaction was diluted with EA (ethyl acetate) and filtered through a pad of silica gel (a pipette with about 3 cm silica gel). The filtrate was concentrated under reduced pressure and the residue was directly purified by column chromatography to afford the corresponding products **3**.

Note: Column chromatography should be performed quickly to prevent product decomposition on silica. (We typically aim to complete the column in 10-15 min for a reaction on this scale.)

2.2 Procedure for 1.0 mmol scale reaction

A vial (4 mL) was charged with DPPF (5.0 mol%), $[(\eta^3-C_3H_5)PdCl]_2$ (2.0 mol%), SIPrCuCl (5.0 mol%), B₂pin₂ (381 mg, 1.5 equiv), NaO'Bu (144 mg, 1.5 equiv), and a stirring bar. The vial was closed by PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and connected with atmosphere with a needle. The vial was evacuated under vacuum and recharged with argon for three times. Then, toluene (1.0 mL) was injected under argon by using a syringe. After that 1 (1 mmol, 1.0 equiv) was added, and the vial (or several vials) was placed in an alloy plate, which was transferred into a 300 mL autoclave of the 4560 series from Parr Instruments. After flushing the autoclave three times with CO, a pressure of 5 bar of CO and 10 bar of ethylene were adjusted at ambient temperature. Then, the reaction was performed for 24 h at 70 °C. After the reaction was complete, the autoclave was cooled down with ice water to room temperature and the pressure was released carefully. The reaction was diluted with EA (ethyl acetate) and filtered through a pad of silica gel. The filtrate was concentrated under reduced pressure and the residue was directly purified by column chromatography to afford the corresponding products $\mathbf{3}$ as a slight yellow oil in 62% yield (161.2 mg).

2.3 Procedure for Compound 4

A Schlenk tube with a magnetic stir bar was charged with 3a (26.1 mg, 0.1 mmol, 1.0 equiv), NaBO₃.4H₂O (101 mg, 0.4 mmol, 4.0 equiv), then THF (0.5 mL) and H₂O (0.5 mL) were added. The reaction allowed to stir at room temperature for 5 h and

extracted with EtOAc (3 x 2 mL). The combined organic phase was dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (PE/EA= 5/1) to give **4** as a colorless oil (12.3 mg, 82% yield). ¹H NMR (700 MHz, CDCl₃) δ 7.96 (d, *J* = 8.0 Hz, 2H), 7.58 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 4.03 (t, *J* = 5.3 Hz, 2H), 3.23 (t, *J* = 5.4 Hz, 2H), 2.74 (s, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 200.5, 136.7, 133.6, 128.7, 128.1, 58.1, 40.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₉H₁₁O 151.0754; Found: 151.0749.

2.4 Procedure for Compound 5

Compound **3a** (39 mg, 0.15 mmol, 1.0 equiv), bromobenzene (28.3 mg, 0.18 mmol, 1.2 equiv), NaO'Bu (57.6 mg, 0.6 mmol, 4.0 equiv), Pd(dba)₂ (2.0 mol%) Ruphos (4.0 mol%), toluene (0.5 mL) and H₂O (50 uL) were added to a Schlenk flask. The mixture was degassed with N₂ three times. Then the reaction was heated at 80 °C for 20 h. After the reaction mixture was cooled to room temperature, EA (10 mL) and H₂O (5 mL) were added, and the organic layer was separated. The aqueous layer was extracted with Et₂O (10 mL × 2). The combined organic phases were washed with brine, and dried over anhydrous Na₂SO₄. The residue was purified by flash chromatography (PE/EA= 50/1) to give **5** as a white solid (20.5 mg, 65% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 8.06 – 7.87 (m, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.34 – 7.12 (m, 5H), 3.39 – 3.20 (m, 2H), 3.15 – 2.96 (m, 2H). ¹³C **NMR** (101 MHz, CDCl₃) δ 199.3, 141.3, 136.9, 133.1, 128.6, 128.6, 128.4, 128.1, 126.2, 40.5, 30.2. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₅O 211.1117; Found: 211.1109.

