Supporting Information

Cooperative $\mathbf{C u} / \mathbf{P d}$-Catalyzed Borocarbonylation of Ethylene

Yang Yuan, ${ }^{\text {a }}$ Jian-Xing $\mathrm{Xu},{ }^{\text {a }}$ and Xiao-Feng Wu*a,b
${ }^{\text {a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy }}$ of Science, 116023 Dalian, Liaoning, China.
${ }^{\text {b }}$ Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.

Contents

1. General Information S2
2. General Procedures S3
2.1 General Procedure S3
2.2 Procedure for 1.0 mmol scale reaction. S4
2.3 General for Compound 4 S4
2.4 Procedure for Compound 5 S5
3. Characterization Data. S6
4. NMR Spectra S20

1. General information

Unless otherwise noted, all reactions were carried out under carbon monoxide (CO) or nitrogen atmosphere. All reagents were from commercial sources and used as received without further purification. All solvents were dried by standard techniques and distilled prior to use. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (bp. $60 \sim 90^{\circ} \mathrm{C}$), dichloromethane and ethyl acetate as eluent. All NMR spectra were recorded at ambient temperature using Bruker Avance III 400 MHz NMR, Bruker Avance III HD 700 MHz NMR spectrometers. ${ }^{1} \mathrm{H}$ NMR chemical shifts are reported relative to TMS and were referenced via residual proton resonances of the corresponding deuterated solvent $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm} ; \mathrm{d}_{6}\right.$-DMSO: 2.50 ppm) whereas ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are reported relative to TMS via the carbon signals of the deuterated solvent $\left(\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm} ; \mathrm{d}_{6}-\mathrm{DMSO}: 39.5 \mathrm{ppm}\right.$. Data for ${ }^{1} \mathrm{H}$ are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad $)$, coupling constant (Hz), and integration. All ${ }^{13} \mathrm{C}$ NMR spectra were broad-band 1 H decoupled. All reactions were monitored by GC-FID or NMR analysis, GC-yields were calculated using hexadecane as internal standard. All measurements were carried out at room temperature unless otherwise stated. HRMS data was obtained with Micromass HPLC-Q-TOF mass spectrometer (ESI) or Agilent 6540 Accurate-MS spectrometer (Q-TOF).

Because of the high toxicity of carbon monoxide, all the reactions should be performed in an autoclave. The laboratory should be well-equipped with a CO detector and alarm system.

2. General Procedures

2.1 General Procedure

A vial (4 mL) was charged with DPPF ($5.0 \mathrm{~mol} \%$), $\left[\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}\right]_{2}(2.0 \mathrm{~mol} \%)$, $\mathrm{SIPrCuCl}(5.0 \mathrm{~mol} \%), \mathrm{B}_{2} \mathrm{pin}_{2}\left(76.2 \mathrm{mg}, 1.5\right.$ equiv), $\mathrm{NaO}^{t} \mathrm{Bu}$ ($28.8 \mathrm{mg}, 1.5$ equiv), and a stirring bar. The vial was closed by PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and connected with atmosphere with a needle. The vial was evacuated under vacuum and recharged with argon for three times. Then, toluene (1.0 mL) was injected under argon by using a syringe. After that $\mathbf{1}(0.2 \mathrm{mmol}, 1.0$ equiv) was added, and the vial (or several vials) was placed in an alloy plate, which was transferred into a 300 mL autoclave of the 4560 series from Parr Instruments. After flushing the autoclave three times with CO, a pressure of 5 bar of CO and 10 bar of ethylene were adjusted at ambient temperature. Then, the reaction was performed for 24 h at $70^{\circ} \mathrm{C}$. After the reaction was complete, the autoclave was cooled down with ice water to room temperature and the pressure was released carefully. The reaction was diluted with EA (ethyl acetate) and filtered through a pad of silica gel (a pipette with about 3 cm silica gel). The filtrate was concentrated under reduced pressure and the residue was directly purified by column chromatography to afford the corresponding products 3 .

Note: Column chromatography should be performed quickly to prevent product decomposition on silica. (We typically aim to complete the column in 10-15 min for a reaction on this scale.)

