### Supporting Information

# Accessing unsymmetrical Ru(II) bipyridine complexes: a versatile synthetic mechanism for fine tuning photophysical properties.

Lukas Hallen,<sup>a</sup> Alexander M. Horan,<sup>b</sup> Brendan Twamley,<sup>a</sup> Eoghan M. McGarrigle,<sup>\*b</sup> Sylvia M. Draper<sup>\*a,c</sup>

Email: <a href="mailto:smdraper@tcd.ie">smdraper@tcd.ie</a>, <a href="mailto:eoghan.mcgarrigle@ucd.ie">eoghan.mcgarrigle@ucd.ie</a>

| <sup>a</sup> School of Chemistry, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland                  |
|------------------------------------------------------------------------------------------------------------------------|
| <sup>b</sup> SSPC, the SFI Research Centre for Pharmaceuticals, Centre for Synthesis & Chemical Biology, UCD School of |
| Chemistry, University College Dublin, Belfield, Dublin 4, Ireland                                                      |
| <sup>c</sup> AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, Dublin 2, Ireland  |

### Contents

| 1.0 Experimental Information and Equipment                                                                                                                                   | 2                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 2.0 Ligand Synthesis                                                                                                                                                         | 2                    |
| 3.0 Complex Synthesis                                                                                                                                                        | 7                    |
| 4.0 Spectroscopic Structural Characterisation                                                                                                                                | 10                   |
| 5.0 Single Crystal X-Ray Diffraction Data                                                                                                                                    | 23                   |
| 6.0 Photophysical Measurements                                                                                                                                               | 31                   |
| 6.1 Solvatochromism Studies L1-3                                                                                                                                             |                      |
| 6.2 Concentration Studies L1-3                                                                                                                                               | 35                   |
| 6.3 Low Temperature Emission Studies L1-3                                                                                                                                    |                      |
|                                                                                                                                                                              |                      |
| 6.4 Solvatochrimism Studies Ru1-3                                                                                                                                            | 41                   |
| 6.4 Solvatochrimism Studies Ru1-3<br>6.5 Excitation Studies Ru1-3                                                                                                            | 41                   |
| 6.4 Solvatochrimism Studies Ru1-3<br>6.5 Excitation Studies Ru1-3<br>6.6 Lifetime Traces                                                                                     | 41<br>44<br>47       |
| <ul> <li>6.4 Solvatochrimism Studies Ru1-3</li> <li>6.5 Excitation Studies Ru1-3</li> <li>6.6 Lifetime Traces</li> <li>6.7 Low Temperature Emission Studies Ru1-3</li> </ul> | 41<br>44<br>47<br>56 |

### **1.0 Experimental Information and Equipment**

<sup>1</sup>H NMR, <sup>13</sup>C{<sup>1</sup>H} NMR, <sup>31</sup>P NMR, and <sup>19</sup>F NMR spectra were recorded using a Bruker Advance DPX-400 MHz, Bruker AV-400 MHz, or Bruker AV-600 MHz spectrometer in CDCl<sub>3</sub> or CD<sub>3</sub>CN with tetramethylsilane as the internal standard. Electrospray ionization (ESI) mass spectra were recorded on a micromass LCT electrospray mass spectrometer, or a Bruker MicrOTOF-Q-III mass spectrometer. Atmospheric Pressure Chemical Ionization (APCI) mass spectra were recorded on a Bruker MicrOTOF-Q-III mass spectrometer. Accurate MS were referenced against leucine enkephalin (555.6 g mol-1) or [Glu1]-Fibrinopeptide B (1570.6 g mol-1) and were reported within 5 ppm. MALDI-TOF mass spectra were recorded on a Waters MALDI-QTOF Premier spectrometer using an  $\alpha$ -cyano-4-hydroxy cinnamic acid matrix.

UV-vis absorption spectra were recorded on a Shimadzu UV-2450 spectrophotometer. Emission and excitation spectra, and emission quantum yields were recorded on a Horiba FluoroMax-4 spectrofluorometer.

Emission quantum yields of solutions were measured using the single-point relative method, using Fluorescein in 0.1 M aq. NaOH (for **L1**, **L2** and **L3**) or [Ru(bpy)<sub>3</sub>](PF<sub>6</sub>) in MeCN (for **Ru1**, **Ru2** and **Ru3**) as the reference, at RT.<sup>1,2</sup> [Ru(bpy)<sub>3</sub>](PF<sub>6</sub>)<sub>2</sub> was purchased from TCI Europe n.v. and used without purification. Fluorescein was purchased from Fluka and used without purification. Emission lifetime measurements were performed on a Horiba-Jobin-Yvon FluoroLog FL-3-11 spectrofluorometer with a TBX-04-D picosecond photodetection module using a NanoLED pulsed diode laser excitation source ( $\lambda_{ex} = 460$  nm for **Ru1**, **Ru2** and **Ru3**).

### 2.0 Ligand Synthesis

*N*,*N*-Diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline and 4-(*N*,*N*-diphenylamino)phenylacetylene were prepared according to literature procedures.<sup>3 4</sup>





Bromopyridine (1.5 equiv.) was added to an oven-dried crimp top vial which was sealed, evacuated and purged with  $N_2$  three times. Bromopyridine was dissolved in dry THF (0.3 M) at rt. *i*-PrMgCl•LiCl (1.5 equiv., 1.2 M in THF) was added dropwise to the stirring solution over 2 min. The reaction was allowed to stir at rt for 1 h. Sulfonium salt (1.0 equiv.) was added to a separate oven-dried crimp top vial which was sealed, evacuated and purged with  $N_2$  three times. Sulfonium salt was dissolved in dry THF (0.3 M) and added dropwise down the side of the vial to the Grignard reagent solution over 2 min. The reaction was allowed to stir at rt for the time

stated. Saturated aq.  $NH_4CI$  (5 mL) was added slowly to quench any excess Grignard reagent. The product was extracted with EtOAc (3 x 10 mL), the combined organic layers were washed with  $H_2O$  (20 mL) and brine (20 mL) and dried over anhydrous  $Na_2SO_4$ . Following concentration *in vacuo*, the desired product was isolated by FCC.

#### 2-Bromo-5-(4-(trifluoromethyl)phenyl)pyridine (P1)



2-Bromo-5-iodopyridine (1.14 g, 4.00 mmol), 4-(trifluoromethyl)phenylboronic acid (0.91 g, 4.8 mmol) and  $Pd(PPh_3)_4$  (0.145 g, 0.200 mmol) were added to an oven-dried crimp top vial, which was evacuated and purged with N<sub>2</sub> three times. Dry Et<sub>3</sub>N (4 mL) and dry toluene (4 mL) were added to the vial and the reaction mixture was heated to 80 °C for 48 h, then concentrated *in vacuo*. Purification by FCC (5% Et<sub>2</sub>O in pentane) gave product **P1** as a white solid (0.478 g, 39%).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*) δ 8.60 (d, *J* = 2.5 Hz, 1H,), 7.77 – 7.72 (m, 3H,), 7.66 (d, *J* = 8.2 Hz, 2H), 7.59 (d, *J* = 8.3 Hz, 1H).