4. Characterization Data

Note: the carbon directly attached to the boron atom was not detected due to quadrupolar relaxation.

1-Phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (3a)
35.8 mg, 69% yield, slight yellow oil. Eluent: pentane/ethyl acetate = 20/1.
¹H NMR (700 MHz, CDCl₃) δ 7.97 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.44 (t, J = 7.5 Hz, 2H), 3.15 (t, J = 7.0 Hz, 2H), 1.25 (s, 12H), 1.08 (t, J = 7.0 Hz, 2H).
¹³C NMR (176 MHz, CDCl₃) δ 200.6, 137.0, 132.8, 128.5, 128.0, 83.1, 33.7, 24.8.
HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₂₂BO₃ 261.1665; Found: 261.1664.

1-(4-(*tert*-Butyl)phenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1one (3b)

45.5 mg, 72% yield, slight yellow oil. Eluent: pentane/ethyl acetate = 20/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.84 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.5 Hz, 2H), 3.06

(t, *J* = 7.0 Hz, 2H), 1.26 (s, 9H), 1.18 (s, 12H), 0.99 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 199.2, 155.3, 133.40, 126.9, 124.4, 82.0, 34.0, 32.6, 30.1, 23.8.

¹¹**B** NMR (128 MHz, CDCl₃) δ 34.21.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₃₀BO₃ 317.2291; Found: 317.2286.

1-(4-Methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-on e (3c)

38.9 mg, 67% yield, slight yellow oil. Eluent: pentane/ethyl acetate = 15/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.95 (d, J = 8.5 Hz, 2H), 6.92 (d, J = 8.5 Hz, 2H), 3.86

(s, 3H), 3.10 (t, *J* = 7.0 Hz, 2H), 1.25 (s, 12H), 1.06 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 199.1, 163.2, 130.2, 113.6, 83.1, 55.4, 33.3, 24.8.

¹¹**B NMR** (128 MHz, CDCl₃) δ 34.30.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₂₄BO₄ 291.1771; Found: 291.1772.

1-(4-(Methylthio)phenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (3d)

38.6 mg, 63% yield, colorless sticky oil. Eluent: pentane/ethyl acetate = 8/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.88 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.5 Hz, 2H), 3.11

(t, J = 7.0 Hz, 2H), 2.51 (s, 3H), 1.25 (s, 12H), 1.06 (t, J = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 199.6, 145.3, 133.3, 128.4, 124.9, 83.1, 33.4, 25.0, 24.8, 14.9.

¹¹**B NMR** (128 MHz, CDCl₃) δ 34.53.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{16}H_{24}BO_3S$ 307.1542; Found: 307.1549.

1-([1,1'-Biphenyl]-4-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1one (3e)

51.8 mg, 77% yield, pale yellow solid. Eluent: pentane/ethyl acetate = 15/1.

¹**H NMR** (700 MHz, CDCl₃) δ 8.04 (d, *J* = 7.5 Hz, 2H), 7.66 (d, *J* = 7.5 Hz, 2H), 7.62 (d, *J* = 7.5 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 7.5 Hz, 1H), 3.18 (t, *J* = 7.0 Hz, 2H), 1.26 (s, 12H), 1.10 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 200.2, 145.4, 140.0, 135.7, 128.9, 128.6, 128.1, 127.3, 127.1, 83.1, 33.8, 25.1, 24.8.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₁H₂₆BO₃ 337.1979; Found: 337.1985.

1-(4-Fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (3f)

33.9 mg, 61% yield, colorless oil. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR** (700 MHz, CDCl₃) δ 8.06 – 7.94 (m, 2H), 7.11 (t, *J* = 8.5 Hz, 2H), 3.12 (t, *J* = 6.9 Hz, 2H), 1.25 (s, 12H), 1.07 (t, *J* = 6.9 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 199.0, 165.6 (d, *J* = 253.9 Hz), 133.4, 130.6 (d, *J* = 9.2

Hz), 115.5 (d, *J* = 21.8 Hz), 83.2, 33.6, 24.8.

