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1. Measurements and instruments

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Ultra Shield
Plus AV400 spectrometer ('"H NMR 400 MHz and '3C NMR 100 MHz) or Bruker
Avance 500 MHz or on a Bruker Avance 600 MHz spectrometer with CDCl; or DMSO-
d¢ or THF-dy as the solvents and tetramethylsilane (TMS) as the internal standard. High
resolution mass spectrometry (HRMS) measurements were performed on a Thermo
Scientific Q-Exactive mass spectrometer. Melting point (m. p.) of the compounds were
recorded on an SGW X-4A micro melting point apparatus. UV-vis absorption spectra

were recorded on a Shimadzu UV-3600 UV-VIS-NIR spectrophotometer.
2. Materials

All reagents and chemicals were purchased from Energy Chemical., Admas-beta, and
Bide pharmatch Ltd., etc, and used as received without further purification unless
otherwise specified. Anhydrous THF and toluene were distilled from Na/benzophenone
under argon. Unless otherwise stated, all reactions were carried out under inert

atmosphere using standard Schlenk line techniques.

3. Synthetic procedure

The synthetic procedures of the intermediates and target products were illustrated in
Scheme S1 and S2. Compound 2-4 were prepared according to the previous literature
with high yields 2], The preparation of compound 6 from compound 4 was performed

according to the previous literature [31.
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Scheme S1. Synthetic route to fluorenone imide and its derivatives, reagents and
conditions: i) methyl 2-bromo-3-methylbenzoate acid, Pd,(dba);, S-phos, K,COs;,
toluene/EtOH/H,0, 90 °C; ii) NaOH (aq), reflux; iii) MeSO;H, 110 °C; iv) KMnO,
(aq), CTMAB, 100 °C, then HCI; v) KMnQO,, H,O/pyridine, 100 °C; vi) PPA, 130 °C;
vii) Ac,0, 130 °C; viii) alkyl primary amine, DMAP, 1, 4-dioxane, 90 °C, then Ac,0,
130 °C.

[1, 1'-Biphenyl]-2, 2', 6-tricarboxylic acid (compound 5):
HOOC COCH
:;O
HO
5

2',6-Dimethyl-[1,1'-biphenyl]-2-carboxylic acid 3 (20 mmol, 4.52 g),
cetyltrimethylammonium bromide (CTMAB) (0.10 mmol, 0.36 g) and water (500 mL)
were added to a 1 L two-necked round bottom. The reaction mixture was heated to 90
°C and KMnO, (120 mmol, 9.46 g) was added slowly in several portions. The mixture
was stirred overnight and stopped until the dark red color of KMnO, faded. The
resulting mixture was filtered to give a colorless aqueous phase and then concentrated
to ~150 mL under a reduced pressure. 10 mL concentrated HC1 was carefully added to
the resulting solution and a white solid precipitated. After filtration, the solid was

collected and dried overnight in a vacuum drying oven to give compound 5 as a white

powder (5.21 g, 91% yield). '"H NMR (400 MHz, DMSO-dy): & ppm 12.46 (s, 3H), 7.92
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(d, J=7.8 Hz, 3H), 7.48 (br, 2H), 7.39 (t, /= 7.6 Hz, 1H), 7.00 (d, J= 6.5 Hz, 1H). 13C
NMR (100 MHz, DMSO-d): 6 ppm 167.95, 167.27, 142.40, 141.50, 132.41, 131.61,
130.86, 130.23, 129.82, 129.49, 126.79, 126.71. HRMS (m/z): Calcd. for C;sHyO4 [M-
H]-, Exact Mass: 285.0405; Found: 285.0401, m. p. 243-244 °C.

9-Ox0-9H-fluorene-4, S-dicarboxylic acid (compound 6):

HOOC COOH

o]
6

Route 2:

Polyphosphoric acid (PPA, 40 mL) and compound 5 (2.86 g, 10 mmol) were stirred
at 120 °C for 12 h. After cooled to room temperature, 100 mL ice water was added to
the mixture and then stirred for 1 h. After filtration, the resulting solid was washed by
water and dried overnight in a vacuum drying oven to give compound 6 as a light-brown
powder (2.42 g, 93% yield) '"H NMR (400 MHz, DMSO-d): 6 ppm 13.18 (s, 2H), 7.90
(d,J=17.7,2H), 7.82 (d, J= 7.3, 2H), 7.53 (t, J = 7.5 Hz, 2H). 3C NMR (100 MHz,
DMSO-dy) 6 ppm 191.18, 167.85, 142.76, 135.41, 135.19, 131.22, 129.81, 125.93.
HRMS (m/z): Calcd. for CsH;,O5 [M-H]-, Exact Mass: 267.0299; Found: 267.0295, m.
p. 285-286 °C.

