# **Supporting Information for**

# Boosting the photocatalytic performance via isomeric configuration design in covalent organic frameworks

Fan Yang, \*#a Hong-Yan Qu, #a Yuan Guo, b Jing-Lan Kana and Yu-Bin Dong\*a

<sup>a</sup>College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.

<sup>b</sup>School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

# Contents

- 1. Materials and measurements (page S3)
- 2. Synthesis of the monomers and COFs (page S4-S9)
- 3. Simulated AB stacking models (page S9-S10)
- 4. Characterization of COFs (page S10-S12)
- 5. CV Curves (page S13)
- 6. Photocatalytic performance (page S13-S35)
- 7. Sunlight irradiation (page S35)
- 8. Photocurrent curves (page S36)
- 9. DFT calculations (page S36)
- 10. ESR spectrums (page S37)
- 11. Crystallographic parameters (page S37-S40)

#### 1. Materials and measurements

The synthetic procedures were performed under argon atmosphere. Commercial chemicals (from sigma-Aldrich, JK Chemical and TCI) were used as received.

<sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectra of intermedia products, monomers and catalytic products were recorded at 400 MHz on a Bruker Avance spectrometer with tetramethylsilane (TMS) as the internal standard. Powder X-ray diffraction (PXRD) data were collected using a D8 ADVANCE X-ray with Cu K $\alpha$  radiation ( $\lambda = 1.5405$  Å). Fourier Transform Infrared (FT-IR) spectra in the region of 400-4000 cm<sup>-1</sup> were obtained with a Perkin-Elmer 1600 FT-IR spectrometer. Ultraviolet-visible (UV-vis) absorption spectra were recorded on a Shimadzu UV-2600 Double Beam UV-vis Spectrophotometer. Cyclic voltammetry (CV) measurement was performed on a CHI660E electrochemical workstation in a three-electrode system. The working electrode was prepared by dropcasting an 5% Nafion (50 uL) suspension of COF (0.2 mg) and carbon black (0.7 mg) onto a glassy carbon electrode. The auxiliary electrode and reference electrode were platinum-wire and Ag/AgNO<sub>3</sub>, and the electrolyte was 0.1 Μ tetrabutylammonium hexafluorophosphate in acetonitrile, Ferrocene was used as a standard to calculate the energy levels vs. vacuum. Thermogravimetric analysis (TGA) was performed on a TGA/DSC 3+ in the temperature range of 30-800 °C under a nitrogen atmosphere and a heating rate of 10 °C/min. Scanning electron microscopy (SEM) images were performed on a SUB010 scanning electron microscope with acceleration voltage of 20 kV. Solid state <sup>13</sup>C CP-MAS spectrum was acquired at BRUKER AVANCE NEO 400WB. N2 adsorption-desorption isotherm was obtained using an ASAP 2020/TriStar 3000 (Micromeritics) apparatus measured at 77 K, the sample was degassed at 100 °C for 12 h under high vacuum before analysis. High resolution mass spectrometry (HRMS) analysis was detected by Bruker maXis ultrahigh-resolution-TOF mass spectrometer. The models of LED lamp is PL-SX100A. Electron paramagnetic resonance (EPR) spectra was measured by Bruker A300 EPR Spectroscopy. The electrochemical impedance spectra (EIS) was performed by Correst Electrochemical Workstation CS310H. Chenhua electrochemical workstation (CHI660D Instruments, Shanghai Chenhua Instrument Co., Ltd., Shanghai, China) was used to measure the photocurrent. Transmission electron microscopy (TEM) images and corresponding elemental mapping images was measured by FEI Talos F200X American FEI.

#### 2. Synthesis of the monomers and COFs

## 2.1 Synthesis of the monomers



Scheme S1 Synthesis procedure of 4-bromo-7-(5,5-dimethyl-1,3-dioxan-2-yl)benzo[*c*][1,2,5]thia diazole (m1b)