2.2 Procedure for $1.0 \mathbf{~ m m o l}$ scale reaction

A vial (4 mL) was charged with $\operatorname{DPPF}(5.0 \mathrm{~mol} \%),\left[\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}\right]_{2}(2.0 \mathrm{~mol} \%)$, $\mathrm{SIPrCuCl}\left(5.0 \mathrm{~mol} \%\right.$), $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($381 \mathrm{mg}, 1.5$ equiv), $\mathrm{NaO}^{t} \mathrm{Bu}$ ($144 \mathrm{mg}, 1.5$ equiv), and a stirring bar. The vial was closed by PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and connected with atmosphere with a needle. The vial was evacuated under vacuum and recharged with argon for three times. Then, toluene (1.0 mL) was injected under argon by using a syringe. After that $\mathbf{1}$ ($1 \mathrm{mmol}, 1.0$ equiv) was added, and the vial (or several vials) was placed in an alloy plate, which was transferred into a 300 mL autoclave of the 4560 series from Parr Instruments. After flushing the autoclave three times with CO, a pressure of 5 bar of CO and 10 bar of ethylene were adjusted at ambient temperature. Then, the reaction was performed for 24 h at $70^{\circ} \mathrm{C}$. After the reaction was complete, the autoclave was cooled down with ice water to room temperature and the pressure was released carefully. The reaction was diluted with EA (ethyl acetate) and filtered through a pad of silica gel. The filtrate was concentrated under reduced pressure and the residue was directly purified by column chromatography to afford the corresponding products $\mathbf{3}$ as a slight yellow oil in 62% yield (161.2 mg).

2.3 Procedure for Compound 4

A Schlenk tube with a magnetic stir bar was charged with $\mathbf{3 a}(26.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv), $\mathrm{NaBO}_{3} .4 \mathrm{H}_{2} \mathrm{O}$ ($101 \mathrm{mg}, 0.4 \mathrm{mmol}, 4.0$ equiv), then THF (0.5 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(0.5 \mathrm{~mL})$ were added. The reaction allowed to stir at room temperature for 5 h and
extracted with EtOAc (3 x 2 mL). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography $(\mathrm{PE} / \mathrm{EA}=5 / 1)$ to give $\mathbf{4}$ as a colorless oil ($12.3 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $(700 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.03(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 200.5,136.7,133.6,128.7,128.1,58.1,40.4$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}$ 151.0754; Found: 151.0749 .

2.4 Procedure for Compound 5

Compound 3a ($39 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv), bromobenzene ($28.3 \mathrm{mg}, 0.18 \mathrm{mmol}$, 1.2 equiv), $\mathrm{NaO}^{t} \mathrm{Bu}$ ($57.6 \mathrm{mg}, 0.6 \mathrm{mmol}, 4.0$ equiv), $\mathrm{Pd}(\mathrm{dba})_{2}$ ($2.0 \mathrm{~mol} \%$) Ruphos (4.0 $\mathrm{mol} \%)$, toluene $(0.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{uL})$ were added to a Schlenk flask. The mixture was degassed with N_{2} three times. Then the reaction was heated at $80^{\circ} \mathrm{C}$ for 20 h . After the reaction mixture was cooled to room temperature, EA (10 mL) and $\mathrm{H}_{2} \mathrm{O}(5$ mL) were added, and the organic layer was separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 2)$. The combined organic phases were washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by flash chromatography ($\mathrm{PE} / \mathrm{EA}=50 / 1$) to give $\mathbf{5}$ as a white solid ($20.5 \mathrm{mg}, 65 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.12(\mathrm{~m}, 5 \mathrm{H}), 3.39-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.15-2.96(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 199.3,141.3,136.9,133.1,128.6,128.6,128.4,128.1,126.2$, 40.5, 30.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}$ 211.1117; Found: 211.1109.

4. Characterization Data

Note: the carbon directly attached to the boron atom was not detected due to quadrupolar relaxation.

1-Phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (3a)
$35.8 \mathrm{mg}, 69 \%$ yield, slight yellow oil. Eluent: pentane/ethyl acetate $=20 / 1$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 1.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 200.6,137.0,132.8,128.5,128.0,83.1,33.7,24.8$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BO}_{3}$ 261.1665; Found: 261.1664.

1-(4-(tert-Butyl)phenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1one (3b)
$45.5 \mathrm{mg}, 72 \%$ yield, slight yellow oil. Eluent: pentane $/$ ethyl acetate $=20 / 1$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.06$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H}), 0.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.2,155.3,133.40,126.9,124.4,82.0,34.0,32.6$, 30.1, 23.8.
${ }^{11} \mathbf{B}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.21$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{BO}_{3} 317.2291$; Found: 317.2286.