9-Ox0-9H-fluorene-4, S-dicarboxylic acid (compound 7):

oO

LI

e}
7

Compound 6 (600 mg, 2.24 mmol) was stirred in 20 mL acetic anhydride under reflux
for 12 h. After cooled to room temperature, the solid was collected by filtration, washed
with methanol, and dried in vacuum overnight to afford a light-brown solid as the
compound 7, which can be used for the following reaction without further purification

(530 mg, 95%).
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9-Butylfluoreno|4,5-cde]azepine-4,8,10(9H)-trione (compound C4FOI):

CH

749
N

LI s

0
C4FOI

Compound 7 (500 mg, 2.0 mmol), butan-1-amine (175 mg, 2.40 mmol) and DMAP
(292 mg, 2.40 mmol) were added into a flask with 20 mL anhydrous 1, 4-dioxane. The
resulting mixture was heated to 90 °C for overnight, and the reaction turned into a clear
solution and 5 mL acetic anhydride was then added in one portion. The mixture was
heated to 130 °C and stirred for another 6 h. After cooled to room temperature, 100 mL
water was added and the mixture was extracted with dichloromethane (DCM) three
times and the combined organic layer was dried over Na,SOy. The solvent was removed
under a reduced pressure to afford a residue, which was purified by column
chromatography over silica gel using petroleum ether (PE):DCM (3:1) as the eluent to
afford the target compound as a withe solid (370 mg, 60%). '"H NMR (400 MHz,
CDCl,): 6 ppm 8.46 (dd, J= 8.1, 0.9 Hz, 2H), 7.94 (dd, J= 7.2, 0.9 Hz, 2H), 7.58 (dd,
J=1.9,7.4 Hz, 2H), 4.33-4.25 (m, 2H), 1.82-1.68 (m, 2H), 1.51-1.42 (m, 2H), 1.00 (t,
J=7.4 Hz, 3H). 3C NMR (125 MHz, CDCl3) 8 ppm 190.73, 164.74, 140.27, 138.34,
133.73, 130.92, 128.67, 127.48, 47.74, 30.07, 20.52, 13.88. HRMS (m/z): Calcd. for
C19HsNO; [M+H]*, Exact Mass: 306.1125; Found: 306.1118, m. p. 98-99 °C.

9-Hexylfluoreno|4,5-cde]azepine-4,8,10(9H)-trione (compound C6FOI):

C6FOI

C6FOI was prepared following the same procedure for C4FOI (58%). '"H NMR (400
MHz, CDCl;): & ppm 8.46 (d, J= 8.1 Hz, 2H), 7.95 (d, /= 7.1 Hz, 2H), 7.63 — 7.54 (m,
2H), 4.32 — 4.23 (m, 2H), 1.83-1.70 (m, 2H), 1.52 — 1.29 (m, 6H), 0.91 (t, J = 7.0 Hz,
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3H). 3C NMR (125 MHz, CDCls): 6 ppm 190.74, 164.73, 140.27, 138.35, 133.73,
130.92, 128.67, 127.49, 47.99, 31.56, 27.94, 26.94, 22.65, 14.08. HRMS (m/z): Calcd.
for C,1H,0O5N [M+H]", Exact Mass: 334.1438; Found: 334.1428, m. p. 103-104 °C.

9-(2-Ethylhexyl)fluoreno|4,5-cde]azepine-4,8,10(9H)-trione (compound EHFOI):

o

O, __N_0O

LI

(o]
EHFOI

EHFOI was prepared following the same procedure for C4FOI (55%). '"H NMR (400
MHz, CDCIl;): 6 ppm 8.45 (dd, J=8.2, 1.0 Hz, 2H), 7.95 (dd, /= 7.2, 1.0 Hz, 2H), 7.58
(dd, J = 8.1, 7.3 Hz, 2H), 4.39 (dd, J = 8.4, 7.3 Hz, 2H), 1.90 — 1.79 (m, 1H), 1.41 —
1.21 (m, 8H), 0.95-0.83 (m, 6H). 3C NMR (100 MHz, CDCl5): 6 ppm 190.74, 165.27,
140.19, 138.41, 133.71, 130.91, 128.63, 127.67, 50.39, 38.01, 30.76, 28.64, 24.07,
23.13, 14.09, 10.73. HRMS (m/z): Calcd. for C,3H,4O3N [M+H]*, Exact Mass:
362.1751; Found: 362.1753, m. p. 115-116 °C.