**Synthesis of m1b.** To a 100 mL pressure tube was added 7-bromo-benzo[*c*][1,2,5]thiadiazole-4carbaldehyde (m1a, 1.5 g, 6.17 mmol). Neopentyl glycol (778.6 mg, 7.48 mmol), *p*-Toluenesulfonic acid monohydrate (35.2 mg, 0.19 mmol) and 10 mL Toluene. Then the reaction system was degassed-inflated with nitrogen three times. After stirring overnight at a temperature of 113 °C, the system was cooled to room temperature. The liquid was extracted three times with saturated NaHCO<sub>3</sub> solution and ethyl acetate and the organic phase was collected. The organic phase was dried over anhydrous MgSO<sub>4</sub> and the solvent was removed in vacuo. The crude product was purified by silica gel chromatography (dichloromethane: petroleum ether, v/v = 2:1 as eluent) to obtain **m1b** as a white powder (1.96 g, 97% of yield). <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ (ppm) 7.89-7.87 (d, *J* = 8.0 Hz, 1H), 7.80-7.78 (d, *J* = 8.0Hz, 1H), 6.12 (s, 1H), 3.86-3.79 (m, *J* = 28.0 Hz, 4H), 1.35 (s, 3H), 0.85 (s, 3H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$ (ppm) 153.43, 152.39, 131.89, 130.45, 127.35, 114.86, 97.79, 77.93, 30.46, 23.04, 21.85. HR-MS (EI): m/z [M+H]<sup>+</sup> calcd for C<sub>12</sub>H<sub>12</sub>BrN<sub>2</sub>O<sub>2</sub>S: 328.9959, found: 328.9919.



Fig. S1 The <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR spectrums of m1b.



Scheme S2 Synthesis procedure of TBT.

**Synthesis of TBT.** To a 100 mL pressure tube was added 1,3,5-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (TTDB, 730.5 mg, 1.60 mmol), 4-bromo-7-(5,5-dimethyl-1,3-dioxan-2-yl)benzo[*c*][1,2,5]thiadiazole (m1b, 1.74 g, 5.29 mmol), [(*t*-Bu)PH]BF<sub>4</sub> (32.5 mg, 0.11 mmol), 1 mL K<sub>3</sub>PO<sub>4</sub> aqueous solution (2M) and 10 mL THF. Then the mixture was degassed-inflated with nitrogen three times before Pd<sub>2</sub>(dba)<sub>3</sub> (29.3 mg, 0.03 mmol) was added. The reaction system was heated up to 80 °C for 24 h. After the reaction system was cooled to room temperature, the reaction solution was extracted three times with ethyl acetate and saturated NaCl solution and then the organic phase was collected. After drying over anhydrous MgSO<sub>4</sub>, the solvent was removed in vacuo. The crude product was purified by silica gel chromatography (dichloromethane:ethyl acetate, v/v = 50:1 as eluent) to obtain **TBT** as light yellow powder (950 mg, 73% of yield). <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ (ppm) 8.52 (s, 3H), 8.08-8.07 (d, *J* = 4.0 Hz, 3H), 7.95-7.93 (d, *J* = 8.0 Hz, 3H), 6.26 (s, 3H), 3.90-3.84 (m, *J* = 24.0 Hz, 12H), 1.39 (s, 9H), 0.87 (s, 9H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$ (ppm) 153.68, 153.36, 137.95, 134.50, 130.43, 130.16, 128.16, 127.00, 98.16, 77.98, 30.52, 23.09, 21.92.HR-MS (EI): m/z [M+Na]<sup>+</sup> calcd for C<sub>42</sub>H<sub>42</sub>N<sub>6</sub>O<sub>6</sub>S<sub>3</sub> 845.2226, found: 845.2264.



Fig. S2 The <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR spectrums of TBT.



Scheme S3 Synthesis procedure of BBT

Synthesis of BBT. Ni(COD)<sub>2</sub> (601.57 mg, 2.19 mmol), 1,5-cyclooctadiene (197.2 mg, 1.82 mmol), and bipyridine (341.6 mg, 2.19 mmol) were dissolved in 10 mL of dry DMF in a Schlenk tube under  $N_2$ atmosphere. Then the 4-bromo-7-(5,5-dimethyl-1,3-dioxan-2vl)benzo[c][1,2,5]thiadiazole (m1b, 600 mg, 1.82 mmol) was added to the solution at room temperature. The reaction system was stirred at 60 °C overnight. After the reaction mixture was cooled to room temperature, the reaction solution was diluted with dichloromethane, and the filtrate was collected after suction filtration. The filtrate was extracted three times with 10% FeCl<sub>3</sub> solution, and the organic phase was collected. The organic phase was dried over anhydrous MgSO<sub>4</sub> and the solvent was removed in vacuo. The crude product was purified by silica gel chromatography (dichloromethane as eluent) to obtain BBT as bright yellow powder (200 mg, 44% of yield). <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ (ppm) 8.27-8.25 (d, J = 8.0 Hz, 2H), 8.11-8.09 (d, J = 8.0 Hz, 2H), 6.26 (s, 2H), 3.90-3.84 (m, J = 24.0 Hz, 6H), 1.39 (s, 3H), 0.87 (s, 3H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz): δ(ppm) 153.79, 153.23, 130.82, 130.39, 126.72, 77.97, 98.09, 30.51, 23.07, 21.91. HR-MS (EI): m/z [M+H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>26</sub>N<sub>4</sub>O<sub>4</sub>S<sub>2</sub> 499.1468, found: 499.1455.