1-(4-Methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-on e (3c)
$38.9 \mathrm{mg}, 67 \%$ yield, slight yellow oil. Eluent: pentane $/$ ethyl acetate $=15 / 1$.
${ }^{1} \mathbf{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.86$ ($\mathrm{s}, 3 \mathrm{H}$), $3.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 1.06(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.1, 163.2, 130.2, 113.6, 83.1, 55.4, 33.3, 24.8.
${ }^{11} \mathbf{B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.30$.
HRMS (ESI-TOF) m/z: [M+H] Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BO}_{4}$ 291.1771; Found: 291.1772.

1-(4-(Methylthio)phenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (3d)
$38.6 \mathrm{mg}, 63 \%$ yield, colorless sticky oil. Eluent: pentane/ethyl acetate $=8 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.11$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 1.06(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 199.6, 145.3, 133.3, 128.4, 124.9, 83.1, 33.4, 25.0, 24.8, 14.9.
${ }^{11} \mathbf{B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.53$.
HRMS (ESI-TOF) m/z: [M+H] Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BO}_{3} \mathrm{~S}$ 307.1542; Found: 307.1549.

1-([1,1'-Biphenyl]-4-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1one (3e)

$51.8 \mathrm{mg}, 77 \%$ yield, pale yellow solid. Eluent: pentane $/$ ethyl acetate $=15 / 1$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}), 1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 200.2,145.4,140.0,135.7,128.9,128.6,128.1,127.3$, 127.1, 83.1, 33.8, 25.1, 24.8.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BO}_{3}$ 337.1979; Found: 337.1985 .

1-(4-Fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (3f)
$33.9 \mathrm{mg}, 61 \%$ yield, colorless oil. Eluent: pentane $/$ ethyl acetate $=10 / 1$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 1.07(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.0,165.6(\mathrm{~d}, J=253.9 \mathrm{~Hz}), 133.4,130.6(\mathrm{~d}, J=9.2$ $\mathrm{Hz}), 115.5(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 83.2,33.6,24.8$.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.10$.
HRMS (ESI-TOF) m/z: [M+H] $]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BO}_{3} \mathrm{~F}$ 279.1571; Found: 279.1570.

1-(4-Iodophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one ($\mathbf{3 g}$)
$37.0 \mathrm{mg}, 48 \%$ yield, yellow oil. Eluent: pentane/ethyl acetate $=15 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.10$
$(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 12 \mathrm{H}), 1.07(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.9,137.8,136.2,129.5,100.6,83.2,33.6,24.8$.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.72$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{221} \mathrm{BO}_{3} \mathrm{I} 386.0631$; Found: 386.0627.

1-(4-Morpholinophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1 -one (3h)
$32.5 \mathrm{mg}, 47 \%$ yield, white solid. Eluent: pentane/ethyl acetate $=3 / 1$.
${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.94$
$-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.37-3.23(\mathrm{~m}, 4 \mathrm{H}), 3.07(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 1.04(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.9,154.1,129.9,127.9,113.4,83.0,66.6,47.7,33.1$, 24.8.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.87$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{BNO}_{4} 346.2193$; Found: 346.2198.

1-(4-(1H-Pyrrol-1-yl)phenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop an-1-one (3i)
$38.4 \mathrm{mg}, 59 \%$ yield, slight yellow oil. Eluent: pentane/ethyl acetate $=5 / 1$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17$ $(\mathrm{d}, J=20.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H})$, $1.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.2,143.8,133.9,129.8,119.4,119.0,111.5,83.2$, 33.6, 25.0, 24.8.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.16$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BNO}_{3} 326.1931$; Found: 326.1930 .

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(0-tolyl)propan-1-one (3j)
$38.9 \mathrm{mg}, 71 \%$ yield, colorless oil. Eluent: pentane $/$ ethyl acetate $=20 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ $(\mathrm{dd}, J=13.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H}), 0.98(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 204.9,138.3,137.7,131.7,130.9,128.2,125.6,83.1$, 36.7, 25.0, 24.8, 21.1.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.12$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BO}_{3} 275.1821$; Found: 275.1825 .

1-(2-Methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-on e (3k)
$40.6 \mathrm{mg}, 70 \%$ yield, slight yellow oil. Eluent: pentane/ethyl acetate $=15 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 1 \mathrm{H})$, $7.09-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 1.00(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.9,158.6,133.1,130.3,128.3,120.5,111.5,83.0$, 55.5, 39.0, 25.0, 24.8.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.99$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BO}_{4}$ 291.1771; Found: 291.1779.