== % 3 3

C4FOI, C6FOI, EHFOI NC™ CN

CAFIDCN (96%)
0, 0, 0,
CGFIDE (70 %) CGFICNE (65%) EHFIR (40A, CEFIDCN (95%)

C4: R = n-butyl C6: R = n-hexyl EH: R = 2-ethylhexyl
Scheme S2. Synthetic routes to imide-functionalized fluorenone derivatives, ix)
dimethyl malonate or methyl 2-cyanoacetate, TiCly, pyridine, CHCl;, rt; x) 3-ethyl-2-
thioxothiazolidin-4-one, f-alanine, HOAc/toluene, 120 °C; xi) malononitrile, DMSO,

120 °C.

Dimethyl2-(9-hexyl-8,10-diox0-9,10-dihydrofluoreno|4,5-cde]azepin-4(8H)-
ylidene)malonate (C6FIDE):
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C6FIDE

C6FOI (333 mg, 1 mmol), dimethyl malonate (396 mg, 3 mmol) and 3 mL pyridine in
30 mL DCM was stirred at 0 °C. Then 0.5 mL TiCl, was added slowly to the mixture
and the reaction misture was stirred at room temperature overnight. 100 mL water was
added and the mixture was extracted with dichloromethane (DCM) three times, the
combined organic layer was dried over Na,SO,. The solvent was removed under a
reduced pressure to afford a residue, which was purified by column chromatography
over silica gel using PE:DCM (3:1) as the eluent to afford the target compound as a
light yellow solid (313 mg, 70%). 'H NMR (400 MHz, CDCls): 6 ppm 8.39 (dd, J =
8.1, 0.8 Hz, 2H), 8.07 (dd, J = 7.8, 0.7 Hz, 2H), 7.49 (t, J = 8.0 Hz, 2H), 4.32 — 4.21
(m, 2H), 4.00 (s, 6H), 1.82 — 1.69 (m, 2H), 1.49 — 1.28 (m, 6H), 0.90 (t, J = 7.0 Hz,
3H). 3C NMR (100 MHz, THF-dg) 6 ppm 165.50, 165.35, 141.61, 138.15, 136.25,
135.43,130.50, 129.65, 128.09, 125.67, 53.21,47.97,32.37, 28.54,27.67, 23.35, 14.24.
HRMS (m/z): Calcd. for CycH,506N [M], Exact Mass: 447.1682; Found: 447.1684, m.
p. 125-126 °C.

Methyl2-cyano-2-(9-hexyl-8,10-diox0-9,10-dihydrofluoreno[4,5-cde]azepin-
4(8H)-ylidene)acetate (C6FICNE):

O~

C6FICNE
C6FOI (250 mg, 0.75 mmol), methyl 2-cyanoacetate (223 mg, 2.25 mmol) and 3 mL
pyridine in 30 mL DCM was stirred at 0 °C. Then 0.5 mL TiCl, was added slowly to
the mixture and the reaction misture was stirred at room temperature overnight. 100 mL

water was added and the mixture was extracted with dichloromethane (DCM) three
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times, the combined organic layer was dried over Na,SO,. The solvent was removed
under a reduced pressure to afford a residue, which was purified by column
chromatography over silica gel using PE:DCM (3:1) as the eluent to afford the target
compound as a light yellow solid (202 mg, 65%). '"H NMR (400 MHz, CDCl;): 6 ppm
8.86 (d, /= 7.8 Hz, 1H), 8.48 — 8.33 (m, 3H), 7.59 (t, /= 8.0 Hz, 1H), 7.49 (t, /= 8.0
Hz, 1H), 4.31 — 4.20 (m, 2H), 4.06 (s, 3H), 1.83 — 1.69 (m, 2H), 1.48 — 1.28 (m, 6H),
0.91 (t, J=7.0 Hz, 3H). 3C NMR (150 MHz, THF-dg) 8 ppm 164.90, 164.85, 162.84,
151.87, 138.45, 138.41, 137.06, 136.99, 136.04, 134.81, 132.62, 130.51, 130.38,
130.19, 128.29, 128.21, 116.28, 102.73, 54.03, 48.13, 32.34, 28.44,27.67, 23.35, 14.23.
HRMS (m/z): Caled. for C5H,04N, [M], Exact Mass: 414.1585; Found: 414.1585,
m. p. 126-127 °C.