Fig. S3 The <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR spectrums of BBT.



Scheme S4 The synthetic procedure of condensation reaction. i: o-dichlorobenzene/n-bytanol/acetic acid (6 M) and trifluoroacetic acid (0.6 M) (1 / 1/0.2 mL, v/v/v), 120 °C, 24h.

**m1c**: m1c was prepared via Suzuki-Miyaura coupling reaction between m1b and phenylboronic acid with 81% of yield. <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ (ppm) 8.02-8.00 (d, J = 8.0 Hz, 1H), 7.90-7.88 (d, J = 8.0 Hz, 2H), 7.74-7.73 (d, J = 4.0 Hz, 1H), 7.54-7.51 (t, J = 12.0 Hz, 2H), 7.46-7.43 (t, J = 12.0 Hz, 1H), 6.23 (s,1H), 3.89-3.83 (m, J = 24.0 Hz, 4H), 1.39 (s, 3H), 0.86 (s, 3H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  (ppm) 153.66, 153.33, 137.31, 135.08, 128.63, 128.53, 127.73, 126.94, 98.20, 78.00, 30.52, 23.10, 21.92. HR-MS (EI): m/z [M+Na]<sup>+</sup> calcd for C<sub>18</sub>H<sub>18</sub>N<sub>2</sub>O<sub>2</sub>S 349.0987, found: 349.1096.



Fig. S4 The <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR spectrums of m1c.

**m1d:** m1c (150 mg,0.46 mmol), tert-butylaniline (102.87 mg,0.69 mmol), 2 ml odichlorobenzene, 2 ml n-butanol and 400  $\mu$ l of mixed aqueous solution of trifluoroacetic acid(0.6 M) and acetic acid(6 M) were added to a 100 ml pressure-resistant tube, and nitrogen was evacuated three times. The reaction system was heated to 120 °C and held for 24 hours. After the reaction, the system was cooled to room temperature, extracted three times with dichloromethane and saturated brine. The organic phase was collected and the solvent was removed in vacuo. The obtained crude product was purified by silica gel chromatography with petroleum ether:ethyl acetate=15 : 1 to obtain bright yellow solid **m1d** (158.4 mg, 93% yield). <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  (ppm) 9.43 (s, 1H), 8.54-8.52 (d, J = 8.0 Hz, 1H), 8.00-7.98 (m, J = 8.0 Hz, 2H), 7.87-7.86 (d, J = 4.0 Hz, 1H), 7.59-7.55 (t, J = 16.0 Hz, 2H), 7.51-7.46 (m, J = 20.0 Hz, 3H), 7.36-7.34 (d, J = 8.0 Hz, 2H), 1.37 (s, 9H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  (ppm) 154.88, 153.72, 149.95, 149.06, 136.62, 129.60, 129.40, 128.90, 128.72, 127.93, 127.43, 126.16, 121.02, 34.63, 31.45. HR-MS (EI): m/z [M+H]<sup>+</sup> calcd for C<sub>23</sub>H<sub>21</sub>N<sub>3</sub>S 372.1536, found: 372.1491.



Fig. S5 The <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR spectrums of m1d.