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(m-tolyl)propan-1-one (3m)
$39.5 \mathrm{mg}, 72 \%$ yield, colorless oil. Eluent: pentane/ethyl acetate $=20 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H}), 0.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 200.8,138.2,137.0,133.5,128.5,128.3,125.2,83.1$, 33.7, 25.0, 24.8, 21.4.

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BO}_{3}$ 275.1821; Found: 275.1821.

1-(3,5-Dimethylphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1one (3n)
$36.9 \mathrm{mg}, 64 \%$ yield, colorless oil. Eluent: pentane/ethyl acetate $=20 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~s}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.36(\mathrm{~s}, 6 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}), 1.06(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 201.0,138.0,137.1,134.4,125.8,83.1,33.8,24.8$, 21.2.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.30$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BO}_{3}$ 289.1978; Found: 289.1972.

1-(4-Fluoro-2-methylphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop an-1-one (30)
$35.1 \mathrm{mg}, 60 \%$ yield, colorless oil. Eluent: pentane/ethyl acetate $=20 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H}), 1.09-1.01(\mathrm{~m}$, 2H).
${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.8(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 161.3,159.9,139.5(\mathrm{~d}, J=5.8$ $\mathrm{Hz}), 133.1(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 117.6(\mathrm{~d}, J=20.8 \mathrm{~Hz}), 114.9(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 83.2,36.7$, 24.8, 20.2.
${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-117.15$.
${ }^{11} \mathbf{B}$ NMR (128 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 34.15$.
HRMS (ESI-TOF) m/z: [M+H] $]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BO}_{3} \mathrm{~F}$ 293.1727; Found: 293.1725.

1-(4-Acetylphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (3p)
$36.2 \mathrm{mg}, 60 \%$ yield, slight yellow solid. Eluent: pentane/ethyl acetate $=6 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{q}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63$ $(\mathrm{s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H}), 1.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.1,197.6,140.2,139.9,128.4,128.2,83.2,34.1$, 26.9, 24.8.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.26$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{BO}_{4} 303.1771$; Found: 303.1773 .

Ethyl 4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanoyl)benzoate (3q) $39.9 \mathrm{mg}, 60 \%$ yield, slight yellow sticky oil. Eluent: pentane/ethyl acetate $=6 / 1$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.40$ $(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H})$, $1.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.2,165.9,140.1,134.0,129.7,127.9,83.2,61.4$, 34.1, 24.8, 14.3.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.06$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BO}_{5} 333.1891$; Found: 333.1897 .

4-(3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)propanoyl)benzonitrile (3r)
$35.4 \mathrm{mg}, 62 \%$ yield, light yellow oil. Eluent: pentane/ethyl acetate $=8 / 1$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 1.10(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.3,140.0,132.4,128.4,118.1,116.1,83.3,34.1$, 25.0, 24.8.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.88$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BNO}_{3}$ 286.1614; Found: 286.1617.

1-(Naphthalen-2-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (3s)
$40.9 \mathrm{mg}, 66 \%$ yield, slight yellow oil. Eluent: pentane $/ \mathrm{ethyl}$ acetate $=10 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.51(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.27(\mathrm{~s}, 12 \mathrm{H}), 1.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.6,135.5,134.3,132.6,129.5,129.5,128.3,128.2$, $127.8,126.7,124.0,83.2,33.7,25.0,24.8$.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.89$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BO}_{3} 311.1822$; Found: 311.1826.

1-(Naphthalen-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one (3t)
$38.4 \mathrm{mg}, 62 \%$ yield, slight yellow oil. Eluent: pentane $/ \mathrm{ethyl}$ acetate $=10 / 1$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ $(\mathrm{dd}, J=7.5,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.43(\mathrm{~m}, 3 \mathrm{H}), 3.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 12 \mathrm{H})$, $1.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.3,136.5,133.9,132.0,130.1,128.3,127.6,126.9$, 126.3, 125.9, 124.4, 83.2, 37.4, 24.9.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.23$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BO}_{3} 311.1822$; Found: 311.1824 .