4-(3-Ethyl-4-oxo0-2-thioxothiazolidin-5-ylidene)-9-(2-ethylhexyl)fluoreno|[4,5-
cdelazepine-8,10(4H,9H)-dione (EHFIR):

EHFOI (180 mg, 0.5 mmol), rhodanine (160 mg, 1 mmol), and falanine (76.0 mg,
0.85 mmol) were dissolved in a mixture of glacial acetic acid (10 mL) and toluene (10
mL) and the reaction mixture was stirred at 118 °C for 18 h. Upon cooled to room
temperature, the mixture was diluted with water (100 mL) and extracted with CHClI; (3
x15 mL). The combined organic layer was washed with NaHCOj saturated solution
until no gas formation was observed, dried over anhydrous Na,SO, and filtered. The
solvent was removed under a reduced pressure to afford a residue, which was purified
by column chromatography over silica gel using PE:DCM (3:1) as the eluent to afford
the target compound as a light yellow solid (100 mg, 40%). 'H NMR (400 MHz,
CDCls): 6 ppm 9.59 (d, J= 8.0 Hz, 1H), 8.35 (dd, J= 8.1, 3.9 Hz, 2H), 8.07 — 8.00 (m,

1H), 7.56 (td, J = 8.0, 4.5 Hz, 2H), 4.43 — 4.24 (m, 4H), 1.87 (m,1H), 1.43 — 1.21 (m,
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11H), 0.96 — 0.81 (m, 6H). 13C NMR (150 MHz, THF-dg) 6 ppm 191.03, 166.65,
165.87, 165.67, 138.32, 138.24, 137.96, 137.40, 135.98, 135.50, 134.89, 133.74,
131.40, 130.24, 129.72, 128.42, 128.14, 127.86, 50.39, 40.72, 38.80, 31.54, 29.34,
24.76, 23.81, 14.27, 12.15, 10.88. HRMS (m/z): Calcd. for CygH,305N,S, [M], Exact
Mass: 504.1547; Found: 504.1549, m. p. 135-136 °C.

2-(9-Butyl-8,10-diox0-9,10-dihydrofluoreno|4,5-cde]azepin-4(8H)-ylidene)
malononitrile (C4FIDCN):

NC™ CN

C4FIDCN

Compound C4FOI (305 mg, 1.0 mmol) and malononitrile (100 mg, 1.5 mmol) were
dissolved in 4 mL DMSO and the mixture was stirred at 120 °C for 24 h. After cooled
to room temperature, 20 mL de-ionized water was added to the reaction. Then the
resulted mixture was filtered and washed with acetonitrile to give the crude product
C4FIDCN as light yellow precipitate. The crude product was further purified with
column chromatography to afford the target compound as a light yellow solid (335 mg,
96%). 'H NMR (400 MHz, CDCls): 6 ppm 8.69 (d, J= 7.7 Hz, 2H), 8.50 (d, J = 8.2
Hz, 2H), 7.62 (t, J = 8.0 Hz, 2H), 4.3-4.23 (m, 2H), 1.80-1.68 (m, 2H), 1.52-1.40 (m,
2H), 1.00 (t, J = 7.4 Hz, 3H). 3C NMR (100 MHz, THF-dg) & ppm 164.61, 158.15,
138.62, 138.38, 134.71, 131.17, 130.80, 128.76, 113.64, 79.52, 47.97, 30.65, 21.13,
14.04. HRMS (m/z): Calcd. for C,,HsN3;0, [M], Exact Mass: 353.1170; Found:
353.1171, m. p. 188-189 °C.

