SUPPORTING INFORMATION

Concise enantioselective synthesis of nonproteinogenic α-aminoacids via organocatalytic Mannich-type reaction

R. A. Kovalevsky^{a,b}, A. S. Kucherenko^{a*}, Sergei G. Zlotin^{a*}

^a N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation

^b M.V. Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, 119234, Moscow, Russian Federation

Table of Contents

1. General information	S 3				
2. General procedures for synthesis and characterization data of substrates 2					
3. Optimization of model catalytic reaction conditions					
4. General procedure for synthesis and characterization data of Mannich adducts 3	S13				
5. General procedure for synthesis and characterization data of <i>N</i> -Ts-pro amino acids 4	tected S20				
6. General procedure for synthesis and characterization of amino acid derivatives 5-7	data S23				
7. General procedure for gram-scale synthesis and characterization of amino acids 8	data S26				
8. NMR pictures of prepared compounds					
9. HPLC pictures of catalytic adducts 3					
References	S76				

1. General information

The ¹H, ¹³C NMR spectra were recorded on a 300 MHz spectrometer. The high-resolution mass spectra (HRMS) were measured using electrospray ionization (ESI) and a time-of-flight (TOF) mass analyzer. The measurements were taken in the positive ion mode (interface capillary voltage 4500 V) in the mass range from m/z = 50 Da to m/z = 3000 Da; external and internal calibrations were done with the electrospray calibrant solution. Optical rotations were measured on a polarimeter JASCO P-2000 and calibrated with a pure solvent as a blank. HPLC analyses were performed on an HPLC system equipped with chiral stationary phase columns (AD-H, OD-H, OJ-H, AS-H), detection at 220 or 254 nm. Allomaltol **1** is commercially available. Catalysts **I-VI, XI-XIV** were synthesized by reported procedures,^[1-7] catalysts **VII-X** are commercially available. Reagents and solvents were purified according to standard methods. Solvents were removed from reaction mixtures by means of vacuum pomp ULVAC with efficiency 40 L min⁻¹.

2. General procedures for synthesis and characterization data of substrates 2.

Procedure A. (For R= Ar, het-Ar and Ad)

$$R + TsNH_2 \xrightarrow{Si(OEt)_4 (1.1 equiv.)}_{160 °C, 4h} R \xrightarrow{Ts}_2$$

Tetraethoxysilane (2.43 mL, 11 mmol) was added to a suspension of corresponding aldehyde (10 mmol)^a and toluenesulfonamide (1.62 g, 9.5 mmol) and the mixture was stirred at 160 $^{\circ}$ C with Dean-Stark trap under argon for 4 h. The raw product was recrystallized from EtOAc and dried under reduced pressure (10 torr) affording analytically pure product **2**.

^a for compounds **2a**, **2g** and **2q** the reactions were performed on the 20-mmol scale.

Procedure B. (For R= Cyclohexyl)

To stirred solution of toluenesulfonamide (1.62 g, 9.5 mmol) and sodium phenylsulfinate (3.12 g, 19 mmol) in HCOOH/H₂O (1:1, v/v, 40 mL) was added cyclohexylcarboxaldehyde (1.73 mL, 14.25 mmol) and stirred under argon for 24 h. The obtained white solid then filtrated, washed with hexane (50 mL) and water (100 mL), dried under high vacuum and used in next step without further purification. The obtained solid was dissolved in DCM (60 mL) and vigorously shacked with saturated NaHCO₃ solution (60 mL) in the separatory funnel for 1 minute, then the organic layer was separated, dried under Na₂SO₄, end concentrated under vacuum to obtain analytically pure imine 2r.

N-Benzylidene-4-methylbenzenesulfonamide (2a). Colorless solid, yield 3.84 g (78 %), mp = 106-108 °C (lit.^[8] 104-106 °C). ¹H NMR (300 MHz, CDCl₃) δ 9.05 (s, 1H), 7.92 (t, *J* = 8.4 Hz, 4H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 2H), 2.45 (s, 3H).

4-Methyl-N-(2-methylbenzylidene)benzenesulfonamide (2b). Colorless solid, yield 2.26 g (87 %), mp = 93-95°C (lit.^[9] 93-95 °C). ¹H NMR (300 MHz, CDCl₃) δ 9.36 (s, 1H), 8.02 (d, *J* = 7.8 Hz, 1H), 7.92 (d, *J* = 8.2 Hz, 2H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.32-7.27 (m, 2H), 2.63 (s, 3H), 2.46 (s, 3H).

4-Methyl-N-(2-(trifluoromethoxy)benzylidene)benzenesulfonamide (**2c**). Colorless solid, yield 2.25 g (69 %), mp = $125-127^{\circ}$ C. ¹H NMR (300 MHz, CDCl₃) δ 9.33 (s, 1H), 8.21 (d, *J* = 7.7 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 2H), 7.68 (t, *J* = 7.7 Hz, 1H), 7.43-7.37 (m, 4H), 2.46 (s, 3H). The NMR data are in accordance with literature.^[9]

N-(3-Methoxybenzylidene)-4-methylbenzenesulfonamide (2d). Colorless solid, yield 2.17 g (79 %), mp = 70-72°C (lit.^[8] 71-72 °C). ¹H NMR (300 MHz, CDCl₃) δ 9.01 (s, 1H), 7.91 (d, *J* = 7.5 Hz, 2H), 7.49-7.35 (m, 5H), 7.18 (d, *J* = 7.0 Hz, 1H), 3.85 (s, 3H), 2.46 (s, 3H).

4-Methyl-N-(3-phenoxybenzylidene)benzenesulfonamide (2e). Colorless solid, yield 2.70 g (81 %), mp = 89-91°C. ¹H NMR (300 MHz, CDCl₃) δ 8.99 (s, 1H), 7.89 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 7.4 Hz, 1H), 7.56 (brs, 1H), 7.47 (t, *J* = 8.0 Hz, 1H), 7.41-7.34 (m, 4H), 7.27 (d, *J* = 7.4 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.03 (d, *J* = 8.0 Hz, 2H), 2.45 (s, 3H). All data in accordance with literature.^[8]

4-Methyl-N-(4-methylbenzylidene)benzenesulfonamide (2f). Colorless solid, yield 2.10 g (81 %), mp = 114-116 °C (lit.^[8] 115-116 °C). ¹H NMR (300 MHz, CDCl₃) δ 9.00 (s, 1H), 7.90 (d, *J* = 8.0 Hz, 2H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 6H).

N-(4-Methoxybenzylidene)-4-methylbenzenesulfonamide (2g). Colorless solid, yield 4.50 g (82 %), mp = $125-127^{\circ}$ C (lit.^[8] 124-125 °C). ¹H NMR (300 MHz, CDCl₃) δ 8.96 (s, 1H), 7.91-7.88 (m, 4H), 7.35 (d, *J* = 8.1 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 3.90 (s, 3H), 2.44 (s, 3H).

4-((Tosylimino)methyl)phenyl acetate (2h). Colorless solid, yield 2.38 g (79 %), mp = 121-123°C (lit.^[11] 121-123 °C). ¹H NMR (300 MHz, CDCl₃) δ 9.02 (s, 1H), 7.97 (d, *J* = 8.6 Hz, 2H), 7.90 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.6 Hz, 2H), 2.45 (s, 3H), 2.33 (s, 3H).

N-(4-Fluorobenzylidene)-4-methylbenzenesulfonamide (2i). Colorless solid, yield 2.21 g (84 %), mp = $110-112^{\circ}$ C (lit.^[8] 110-111 °C). ¹H NMR (300 MHz, CDCl₃) δ 9.02 (s, 1H), 8.00-7.95 (m, 2H), 7.91 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.19 (t, *J*_{F-H} = 8.4 Hz, 2H), 2.46 (s, 3H).