1-(Benzo[d][1,3]dioxol-5-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propa n-1-one (3u)
$35.3 \mathrm{mg}, 58 \%$ yield, light yellow oil. Eluent: pentane/ethyl acetate $=8 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 1.05(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.6,151.4,148.0,131.8,124.1,107.9,107.8,101.7$, 83.1, 33.4, 25.0, 24.8.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 34.17.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{BO}_{5} 305.1563$; Found: 305.1568.

1-(Quinolin-6-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one

 (3v)$43.5 \mathrm{mg}, 70 \%$ yield, brown solid. Eluent: pentane $/$ ethyl acetate $=2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.09-8.93(\mathrm{~m}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 8.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.27(\mathrm{~s}, 12 \mathrm{H}), 1.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.9,152.4,150.0,137.5,134.7,129.7,129.2,127.8$, $127.5,121.8,83.2,33.9,24.8$.
${ }^{11} \mathbf{B}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.28$.
HRMS (ESI-TOF) m/z: [M+H] $]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{BO}_{3} \mathrm{~N} 312.1774$; Found: 312.1777.

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(thiophen-2-yl)propan-1-one (3w)
$39.4 \mathrm{mg}, 74 \%$ yield, yellow oil. Eluent: pentane/ethyl acetate $=10 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$
$-7.06(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 1.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.6,144.1,132.9,131.5,127.9,83.2,34.2,25.0$, 24.8.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.24$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{BO}_{3} \mathrm{~S}$ 267.1229; Found: 267.1224.

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(thiophen-3-yl)propan-1-one (3x)
$40.5 \mathrm{mg}, 76 \%$ yield, yellow oil. Eluent: pentane/ethyl acetate $=10 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ $(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 1.06(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 195.0,142.1,131.5,127.0,126.0,83.1,34.8,25.0$, 24.8.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.17$.
HRMS (ESI-TOF) m/z: [M+H] $]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{BO}_{3} \mathrm{~S}$ 267.1229; Found: 267.1227.

1-Phenyl-3-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)propan-1-one (3y)
$31.8 \mathrm{mg}, 58 \%$ yield, colorless oil. Eluent: pentane/ethyl acetate $=20 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 12 \mathrm{H}), 1.00(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 2H).
${ }^{13} \mathbf{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 201.7,137.5,132.5,128.4,128.0,70.3,48.8,33.8$, 31.67.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.26$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BO}_{3}$ 275.1822; Found: 275.1828.

1-(4-(Tert-butyl)phenyl)-3-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)propan-1 -one (3z)
$45.5 \mathrm{mg}, 69 \%$ yield, yellow oil. Eluent: pentane/ethyl acetate $=20 / 1$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.05$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H}), 0.98(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.3,156.0,134.9,127.9,125.3,70.3,48.8,35.0,33.8$, 31.7, 31.1.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.12$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{BO}_{3}$ 331.2448; Found: 311.2453.

1-(2-Methoxyphenyl)-3-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)propan-1-on e (3aa)
$41.4 \mathrm{mg}, 68 \%$ yield, white solid. Eluent: pentane $/$ ethyl acetate $=15 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.34(\mathrm{~m}, 1 \mathrm{H})$, $7.02-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H})$, $0.93(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.3,158.2,132.6,123.0,120.4,111.5,70.2,69.4$, 55.5, 49.5, 39.1, 31.9, 31.7.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.29$.
HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BO}_{4} 305.1927$; Found: 305.1921 .

3-(4,4,6,6-Tetramethyl-1,3,2-dioxaborinan-2-yl)-1-(thiophen-3-yl)propan-1-one

 (3ab)$30.8 \mathrm{mg}, 55 \%$ yield, pale yellow oil. Eluent: pentane/ethyl acetate $=20 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}$, $1 \mathrm{H}), 2.97(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H}), 0.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.14,142.61,131.22,127.08,125.86,69.38,49.51$, 31.93, 31.69.

HRMS (ESI-TOF) m/z: [M+H] Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{BO}_{3} \mathrm{~S}$ 281.1385; Found: 281.1380.