2-(9-Hexyl-8,10-diox0-9,10-dihydrofluoreno|4,5-cde]azepin-4(8H)-
ylidene)malononitrile (C6FIDCN):

S9



C6FIDCN

C6FIDCN was prepared following the same procedure for C4FIDCN (95%). 'H NMR
(400 MHz, CDCl;): 6 ppm 8.69 (d, J= 7.7 Hz, 2H), 8.50 (d, /= 8.2 Hz, 2H), 7.62 (t, J
= 8.0 Hz, 2H), 4.33-4.18 (m, 2H), 1.75 (dt, J = 15.4, 7.5 Hz, 2H), 1.49-1.30 (m, 6H),
0.91 (t, J= 6.9 Hz, 3H). 3C NMR (100 MHz, THF-dg) 8 ppm 164.71, 158.31, 138.75,
138.36, 134.82, 131.13, 130.82, 128.86, 113.69, 79.53, 48.17, 32.33, 28.45, 27.64,
23.34, 14.22. MALDI-TOF MS: Calcd. for C,4H9N;0, [M], Exact Mass: 381.1483;
Found: 381.1480, m. p. 199-200 °C.
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Fig. S1. '"H NMR spectrum of compound 5 in DMSO-dg.
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Fig. S2. 3C NMR spectrum of compound 5 in DMSO-d.
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Fig. S3. High-resolution mass spectrum of compound 5 (negative mode).
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Fig. S5. 3C NMR spectrum of compound 6 in DMSO-d.
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Fig. S6. High-resolution mass spectrum of compound 6 (negative mode).
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Fig. S7. '"H NMR spectrum of compound C4FOI in CDCl;.
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Fig. S9. High-resolution mass spectrum of compound C4FOI (positive mode).
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Fig. S11. 13C NMR spectrum of compound C6FOI in CDCl;.
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Fig. S12. High-resolution mass spectrum of compound C6FOI (positive mode).

OFOFTOO © —OOMD MO TOOD—NO

T HOOXOLAL O Moo 0000, CINROI0C)

QOCOMP~P~I~P~ I~ <t - TeeO000
Vo s iy Y i

EHFOI

NLL_J%

2.27 4 —

2.00=
1.99«
217+
8.264
©16.614

g
)
)
-

.0

9.0

@
o

70 60 50 40 30 2
ppm

Fig. S13. '"H NMR spectrum of compound EHFOI in CDCls.

S16



e M~ Oy~ o o
~ o SINDOOC S & oRIse B8R S
= 7o) OO~ 5 coooto >
> © FOOONN e 3 RN IS S
= 0 Lt

| | Y | | NSNS N Vi |

200 180 160 140 120 100 80 60 40 20 0
ppm

Fig. S14. 13C NMR spectrum of compound EHFOI in CDCls;.

[M+H]*

czcd #11 RT: 012 AV: 1 NL: 143E8

T: FTMS + p ESI Full ms [200.0000-800.0000]
362.17529

C23 H24 O3 N =36217507

100 0.61531 ppm

90
80
70
60
50

40

363.17664

30 =1

20

10 364.17987
z=1

3615 362.0 3625 363.0 363.5 364.0 364.5 365.0 365.5 366.0 366.5 367.0
miz

Fig. S15. High-resolution mass spectrum of compound EHFOI (positive mode).
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Fig. S16. "H NMR spectrum of compound C6FIDE in CDCls.
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Fig. S17. 3C NMR spectrum of compound C6FIDE in THF-ds.
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Fig. S18. High-resolution mass spectrum of compound C6FIDE (negative mode).
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Fig. S20. 13C NMR spectrum of compound C6FICNE in THF-dj.
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Fig. S21. High-resolution mass spectrum of compound C6FICNE (negative mode).
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Fig. S23. 3C NMR spectrum of compound EHFIR in THF-d.
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Fig. S24. High-resolution mass spectrum of compound EHFIR (negative mode).
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Fig. S25. '"H NMR spectrum of compound C4FIDCN in CDCl;.
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Fig. S26. 13C NMR spectrum of compound C4FIDCN in THF-ds.
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Fig. S27. High-resolution mass spectrum of compound C4FIDCN (negative mode).
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Fig. S29. 3C NMR spectrum of compound C6FIDCN in THF-ds.
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Fig. S30. High-resolution mass spectrum of compound C6FIDCN (negative mode).