N-(3,4-Dimethoxybenzylidene)-4-methylbenzenesulfonamide (2j) Colorless solid, yield 2.43 g (80 %), mp = $110-112^{\circ}$ C (lit.^[9] 110-112 °C). ¹H NMR (300 MHz, CDCl₃) δ 8.93 (s, 1H), 7.90 (d, *J* = 8.2 Hz, 2H), 7.53 (d, *J* = 1.6 Hz, 1H), 7.45 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.36 (d, *J* = 8.2 Hz, 2H), 6.95 (d, *J* = 8.3 Hz, 1H), 3.97 (s, 3H), 3.92 (s, 3H), 2.45 (s, 3H).

N-(Benzo[d][1,3]dioxol-5-ylmethylene)-4-methylbenzenesulfonamide (2k). Colorless solid, yield 2.30 g (80 %), mp = 113-115°C (lit.^[9] 114-115 °C). ¹H NMR (300 MHz, DMSO-*d6*) δ 9.01 (s, 1H), 7.82 (d, *J* = 8.2 Hz, 2H), 7.68 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.46-7.43 (m, 3H), 7.12 (d, *J* = 8.0 Hz, 1H), 6.18 (s, 2H), 2.40 (s, 3H).

N-(2,5-Dimethoxybenzylidene)-4-methylbenzenesulfonamide (2l). Colorless solid, yield 2.39 g (79 %), mp = 124-126°C (lit.^[13] 125-126 °C). ¹H NMR (300 MHz, DMSO-*d6*) δ 9.32 (s, 1H), 7.83 (d, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.34-7.29 (m, 2H), 7.21-7.18 (m, 1H), 3.89 (s, 3H), 3.73 (s, 3H), 2.40 (s, 3H).

N-(2,4-Dichlorobenzylidene)-4-methylbenzenesulfonamide (2m). Colorless solid, yield 2.34 g (75 %), mp = $111-113^{\circ}$ C (lit.^[10] 112-113 °C). ¹H NMR (300 MHz, CDCl₃) δ 9.43 (s, 1H), 8.11 (d, *J* = 8.5 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 1.2 Hz, 1H), 7.39-7.32 (m, 3H), 2.46 (s, 3H).

4-Methyl-N-(2,4,6-trimethylbenzylidene)benzenesulfonamide (2n). Colorless solid, yield 2.03g (79 %), mp = 118-120°C. ¹H NMR (300 MHz, CDCl₃) δ 9.48 (s, 1H), 7.90 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 6.94 (s, 2H), 2.55 (s, 6H), 2.45 (s, 3H), 2.33 (s, 3H). The NMR data are in accordance with literature.^[11]

4-Methyl-N-(naphthalen-1-ylmethylene)benzenesulfonamide (20). Colorless solid, yield 2.41 g (82 %), mp = $133-135^{\circ}$ C (lit.^[8] 133-134 °C). ¹H NMR (300 MHz, CDCl₃) δ 9.63 (s, 1H), 9.01 (d, *J* = 8.4 Hz, 2H), 8.17 (d, *J* = 7.2 Hz, 1H), 7.98 (d, *J* = 8.2 Hz, 2H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.69 (t, *J* = 7.2 Hz, 1H), 7.63-7.56 (m, 4H), 7.38 (d, *J* = 8.2 Hz, 2H), 2.45 (s, 3H).

4-Methyl-N-(pyridin-3-ylmethylene)benzenesulfonamide (2p). Colorless solid, yield 2.20 g (89 %), mp = $131-133^{\circ}$ C (lit.^[14] $131-132^{\circ}$ C). ¹H NMR (300 MHz, CDCl₃) δ 9.10 (s, 1H), 9.06 (s, 1H), 8.82 (d, *J* = 4.4 Hz, 1H), 8.28 (d, *J* = 7.8 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.45 (dd, *J* = 7.8, 4.4 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 2.46 (s, 3H).

N-(Adamantan-1-ylmethylene)-4-methylbenzenesulfonamide (2q). Colorless solid, yield 4.22 g (70 %), mp = 80-82°C. ¹H NMR (300 MHz, CDCl₃) δ 8.29 (s, 1H), 7.81 (d, *J* = 7.9 Hz, 2H), 7.34 (d, *J* = 7.9 Hz, 2H), 2.45 (s, 3H), 2.06 (brs, 3H), 1.79-1.66 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 183.0, 144.4, 135.0, 129.7, 127.9, 40.0, 38.0, 36.3, 27.4, 21.6. HRMS (ESI) calculated for C₁₈H₂₃NO₂S [M+H]⁺ 317.1449, found 317.1446.

N-(cyclohexylmethylene)-4-methylbenzenesulfonamide (2r). Colorless solid, yield 2.04 g (81 %), mp = $107-109^{\circ}$ C (lit.^[20] 109-110°C). ¹H NMR (300 MHz, CDCl₃) δ 8.49 (d, *J* = 4.4 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 2.45 (brs, 4H), 1.90-1.62 (m, 5H), 1.39-1.19 (m, 5H).

3. Optimization of model catalytic reaction conditions

Figure S1. Selected bifinctional organocatalysts.

Available bifunctional tertiary amines I - XIV, having different spatial environments around the amino group (groups) essential for catalytic activity and stereoinduction, were selected as potential catalysts (**Table S1**). Amines I - XIV were examined in the model reaction of allomaltol (1) with *N*-tosylated benzaldimine (2a) in comparable conditions (DCM, catalyst loading 10 mol %, 24 h). In all the cases, adduct 3a (*ent-*3a for VII, VIII, XI, and XII) (entries 1-14) was formed. The best enantioselectivity (83% *ee*) was attained in the presence of hydroquinidine-based squaramide XIV. Reactions in Et₂O, PhMe, 1,4-dioxane and EtOH gave inferior results (entries 15-18). In aqueous media the reaction did not occur (entry 19). Stereoinduction was improved to 94 % *ee* in THF (entry 20). The use of lower temperature, excess of imine 2a or reduced catalyst loading (2.0 mol %) negatively affected the reaction yield and/or selectivity (entries 21-23). Reactions of allomaltol with imines 2a' (PG = Boc) and 2a'' (PG = Nos) in the optimized conditions also did not afford satisfactory results (entries 24, 25). O-Benzylated allomaltol (OBn-1) did not react with 2a in the proposed conditions.

Table S1. Optimization of the model reaction^a

PG = Ts (2a, 3a), Boc (2a', 3a'), Nos (2a'', 3a'')

Entry	PG	Cat (10 mol %)	Solvent	Yield ^b , 3a (%)	<i>ee</i> ^c (%)
1	Ts	Ι	DCM	87	7
2	Ts	п	DCM	83	9
3	Ts	III	DCM	76	10
4	Ts	IV	DCM	78	3
5	Ts	V	DCM	34	61
6	Ts	VI	DCM	52	42
7	Ts	VII	DCM	78	-53 ^d
8	Ts	VIII	DCM	74	-56 ^d
9	Ts	IX	DCM	81	69
10	Ts	X	DCM	76	71
11	Ts	XI	DCM	71	-75 ^d
12	Ts	XII	DCM	64	-80 ^d
13	Ts	XIII	DCM	79	77
14	Ts	XIV	DCM	78	83
15	Ts	XIV	Et ₂ O	31	71
16	Ts	XIV	PhMe	83	76
17	Ts	XIV	1,4-dioxane	61	66
18	Ts	XIV	EtOH	90	68
19	Ts	XIV	H_2O	< 1	n.d.
20	Ts	XIV	THF	90	94
21 ^e	Ts	XIV	THF	55	96
22^{f}	Ts	XIV	THF	91	89

S11

23 ^g	Ts	XIV	THF	39	86
24 ^h	Boc	XIV	THF	97	10
25 ⁱ	Ns	XIV	THF	< 1	n.d.
26 ^j	Ts	XIV	THF	< 1	n.d.