5. NMR Spectra

(10)
wle-YY-135
176.06 MHz

3a

0680-YY-181
B1 $12 G 30$ CDC13 \{D: $\mathbf{W N R} 400 \backslash$ DNL0604\} nmr su
B112G30 CDC
128.38 VHz

3b

0692-YY-182
B112G30 CDC13 \{D: \WMR400\DNL0604\} nmr su 30
Bl12G60 $\mathrm{CDC13}$ \{D: LNUR400\DNL0604\} nmrsu 30
128.38 MHz

3c

WT1650506422-1H-YY-207

|| / /

0692-YY-207
Bl1ZG30 CDC13 \{D: \WUR400\DNL0604\} nmr su ஜ゙

3 e

WT1651894316-1H-YY-220
WT1651894316
700.17 MHz

$3 f$

WT $1651894316-{ }_{2}^{23} \mathrm{C}-\mathrm{YY}-22$
$176.06 \mathrm{MHz} \underset{\infty}{\infty}$
耳~in $\stackrel{\infty}{\infty} \stackrel{\infty}{\infty} \stackrel{\infty}{\infty}$

 0680-YY-220
B112G30 CDC13 \{D: \MUR400\DNL0604\} nmr su 128. 38 lHz

$3 f$

0692-YY-184
B1 $12 G 30$ CDC13 \{D: LWNR400\DNL0604\} nmrsu $\mathrm{B112} \mathrm{C30} \mathrm{CDCL}$
128.38 MHz

3g

WT1650420011-宏2C-YY-194
176.06 MHz

3h

0692-YY-194
Bl12G30 CDC13 \{D: \backslash NUR400\DNL0604\} nimr su 14 B112G30 CDC
128.38 MHz

0692-YY-217
B11ZG30 CDC13 \{D: \WUR400\DNL0604\} nmr su 26 128. 38 MHz

$3 i$

0692-YY-191
Bl12G30 CDC13 \{D: $\backslash \mathbf{N U R 4 0 0 \backslash D N L 0 6 0 4 \} ~ n m r ~ s u ~} 11$

3j

$$
0692-\mathrm{YY}-185
$$

B112G30 CDC13 \{D: LWIR400\DNL0604\} nmr su 8
8. 38 MHz

3k

0692-YY-186

30

30

0680-YY-202
F19 CDC13 $\{\mathrm{D}: \backslash \mathrm{NIR} 400 \backslash \mathrm{DNL} 0604\}$ nmrsu 3
F19 $19.10 \mathrm{CDC13}$
376.50 MHz

30

0680-YY-202

30


```
\(3 r\)
```


0692-YY-206 ${ }^{\text {B112G30 CDC13 \{D: } \text { \NUR400\DNL0604\} nmr su } 19}$ B112G30 CDC13
128.38 MHz

$3 q$

$$
\begin{aligned}
& \text { 0692-YY-216 } \\
& \mathrm{B112GGY0CDC13} 128 \mathrm{D}: \mathbf{L N W R 4 0 0 \backslash D N L 0 6 0 4 \}} \text { nmr su } 2 \\
& 128.38 \mathrm{HHz}
\end{aligned}
$$

$3 s$

0692-YY-197 ${ }^{\text {B112G30 CDC13 \{D: } \backslash \mathrm{WVR400} \mathrm{\backslash DNL0604} \mathrm{\}} \mathrm{nimr} \mathrm{su}} 15$ B112G30 CDC
128.38 MHz

3s

 ${ }^{\text {B12 }} 128.38 \mathrm{VHz}$
1 MHz

$3 t$

0692-YY-193
B112G30 CDC13 \{D: \NUR400\DNL0604\} nmrsu 13

Cole
$3 u$

VT1650420011 did $^{3} 3$ - $\mathrm{YY}-195$ 176. 06 MHz

$3 v$

$\stackrel{\infty}{\infty}$
$\stackrel{\infty}{\infty} \stackrel{\infty}{\sim}$

0680-YY-195
Bl12G30 CDC13 \{D: LNWR400\DNL0604\} nmr su

$3 v$

$3 w$

0692-YY-203
B112G30 CDC13 $\{$ D: $\backslash \mathrm{NUR400} \mathrm{\backslash DNL0604} \mathrm{\}} \mathrm{nmrsu} 17$
128.38 MHz

NT1650506422-13C-लyy-205

0692-YY-205
B112G30 CDC13 \{D: LNUR400\DNL0604\} nmr su 18
128.38 MHz

 B112G30 CDC13
128.38 MHz

$3 z$

WT1650852042 $\mathrm{F} 13 \mathrm{C}-\mathrm{YY}-211-1$
176. 06 BHz

ल.

$3 z$

3aa

0692-YY-221
B11ZG30 CDC13 \{D: $\backslash \mathrm{NNR} 400 \backslash$ DNL0604\} nmrsu 27 B112G60 CDC
128.38 MHz
Comes

3aa

3ab

(TY-OH

OH
4

5