4. Thermal properties

Thermogravimetric analysis (TGA) was performed to study the thermal properties on a
Shimadzu DTG-60H thermogravimetric analyses at a heating rate of 10 °C/min under
a nitrogen atmosphere. As shown in Fig. S31, mass losses of C6FOI and C6FIDCN
go to zero, the process is more likely sublimation/evaporation, not the complete thermal

decomposition. Therefore, the thermal stability of them may be even higher.
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Fig. S31. TGA curves of C6FOI, C6FIDE, C6FICNE, EHFR, and C6FIDCN.
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5. Optical properties

Photoluminescence (PL) spectra of C6FOI, C6FIDE, C6FIECN, EHFIR and
C6FIDCN in dichloromethane (DCM) solution were record using an Edinburg LFS980
fluorescence spectrophotometer. The PL quantum yield of the molecules were

measured using a Hamamatsu absolute PL. quantum yield spectrometer C11347.
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Fig. S32. PL spectra of C6FOI, C6FIDE, C6FICNE, EHFIR and C6FIDCN in DCM
(104 M) solution (excitation wavelength: C6FOI/320 nm, C6FIDE/320 nm,
C6FICNE/340 nm, EHFIR/405 nm, C6FIDCN/340 nm).

Table S1. Photophysical, electrochemical and thermal properties of the
molecules.

Molecul ma (01) PLQY (% T,

olecule Abs. ~ QY (%) d
C6FOI1 324/340 505 2.1 275
C6FIDE 329 374 1.8 318
C6FICNE 345 404 1.2 317
EHFIR 432 590 0.9 366
C6FIDCN 350/367 610 0.7 303

6. Electrochemical studies

Cyclic voltammetry measurements* of the molecules were carried out under argon
atmosphere using a CHI760E voltammetric analyzer with 0.1 M tetra-n-
butylammonium hexafluorophosphate (BusNPF¢) in acetonitrile as supporting

electrolyte. A glassy carbon working electrode, a platinum wire counter electrode and
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silver wire reference electrode were employed, and Fc/Fc* was used as internal
reference for all measurements. The scan rate was 100 mV/s. Molecular films were
drop-coated from chloroform solutions on a working electrode (2 mm in diameter). The
supporting electrolyte solution was thoroughly purged with Ar before all CV

measurement.
ELUMO = - (480— E[Fc+/Fc] +Fonset red) eV (1)

Where Eonset red is the onset potential of reduction, and Ejpci/rc) 1s the £/, of Fc/Fc

vs AgCl/Ag, respectively.

Table S2. Photophysical, electrochemical and thermal properties of the

molecules.
V) (eV)
Eons Eopt

Molecule

Ereord et HOMO¢Y LUMO¢ g® HOMO¢ LUMO* Es*

red

C6FOI 046  0.71 -7.08 3.36 3.45 -6.78 -2.72 4.06
C6FIDE 046  0.68 -7.07 3.66 3.41 -6.46 -2.76 3.70
C6FICNE 046  0.49 -7.08 3.85 3.23 -6.73 -3.25 3.48
EHFIR 045 0438 -6.51 3.87 2.64 -6.46 -3.31 3.15
C6FIDCN 045  0.36 -7.21 3.99 3.22 -7.06 -3.63 3.43

2 Estimated from absorption onset of the absorption spectrum using the equation: Eopt
g = 1240/ onset (€V). © Efpeire) 18 the Eyp of Fc™/Fc vs AgCl/Ag, here using Fc*/Fc as
internal standard, ¢ Epymo = - (4.80- Ejct/re; TEonset red) eV, ¢ Calculated based on the

equation: Eyomo = ELumo — Eopt g. ¢ DFT calculated.
7. Computational studies

Density functional theory (DFT) calculations were performed on Gaussian 09 program
package’® in a gas phase, using the Becke three-parameter hybrid functional combined
with Becke-Lee-Yang-Parr correlation functional (B3LYP) with 6-31G(d) basis set to
get theoretical prediction on the single molecular geometries, the frontier orbital energy
levels, and isosurfaces of the imide-functionalized fluorenone derivatives. Vibrational

frequencies analysis was performed for the optimized geometries to confirm all
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stationary points are minima (zero imaginary frequencies) on the respective potential
energy hypersurfaces. HOMO and LUMO energies were calculated for the optimized
geometries. The all orbital surfaces were obtained using GaussView 5.0. The energy
gap (E¢) was achieved from the energy difference between HOMO and LUMO of the
compound. Transfer integral analysis was also carried out through theoretical
calculation by Gaussian 09 software,> using B3LYP functional and 6-31G (d, p) basis

set for modeling based on their single crystal structures.
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Fig. S33. Optimized molecular geometries and electrostatic potential (ESP) surface of
fluorenone imide and its derivatives of fluorenone imide and its derivatives. The alkyl
chains were replaced with methyl groups for calculation simplicity and the calculations

were carried out at the B3LYP/6-31G (d) level.
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Fig. S34. The LUMO energy levels of FOI, FIDE, FICNE, FIR, and FIDCN together
with some classic acceptor units as comparison. The LUMO levels are calculated based

on density functional theory (DFT) at the B3LYP/6-31G (d) level.
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Atom coordinates, total energies and HOMO/LUMO energy levels for B3LYP/6-