^aUnless otherwise specified, the reactions were carried out with catalysts **I-XIV** (10 mol%), **1** (126 mg, 1 mmol) and **2a** (259 mg, 1 mmol) in the corresponding solvent (2 mL) at -5 °C. ^bYield obtained after diluted by water and filtration. ^cHPLC data were obtained on the chiral phase (CHIRALPAK AD-H column, *n*-hexane/*i*-PrOH 80:20, flow rate 1.00 mL/min, 220 nm; $t_{(R)minor} = 12.3 \text{ min}$, $t_{(R)major} = 16.4 \text{ min}$). ^(a) . ^(a) *ent* -**3a** was formed in the reaction. ^(c) The reaction was carried out at -20 °C. ^(f) 0.15 mmol of **2a** was used. ^(g) 2 mol% of **XIV** was used. ^hImine **2a**' (0.1 mmol) was used as starting substrate. ⁽ⁱ⁾ O-Benzylated allomaltol (**OBn-1**)²¹ (0.1 mmol) was used instead of allomaltol as the nucleophilic component.

4. General procedure for synthesis and characterization data of Mannich adducts 3

Catalyst **XIV** (63 mg, 0.1 mmol) was added to a solution of **1** (126 mg, 1.0 mmol) and corresponding aldimine **2** (1.0 mmol)^a in THF (2 mL) and the reaction mixture was stirred at -5 $^{\circ}$ C for 24 h. Then it was diluted with water, the precipitated raw product **3** was filtrated and washed with Et₂O to afford analytically pure sample.

^a Reactions with compounds 2a, 2g and 2q were performed on the 15 mmol-scale.

(*S*)-N-((3-Hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)(phenyl)methyl)-4-methylbenzenesulfonamide (3a). Yellowish-brown solid, yield 5.19 g (90%), mp = 163-164 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.07 (brs, 1H), 8.80 (d, *J* = 9.8 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.36-7.31 (m, 5H), 7.20 (d, *J* = 8.0 Hz, 2H), 5.94 (s, 1H), 5.77 (d, *J* = 9.8 Hz, 1H), 2.29 (s, 3H), 2.08 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.6, 164.7, 146.7, 143.0, 141.3, 138.1, 129.4, 129.1, 128.3, 127.1, 126.7, 111.3, 53.1, 21.3, 19.3. HPLC data: 94% *ee* (Chiralpak AD-H, *n*-hexane : *i*-PrOH = 85 : 15; 220 nm, flow rate: 1.0 mL/min, t_{minor}= 12.1 min, t_{major} = 14.9 min). $[\alpha]^{25}_{D}$ = +54.5 ° (*c* 0.85, CH₃OH). HRMS (ESI): calculated for C₂₀H₁₉NO₅S [M+H]⁺ 385.0984, found 385.0982.

(*S*)-N-((3-Hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)(o-tolyl)methyl)-4-methylbenzenesulfonamide (3b). Colorless solid, yield 367 mg (92%), mp = 134-136 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.07 (brs, 1H), 8.69 (brs, 1H), 7.56 (d, *J* = 7.8 Hz, 2H), 7.29 (d, *J* = 6.6 Hz, 1H), 7.21-7.18 (m, 5H), 5.96 (s, 2H), 2.36 (s, 3H), 2.29 (s, 3H), 2.08 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.7, 164.6, 146.4, 142.9, 141.3, 138.1, 136.4, 135.9, 130.8, 129.4, 128.2, 127.7, 126.7, 126.6, 111.2, 50.0, 21.3, 19.3. HPLC data: 93% *ee* (Chiralpak AD-H, *n*-hexane : *i*-PrOH = 85 : 15; 220 nm, flow rate: 1.0 mL/min, t_{minor}= 20.3 min, t_{major} = 31.3 min). $[\alpha]^{25}_{D}$ = +38.3 ° (*c* 1.0, CH₃OH). HRMS (ESI): calculated for C₂₁H₂₁NO₅S [M+H]⁺ 399.1140, found 399.1146.

(*S*)-N-((3-Hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)(2-(trifluoromethoxy)phenyl)methyl)-4methylbenzenesulfonamide (3c). Orange solid, yield 422 mg (90%), mp = 128-130 °C. ¹H NMR (300 MHz, DMSO- d_6) δ 9.07 (brs, 1H), 8.85 (brs, 1H), 7.60-7.54 (m, 3H), 7.45-7.40 (m, 1H), 7.34 (t, *J* = 7.4 Hz, 2H), 7.20 (d, *J* = 7.6 Hz, 2H), 6.15 (s, 1H), 5.98 (s, 1H), 2.29 (s, 3H), 2.07 (s, 3H).¹³C NMR (75 MHz, DMSO- d_6) δ 164.7, 146.0, 145.2, 143.0, 138.2, 130.4, 130.3, 130.0, 129.5, 127.8, 126.7, 120.5, 111.2, 60.2, 47.5, 21.3, 19.3, 14.5. HPLC data: 92% *ee* (Chiralpak OD-H, *n*-hexane : *i*-PrOH = 85 : 15; 220 nm, flow rate: 1.0 mL/min, t_{minor}= 19.4 min, t_{major} = 22.5 min). [α]²⁵_D = +29.0 ° (*c* 1.2, CH₃OH). HRMS (ESI): calculated for C₂₁H₁₈F₃NO₆S [M+H]⁺ 469.0807, found 469.0811.

(*S*)-N-((3-Hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)(3-methoxyphenyl)methyl)-4-methylbenzenesulfonamide (3d). Yellow solid, yield 365 mg (88%), mp = 124-126 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.00 (brs, 2H), 7.57 (d, *J* = 7.8 Hz, 2H), 7.26-7.18 (m, 3H), 6.86-6.83 (m, 3H), 5.94 (s, 1H), 5.72 (s, 1H), 3.71 (s, 3H), 2.28 (s, 3H), 2.08 (s, 3H). ¹³C (75 MHz, DMSO-*d*₆) δ 173.8, 164.5, 159.8, 146.8, 143.0, 141.4, 139.6, 138.1, 130.2, 129.4, 126.7, 119.3, 113.6, 112.8, 111.3, 55.5, 55.1, 21.3, 19.3. HPLC data: 91% *ee* (Chiralpak OD-H, *n*-hexane : *i*-PrOH = 85 : 15; 220 nm, flow rate: 1.0 mL/min, t_{minor}= 37.8 min, t_{major} = 45.7 min). $[\alpha]^{25}_{D}$ = +61.1 ° (*c* 1.3, CH₃OH). HRMS (ESI): calculated for C₂₁H₂₁NO₆S [M+H]⁺ 415.1090, found 415,1088.