### 2.3 Synthesis of COFs

#### 2.3.1 Synthesis of BT-COF1

To 10 mL tube 1,3,5-tris(7-(5,5-dimethyl-1,3-dioxan-2a Pyrex was added yl)benzo[c][1,2,5]thiadiazol-4-yl)benzene (TBT, 30 mg, 0.036 mmol), 4,4'-diaminobiphenyl (DABP, 10 mg, 0.054 mmol) and o-dichlorobenzene/n-Butanol (1:1 v/v, 2 mL). After the mixture was sonicated for 1 min, 0.2 mL of mixed aqueous solution of trifluoroacetic acid (0.6 M) and acetic acid (6 M) were added. After the mixture was sonicated for another 20s again, the tube was flash frozen at 77 K using a liquid N<sub>2</sub> bath and degassed by three freeze-pump-thaw cycles, sealed under vacuum and then heated at 120 °C for 3 days. A red precipitate was formed, which was collected by sucking filtration and throughly washed with acetone, anhydrous ethanol, tetrahydrofuran, and dichloromethane, respectively. The collected sample was dried under vacuum at 120 °C for 24 h to give a red powder (26 mg, 92 % of yield).

#### 2.3.2 Synthesis of BT-COF2

To a 10 mL Pyrex tube was added 7-(5,5-dimethyl-1,3-dioxan-2-yl)-7'-(2,2-dimethyl-1,3-dioxan-5-yl)-4,4'-bibenzo[c][1,2,5]thiadiazole (BBT, 15 mg, 0.03 mmol), 5'-(4-aminophenyl)-[1,1':3',1"-terphenyl]-4,4"-diamine (TAPB, 7 mg, 0.02 mmol) and o-dichlorobenzene/n-Butanol (1:1 v/v, 1 mL). After the mixture was sonicated for 1 min, 0.1 mL of mixed aqueous solution of trifluoroacetic acid (0.6 M) and acetic acid (6 M) were added. After the mixture was sonicated for another 20 s again, the tube was flash frozen at 77 K using a liquid N<sub>2</sub> bath and degassed by three freeze-pump-thaw cycles, sealed under vacuum and then heated at 120 °C for 3 days. A black precipitate was formed, which was collected by sucking filtration and thoroughly washed with acetone, anhydrous ethanol, tetrahydrofuran, and dichloromethane, respectively. The collected sample was dried under vacuum at 120 °C for 24 h to give a dark powder (15 mg, 91% of yield).

#### **3. Simulated AB stacking models**



**Fig. S6** Comparison of the experimental (black) and simulated (red) AB stacking PXRD patterns of **BT-COF1** and the top view of the simulated structure of AB stacking method.



**Fig. S7** Comparison of the experimental (black) and simulated (red) AB stacking PXRD patterns of **BT-COF2** and the top view of the simulated structure of AB stacking method.

## 4. Characterization of COFs

## 4.1. BET and pore size



Fig. S8 The N<sub>2</sub> adsorption-desorption isotherms and pore size distribution profiles.



Fig. S9 The FT-IR spectra of the COFs.

4.3. Solid state <sup>13</sup>C CP/MAS NMR spectrum



Fig. S10 The solid state <sup>13</sup>C CP/MAS NMR spectrums of the COFs.

# 4.4. SEM and TEM images



**Fig. S11** Scanning electron microscopy (SEM) images of (a) **BT-COF1** and (b) **BT-COF2**. Transmission electron microscopy (TEM) images and corresponding elemental mapping images of (c) **BT-COF1** and (d) **BT-COF2**.

4.5. TGA curves



Fig. S12 TGA curve of (a) BT-COF1 and (b) BT-COF2.

## 5. CV curves



Fig. S13 Cyclic voltammetry graphs of (a) BT-COF1, (b) BT-COF2, (c) ferrocene and (d) energy levels.

The energy level of the COFs vs. vacuum were derived from the following equations.

$$E_{\text{LUMO}} = -(E_{\text{red}}(\text{onset}) - E_{1/2}(\text{Fc}) + 4.8) \text{ eV}$$
  
 $E_{\text{HOMO}} = E_{\text{LUMO}} - E_{g}$ 

#### 6. Photocatalytic performance

#### 6.1. General procedure for photooxidation reaction

A 10 mL quartz tube was charged with reaction substrate (0.3 mmol), COF (10 mg) and solvent (3 mL). The mixture was bubbled with oxygen and stirred, then the tube was irradiated with a 10 w blue LED lamp or natural sunlight in room temperature. After reaction, the solution was centrifuged and the supernatant was removed by rotary evaporation. Yields were determined by <sup>1</sup>H-NMR spectroscopy with 0.3 mmol diphenylacetonitrile (DPAT) as internal standard. The isolated yields was obtained by purifying the solution by silica gel flash chromatography (Petroleum ether and Ethyl acetate).