31G(d) optimized geometries of fluorenone imide and its derivatives.
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FICNE

E(total)=-1179.785515 Hatree

E(HOMO)=-©.24768 Hatree; E(LUMO)=-8.
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FIR
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FIDCN

E(total)=-1044.149394 Hatree

E(HOMO)=-8.25956 Hatree; E(LUMO)=-0.
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8. Single crystal

Single crystals of C4FIDCN and C6FIDCN were grown by slow evaporation of
combined DCM and C,H;OH solutions at room temperature. X-ray crystallography was
carried out on a Bruker SMART APEX-II CCD diffractometer with graphite
monochromated Mo-Ka radiation at 298 or 167 K. The crystal structures were analyzed
by Mercury 2020.3.0 software and the structure data were summarized in Table S1.

The CIF files of the single crystals were also attached.

In C4FIDCN crystals, the molecules crystallize in the orthorhombic system with the
1ba?2 space group (Table S3) and show a molecular order dominated by edge-to-face
interactions, leading to a herringbone arrangement with a short stacking distance of
3.38 and 3.45 A (Fig. S35a). The cofacial columns are held together by H-bonds (2.62
A) between the carbonyl oxygens and hydrogen atoms of the nearby molecule at the C3
positions. Due to the bulkiness of butyl, some adjacent molecules also show a longer

distance of 6.38 A (Fig. S35¢). For C6FIDCN, the molecules crystallize in the triclinic

system with the pl space group (Table S4), in which the molecule packs in a slipped-

stack arrangement, with a mean distance of 3.41 A between n-r faces (Fig. S35b, d).
Similarly, the slipped-cofacial columns are also held together by H-bonds (2.65 A)
between carbonyl oxygens and adjacent hydrogen atoms at the 3 position. It is worth
noting that the C6FIDCN crystals adopt a partial brick-wall packing motif which has
been suggested to promote enhanced transfer integrals and facilitate the charge
transport.® To further understand the effect of molecular packing mode on their
mobility, their transfer integral (¢) values were calculated based on the crystal packing
model of C4FIDCN and C6FIDC. Indeed, C4FIDCN had a small negative ¢ value of
-7.45 meV in the n-stacking direction and a moderate negative ¢ value of -19.56 meV
(%) in the lateral direction, but COFIDCN exhibited a large negative ¢ value of -53.45
meV (#3) in the nt-stacking direction and a positive ¢ value of 19.74 meV (%) in the lateral

direction, indicating more balanced intermolecular overlaps (Fig. S35e, f, Table S5).”
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Fig. S35. Crystal packing models of C4FIDCN (a, ¢), C6FIDCN (distance in A) (b,
d), and short contacts and estimation of transfer integrals of C4FIDCN (e), C6FIDCN

(.
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Table S3. Crystal data and structure refinement for C4FIDCN.

C4FIDCN
Empirical formula Cy»H;5N30,
Formula weight 353.37
Temperature/K 298(2)
Crystal system orthorhombic
Space group 1ba?2
a/A 10.2240(9)
b/A 43.467(4)
c/A 7.7850(7) A
a/° 90°
p/e 90°
v/° 90°
Volume/A3 3459.7(5)
Z 8
Pealcg/cm? 1.357
wmm-! 0.089
F(000) 1472
Radiation CuKa (A =1.54184)

20 range for data collection/°
Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?

Final R indexes [[>=2c (I)]
Final R indexes [all data]
Largest diff. peak/hole / e A-3
CCDC NO.

2.812 to 28.247

-13<h<13,-44<k<57,-10<1<10

13118

4160 [Riy; = 0.0285, Rgigma = 0.0097]

4160/1/245

1.161

R;=0.0578, wR, =0.1571
R; =0.0805, wR, = 0.1783
0.225/-0.195

2164016

Table S4. Crystal data and structure refinement for Co6FIDCN.