<sup>13</sup>**C NMR** (126 MHz, Chloroform-*d*) δ 148.7 (CH), 142.1 (CBr), 140.2 (C<sub>q</sub>), 137.1 (CH), 134.8 (C<sub>q</sub>), 130.8 (q, J = 32.8 Hz, C<sub>q</sub>), 128.4 (CH), 127.5 (CH), 126.4 (q, J = 3.8 Hz, CH), 124.1 (q, J = 272.2 Hz, CF<sub>3</sub>).

<sup>19</sup>**F NMR** (470 MHz, Chloroform-*d*) δ -62.7 (CF<sub>3</sub>).

HRMS (ESI-TOF) *m*/*z*: [M+H]<sup>+</sup> Calc'd for: C<sub>12</sub>H<sub>7</sub>BrF<sub>3</sub>N 301.9787, 303.9767; found: 301.9788, 303.9768.

#### 5-Bromo-5'-(4-(trifluoromethyl)phenyl)-2,2'-bipyridine (4a)



Product **4a** was synthesised *via* general procedure A using **P1** (0.30 g, 0.99 mmol) and bromopyridyl sulfonium salt **1** (0.385 g, 0.760 mmol). Salt **1** was synthesised according to previously published literature procedures.<sup>5</sup> The Grignard reagent was formed at rt for 1 h and the ligand coupling reaction was stirred at rt for 3 h. Purification by FCC (10% Et<sub>2</sub>O in pentane) gave bipyridine **4a** as a white solid (114.1 mg, 40%).

**TLC**  $R_{\rm f}$  = 0.36 (10% Et<sub>2</sub>O in pentane).

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.90 (d, *J* = 2.3 Hz, 1H), 8.74 (d, *J* = 2.3 Hz, 1H), 8.48 (d, *J* = 8.2 Hz, 1H), 8.36 (d, *J* = 8.4 Hz, 1H), 8.02 (dd, *J* = 8.2, 2.3 Hz, 1H), 7.96 (dd, *J* = 8.4, 2.3 Hz, 1H), 7.75 (s, 4H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 155.0 (C<sub>q</sub>), 154.2 (C<sub>q</sub>), 150.5 (C<sub>q</sub>), 147.9 (C<sub>q</sub>), 141.2 (C<sub>q</sub>), 139.7 (CH), 135.6 (CH), 135.5 (C<sub>q</sub>), 130.5 (q, *J* = 32.5 Hz, C<sub>q</sub>), 127.5 (CH), 126.3 (q, *J* = 3.8 Hz, CH), 124.2 (q, *J* = 272.2 Hz, CF<sub>3</sub>), 122.5 (CH), 121.5 (CBr), 121.2 (CH).

<sup>19</sup>**F NMR** (376 MHz, Chloroform-*d*) δ -62.6 (CF<sub>3</sub>).

**HRMS** (ESI-TOF) *m/z*: [M+H]<sup>+</sup> Calc'd for: C<sub>17</sub>H<sub>11</sub>BrF<sub>3</sub>N<sub>2</sub> 379.0052, 381.0033; found: 379.0053, 381.0033.

N,N-Diphenyl-4-(5'-(4-(trifluoromethyl)phenyl)-[2,2'-bipyridin]-5-yl)aniline (L1ac)



Bipyridine **4a** (69 mg, 0.18 mmol), *N*,*N*-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (82 mg, 0.22 mmol),  $K_2CO_3$  (75 mg, 0.54 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (5.8 mg, 0.0033 mmol) were added to an oven-dried crimp top vial, which was evacuated and purged with N<sub>2</sub> three times. THF (0.6 mL) and H<sub>2</sub>O (0.3 mL) were added to the vial and the reaction mixture was heated to 80 °C for 22 h. The reaction mixture was then cooled to rt, diluted with H<sub>2</sub>O (20 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 20 mL). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Purification by FCC (20% Et<sub>2</sub>O in pentane) gave product **L1ac** as a yellow solid (86.5 mg, 88%).

**TLC**  $R_{\rm f}$  = 0.14 (20% Et<sub>2</sub>O in pentane).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*) δ 8.96 – 8.91 (m, 2H), 8.54 (d, *J* = 8.3 Hz, 1H), 8.50 (d, *J* = 8.2 Hz, 1H), 8.05 (dd, *J* = 8.3, 2.4 Hz, 1H), 8.02 (dd, *J* = 8.2, 2.4 Hz, 1H), 7.77 (s, 4H), 7.55 (d, *J* = 8.7 Hz, 2H), 7.33 – 7.27 (m, 4H), 7.20 – 7.14 (m, 6H), 7.10 – 7.05 (m, 2H).

<sup>13</sup>**C NMR** (126 MHz, Chloroform-*d*) δ 155.8 (C<sub>q</sub>), 153.9 (C<sub>q</sub>), 148.4 (C<sub>q</sub>), 147.9 (CH), 147.5 (C<sub>q</sub>), 147.4 (CH), 141.4 (C<sub>q</sub>), 136.4 (C), 135.5 (CH), 135.0 (C<sub>q</sub>), 134.7 (CH), 130.9 (C<sub>q</sub>), 130.4 (q, J = 32.5 Hz, C<sub>q</sub>), 129.5 (CH), 127.8 (CH), 127.5 (CH), 126.2 (q, J = 3.7 Hz C<sub>q</sub>), 125.0 (CH), 124.3 (q, J = 271.9 Hz, CF<sub>3</sub>), 123.60 (CH), 123.56 (CH), 121.2 (CH), 121.1 (CH).

<sup>19</sup>**F NMR** (470 MHz, Chloroform-*d*) δ -62.6 (CF<sub>3</sub>).

HRMS (ESI-TOF) *m/z*: [M+H]<sup>+</sup> Calc'd for: C<sub>35</sub>H<sub>25</sub>F<sub>3</sub>N<sub>3</sub> 544.1995; found: 544.1995.