¹¹**B NMR** (128 MHz, CDCl₃) δ 34.10.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₂₁BO₃F 279.1571; Found: 279.1570.

1-(4-Iodophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (3g)

37.0 mg, 48% yield, yellow oil. Eluent: pentane/ethyl acetate = 15/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.81 (d, *J* = 8.5 Hz, 2H), 7.68 (d, *J* = 8.5 Hz, 2H), 3.10 (t, *J* = 7.0 Hz, 2H), 1.28 – 1.23 (m, 12H), 1.07 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 199.9, 137.8, 136.2, 129.5, 100.6, 83.2, 33.6, 24.8.

¹¹**B** NMR (128 MHz, CDCl₃) δ 33.72.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₂₂₁BO₃I 386.0631; Found: 386.0627.

1-(4-Morpholinophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1 -one (3h)

32.5 mg, 47% yield, white solid. Eluent: pentane/ethyl acetate = 3/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.90 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 8.5 Hz, 2H), 3.94 – 3.76 (m, 4H), 3.37 – 3.23 (m, 4H), 3.07 (t, *J* = 7.0 Hz, 2H), 1.25 (s, 12H), 1.04 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 198.9, 154.1, 129.9, 127.9, 113.4, 83.0, 66.6, 47.7, 33.1, 24.8.

¹¹**B** NMR (128 MHz, CDCl₃) δ 34.87.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₂₉BNO₄ 346.2193; Found: 346.2198.

1-(4-(1H-Pyrrol-1-yl)phenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop an-1-one (3i)

38.4 mg, 59% yield, slight yellow oil. Eluent: pentane/ethyl acetate = 5/1.

¹**H NMR** (700 MHz, CDCl₃) δ 8.04 (d, *J* = 8.5 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.17 (d, *J* = 20.5 Hz, 2H), 6.39 (d, *J* = 15.5 Hz, 2H), 3.15 (t, *J* = 7.0 Hz, 2H), 1.26 (s, 12H), 1.09 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 199.2, 143.8, 133.9, 129.8, 119.4, 119.0, 111.5, 83.2, 33.6, 25.0, 24.8.

¹¹**B** NMR (128 MHz, CDCl₃) δ 34.16.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₂₅BNO₃ 326.1931; Found: 326.1930.

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(o-tolyl)propan-1-one (3j)

38.9 mg, 71% yield, colorless oil. Eluent: pentane/ethyl acetate = 20/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.56 (d, *J* = 7.5 Hz, 1H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.16 (dd, *J* = 13.5, 7.5 Hz, 2H), 2.98 (t, *J* = 7.0 Hz, 2H), 2.40 (s, 3H), 1.18 (s, 12H), 0.98 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 204.9, 138.3, 137.7, 131.7, 130.9, 128.2, 125.6, 83.1, 36.7, 25.0, 24.8, 21.1.

¹¹**B NMR** (128 MHz, CDCl₃) δ 34.12.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₁₆H₂₄BO₃ 275.1821; Found: 275.1825.

1-(2-Methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-on e (3k)

40.6 mg, 70% yield, slight yellow oil. Eluent: pentane/ethyl acetate = 15/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.69 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.48 – 7.37 (m, 1H), 7.09 – 6.87 (m, 2H), 3.88 (s, 3H), 3.13 (t, *J* = 7.0 Hz, 2H), 1.25 (s, 12H), 1.00 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 202.9, 158.6, 133.1, 130.3, 128.3, 120.5, 111.5, 83.0, 55.5, 39.0, 25.0, 24.8.

¹¹**B** NMR (128 MHz, CDCl₃) δ 33.99.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₂₄BO₄ 291.1771; Found: 291.1779.

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(m-tolyl)propan-1-one (3m)

39.5 mg, 72% yield, colorless oil. Eluent: pentane/ethyl acetate = 20/1.
¹H NMR (700 MHz, CDCl₃) δ 7.78 – 7.60 (m, 2H), 7.33 – 7.22 (m, 2H), 3.06 (t, J = 7.0 Hz, 2H), 2.33 (s, 3H), 1.18 (s, 12H), 0.99 (t, J = 7.0 Hz, 2H).
¹³C NMR (176 MHz, CDCl₃) δ 200.8, 138.2, 137.0, 133.5, 128.5, 128.3, 125.2, 83.1, 33.7, 25.0, 24.8, 21.4.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₂₄BO₃ 275.1821; Found: 275.1821.