C6FIDCN
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Empirical formula Cy4H19N30,
Formula weight 381.42
Temperature/K 169.98(10)

Crystal system triclinic

Space group rl

a/A 4.96443(14)

b/A 9.1287(2)

c/A 21.2708(6)

o/° 80.708(2)

p/e 88.385(2)

v/° 88.576(2)
Volume/A3 950.74(4)

Z 2

Pealcg/cm’ 1.332

wmm-! 0.694

F(000) 400.0

Crystal size/mm? 0.15x 0.1 x 0.08
Radiation CuKa (A =1.54184)
20 range for data collection/° 4.21 to 135.972
Index ranges -4<h<5,-10<k<10,-25<1<24
Reflections collected 10550

Independent reflections 3433 [Rip = 0.0360, Rgigma = 0.0397]
Data/restraints/parameters 3433/0/264
Goodness-of-fit on F? 1.050

Final R indexes [[>=26 (I)] R, = 0.0544, wR, = 0.1457
Final R indexes [all data] R;=0.0631, wR, =0.1521
Largest diff. peak/hole / e A~ 0.47/-0.20

CCDC NO. 2165586
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Table S5. Short contacts and estimation of transfer integrals of C4FIDCN and
C6FIDCN.

C4FIDCN T(meV) Ang(A) C6FIDCN T (meV) Ang (A)

1 1956 () 3.89 1 19.74 (1)) 9.12
2 745(1) 1081 2 -53.45 (1) 5.01
3 745(1) 1081 3 19.74 (1)) 9.12
4 1956 () 3.89 4 -53.45 (1) 5.01

9. Device fabrication and characterization

The OFFT devices based on C4FIDCN and C6FIDCN were prepared as follows:
heavily doped n-type silicon wafers with 300 nm thick SiO, layer (C=11 nF cm?) were
successively cleaned by deionized water, piranha solution (hydrogen peroxide :
concentrated sulfuric acid (1:2; v/v)), pure water and isopropanol and finally dried by
nitrogen flow. Then the SiO, (300 nm)/Si substrate was modified with a self-assembled
monolayer of orthotrichlorosilane (OTS) to optimize the surface contact quality to
enhance the devices performance. Dropping the chloroform solutions of C4FIDCN and
C6FIDCN (0.5 mg mL-") onto the 1 cm*1 cm above-prepared substrates which were
placed in a closed jar. Then ribbon-like microcrystals were grown slowly at room
temperature in the atmosphere as the solvent evaporated. And then bottom-gate/top-
contact devices with Ag (80 nm) as the source and drain electrodes were fabricated by
an “organic ribbon mask” technique ®!!. More than ten devices of each material
(C4FIDCN, C6FIDCN) were fabricated. Then all electrical measurements of OFETs
were performed on PDA FS-Pro 380 test system with micromanipulator probe station
in glove box. All the field-effect mobilities were calculated in the saturation regime of
the curves based on the equation: Ing = WCyu (V5-Vy)*/2L. In the OFET devices along
the OFET channel length, the crystal of C6FIDCN grown along the most tightly packed
direction, and the charge transport is also along this direction, which is well matching
to the transfer integral analysis. C6FIDCN shows a 1D slipped stack motif, in which
the molecule packs in a slipped-stack arrangement, with a mean distance of 3.41 A
between n-1 faces. Such a packing motif is beneficial for the efficient in-plane charge

transport in OFETs,!> 13 enabling the superior device performance of C6FIDCN. The
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mobilities of all devices based on C6FIDCN are on the order of 103 cm? V-! 571, while
the performances of C4FIDCN are poorer with no obvious field-effect transistor

performance.

Table S6. OFET performance parameters of COFIDCN.

Molecule He, sat (Cl’l’l2 V_ls_l) i Vth (V) b Ion/loff
C6FIDCN 0.0071(0.0036) 6 10*

@ Maximum mobility with average value from at least five devices is shown in

parentheses. ? Average threshold values is shown.
10. Optical microscopy and X-ray diffraction

The optical images of all single crystals were captured by Olympus BX53, The X-ray

diffraction patterns were tested by Empyrean.

Fig. S36. Optical images of C4FIDCN (a) and C6FIDCN (b) nanowire crystals on the
OTS-modified SiO,/Si substrate.

(b)
(002)
(001)
2127 A
(001) (003)
5 0 15 20 25 30 5 10 15 20 25 30
26 (degree) 26 (degree)

Fig. S37. X-ray diffraction pattern of C4FIDCN (a) and C6FIDCN (b) nanowire
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crystals.
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