N,N-Diphenyl-4-((5'-(4-(trifluoromethyl)phenyl)-[2,2'-bipyridin]-5-yl)ethynyl)aniline (L2ad)



Bipyridine **4a** (45 mg, 0.12 mmol), 4-(*N*,*N*-diphenylamino)phenylacetylene (38 mg, 0.14 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (4.2 mg, 0.0036 mmol) and CuI (0.7 mg, 0.0036 mmol) were added to an oven-dried crimp top vial, which was evacuated and purged with N<sub>2</sub> three times. Dry Et<sub>3</sub>N (0.48 mL) and toluene (0.24 mL) were added to the vial and the reaction mixture was heated to 80 °C for 5 h. The reaction mixture was then cooled to rt, diluted with saturated aq. NH<sub>4</sub>Cl (20 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 20 mL). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Purification by FCC (20% Et<sub>2</sub>O in pentane) gave product **L2ad** as a yellow solid (45.9 mg, 67%).

**TLC**  $R_{\rm f}$  = 0.30 (20% Et<sub>2</sub>O in pentane).

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*)  $\delta$  8.93 (d, *J* = 2.4 Hz, 1H), 8.81 (d, *J* = 2.1 Hz, 1H), 8.53 (d, *J* = 8.2 Hz, 1H), 8.44 (d, *J* = 8.3 Hz, 1H), 8.04 (dd, *J* = 8.2, 2.4 Hz, 1H), 7.93 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.76 (s, 4H), 7.41 (d, *J* = 8.6 Hz, 2H), 7.33 - 7.27 (m, 4H), 7.16 - 7.12 (m, 4H), 7.12 - 7.06 (m, 2H), 7.03 (d, *J* = 8.6 Hz, 2H).

<sup>13</sup>**C NMR** (101 MHz, Chloroform-*d*) δ 155.4 (C<sub>q</sub>), 153.9 (C<sub>q</sub>), 151.7 (CH), 148.6 (C<sub>q</sub>), 147.9 (CH), 147.2 (C<sub>q</sub>), 141.3 (C<sub>q</sub>), 139.3 (CH), 135.5 (CH), 135.2 (C<sub>q</sub>), 132.8 (CH), 130.4 (q, J = 32.4 Hz, C<sub>q</sub>), 129.6 (CH), 127.5 (CH), 126.2 (q, J = 3.5 Hz, CH), 125.3 (CH), 124.2 (q, J = 272.3 Hz, CF<sub>3</sub>), 124.0 (CH), 122.1 (CH), 121.4 (CH), 121.2 (C<sub>q</sub>), 120.6 (CH), 115.1 (C<sub>q</sub>), 94.5 (C<sub>q</sub>), 85.8 (C<sub>q</sub>).

<sup>19</sup>**F NMR** (376 MHz, Chloroform-*d*) δ -62.6 (CF<sub>3</sub>).

**HRMS** (ESI-TOF) *m*/*z*: [M+H]<sup>+</sup> Calc'd for: C<sub>37</sub>H<sub>25</sub>F<sub>3</sub>N<sub>3</sub> 568.1995; found: 568.1995.

#### 2-Bromo-5-((4-(trifluoromethyl)phenyl)ethynyl)pyridine (P3)



2-Bromo-5-iodopyridine (0.568 g, 2.00 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (69 mg, 0.06 mmol) and CuI (11 mg, 0.06 mmol) were added to an oven-dried crimp top vial, which was evacuated and purged with N<sub>2</sub> three times. 4-(Trifluoromethyl)phenylacetylene (0.36 mL, 2.2 mmol), dry Et<sub>3</sub>N (4 mL) and dry toluene (1 mL) were added to the vial and the reaction mixture was stirred at rt for 18 h, then concentrated *in vacuo*. Purification by FCC (5% Et<sub>2</sub>O in pentane) gave product **P3** as a white solid (0.465 g, 71%).

**TLC**  $R_{\rm f}$  = 0.47 (5% Et<sub>2</sub>O in pentane).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*) δ 8.53 (d, *J* = 2.4 Hz, 1H), 7.66 (dd, *J* = 8.3, 2.4 Hz, 1H), 7.63 (s, 4H), 7.50 (d, *J* = 8.3 Hz, 1H).

<sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ 152.6 (CH), 141.8 (C<sub>q</sub>), 140.7 (CH), 132.1 (CH), 130.8 (q, J = 32.6 Hz, C), 127.9 (CH), 126.1 (C<sub>q</sub>), 125.6 (q, J = 3.7 Hz, CH), 123.9 (q, J = 271.9 Hz, CF<sub>3</sub>), 119.2 (CBr), 92.5 (C<sub>q</sub>), 87.1 (C<sub>q</sub>).

<sup>19</sup>**F NMR** (376 MHz, Chloroform-*d*) δ -62.9 (CF<sub>3</sub>).

HRMS (ESI-TOF) *m*/*z*: [M+H]<sup>+</sup> Calc'd for: C<sub>14</sub>H<sub>7</sub>BrF<sub>3</sub>N 325.9787, 327.9767; found: 325.9786, 327.9765.

5-Bromo-5'-((4-(trifluoromethyl)phenyl)ethynyl)-2,2'-bipyridine (4b)



Product **4b** was synthesised *via* general procedure A using **P3** (0.23 g, 0.69 mmol) and bromopyridyl sulfonium salt **1** (0.233 g, 0.460 mmol). The Grignard reagent was formed at rt for 1 h and the ligand coupling reaction was stirred at rt for 2.5 h. Purification by FCC (5%  $Et_2O$  in pentane) gave bipyridine **4b** as a white solid (89.2 mg, 48%).

**TLC**  $R_{\rm f}$  = 0.38 (5% Et<sub>2</sub>O in pentane).

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.81 (d, *J* = 2.0 Hz, 1H), 8.73 (d, *J* = 2.3 Hz, 1H), 8.41 (d, *J* = 8.2 Hz, 1H), 8.35 (d, *J* = 8.5 Hz, 1H), 7.97 – 7.95 (m, 1H), 7.95 – 7.93 (m, 1H), 7.72 – 7.61 (m, 4H).

<sup>13</sup>**C NMR** (126 MHz, Chloroform-*d*) δ 154.5 (C<sub>q</sub>), 153.9 (C<sub>q</sub>), 151.9 (CH), 150.5 (CH), 139.7 (CH), 132.1 (CH), 130.7 (q, J = 32.8 Hz, C<sub>q</sub>), 126.5 (C<sub>q</sub>), 125.6 (q, J = 3.7 Hz, CH), 124.0 (q, J = 272.0 Hz, CF<sub>3</sub>), 122.8 (CH), 121.7 (CBr), 120.4 (CH,), 120.0 (C<sub>q</sub>), 92.3 (C<sub>q</sub>), 88.7 (C<sub>q</sub>).

<sup>19</sup>**F NMR** (376 MHz, Chloroform-*d*) δ -62.9 (CF<sub>3</sub>).