1-(3,5-Dimethylphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1one (3n)

36.9 mg, 64% yield, colorless oil. Eluent: pentane/ethyl acetate = 20/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.57 (s, 2H), 7.17 (s, 1H), 3.12 (t, *J* = 7.0 Hz, 2H), 2.36 (s, 6H), 1.26 (s, 12H), 1.06 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 201.0, 138.0, 137.1, 134.4, 125.8, 83.1, 33.8, 24.8, 21.2.

¹¹**B NMR** (128 MHz, CDCl₃) δ 34.30.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₂₆BO₃ 289.1978; Found: 289.1972.

1-(4-Fluoro-2-methylphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop an-1-one (30)

35.1 mg, 60% yield, colorless oil. Eluent: pentane/ethyl acetate = 20/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.31 (d, *J* = 9.0 Hz, 1H), 7.19 – 7.14 (m, 1H), 7.03 (t, *J* = 8.0 Hz, 1H), 3.00 (t, *J* = 7.0 Hz, 2H), 2.41 (s, 3H), 1.24 (s, 12H), 1.09 – 1.01 (m, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 203.8 (d, *J* = 2.5 Hz), 161.3, 159.9, 139.5 (d, *J* = 5.8 Hz), 133.1 (d, *J* = 7.6 Hz), 117.6 (d, *J* = 20.8 Hz), 114.9 (d, *J* = 22.3 Hz), 83.2, 36.7, 24.8, 20.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -117.15.

¹¹**B** NMR (128 MHz, CDCl₃) δ 34.15.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₂₃BO₃F 293.1727; Found: 293.1725.

1-(4-Acetylphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (3p)

36.2 mg, 60% yield, slight yellow solid. Eluent: pentane/ethyl acetate = 6/1.

¹**H** NMR (700 MHz, CDCl₃) δ 8.02 (q, *J* = 8.5 Hz, 4H), 3.16 (t, *J* = 7.0 Hz, 2H), 2.63 (s, 3H), 1.24 (s, 12H), 1.09 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 200.1, 197.6, 140.2, 139.9, 128.4, 128.2, 83.2, 34.1, 26.9, 24.8.

¹¹**B NMR** (128 MHz, CDCl₃) δ 34.26.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₂₄BO₄ 303.1771; Found: 303.1773.

Ethyl 4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanoyl)benzoate (3q) 39.9 mg, 60% yield, slight yellow sticky oil. Eluent: pentane/ethyl acetate = 6/1. ¹H NMR (700 MHz, CDCl₃) δ 8.10 (d, *J* = 8.5 Hz, 2H), 8.00 (d, *J* = 8.5 Hz, 2H), 4.40 (q, *J* = 7.0 Hz, 2H), 3.16 (t, *J* = 7.0 Hz, 2H), 1.40 (t, *J* = 7.0 Hz, 3H), 1.24 (s, 12H), 1.09 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 200.2, 165.9, 140.1, 134.0, 129.7, 127.9, 83.2, 61.4, 34.1, 24.8, 14.3.

¹¹**B NMR** (128 MHz, CDCl₃) δ 34.06.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₁₈H₂₆BO₅ 333.1891; Found: 333.1897.

4-(3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)propanoyl)benzonitrile (3r)
35.4 mg, 62% yield, light yellow oil. Eluent: pentane/ethyl acetate = 8/1.
¹H NMR (700 MHz, CDCl₃) δ 8.05 (d, J = 7.5 Hz, 2H), 7.76 (d, J = 7.5 Hz, 1H), 3.15 (t, J = 7.0 Hz, 2H), 1.25 (s, 12H), 1.10 (t, J = 6.5 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 199.3, 140.0, 132.4, 128.4, 118.1, 116.1, 83.3, 34.1, 25.0, 24.8.