(S)-N-((3-Hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)(3-phenoxyphenyl)methyl)-4-methyl-

benzenesulfonamide (**3e**). Yellow solid, yield 424 mg (89%), mp = 134-136 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.11 (brs, 1H), 8.87 (brs, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.40 (t, *J* = 8.0 Hz, 2H), 7.33 (t, *J* = 8.0 Hz, 1H), 7.20-7.14 (m, 3H), 7.04-6.97 (m, 4H), 6.90 (dd, *J* = 8.0, 1.5 Hz, 1H), 5.95 (s, 1H), 5.75 (s, 1H), 2.28 (s, 3H), 2.05 (s, 3H).¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.7, 164.7, 157.3, 156.7, 146.4, 143.1, 141.4, 140.2, 138.0, 130.7, 130.5, 129.4, 126.7, 124.1, 122.1, 119.2, 118.2, 117.1, 111.3, 52.9, 21.3, 19.3. HPLC data: 92% *ee* (Chiralpak AD-H, *n*-hexane : *i*-PrOH = 85 : 15; 220 nm, flow rate: 1.0 mL/min, t_{minor}= 13.7 min, t_{major} = 25.4 min). [α]²⁵_D = +51.5 ° (*c* 1.3, CH₃OH). HRMS (ESI): calculated for C₂₆H₂₃NO₆S [M+H]⁺ 477.1246, found 477.1249.

(*S*)-N-((3-Hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)(p-tolyl)methyl)-4-methylbenzenesulfonamide (3f). Brown solid, yield 355 mg (89%), mp = 140-142 °C. ¹H NMR (300 MHz, DMSO d_6) δ 9.03 (brs, 1H), 8.77 (brs, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.20-7.11 (m, 6H), 5.93 (s, 1H), 5.72 (s, 1H), 2.28 (s, 3H), 2.25 (s, 3H), 2.06 (s, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 173.6, 164.6, 146.9, 143.0, 141.2, 138.1, 137.5, 135.1, 129.6, 129.4, 127.0, 126.7, 111.2, 52.8, 21.3, 21.0, 19.3. HPLC data: 96% *ee* (Chiralpak OD-H, *n*-hexane : *i*-PrOH = 80 : 20; 220 nm, flow rate: 1.0 mL/min, t_{minor}= 8.5 min, t_{major} = 12.3 min). [α]²⁵_D = +47.1 ° (*c* 1.1, CH₃OH). HRMS (ESI): calculated for C₂₁H₂₁NO₅S [M+H]⁺ 399.1140, found 399.1144.

(*S*)-N-((3-Hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)(4-methoxyphenyl)methyl)-4-methylbenzenesulfonamide (3g). Pink solid, yield 5.66 g (91%), mp = 144-146 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.03 (brs, 1H), 8.74 (brs, 1H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.22-7.17 (m, 4H), 6.89 (d, *J* = 8.6 Hz, 2H), 5.93 (s, 1H), 5.70 (s, 1H), 3.71 (s, 3H), 2.28 (s, 3H), 2.07 (s, 3H).¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.6, 164.5, 159.3, 147.0, 143.0, 141.1, 138.1, 130.0, 129.4, 128.4, 126.7, 114.4, 111.2, 55.6, 52.5, 21.3, 19.3. HPLC data: 90% *ee* (Chiralpak AD-H, *n*-hexane : *i*-PrOH = 85 : 15; 220 nm, flow rate: 1.0 mL/min, t_{minor}= 22.0 min, t_{major} = 28.5 min). [α]²⁵_D = +60.2 ° (*c* 0.9, CH₃OH). HRMS (ESI): calculated for C₂₁H₂₁NO₆S [M+H]⁺ 415.1090, found 415.1092.

(S)-4-((3-Hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)(4-methylphenylsulfonamido)methyl)-

phenyl acetate (**3h**). Yellow solid, yield 390 mg (88%), mp = 166-168 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.15 (brs, 1H), 8.85 (d, *J* = 9.6 Hz, 1H), 7.56 (d, *J* = 7.8 Hz, 2H), 7.34-7.31 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 7.8 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 5.95 (s, 1H), 5.77 (d, *J* = 9.6 Hz, 1H), 2.28 (s, 3H), 2.25 (s. 3H), 2.08 (s, 3H).¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.6, 169.6, 164.7, 150.4, 146.4, 143.1, 141.3, 138.0, 135.5, 129.5, 128.3, 126.7, 122.5, 111.3, 52.6, 21.3, 21.2, 19.3. HPLC data: 95% *ee* (Chiralpak AD-H, *n*-hexane : *i*-PrOH = 85 : 15; 220 nm, flow rate: 1.0 mL/min, t_{minor}= 25.2 min, t_{major} = 37.0 min). $[\alpha]^{25}_{D}$ = +53.2 ° (*c* 1.0, CH₃OH). HRMS (ESI): calculated for C₂₂H₂₁NO₇S [M+H]⁺ 443.1039, found 443.1045.

(S) - N - ((4 - Fluorophenyl)(3 - hydroxy - 6 - methyl - 4 - oxo - 4H - pyran - 2 - yl) methyl) - 4 - methyl - 4 - methy

benzenesulfonamide (**3i**). Yellow solid, yield 346 mg (86%), mp = 150-151°C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.06 (brs, 2H), 7.56 (d, *J* = 7.7 Hz, 2H), 7.33 (t, *J*_{F-H} = 7.7 Hz, 2H), 7.20-7.13 (m, 4H), 5.95 (s, 1H), 5.74 (s, 1H), 2.28 (s, 3H), 2.08 (s, 3H). ¹³C (75 MHz, DMSO-*d*₆) δ 173.8, 164.6, 163.7, 160.4, 146.5, 143.0, 141.5, 138.1, 134.4, 129.5, 129.2 (d, *J*_{F-C} = 8.4 Hz), 126.7, 116.9 (d, *J*_{F-C} = 22.3 Hz), 111.3, 52.6, 21.3, 19.3. HPLC data: 97% *ee* (Chiralpak OJ-H, *n*-hexane : *i*-PrOH = 85 : 15; 220 nm, flow rate: 1.0 mL/min, t_{major} = 28.4 min, t_{major} = 34.6 min). $[\alpha]^{25}{}_{D}$ = +39.0 ° (*c* 0.9, CH₃OH). HRMS (ESI): calculated for C₂₀H₁₈FNO₅S [M+H]⁺ 403.0890, found 403.0894.

(*S*)-N-((3,4-Dimethoxyphenyl)(3-hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)methyl)-4-methylbenzenesulfonamide (3j). Pink solid, yield 410 mg (92%), mp = 137-139 °C. ¹H NMR (300 MHz, DMSO- d_6) δ 9.05 (brs, 1H), 8.74 (brs, 1H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.92 (s, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 1H), 5.95 (s, 1H), 5.68 (s, 1H), 3.70 (s, 6H), 2.28 (s, 3H), 2.10 (s, 3H).¹³C NMR (75 MHz, DMSO- d_6) δ 173.7, 164.5, 149.1, 148.9, 147.1, 143.0, 140.9, 138.1, 130.1, 129.4, 126.7, 119.4, 112.1, 111.2, 110.9, 56.0, 55.9, 52.8, 21.3, 19.3. HPLC data: 89% *ee* (Chiralpak AD-H, *n*-hexane : *i*-PrOH = 85 : 15; 220 nm, flow rate: 1.0 mL/min, t_{minor}= 17.7 min, t_{major} = 22.7 min). [α]²⁵_D = +39.1 ° (*c* 1.0, CH₃OH). HRMS (ESI): calculated for C₂₂H₂₃NO₇S [M+H]⁺ 445.1195, found 445.1198.