**HRMS** (ESI-TOF) *m/z*: [M+H]<sup>+</sup> Calc'd for: C<sub>19</sub>H<sub>11</sub>BrF<sub>3</sub>N<sub>2</sub> 403.0052, 405.0034; found: 403.0050, 405.0031.

N,N-Diphenyl-4-(5'-((4-(trifluoromethyl)phenyl)ethynyl)-[2,2'-bipyridin]-5-yl)aniline L3bc



Bipyridine **4b** (46 mg, 0.11 mmol), *N*,*N*-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (52 mg, 0.14 mmol),  $K_2CO_3$  (46 mg, 0.33 mmol) and Pd(PPh\_3)<sub>4</sub> (3.8 mg, 0.0033 mmol) were added to an oven-dried crimp top vial, which was evacuated and purged with N<sub>2</sub> three times. THF (0.36 mL) and H<sub>2</sub>O (0.18 mL) were added to the vial and the reaction mixture was heated to 80 °C for 6 h. The reaction mixture was then cooled to rt, diluted with H<sub>2</sub>O (20 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 20 mL). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Purification by FCC (10% Et<sub>2</sub>O in pentane) gave product **L3bc** as a yellow solid (42.9 mg, 69%).

**TLC**  $R_{\rm f}$  = 0.12 (10% Et<sub>2</sub>O in pentane).

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*)  $\delta$  8.92 (d, *J* = 2.4 Hz, 1H), 8.84 (d, *J* = 2.1 Hz, 1H), 8.47 (d, *J* = 8.3 Hz, 1H), 8.46 (d, *J* = 8.3 Hz, 1H), 8.00 (dd, *J* = 8.3, 2.4 Hz, 1H), 7.96 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.70 – 7.62 (m, 4H), 7.54 (d, *J* = 8.6 Hz, 2H), 7.33 – 7.27 (m, 4H), 7.22 – 7.12 (m, 6H), 7.11 – 7.04 (m, 2H).

<sup>13</sup>**C NMR** (101 MHz, Chloroform-*d*) δ 155.3 (C<sub>q</sub>), 153.6 (C<sub>q</sub>), 151.9 (CH), 148.4 (C<sub>q</sub>), 147.5 (C<sub>q</sub>), 147.4 (CH), 139.6 (CH), 136.5 (C<sub>q</sub>), 134.6 (CH), 132.1 (CH), 130.8 (C<sub>q</sub>), 130.6 (q, J = 33.1 Hz, C<sub>q</sub>), 129.6 (CH), 127.9 (CH), 126.6 (C<sub>q</sub>), 125.6 (q, J = 3.5 Hz, CH), 125.0 (CH), 124.0 (q, J = 272.3 Hz, CF<sub>3</sub>), 123.58 (CH), 123.56 (CH), 121.5 (CH), 120.4 (CH), 119.5 (C<sub>q</sub>), 92.1 (C<sub>q</sub>), 88.9 (C<sub>q</sub>).

<sup>19</sup>**F NMR** (376 MHz, Chloroform-*d*) δ -62.8 (CF<sub>3</sub>).

**HRMS** (ESI-TOF) *m/z*: [M+H]<sup>+</sup> Calc'd for: C<sub>37</sub>H<sub>25</sub>F<sub>3</sub>N<sub>3</sub> 568.1995; found: 568.1995.

## 3.0 Complex Synthesis

The complexation reactions of the ligand series were adapted from common literature procedures.<sup>1</sup> The Ru(bipyridine)<sub>2</sub>Cl<sub>2</sub> precursor was synthesised according to literature procedures from RuCl<sub>3</sub>.xH<sub>2</sub>O and 2,2'bipyridine which were purchased from Fisher Scientific and used without further purification. Ethylene glycol was purchased from Fisher Scientific. Solvents were dried using appropriate drying agents (sodium, molecular sieves, or MgSO<sub>4</sub>), and distilled under a nitrogen atmosphere. Flash chromatography was performed using silica gel 60 (Sigma Aldrich/Merck), particle size 40-63 µm as the stationary phase.



#### [Ru(2, 2'-bipyridine)<sub>2</sub>(L1ac)][(PF<sub>6</sub>)<sub>2</sub>] (Ru1)

 $Ru(bpy)_2Cl_2$  (30 mg, 0.06 mmol), and L1ac (34 mg, 0.06 mmol)were dissolved in ethylene glycol and the reaction mixture heated to 140 °C for 16 h under Argon. After cooling, saturated aqueous KPF<sub>6</sub> was added until a precipitate formed (3 mL) and the resulting precipitate isolated by filtration. The crude product was purified

using column chromatography (silica, MeCN,  $H_2O$ , sat.  $KNO_3$ , 90:9:1 v/v) followed by precipitation by saturated aqeous  $KPF_6$  and recrystallised from MeOH and  $Et_2O$  to yield **Ru1** (50 mg, 65% yield).

<sup>1</sup>**H NMR** (600 MHz, CD<sub>3</sub>CN) δ 8.57 (d, *J* = 8.5 Hz, 1H), 8.53 (d, *J* = 8.6 Hz, 1H), 8.51-8.44 (m, 4H), 8.32 (dd, *J* = 8.5, 2.1 Hz, 1H), 8.26 (dd, *J* = 8.6, 2.1 Hz, 1H), 8.12-8.01 (m, 4H), 7.88 (t, *J* = 5.5 Hz, 2H), 7.82-7.72 (m, 6H), 7.58 (d, *J* = 8.2 Hz, 2H), 7.46-7.38 (m, 4H), 7.38-7.31 (m, 4H), 7.29 – 7.23 (m, 2H), 7.20-7.12 (m, 2H), 7.12-7.03 (m, 4H), 6.98- 6.92 (m, 2H)

<sup>13</sup>C NMR (151 MHz, CD<sub>3</sub>CN) δ, 158.08 (C<sub>q</sub>), 158.06 (C<sub>q</sub>), 157.93 (C<sub>q</sub>), 157.86 (C<sub>q</sub>), 157.28 (C<sub>q</sub>), 155.03 (C<sub>q</sub>), 153.03 (CH), 152.98 (C<sub>q</sub>), 152.89 (CH), 152.81 (CH) 150.55 (CH), 150.30 (C<sub>q</sub>), 148.97 (CH), 147.75 (C<sub>q</sub>), 140.33 (C<sub>q</sub>), 139.85 (C<sub>q</sub>), 139.10 (C<sub>q</sub>), 138.90 (CH), 138.82 (C<sub>q</sub>), 138.76 (CH), 138.74 (C<sub>q</sub>), 137.06 (CH), 135.35 (CH), 131.42 (C<sub>q</sub>), 130.67 (CH), 128.89 (CH), 128.69 (CH), 128.56 (C<sub>q</sub>), 128.52 (CH), 128.49 (C<sub>q</sub>), 127.54 (C<sub>q</sub>), 127.06 (CH), 126.48 (CH), 125.46 (CH), 125.43 (CH), 125.39 (CH), 125.36 (CH), 125.26 (CH), 125.22 (CH), 124.93 (CH), 122.38 (CH).