¹¹**B** NMR (128 MHz, CDCl₃) δ 33.88.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₂₁BNO₃ 286.1614; Found: 286.1617.

1-(Naphthalen-2-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (3s)

40.9 mg, 66% yield, slight yellow oil. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR** (700 MHz, CDCl₃) δ 8.49 (s, 1H), 8.04 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.87 (t, *J* = 8.5 Hz, 2H), 7.62 – 7.51 (m, 2H), 3.29 (t, *J* = 7.0 Hz, 2H), 1.27 (s, 12H), 1.14 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 200.6, 135.5, 134.3, 132.6, 129.5, 129.5, 128.3, 128.2, 127.8, 126.7, 124.0, 83.2, 33.7, 25.0, 24.8.

¹¹**B** NMR (128 MHz, CDCl₃) δ 34.89.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₁₉H₂₄BO₃ 311.1822; Found: 311.1826.

1-(Naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (3t)

38.4 mg, 62% yield, slight yellow oil. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR** (700 MHz, CDCl₃) δ 8.56 (d, *J* = 8.5 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.85 (dd, *J* = 7.5, 3.5 Hz, 2H), 7.61 – 7.43 (m, 3H), 3.22 (t, *J* = 7.0 Hz, 2H), 1.28 (s, 12H), 1.15 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 205.3, 136.5, 133.9, 132.0, 130.1, 128.3, 127.6, 126.9, 126.3, 125.9, 124.4, 83.2, 37.4, 24.9.

¹¹**B NMR** (128 MHz, CDCl₃) δ 34.23.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₂₄BO₃ 311.1822; Found: 311.1824.

1-(Benzo[d][1,3]dioxol-5-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propa n-1-one (3u)

35.3 mg, 58% yield, light yellow oil. Eluent: pentane/ethyl acetate = 8/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.57 (d, J = 8.0 Hz, 1H), 7.44 (s, 1H), 6.83 (d, J = 8.0

Hz, 1H), 6.02 (s, 2H), 3.07 (t, *J* = 7.0 Hz, 2H), 1.25 (s, 12H), 1.05 (t, *J* = 7.0 Hz, 2H).

¹³**C NMR** (176 MHz, CDCl₃) δ 198.6, 151.4, 148.0, 131.8, 124.1, 107.9, 107.8, 101.7, 83.1, 33.4, 25.0, 24.8.

¹¹**B** NMR (128 MHz, CDCl₃) δ 34.17.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₁₆H₂₂BO₅ 305.1563; Found: 305.1568.

1-(Quinolin-6-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (3v)

43.5 mg, 70% yield, brown solid. Eluent: pentane/ethyl acetate = 2/1.

¹**H NMR** (700 MHz, CDCl₃) δ 9.09 – 8.93 (m, 1H), 8.47 (s, 1H), 8.28 (d, *J* = 8.5 Hz, 2H), 8.15 (d, *J* = 9.0 Hz, 1H), 7.47 (dd, *J* = 8.0, 4.0 Hz, 1H), 3.30 (t, *J* = 7.0 Hz, 2H), 1.27 (s, 12H), 1.16 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 199.9, 152.4, 150.0, 137.5, 134.7, 129.7, 129.2, 127.8, 127.5, 121.8, 83.2, 33.9, 24.8.

¹¹**B NMR** (128 MHz, CDCl₃) δ 34.28.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₈H₂₃BO₃N 312.1774; Found: 312.1777.

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(thiophen-2-yl)propan-1-one (3w)

39.4 mg, 74% yield, yellow oil. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.73 (d, *J* = 3.5 Hz, 1H), 7.59 (d, *J* = 5.0 Hz, 1H), 7.16

-7.06 (m, 1H), 3.09 (t, J = 7.0 Hz, 2H), 1.25 (s, 12H), 1.09 (t, J = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 193.6, 144.1, 132.9, 131.5, 127.9, 83.2, 34.2, 25.0, 24.8.