(*S*)-N-(Benzo[d][1,3]dioxol-5-yl(3-hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)methyl)-4methylbenzenesulfonamide (3k). Colorless solid, yield 407 mg (95%), mp = 137-139 °C. ¹H NMR (300 MHz, DMSO- d_6) δ 9.10 (brs, 1H), 8.74 (brs, 1H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.84-6.82 (m, 2H), 6.73 (d, *J* = 8.0 Hz, 1H), 5.98 (s, 2H), 5.95 (s, 1H), 5.66 (s, 1H), 2.28 (s, 3H), 2.09 (s, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 173.6, 164.6, 147.9, 147.3, 146.9, 143.0, 141.0, 138.0, 131.8, 129.4, 126.7, 120.6, 111.3, 108.6, 107.4, 101.6, 52.9, 21.3, 19.3. HPLC data: 92% *ee* (Chiralpak AD-H, *n*-hexane : *i*-PrOH = 85 : 15; 220 nm, flow rate: 1.0 mL/min, t_{minor} = 27.7 min, t_{major} = 31.7 min). [α]²⁵_D = +29.1 ° (*c* 1.0, CH₃OH). HRMS (ESI): calculated for C₂₁H₁₉NO₇S [M+H]⁺ 429.0882, found 429.0883.

(*S*)-N-((2,5-Dimethoxyphenyl)(3-hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)methyl)-4methylbenzenesulfonamide (3l). Pink solid, yield 409 mg (94%), mp = 129-131 °C. ¹H NMR (300 MHz, DMSO- d_6) δ 8.81 (brs, 1H), 8.54 (brs, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 2.6 Hz, 1H), 6.86 (d, *J* = 9.0 Hz, 1H), 6.79 (dd, *J* = 9.0, 2.6 Hz, 1H), 6.18 (s, 1H), 5.97 (s, 1H), 3.66 (s, 3H), 3.65 (s, 3H), 2.28 (s, 3H). 2.11 (s, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 173.9, 164.5, 153.5, 150.4, 146.7, 142.8, 141.1, 138.3, 129.3, 127.0, 126.7, 114.9, 114.0, 113.0, 111.1, 56.8, 55.8, 47.1, 21.3, 19.4. HPLC data: 92% *ee* (Chiralpak OJ-H, *n*-hexane : *i*-PrOH = 85 : 15; 220 nm, flow rate: 1.0 mL/min, t_{major}= 12.8 min, t_{minor} = 18.6 min). [α]²⁵_D = +69.5 ° (*c* 0.8, CH₃OH). HRMS (ESI): calculated for C₂₂H₂₃NO₇S [M+H]⁺ 445.1195, found 445.1195.

(*S*)-N-((2,4-Dichlorophenyl)(3-hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)methyl)-4-methylbenzenesulfonamide (3m). Yellow solid, yield 389 mg (86%), mp = 170-172 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.08 (brs, 2H), 7.56-7.50 (m, 4H), 7.37 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 6.16 (s, 1H), 6.03 (s, 1H), 2.31 (s, 3H), 2.08 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.9, 164.9, 144.9, 143.1, 141.9, 138.1, 134.6, 133.8, 133.4, 131.4, 129.6, 129.2, 128.0, 126.7, 111.4, 50.2, 21.4, 19.4. HPLC data: 96% *ee* (Chiralpak AD-H, *n*-hexane : *i*-PrOH = 85 : 15; 220 nm, flow rate: 1.0 mL/min, t_{minor}= 21.8 min, t_{major} = 32.9 min). [α]²⁵_D = +29.1 ° (*c* 1.0, CH₃OH). HRMS (ESI): calculated for C₂₀H₁₇Cl₂NO₅S [M+H]⁺ 453.0204, found 453.0206.

(*S*)-N-((3-Hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)(mesityl)methyl)-4-methylbenzenesulfonamide (3n). Yellow solid, yield 384 mg (90%), mp = 134-136 °C. ¹H NMR (300 MHz, DMSO d_6) δ 8.92 (brs, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 6.75 (s, 2H), 6.08-6.04 (m, 2H), 2.34 (s, 3H), 2.21 (s, 6H), 2.02 (s, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 173.9, 163.8, 147.1, 142.9, 141.8, 138.7, 137.2, 137.1, 132.3, 130.2, 129.6, 126.9, 111.6, 50.8, 21.4, 20.7, 19.2. HPLC data: 95% *ee* (Chiralpak AD-H, *n*-hexane : *i*-PrOH = 80 : 20; 220 nm, flow rate: 1.0 mL/min, t_{minor} = 14.8 min, t_{major} = 18.1 min). [α]²⁵_D = +53.6 ° (*c* 1.2, CH₃OH). HRMS (ESI): calculated for C₂₃H₂₅NO₅S [M+H]⁺ 427.1453, found 427.1451.

(*S*)-N-((3-Hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)(naphthalen-1-yl)methyl)-4-methylbenzenesulfonamide (30). Yellow solid, yield 392 mg (90%), mp = 160-162 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.06 (brs, 2H), 8.32 (d, *J* = 8.1 Hz, 1H), 7.97 (d, *J* = 7.7 Hz, 1H), 7.90 (t, *J* = 4.5 Hz, 1H), 7.64-7.54 (m, 4H), 7.46 (d, *J* = 4.5 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 6.51 (s, 1H), 5.96 (s, 1H), 2.30 (s, 3H), 2.07 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.6, 164.8, 146.2, 143.1, 141.3, 138.1, 133.8, 133.7, 130.8, 129.5, 129.2, 129.1, 127.2, 126.7, 126.4, 125.8, 123.3, 111.4, 49.9, 21.4, 19.4. HPLC data: 91% *ee* (Chiralpak OJ-H, *n*-hexane : *i*-PrOH = 85 : 15; 220 nm, flow rate: 1.0 mL/min, t_{major}= 22.3 min, t_{minor} = 29.6 min). [α]²⁵_D = +53.6 ° (*c* 1.2, CH₃OH). HRMS (ESI): calculated for C₂₄H₂₁NO₅S [M+H]⁺ 435.1140, found 435.1137.

(*S*)-N-((3-Hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)(pyridin-3-yl)methyl)-4-methylbenzenesulfonamide (3p). Brown solid, yield 340 mg (88%), mp = 160-162 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.00 (brs, 2H), 8.48 (brs, 1H), 7.72-7.70 (m, 1H), 7.63-7.49 (m, 2H), 7.41-7.31 (m, 1H), 7.22-7.19 (m, 2H), 5.98 (s, 1H), 5.80 (s, 1H), 2.29 (s, 3H), 2.09 (s, 3H).¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.7, 164.9, 149.5, 148.2, 145.8, 143.3, 141.5, 137.8, 135.0, 133.8, 129.6, 126.7, 124.2, 111.4, 51.3, 21.3, 19.3. HPLC data: 97% *ee* (Chiralpak AD-H, *n*-hexane : *i*-PrOH = 70 : 30; 220 nm, flow rate: 1.0 mL/min, t_{minor}= 8.9 min, t_{major} = 18.3 min). $[α]^{25}_{D}$ = +38.1 ° (*c* 1.2, CH₃OH). HRMS (ESI): calculated for C₁₉H₁₈N₂O₅S [M+H]⁺ 386.0936, found 386.0938.

N-((*S***)-(Adamantan-1-yl)(3-hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)methyl)-4-methylbenzenesulfonamide (3q)**. Colorless solid, yield 6.04 g (91%), mp = 111-113 °C .¹H NMR (300 MHz, DMSO-*d*₆) δ 8.55 (brs, 1H), 7.87 (brs, 1H), 7.47 (d, *J* = 7.9 Hz, 2H), 7.10 (d, *J* = 7.9 Hz, 2H), 5.85 (s, 1H), 4.12 (d, *J* = 10.5 Hz, 1H), 2.23 (s, 3H), 2.08 (s, 3H), 1.99-1.86 (m, 3H), 1.69-1.52 (m, 9H), 1.45-1.41 (m, 2H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.1, 164.3, 145.7, 142.6, 138.2, 129.2, 126.5, 110.8, 37.5, 36.8, 28.1, 21.3, 19.4. HPLC data: 98% *ee* (Chiralpak OD-H, *n*-hexane : *i*-PrOH = 90 : 10; 220 nm, flow rate: 1.0 mL/min, t_{minor}= 11.9 min, t_{major} = 17.3 min). $[\alpha]^{25}_{D} = +23.1 \circ (c \ 0.7, \ CH_3OH)$. HRMS (ESI): calculated for $C_{24}H_{29}NO_5S \ [M+H]^+ 443.1766$, found 443.1769.