**HRMS** (m/z, APCI<sup>+</sup>, MeOH) [M-(PF<sub>6</sub>)<sub>2</sub>]<sup>2+</sup>, (C<sub>55</sub>H<sub>40</sub>F<sub>3</sub>N<sub>7</sub>Ru)<sup>2+</sup>, Calculated mass: 478.617229; Found: 478.618508.



#### [Ru(2, 2'-bipyridine)<sub>2</sub>(L2ad)][(PF<sub>6</sub>)<sub>2</sub>] (Ru2)

Ru(bpy)<sub>2</sub>Cl<sub>2</sub> (28 mg, 0.05 mmol) , and **L2ad** (30 mg, 0.05 mmol) were dissolved in ethylene glycol and the reaction mixture heated to 140 °C for 16 h under Argon. After cooling, saturated aqueous KPF<sub>6</sub> was added until a precipitate formed (3 mL) and the resulting precipitate isolated by filtration. The crude product was purified using column chromatography (silica, MeCN, H<sub>2</sub>O, sat. KNO<sub>3</sub>, 90:9:1 v/v) followed by precipitation by saturated aqueous KPF<sub>6</sub> and recrystallised from MeOH and Et<sub>2</sub>O to yield **Ru2** (25 mg, 38% yield).

<sup>1</sup>**H NMR** (600 MHz, CD<sub>3</sub>CN) δ 8.56 (d, J = 8.6 Hz, 1H), 8.53-8.45 (m, 5H), 8.32 (dd, J = 8.5, 2.0 Hz, 1H), 8.11 (dd, J = 8.5, 1.8 Hz, 1H), 8.10-8.02 (m, 4H), 7.84 (dd, J = 9.0, 5.7 Hz, 2H), 7.80 (dd, J = 7.4, 1.8 Hz, 2H), 7.77-7.69 (m, 4H), 7.57 (d, J = 8.3 Hz, 2H), 7.46-7.38 (m, 4H), 7.38-7.32 (m, 4H), 7.32-7.28 (m, 2H), 7.16 (dd, J = 11.6, 4.2 Hz, 2H), 7.14-7.09 (m, 4H), 6.93 – 6.89 (m, 2H).

<sup>13</sup>C NMR (151 MHz, CD<sub>3</sub>CN) δ 158.02 (C<sub>q</sub>), 157.98 (C<sub>q</sub>), 157.96 (C<sub>q</sub>), 156.98 (C<sub>q</sub>), 155.91 (C<sub>q</sub>), 154.00 (CH), 153.15
 (CH), 153.01 (CH), 152.84 (CH), 152.76 (CH), 150.55 (CH), 150.47 (C<sub>q</sub>), 147.63 (CH), 140.24 (CH), 138.99 (CH), 138.96 (CH), 138.93 (CH), 137.13 (CH), 133.83 (CH), 130.74 (CH), 128.98 (CH), 128.66 (CH), 128.62 (C<sub>q</sub>), 128.52

(C<sub>q</sub>), 127.12 (C<sub>q</sub>), 126.69 (CH), 125.63 (CH), 125.51 (CH), 125.49 (C<sub>q</sub>), 125.40 (CH), 125.33 (CH), 125.14 (CH), 121.59 (CH), 118.31 (C<sub>q</sub>), 98.67 (C<sub>q</sub>), 84.51 (C<sub>q</sub>).

HRMS (m/z, APCI<sup>+</sup>, MeOH) [M-(PF<sub>6</sub>)<sub>2</sub>]<sup>2+</sup> (C<sub>57</sub>H<sub>40</sub>F<sub>3</sub>N<sub>7</sub>Ru)<sup>2+</sup>, Calculated mass: 490.617527; Found: 490.618130.



#### [Ru(2, 2'-bipyridine)<sub>2</sub>(L3bc)][(PF<sub>6</sub>)<sub>2</sub>] (Ru3)

Ru(bpy)<sub>2</sub>Cl<sub>2</sub> (28 mg, 0.05 mmol) and **L3bc** (30 mg, 0.05 mmol) were dissolved in ethylene glycol and the reaction mixture heated to 140 °C for 16 h under Argon. After cooling, saturated aqueous KPF<sub>6</sub> was added until a precipitate formed (3 mL) and the resulting precipitate isolated by filtration. The crude product was purified using column chromatography (silica, MeCN, H<sub>2</sub>O, sat. KNO<sub>3</sub>, 90:9:1 v/v) followed by precipitation by saturated aqueous KPF<sub>6</sub> and recrystallised from MeOH and Et<sub>2</sub>O to yield **Ru2** (10 mg, 15% yield)

<sup>1</sup>**H NMR** (600 MHz, CD<sub>3</sub>CN) δ 8.50 (m, 6H), 8.25 (dd, J = 8.6, 2.1 Hz, 1H), 8.17 (dd, J = 8.5, 1.8 Hz, 1H), 8.10-8.02 (m, 4H), 7.88 (d, J = 1.6 Hz, 1H), 7.84 (dd, J = 15.4, 5.2 Hz, 2H), 7.76-7.71 (m, 5H), 7.65 (m, J = 8.2 Hz, 2H), 7.45-7.37 (m, 4H), 7.37-7.33 (m, 4H), 7.27-7.22 (m, 2H), 7.18 – 7.14 (m, 2H), 7.08 (dd, J = 8.5, 1.0 Hz, 4H), 6.95-6.92 (m, 2H).

<sup>13</sup>C NMR (151 MHz, CD<sub>3</sub>CN) δ 157.05 (C<sub>q</sub>), 156.99 (C<sub>q</sub>), 156.89 (C<sub>q</sub>), 156.35 (C<sub>q</sub>), 153.82 (CH), 153.42 (CH), 152.12 (CH), 152.00 (CH), 151.81 (CH), 151.79 (CH), 149.66 (C<sub>q</sub>), 148.13 (CH), 146.76 (C<sub>q</sub>), 139.84 (CH), 139.49 (C<sub>q</sub>), 138.04 (CH), 137.94 (CH), 134.34 (CH), 132.24 (CH), 130.59 (C<sub>q</sub>), 129.73 (CH), 127.75 (CH), 127.66 (CH), 127.61 (CH), 127.56 (CH), 126.46 (C<sub>q</sub>), 125.73 (CH), 125.57 (CH), 124.79 (CH), 124.52 (CH), 124.46 (CH), 124.41 (CH), 124.38 (CH), 124.29 (CH), 123.60 (CH), 122.68 (C<sub>q</sub>), 121.35 (CH), 94.21 (C<sub>q</sub>), 86.14 (C<sub>q</sub>).