¹¹**B** NMR (128 MHz, CDCl₃) δ 34.24.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₂₀BO₃S 267.1229; Found: 267.1224.

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(thiophen-3-yl)propan-1-one (3x)

40.5 mg, 76% yield, yellow oil. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR** (700 MHz, CDCl₃) δ 8.05 (d, *J* = 2.5 Hz, 1H), 7.55 (d, *J* = 5.0 Hz, 1H), 7.29 (dd, *J* = 5.0, 3.0 Hz, 1H), 3.06 (t, *J* = 7.0 Hz, 2H), 1.25 (s, 12H), 1.06 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 195.0, 142.1, 131.5, 127.0, 126.0, 83.1, 34.8, 25.0, 24.8.

¹¹**B NMR** (128 MHz, CDCl₃) δ 34.17.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₂₀BO₃S 267.1229; Found: 267.1227.

1-Phenyl-3-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)propan-1-one (3y)

31.8 mg, 58% yield, colorless oil. Eluent: pentane/ethyl acetate = 20/1.

¹**H NMR** (700 MHz, CDCl₃) δ 8.10 – 7.83 (m, 2H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 3.07 (t, *J* = 7.0 Hz, 1H), 1.80 (s, 2H), 1.29 (s, 12H), 1.00 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 201.7, 137.5, 132.5, 128.4, 128.0, 70.3, 48.8, 33.8, 31.67.

¹¹**B** NMR (128 MHz, CDCl₃) δ 30.26.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₁₆H₂₄BO₃ 275.1822; Found: 275.1828.

1-(4-(Tert-butyl)phenyl)-3-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)propan-1
-one (3z)
45.5 mg, 69% yield, yellow oil. Eluent: pentane/ethyl acetate = 20/1.

¹**H NMR** (700 MHz, CDCl₃) δ 7.91 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 2H), 3.05 (t, *J* = 7.0 Hz, 2H), 1.80 (s, 2H), 1.30 (s, 12H), 0.98 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 201.3, 156.0, 134.9, 127.9, 125.3, 70.3, 48.8, 35.0, 33.8, 31.7, 31.1.

¹¹**B** NMR (128 MHz, CDCl₃) δ 30.12.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{20}H_{32}BO_3$ 331.2448; Found: 311.2453.

1-(2-Methoxyphenyl)-3-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)propan-1-on e (3aa)

41.4 mg, 68% yield, white solid. Eluent: pentane/ethyl acetate = 15/1.

¹**H** NMR (700 MHz, CDCl₃) δ 7.63 (dd, J = 7.6, 1.7 Hz, 1H), 7.47 – 7.34 (m, 1H),

7.02 – 6.87 (m, 2H), 3.88 (s, 3H), 3.06 (t, *J* = 7.0 Hz, 2H), 1.80 (s, 2H), 1.33 (s, 12H), 0.93 (t, *J* = 6.9 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 204.3, 158.2, 132.6, 123.0, 120.4, 111.5, 70.2, 69.4, 55.5, 49.5, 39.1, 31.9, 31.7.

¹¹**B** NMR (128 MHz, CDCl₃) δ 30.29.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{17}H_{26}BO_4$ 305.1927; Found: 305.1921.

3-(4,4,6,6-Tetramethyl-1,3,2-dioxaborinan-2-yl)-1-(thiophen-3-yl)propan-1-one (3ab)

30.8 mg, 55% yield, pale yellow oil. Eluent: pentane/ethyl acetate = 20/1.

¹**H NMR** (700 MHz, CDCl₃) δ 8.05 (s, 1H), 7.55 (d, *J* = 5.0 Hz, 1H), 7.30 – 7.27 (m,

1H), 2.97 (t, *J* = 7.0 Hz, 2H), 1.56 (s, 2H), 1.30 (s, 12H), 0.99 (t, *J* = 7.0 Hz, 2H).

¹³C NMR (176 MHz, CDCl₃) δ 196.14, 142.61, 131.22, 127.08, 125.86, 69.38, 49.51, 31.93, 31.69.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₄H₂₂BO₃S 281.1385; Found: 281.1380.

5. NMR Spectra