(S)-N-(cyclohexyl(3-hydroxy-6-methyl-4-oxo-4H-pyran-2-yl)methyl)-4-

methylbenzenesulfonamide (**3r**). Colorless solid, yield 384 mg (98%), mp = 98-100 °C .¹H NMR (300 MHz, DMSO-*d*₆) δ 8.64 (brs, 1H), 8.06 (d, *J* = 9.2 Hz, 1H), 7.48 (d, *J* = 7.8 Hz, 2H), 7.15 (d, *J* = 7.8 Hz, 2H), 5.87 (s, 1H), 4.29 (t, *J* = 8.8 Hz, 1H), 2.26 (s, 3H), 2.06 (s, 3H), 1.94 (d, *J* = 11.6 Hz, 1H), 1.67-1.57 (m, 4H), 1.33-0.83 (m, 6H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.3, 164.4, 146.7, 142.6, 142.1, 138.5, 129.3, 126.5, 110.9, 54.7, 29.8, 29.1, 26.2, 25.5, 21.3, 19.4. HPLC data: 13% *ee* (Chiralpak OD-H, *n*-hexane : *i*-PrOH = 80 : 20; 220 nm, flow rate: 1.0 mL/min, t_{major} = 6.1 min, t_{minor}= 8.6 min). $[\alpha]^{25}_{D}$ = +8.0° (*c* 0.9, CH₃OH). HRMS (ESI): calculated for C₂₄H₂₉NO₅S [M+H]⁺ 391.1453, found 391.1459.

5. General procedure for synthesis and characterization data of *N*-Ts protected amino acids **4**

 $NaIO_4$ (5 mmol, 1.07 g) and $RuCl_3*3H_2O$ (0.015 mmol, 4 mg) were successively added to a solution of adduct **3** (0.5 mmol)^a in the CH₃CN/CCl₄/H₂O (2:2:5) solvent system (5 mL) and the resulting mixture was stirred at ambient temperature for 2 h. Inorganic materials were filtrated off and the filtrate was extracted with EtOAc (3x5 mL). The combined organic phase was dried over anhydrous Na_2SO_4 and concentrated under reduced pressure (10 torr). The crude product was recrystallized from 80% EtOH to afford analytically pure sample **4**.

^a Reactions with compounds **3a**, **3g** and **3q** were performed on the 10 mmol-scale.

(*S*)-2-(4-Methylphenylsulfonamido)-2-phenylacetic acid (4a). Colorless solid, yield 2.47 g (81%), mp = 175-176°C (lit.^[15] 175-176 °C). ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.87 (brs, 1H), 8.62 (d, *J* = 9.0 Hz, 1H), 7.62 (d, *J* = 8.1 Hz, 2H), 7.29-7.27 (m, 7H), 4.87 (d, *J* = 9.0 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 171.5, 142.9, 138.7, 137.1, 129.7, 128.8, 128.4, 127.7, 127.0, 60.0, 21.4. [α]²⁵_D = +105 ° (94 % *ee*, *c* 1, CH₃OH), lit. ^[15]: [α]²⁵_D = +112 ° (100 % *ee*, *c* 4.3, CH₃OH). HRMS (ESI): calculated for C₁₅H₁₅NO₄S [M+H]⁺ 305.0722, found 305.0727.

(*S*)-2-(4-Methylphenylsulfonamido)-2-(o-tolyl)acetic acid (4b). Colorless solid, yield 127 mg (80%), mp = 172-174°C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.88 (brs, 1H), 8.54 (d, *J* = 8.8 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.28-7.23 (m, 3H), 7.17-7.04 (m, 3H), 5.07 (d, *J* = 8.8 Hz, 1H), 2.33 (s, 3H), 2.24 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 171.6, 142.9, 138.6, 136.0, 135.6, 130.7, 129.7, 128.3, 127.5, 127.0, 126.5, 56.3, 21.4, 19.3. $[\alpha]^{25}_{D}$ = +89 ° (*c* 1, CH₃OH). HRMS (ESI): calculated for C₁₆H₁₇NO₄S [M+H]⁺ 319.0878, found 319.0881.

(*S*)-2-(4-Methoxyphenyl)-2-(4-methylphenylsulfonamido)acetic acid (4g). Colorless solid, yield 2.68 g (80%), mp = 163-165°C . ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.53 (d, *J* = 8.8 Hz, 1H), 7.61 (d, *J* = 7.3 Hz, 2H), 7.28 (d, *J* = 7.3 Hz, 2H), 7.18 (d, *J* = 7.3 Hz, 2H), 6.82 (d, *J* = 7.3 Hz, 2H), 4.80 (d, *J* = 8.8 Hz, 1H), 3.71 (s, 3H), 2.34 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 171.7, 159.4, 142.8, 138.7, 129.7, 129.0, 127.0, 114.2, 59.4, 55.6, 21.4. $[\alpha]^{25}_{D}$ = +93 ° (*c* 1, CH₃OH). HRMS (ESI): calculated for C₁₆H₁₇NO₅S [M+H]⁺ 335.0827, found 335.0824.

(*S*)-2-(4-fluorophenyl)-2-(4-methylphenylsulfonamido)acetic acid (4i). Colorless solid, yield 124 mg (77%), mp = 144-146°C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.63 (d, *J* = 8.9 Hz, 1H), 7.60 (d, *J* = 8.1 Hz, 2H), 7.33-7.25 (m, 4H), 7.07 (t, *J*_{F-H} = 8.9 Hz, 2H), 4.91 (d, *J* = 8.9 Hz, 1H), 2.33 (s, 3H).¹³C NMR (75 MHz, DMSO-*d*₆) δ 171.3, 142.9, 138.6, 133.5, 129.9 (d, *J*_{F-C} = 8.4 Hz), 129.7, 127.0, 115.6 (d, *J*_{F-C} = 20.9 Hz), 59.2, 21.4. $[\alpha]^{25}_{D}$ = +73 ° (*c* 1, CH₃OH). HRMS (ESI): calculated for C₁₅H₁₄FNO₄S [M+H]⁺ 323.0628, found 323.0626.

(*S*)-2-(2,4-Dichlorophenyl)-2-(4-methylphenylsulfonamido)acetic acid (4m). Colorless solid, yield 124 mg (82%), mp = 180-182°C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.51 (brs, 1H), 7.55 (d, J = 8.0 Hz , 2H), 7.46 (d, J = 1.2 Hz, 2H), 7.35 (d, J = 8.4 Hz, 1H), 7.28-7.22 (m, 3H), 5.19 (s, 1H), 2.32 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 169.9, 143.0, 138.1, 135.0, 133.9, 133.4, 130.8, 129.6, 128.9, 127.8, 126.9, 56.4, 21.3. [α]²⁵_D = +68 ° (*c* 1, CH₃OH). HRMS (ESI): calculated for C₁₅H₁₃Cl₂NO₄S [M+H]⁺ 372.9942, found 372.9946.