HRMS (m/z, APCI<sup>+</sup>, MeOH) [M-(PF<sub>6</sub>)<sub>2</sub>]<sup>2+</sup>, (C<sub>57</sub>H<sub>40</sub>F<sub>3</sub>N<sub>7</sub>Ru)<sup>2+</sup>, Calculated mass: 490.617527; Found: 490.618130.

# 4.0 Spectroscopic Structural Characterisation



Figure S1 .  $^1\text{H}$  (400 MHz) and  $^{13}\text{C}$  (101 MHz) NMR spectra of P1 in CDCl\_3





Figure S3.  $^{1}$ H (400 MHz) and  $^{13}$ C (101 MHz) NMR spectra of P3 in CDCl<sub>3</sub>





Figure S5. <sup>1</sup>H (400 MHz) and <sup>13</sup>C (101 MHz) NMR spectrum of L1ac in CDCl<sub>3</sub>



Figure S6. <sup>1</sup>H (400 MHz) and <sup>13</sup>C (101 MHz) NMR spectrum of L2ad in CDCl<sub>3</sub>



Figure S7. <sup>1</sup>H (400 MHz) and <sup>13</sup>C (101 MHz) NMR spectrum of L3bc in CDCl<sub>3</sub>



**Figure S8.** A) Assigned <sup>1</sup>H NMR spectrum of **Ru1** (Acetonitrile-d<sub>3</sub> 600 MHz) B) inset of aromatic region (4 - 8.6 ppm)



Figure S9. <sup>13</sup>C NMR Spectrum of Ru1 (MeCN-d<sub>3</sub> 150 MHz)



Figure S10. ESI HRMS for Ru1





**Figure S11.** A) Assigned <sup>1</sup>H NMR spectrum of **Ru2** (Acetonitrile- $d_3$  600 MHz) B) inset of aromatic region (4 – 8.6 ppm)



Figure S12. <sup>13</sup>C NMR Spectrum of Ru2 (MeCN-d<sub>3</sub> 150 MHz)



Figure S13. ESI HRMS for Ru2







. Figure S15. <sup>13</sup>C NMR Spectrum of Ru3 (MeCN-d<sub>3</sub> 150 MHz)



Figure S16. ESI HRMS For Ru3

# 5.0 Single Crystal X-Ray Diffraction Data

The X-ray intensity data for **Ru1** and **Ru2** were measured on a Bruker Apex Kappa Duo using a microfocus Copper source ( $\lambda = 1.54178$  Å). Samples were placed in Cargille NVH immersion oil and mounted on a MiTeGen micromount, cooled and kept at 100K for data collection using an Oxford Cobra Cryosystem low temperature device. See Table S1 for crystal data and structure refinement parameters.

Reflection data were reduced and processed using the Bruker APEX3 suite of programs.<sup>6</sup> Multi-scan absorption corrections were applied using SADABS.<sup>7</sup> The structures were solved using the dual space algorithm XT<sup>8</sup> and refined by full matrix least-squares procedures with XL<sup>9</sup> within the OLEX2 suite.<sup>10</sup> All non-hydrogen atoms were refined with anisotropic displacement parameters. All carbon bound hydrogen atoms were placed in calculated positions and refined with a riding model, with isotropic displacement parameters equal to either 1.2 or 1.5 times the isotropic equivalent of their carrier atoms.

Specific refinement strategies are outlined below and can also be located in the crystallographic information files CCDC 2204851\_2204852.

**Ru 1**: Very weak diffraction, especially at higher angles using LT and long exposures. The diffraction limit was generously set to d = 0.86 for the experiment (2 theta = 128 degrees). The data is also rotationally twinned around 2-axis (1, 0, -1)[3, 0, -2], Angle () [] = 4.24 <sup>®</sup> with a twin matrix (0.242, 0.126, -0.758, 0.000, -1.000, 0.000, -1.242, -0.126, -0.242) and a refined BASF 0.354(6). The twin relationship was identified using PLATON, and the weight was adjusted manually. One phenyl ring (C57) on the amine in complex Ru1 was disordered over two locations (71:29% occupancy) and modelled using geometric (SADI, FLAT) and displacement (SIMU) restraints. The CF3 group of Complex Ru1 was also disordered in two locations (69:31% occupancy) and modelled with geometric (DFIX) and displacement (SIMU, ISOR) restraints. Aromatic rings in the complexes near the high residuals were modelled using rigid groups (AFIX 66) and displacement restraints (ISOR). All PF6 anions were modelled with rigid groups and restraints (SIMU). There are 4 solvent sites in the ASU consisting of toluene and DCM, all modelled with rigid groups. Toluene C130, 25%, DCM CI5, 25%; C137, 25%, CI7, 25%; C143, 25%, CI9, 25%; C11, 25%, CI3, 50% occupied and modelled using restraints (SIMU, ISOR).

**Ru2**: Partially occupied solvents were identified in the asymmetric unit. All were modelled with rigid groups. Site unique molecules - toluene; 33% occupied, DCM; 15% occupied. One site was modelled with 3 solvents - 2 toluene, 32 and 29% occupied and DCM 18% occupied. All moieties in this shared site were kept to a total of 75% occupancy. Geometric restraints were employed (SIMU, ISOR) in modelling these partially occupied solvents.