(*S*)-2-(Adamantan-1-yl)-2-(4-methylphenylsulfonamido)acetic acid (4q). Colorless solid, yield 2.54 g (70%), mp = 140-142°C .¹H NMR (300 MHz, DMSO- d_6) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.59 (brs, 1H), 4.40 (s, 1H), 2.36 (s. 3H), 2.04 (s, 3H), 1.72-1.61 (m, 9H), 1.54 (d, *J* = 12.3 Hz, 3H). ¹³C NMR (75 MHz, DMSO- d_6) δ 172.4, 142.6, 138.1, 129.7,

127.2, 62.8, 50.7, 40.6, 35.7, 31.4, 28.8, 21.4. $[\alpha]_{D}^{25} = +18 \circ (c \ 0.6, \ CH_{3}OH)$. HRMS (ESI): calculated for $C_{19}H_{25}NO_{4}S \ [M+H]^{+}$ 363.1504, found 363.1506.

6. General procedure for synthesis and characterization data of amino acid derivatives 5-7

Thionyl chloride (1.38 mmol, 100 μ L) was added to *N*-tosylated amino acid **4** (0.3 mmol) and the mixture was refluxed for 10 min to obtain homogenous solution. Then it was concentrated under reduced pressure (10 torr) and corresponding nucleophile (0.5 mmol) was added to the residue. The resulting mixture was stirred for 6 h. For esters **5**, water (5 mL) was added to the reaction mixture, the resulting aqueous suspension was extracted with EtOAc (3x5 mL), the combined organic layer was dried and concentrated under reduced pressure (10 torr) to afford raw product **5**, which was purified by column chromatography on silica gel (hexanes-EtOAc). For amides **6** and **7**, the reaction mixture was diluted with diethyl ether (5 mL), the precipitated product was collected by filtration and dried in air to afford analytically pure sample.

(*S*)-Methyl 2-(4-methylphenylsulfonamido)-2-phenylacetate (5a). Colorless solid, yield 80 mg (84%), mp = $130-132^{\circ}$ C(lit.^[16] 132-133 °C) .¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.29-7.20 (m, 7H), 5.77 (d, *J* = 8.0 Hz, 1H), 5.09 (d, *J* = 8.0 Hz, 1H), 3.58 (s, 3H), 2.40 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.5, 143.5, 137.0, 135.3, 129.5, 128.8, 128.6, 127.2, 127.1, 59.4, 53.0, 21.0. [α]²⁵_D = +94 ° (94 % *ee*, *c* 1, CHCl₃), lit ^[16]: [α]²⁵_D = +102 ° (100 % *ee*, *c* 1.12, CHCl₃). HRMS (ESI): calculated for C₁₆H₁₇NO₄S [M+H]⁺ 319.0878, found 319.0881.

(*S*)-Ethyl 2-(4-methylphenylsulfonamido)-2-(o-tolyl)acetate (5b). Colorless solid, yield 80 mg (80%), mp = 102-104°C (lit.^[17] 102-103 °C). ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.20-7.10 (m, 4H), 7.06 (d, *J* = 3.5 Hz, 2H), 5.67 (d, *J* = 7.6 Hz, 1H), 5.30 (d, *J* = 7.6 Hz, 1H), 4.14-3.93 (m, 2H), 2.39 (s, 6H), 1.12 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.4, 143.4, 137.0, 136.6, 133.8, 130.9, 129.4, 128.5, 127.1, 126.8, 126.3, 62.1, 56.2, 21.5, 19.3, 13.8. [α]²⁵_D = +89 ° (93% *ee*, *c* 1, CHCl₃), lit.^[17] [α]²⁵_D = +99.5 ° (98 % *ee*, *c* 0.8, CHCl₃). HRMS (ESI): calculated for C₁₈H₂₁NO₄S [M+H]⁺ 347.1191, found 347.1193.

(*S*)-Methyl 2-(4-methoxyphenyl)-2-(4-methylphenylsulfonamido)acetate (5g). Colorless solid, yield 84 mg (80%), mp = 140-142 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.15 (d, *J* = 8.6 Hz, 2H), 6.79 (d, *J* = 8.6 Hz, 2H), 5.70 (d, *J* = 7.8 Hz, 1H), 5.03 (d, *J* = 7.8 Hz, 1H), 3.78 (s, 3H), 3.58 (s, 3H), 2.41 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.8, 159.8, 143.4, 137.0, 129.5, 128.4, 127.3, 127.2, 114.2, 58.8, 55.3, 52.9, 21.5. $[\alpha]^{25}{}_{D}$ = +93 ° (91% *ee*, *c* 1, CHCl₃). HRMS (ESI): calculated for C₁₇H₁₉NO₅S [M+H]⁺ 349.0984, found 349.0986.

(*S*)-Methyl 2-(4-fluorophenyl)-2-(4-methylphenylsulfonamido)acetate (5i). Colorless solid, yield 86 mg (85%), mp = 117-119 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, *J* = 7.9 Hz, 2H), 7.23-7.21 (m, 4H), 6.95 (t, *J*_{F-H} = 8.4 Hz, 2H), 5.82 (d, *J* = 7.4 Hz, 1H), 5.06 (d, *J* = 7.4 Hz, 1H), 3.60 (s, 3H), 2.41 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.3, 161.1, 143.7, 136.9, 131.2, 129.5, 129.0 (d, *J*_{F-C} = 8.4 Hz), 127.2, 115.8 (d, *J*_{F-C} = 21.8 Hz), 58.6, 53.1, 21.5. [α]²⁵_D = +74 ° (95% *ee*, *c* 1, CHCl₃). HRMS (ESI): calculated for C₁₆H₁₆FNO₄S [M+H]⁺ 337.0784, found 337.0786.

(*S*)-Methyl 2-(2,4-dichlorophenyl)-2-(4-methylphenylsulfonamido)acetate (5m). Colorless solid, yield 99 mg (85%), mp = 135-137 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 1.8 Hz, 1H), 7.21-7.16 (m, 3H), 7.12 (dd, *J* = 8.3, 1.8 Hz, 1H), 5.96 (d, *J* = 6.3 Hz, 1H), 5.40 (d, *J* = 6.3 Hz, 1H), 3.67 (s, 3H), 2.40 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 169.5, 143.7, 136.6, 135.1, 134.2, 132.3, 130.8, 129.7, 129.4, 127.4, 127.1, 56.5, 53.5, 21.5. $[\alpha]^{25}{}_{D}$ = +50 ° (95 % *ee*, *c* 1, CHCl₃). HRMS (ESI): calculated for C₁₆H₁₅Cl₂NO₄S [M+H]⁺ 387.0099, found 387.0102.

(*S*)-2-(4-Methylphenylsulfonamido)-2-phenylacetamide (6). Colorless solid, yield 93 mg (80%), mp = >200 °C (dec.). ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.35 (d, *J* = 8.5 Hz, 1H), 7.62-7.59 (m, 2H), 7.46-7.06 (m, 9H), 4.91 (d, *J* = 8.5 Hz, 1H), 2.33 (s, 3H).¹³C NMR (75 MHz, DMSO-*d*₆) δ 171.2, 142.7, 138.8, 138.5, 129.6, 128.5, 127.9, 127.5, 127.0, 59.9, 21.4. $[\alpha]^{25}_{D}$ = +87 ° (94% *ee*, *c* 1, DMSO). HRMS (ESI): calculated for C₁₅H₁₆N₂O₃S [M+H]⁺ 304.0882, found 304.0885.

(*S*)-2-(4-Methylphenylsulfonamido)-2-phenyl-N-((*S*)-1-phenylethyl)acetamide (7). Colorless solid, yield 93 mg (76%), mp = 165-167 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.57 (d, *J* = 7.9 Hz, 1H), 8.45 (d, *J* = 9.4 Hz, 1H), 7.58 (d, *J* = 8.2 Hz, 2H), 7.38-7.23 (m, 8H), 7.17 (d, *J* = 8.2 Hz, 4H), 5.07 (d, *J* = 9.4 Hz, 1H), 4.75-7.66 (m, 1H), 2.31 (s, 3H), 1.18 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 168.4, 144.1, 142.7, 138.9, 138.6, 129.6, 128.7, 128.7, 127.9, 127.4, 127.2, 126.8, 126.4, 59.9, 48.4, 22.5, 21.4. $[\alpha]^{25}_{D}$ = +92 ° (*c* 0.75, CHCl₃). HRMS (ESI): calculated for C₂₃H₂₄N₂O₃S [M+H]⁺ 408.1508, found 408.1505.

7. General procedure for gram-scale synthesis and characterization data of amino acids 8

48% HBr (13 mmol, 2.2mL (for 4a,q) or 26 mmol, 4.4mL (for 4g)) was added to a stirred solution of corresponding *N*-tosylated amino acid 4 (6.5 mmol) in glacial acetic acid (5 mL) and the mixture was heated at 70 °C for 4 h. The resulting red solution was evaporated to dryness and the raw amino acid hydrobromide $8 \cdot$ HBr was washed with acetone (3x5 mL). For purification, it was dissolved in water (2 mL) and converted to corresponding amino acid by careful neutralization with 25% aq. NH₃ to adjust pH 4-5. The precipitated 8 were filtered, washed with diethyl ether (3x5 mL) and dried in air. Amino acids 8 exhibited miserable solubility in organic solvents and water. Therefore, their NMR spectra were recorded in D₂O in the presence of 48% HBr and the HRMS data were obtained for corresponding hydrobromides.

(*S*)-Phehylglycine (8a). Colorless solid, yield 1.21 g (80%), mp >200 °C (dec.). ¹H NMR (300 MHz, D₂O, 48% HBr (1 drop)) δ 7.90 (s, 5H), 5.72 (s, 1H). [α]²⁵_D = +143 ° (94 % *ee*, *c* 1, HCl_{aq}) lit.^[18] [α]²⁵_D = +152 ° (100 % *ee*, *c* 1, HCl_{aq}). HRMS (ESI): calculated for C₈H₁₀BrNO₂[M+H]⁺ 230.9895, found 230.9897.

(*S*)-4-Hydroxyphehylglycine (8g). Yellowish solid, yield 1.19 g (74%), mp >200 °C (dec.). ¹H NMR (300 MHz, D₂O + 48% HBr (1 drop)) δ 7.68 (br. d, *J* = 8.7 Hz, 2H), 7.28 (br. d, *J* = 8.7 Hz, 2H), 5.53 (s, 1H). $[\alpha]^{25}_{D}$ = +145 ° (92 % *ee*, *c* 1, HCl_{aq}), lit.^[18] $[\alpha]^{25}_{D}$ = +156 ° (100 % *ee*, *c* 1, HCl_{aq}) HRMS (ESI): calculated for C₈H₁₀BrNO₃ [M+H]⁺ 246.9844, found 246.9847.

(*S*)-Adamantylglycine (8q). Colorless solid, yield 1.37 g (73%), mp >200 °C (dec.). ¹H NMR (300 MHz, D₂O + 48% HBr (1 drop)) δ 3.52 (s, 1H), 2.08 (brs, 3H), 1.80-1.79 (m, 6H), 1.67 (br. d, *J* = 12.4 Hz, 3H), 1.58 (br. d, *J* = 12.4 Hz, 3H). $[\alpha]^{25}_{D}$ = +15.3 ° (98% *ee*, *c* 0.3, MeOH). lit.^[19] $[\alpha]^{25}_{D}$ = +15.0 ° (100 % *ee*, *c* 0.53, MeOH). HRMS (ESI): calculated for C₁₂H₂₀BrNO₂ [M+H]⁺ 289.0677, found 289.0674.

8. NMR pictures of prepared compounds

S36

-173.6 -173.6 -173.6 -173.6 -164.6 -147.3 -147.3 -147.3 -147.3 -147.3 -147.3 -147.3 -120.4

S58

8. HPLC data for catalytic adducts 3

References

[1] Y. Qian, G. Ma, A. Lv, H. L. Zhu, J. Zhao, V. H. Rawal, Chem. Commun, 2010, 46, 3004.

[2] J. P. Malerich, K. Hagihara, V. H. Rawal, Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts, *J. Am. Chem. Soc.*, 2008, **130**, 14416.

[3] A.S. Kucherenko, A.A. Kostenko, A.N. Komogortsev, B.V. Lichitsky, M.Y. Fedotov, S.G. Zlotin, *J. Org. Chem.*, 2019, **84**, 4304.

[4] B.-Y. Li, Y. Lin, D.-M. Du, J. Org. Chem., 2019, 84, 11752.

[5] G. Dargó, Z. Garádi, L. Hámori, P. Kisszékelyi; J. Kupai, S. Nagy, S P. Pósa, G. Szakács, S. Tóth, *Bioorganic and Medicinal Chemistry*, 2022, **67**, 116855.

[6] B. L. Zhao, D.-M. Du, Advanced Synthesis and Catalysis, 2016, 358, 3992.

[7] X. Gu,; H. Yuan,; J. Jiang,; Y. Wu,; W.-J. Bai, Organic Letters, 2018, 20, 7229.

[8] W. W. Yao, R. Li, J.-F. Li, J. Sunb, M.Ye, Green Chem., 2019, 21, 2240.

[9] D. Huang, X. Wang, X. Wang, W. Chen, X. Wang, Y. Hu, Org. Lett., 2016, 18, 604.

[10] T. Jin ,G. Feng, M.Yang , T. Li, Synthetic Communication, 2004, 34, 1277.

[11] B. Jiang, F.-F. Meng, Q.-J. Liang, Y.-H. Xu, T.-P. Loh, Org. Lett., 2017, 19, 914.

[12] G. X. Lia, J. Qu, Chem. Commun., 2012, 48, 5518.

[13] H. A. Soliman, M. El-Shahat, A.-G. Soliman, Letters in Organic Chemistry, 2019, 16, 7

[14] M. E. Kuehne, P. J. Sheeran, J. Org. Chem., 1968, 33, 4406.

[15] A. C. B. Burtoloso, C. R. D. Correia, Synlett, 2005, 10, 1559.

[16] M. Ordonez, R. De La Cruz-Cordero, M. Fernandez-Zertuche, M. A. Munoz-Hernandez, O. Garcia-Barradas, *Tetrahedron Asymmetry*, 2004, 15, 3035.

[17] R. Badorrey, C. Cativiela,; M. D. Diaz-De-Villegas, J. A. Galvez, *Tetrahedron*, 1997, **53**, 1411.

[18] C. H. Wong, S. T. Chen, W. J. Hennen, J. A. Bibbs, Y. F. Wang, J. L. C. Liu, M. W. Pantoliano, M. Whitlow, P. N. Bryan, *J. Am. Chem. Soc.*, 1990, **112**, 945.

[19] Š. Horvat, K. Mlinarić-Majerski, L. Glavaš-Obrovac, A. Jakas, J. Veljković, S. Marczi, G. Kragol, M. Roščić, M. Matković, A. Milostić-Srb, *J. Med. Chem.*, 2006, **49**, 3136.

[20] Z. Cui, H.-J. Yu, R.-F. Yang, W.-Y. Gao, C.-G. Feng, G.-Q. Lin, J. Am. Chem. Soc., 2011, **133**, 12394

[21] C.V. Credille, Y. Chen, S.M. Cohen, J. Med. Chem., 2016, 59, 6444.