| Crystal data and structure refinement for Ru1 and Ru2 |                                                        |                                                 |  |
|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|--|
| Identification code                                   | Ru1                                                    | Ru2                                             |  |
| CCDC No.                                              | 2204851                                                | 2204852                                         |  |
| Empirical formula                                     | $C_{58.38}H_{44.5}CI_{1.5}F_{15}N_7P_2Ru$              | $C_{63.95}H_{48.23}Cl_{0.66}F_{15}N_{7}P_{2}Ru$ |  |
| Formula weight                                        | 1345.19                                                | 1385.96                                         |  |
| Temperature (K)                                       | 100(2)                                                 | 100(2)                                          |  |
| Crystal system                                        | triclinic                                              | Monoclinic                                      |  |
| Space group                                           | ΡĪ                                                     | C2/c                                            |  |
| a (Å)                                                 | 17.5338(13)                                            | 18.3727(8)                                      |  |
| b (Å)                                                 | 19.1373(12)                                            | 23.3211(10)                                     |  |
| c (Å)                                                 | 20.747(2)                                              | 31.2846(12)                                     |  |
| α (°)                                                 | 107.594(6)                                             | 90                                              |  |
| β (°)                                                 | 98.679(6)                                              | 105.648(2)                                      |  |
| γ (°)                                                 | 109.219(4)                                             | 90                                              |  |
| V (Å <sup>3</sup> )                                   | 6018.8(9)                                              | 12907.7(9)                                      |  |
| Z                                                     | 4                                                      | 8                                               |  |
| $\rho_{calc}$ (g /cm <sup>3</sup> )                   | 1.485                                                  | 1.426                                           |  |
| μ (mm⁻¹)                                              | 4.026                                                  | 3.459                                           |  |
| F(000)                                                | 2713.0                                                 | 5609.0                                          |  |
| Crystal size (mm <sup>3</sup> )                       | 0.227 × 0.093 × 0.032                                  | $0.219 \times 0.034 \times 0.031$               |  |
| Radiation                                             | Cu Kα (λ = 1.54178)                                    | Cu Kα (λ = 1.54178)                             |  |
| 20 range (°)                                          | 5.28 to 126.73                                         | 5.868 to 128.406                                |  |
| Index ranges                                          | $-20 \le h \le 19, -21 \le k \le 21, -22 \le l \le 22$ | $-21 \le h \le 21, -27 \le k \le 27,$           |  |
| Poflactions collected                                 | 23                                                     | -30 21 2 30<br>רכדד                             |  |
| Indonondont rofloctions                               | 19160                                                  | 10726                                           |  |
|                                                       | $B_{\rm ex} = 0.1178$                                  | $R_{\rm eff} = 0.1171$                          |  |
|                                                       | $R_{int} = 0.1110$                                     | $R_{int} = 0.0878$                              |  |
| Data/restraints/parameters                            | 19160/873/1624                                         | 10736/427/937                                   |  |
| Goodness-of-fit on F <sup>2</sup>                     | 1.093                                                  | 1.036                                           |  |
|                                                       | $R_1 = 0.1491.$                                        | R₁ = 0.0901.                                    |  |
| Final R indexes [I≥2σ (I)]                            | $wR_2 = 0.4506$                                        | $wR_2 = 0.2511$                                 |  |
|                                                       | $R_1 = 0.1824,$                                        | R <sub>1</sub> = 0.1326,                        |  |
| Final R indexes [all data]                            | wR <sub>2</sub> = 0.4999                               | wR <sub>2</sub> = 0.2935                        |  |
| Largest diff. peak/hole (e Å <sup>-3</sup> )          | 4.72/-1.80                                             | 2.11/-0.69                                      |  |

 Table S1. Crystal data and structure refinement for Ru1 and Ru2.



**Figure S17.** Disordered molecular structure of **Ru1**, with partially occupied disordered solvent (toluene/DCM) sites. Selected atoms labelled for clarity.



**Figure S18.** Individual representations of each disordered moiety in **Ru1** with (left) the majority occupied moiety (phenyl/CF<sub>3</sub> 71 and 69%, toluene 0.25% occupied and  $CH_2Cl_2$ , 50% occupied) and (right) minor occupied moiety (phenyl/CF<sub>3</sub> 29 and 31%, toluene 0.25% occupied and  $CH_2Cl_2$ , 25% occupied).



**Figure S19**. Schematic packing diagram of the major occupied moieties in **Ru1** only viewed normal to the a-axis, with hydrogen atoms omitted for clarity



**Figure S20**. Structure of **Ru2** with atomic displacement shown at 50% occupancy. Hydrogen atoms omitted for clarity. Heretoatoms labelled only



**Figure S21**. Schematic packing diagram of **Ru2** shown normal to the a-axis . Hydrogen atoms omitted for visual clarity.

# 6.0 Photophysical Measurements

6.1 Solvatochromism Studies L1-3



**Figure S22.** Absorption (solid lines) and emission (dashed lines) spectra of L1ac (orange), L2ad (blue) and L3bc (black).  $CH_2Cl_2$  [10<sup>-5</sup> M], 298 K.



**Figure S23.** Solvatochromic studies of **L1ab** in CH<sub>2</sub>Cl<sub>2</sub>, MeCN, Toluene and MeOH; UV-vis spectra shown with solid lines and normalised emission spectra shown with dotted lines ( $\lambda_{ex}$  = 370 nm), [10<sup>-5</sup> M], 298 K



**Figure S24.** Solvatochromic studies of **L2ad** in CH<sub>2</sub>Cl<sub>2</sub>, MeCN, Toluene and MeOH; UV-vis spectra shown with solid lines and normalised emission spectra shown with dotted lines ( $\lambda_{ex}$  = 385 nm), [10<sup>-5</sup> M], 298 K



**Figure S25**. Solvatochromic studies of **L3bc** in CH<sub>2</sub>Cl<sub>2</sub>, MeCN, Toluene and MeOH; UV-vis spectra shown with solid lines and normalised emission spectra shown with dotted lines ( $\lambda_{ex}$  = 380 nm), [10<sup>-5</sup> M], 298 K

### 6.2 Concentration Studies L1-3



Figure S26. Concentration studies of L1ac in  $CH_2Cl_2$  at 298 K



Figure S27. Concentration studies of L2ad in  $CH_2CI_2$  at 298 K



Figure S28. Concentration studies of L3bc in  $CH_2Cl_2$  at 298 K

6.3 Low Temperature Emission Studies L1-3



Figure S29. Emission spectra of L1ac ( $\lambda_{ex}$  = 375 nm) at 298 K (red line) and 77 k (black line) in 4:1 EtOH:MeOH



Figure S30. Emission spectra of L2ad ( $\lambda_{ex}$  = 390 nm) at 298 K (red line) and 77 k (black line) in 4:1 EtOH:MeOH



Figure S31. Emission spectra of L3bc ( $\lambda_{ex}$  = 380 nm) at 298 K (red line) and 77 k (black line) in 4:1 EtOH:MeOH

6.4 Solvatochrimism Studies Ru1-3



**Figure S32.** Solvatochromic studies of **Ru1** in CH<sub>2</sub>Cl<sub>2</sub>, MeCN, Toluene and MeOH; UV-vis spectra shown with solid lines and normalised emission spectra shown with dotted lines ( $\lambda_{ex}$  was absorption max), [10<sup>-5</sup> M], 298 K



**Figure S33**. Solvatochromic studies of **Ru2** in CH<sub>2</sub>Cl<sub>2</sub>, MeCN, Toluene and MeOH; UV-vis spectra shown with solid lines and normalised emission spectra shown with dotted lines ( $\lambda_{ex}$  was absorption max in given solvent), [10<sup>-5</sup> M], 298 K



**Figure S34.** Solvatochromic studies of **Ru3** in CH<sub>2</sub>Cl<sub>2</sub>, MeCN, Toluene and MeOH; UV-vis spectra shown with solid lines and normalised emission spectra shown with dotted lines ( $\lambda_{ex}$  was absorption max in given solvent), [10<sup>-5</sup> M], 298 K

6.5 Excitation Spectra of Ru1-3 in MeCN and CH<sub>2</sub>Cl<sub>2</sub>



**Figure S35**. Excitation studies of **Ru1** in MeCN and  $CH_2Cl_2$  (dashed lines),  $\lambda_{ex} = 435$  nm for MeCN, 460 nm for  $CH_2Cl_2$ ),  $[10^{-5} M]$ , 298 K compared to absorption profiles of **Ru1** in MeCN and  $CH_2Cl_2$  (solid lines)  $[10^{-5} M]$ , 298 K



**Figure S36.** Excitation studies of **Ru2** in MeCN and  $CH_2Cl_2$  (dashed lines),  $\lambda_{ex} = 440$  nm for MeCN, 465 nm for  $CH_2Cl_2$ ), [10<sup>-5</sup> M], 298 K compared to absorption profiles of Ru1 in MeCN and  $CH_2Cl_2$  (solid lines) [10<sup>-5</sup> M], 298 K



**Figure S37.** Excitation studies of **Ru3** in MeCN and  $CH_2Cl_2$  (dashed lines),  $\lambda_{ex} = 440$  nm for MeCN, 465 nm for  $CH_2Cl_2$ ), [10<sup>-5</sup> M], 298 K compared to absorption profiles of **Ru1** in MeCN and  $CH_2Cl_2$  (solid lines) [10<sup>-5</sup> M], 298 K



**Figure S39.** Emission lifetime decay trace of **Ru2** ( $\lambda_{ex}$  = 460 nm,  $\lambda_{detection}$  = 640 nm) in deaerated MeCN. Fitted with a monoexponential equation CHISQ = 0.978; Durbin-Watson parameter = 1.977.



**Figure S42**. Emission lifetime decay trace of **Ru2** ( $\lambda_{ex}$  = 460 nm,  $\lambda_{detection}$  = 720 nm) in dependent of CH<sub>2</sub>Cl<sub>2</sub>. Eitted with a monoexponential equation CH<sub>2</sub>Cl<sub>2</sub> = 0.985: Durbin-Watson



**Figure S43**. Emission lifetime decay trace of **Ru3** ( $\lambda_{ex}$  = 460 nm,  $\lambda_{detection}$  = 720 nm) in deaerated CH<sub>2</sub>Cl<sub>2</sub>. Fitted with a monoexponential equation CHISQ = 1.031; Durbin-Watson parameter = 1.993.



**Figure S44.** Emission lifetime decay trace of L1ac ( $\lambda_{ex} = 372 \text{ nm}$ ,  $\lambda_{detection} = 520 \text{ nm}$ ) in CH<sub>2</sub>Cl<sub>2</sub>. Fitted with a monoexponential equation CHISQ = 1.014; Durbin-Watson parameter = 2.005.



**Figure S45.** Emission lifetime decay trace of L2ad ( $\lambda_{ex}$  = 372 nm,  $\lambda_{detection}$  = 540 nm) in CH<sub>2</sub>Cl<sub>2</sub>. Fitted with a monoexponential equation CHISQ = 0.9904; Durbin-Watson parameter = 2.021



**Figure S46**. Emission lifetime decay trace of L3bc ( $\lambda_{ex} = 372 \text{ nm}$ ,  $\lambda_{detection} = 540 \text{ nm}$ ) in CH<sub>2</sub>Cl<sub>2</sub>. Fitted with a monoexponential equation CHISQ = 1.024; Durbin-Watson parameter = 2.019

### 6.7 Low Temperature Emission Studies Ru1-3



Figure S47. Emission spectra of Ru1 ( $\lambda_{ex}$  = 450 nm) at 298 K (black line) and 77 k (red line) in 4:1 EtOH:MeOH, 10<sup>-5</sup> M



Figure S48. Emission spectra of Ru2 ( $\lambda_{ex}$  = 450 nm) at 298 K (black line) and 77 k (red line) in 4:1 EtOH:MeOH, 10<sup>-5</sup> M



Figure **S49**. Emission spectra of **Ru3** ( $\lambda$ ex = 450 nm) at 298 K (black line) and 77 k (red line) in 4:1 EtOH:MeOH, 10<sup>-5</sup> M



**Figure S50**. Emission spectra of **Ru3** ( $\lambda_{ex}$  = 450 nm) in 4:1 EtOH:MeOH (red line) and in 2-methyltetrahydrofuran (black line). 298 K, 10<sup>-5</sup> M



**Figure S51.** Emission spectra of **Ru1** ( $\lambda_{ex}$  = 450 nm) in 4:1 EtOH:MeOH (red line) and in 2-methyltetrahydrofuran (black line). 77 K, 10<sup>-5</sup> M

**Figure S52**. Simplified schematic representation of the emission regimes adopted by **Ru1-3** in  $CH_2Cl_2$  (left) and MeCN (right). In  $CH_2Cl_2$ , the emissive excited state has greater ligand character, resulting in longer emission wavelengths, extended emission lifetime and increased quantum yields of phosphorescence. In MeCN, the excited state has greater metal character, resulting in decreased emission wavelength, emission lifetime and quantum yield of phosphorescence.

## 7.0 References

- 1 C. Condon, R. Conway-Kenny, X. Cui, L. J. Hallen, B. Twamley, J. Zhao, G. W. Watson and S. M. Draper, *J. Mater. Chem. C*, 2021, **9**, 14573–14577.
- 2 Z. C. Yang, M. Wang, A. M. Yong, S. Y. Wong, X. H. Zhang, H. Tan, A. Y. Chang, X. Li and J. Wang, *Chem. Commun.*, 2011, **47**, 11615–11617.
- C. Wu, B. Wang, Y. Wang, J. Hu, J. Jiang, D. Ma and Q. Wang, *J. Mater. Chem. C*, 2019, 7, 558–566.
- 4 J. Nociarová, P. Osuský, E. Rakovský, D. Georgiou, I. Polyzos, M. Fakis and P. Hrobárik, *Org. Lett.*, 2021, **23**, 3460–3465.
- 5 A. M. Horan, V. K. Duong and E. M. McGarrigle, *Org. Lett.*, 2021, **23**, 9089–9093.
- 6 Bruker (2017). APEX3 v2017.3-0, Bruker AXS Inc., Madison, WI, USA.
- SADABS: Krause, L., Herbst-Irmer, R., Sheldrick, G. M., Stalke, D. (2015). J. Appl. Cryst.
   48, 3-10.
- 8 Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8
- 9 Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- 10 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.