#### 6.2. Yield of 2a determined by <sup>1</sup>H-NMR analysis



-3.05

**Fig. S14** Yield of **2a** catalyzed by **BT-COF2** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.



Fig. S15 Reaction time examination of 2a based on BT-COF2 as catalyst.

**Isolated 2a:** <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  (ppm) 7.68-7.65 (m, J = 12.0 Hz, 2H), 7.54-7.52 (m, J = 8.0 Hz, 3H), 2.74 (s, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  (ppm) 145.71, 131.04, 129.36, 123.49, 43.97. HR-MS (EI): m/z [M+Na]<sup>+</sup> calcd for C<sub>7</sub>H<sub>8</sub>OS 163.0194 found:163.0186.



Fig. S16 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 2a.

## **6.3.** Control experiments





[a] Yields determined by <sup>1</sup>H-NMR analysis. [b] Isolated yields.



-5.14

-3.05 -2.72 -2.48

Fig. S17 Yield of entry 1 determined by <sup>1</sup>H-NMR with DPAT as internal standard.



Fig. S18 Yield of entry 2 determined by <sup>1</sup>H-NMR with DPAT as internal standard.



-3.05 -2.72 -2.48

Fig. S19 Yield of entry 3 determined by <sup>1</sup>H-NMR with DPAT as internal standard.



Fig. S20 Yield of entry 4 determined by <sup>1</sup>H-NMR with DPAT as internal standard.



-2.71

Fig. S21 Yield of entry 5 determined by <sup>1</sup>H-NMR with DPAT as internal standard.



Fig. S22 Yield of entry 6 determined by <sup>1</sup>H-NMR with DPAT as internal standard.

S18



-2.72

Fig. S23 Yield of entry 7 determined by <sup>1</sup>H-NMR with DPAT as internal standard.

## 6.4. Comparison of the catalytic activities of two catalysts



**Fig. S24** Yield of 2a catalyzed by **BT-COF1** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.



**Fig. S25** Yield of 2b catalyzed by **BT-COF1** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.



**Fig. S26** Yield of 2**b** catalyzed by **BT-COF1** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.

**Isolated 2b**: <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz): δ (ppm) 7.55-7.53 (d, *J* = 8.0 Hz, 2H), 7.34-7.32 (d, *J* = 8.0 Hz, 2H), 2.70 (s, 3H), 2.41 (s, 3H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz): δ (ppm) 142.44, 141.51, 130.02, 123.54, 43.92, 21.36. HR-MS (EI): m/z [M+Na]<sup>+</sup> calcd for C<sub>8</sub>H<sub>10</sub>OS 177.0350, found: 177.0366.



Fig. S27 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 2b.



**Fig. S28** Yield of **2c** catalyzed by **BT-COF1** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.



-3.04

**Fig. S29** Yield of **2c** catalyzed by **BT-COF2** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.

**Isolated 2c:** <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  (ppm) 7.61-7.59 (d, J = 8.0 Hz, 2H), 7.52-7.50 (d, J = 8.0 Hz, 2H), 2.72 (s, 3H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  (ppm) 144.29, 137.23, 129.64, 124.98, 44.05. HRMS (ESI) m/z [M+Na]<sup>+</sup> calcd for C<sub>7</sub>H<sub>8</sub>ClOS:196.9804 found:196.9815.



Fig. S30 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 2c.



**Fig. S31** Yield of **2d** catalyzed by **BT-COF1** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.



**Fig. S32** Yield of **2d** catalyzed by **BT-COF2** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.

**Isolated 2d:** <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  (ppm) 7.60-7.58 (d, J = 8.0 Hz, 2H), 7.46-7.44 (d, J = 8.0 Hz, 2H), 2.64 (s, 3H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  (ppm) 144.89, 132.56, 125.43, 125.15, 44.00. HRMS (ESI) m/z [M+Na]<sup>+</sup> calcd for C<sub>7</sub>H<sub>8</sub>BrOS:240.9299 found:240.9294.



Fig. S33 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 2d.



**Fig. S34** Yield of **2e** catalyzed by **BT-COF1** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.



**Fig. S35** Yield of **2e** catalyzed by **BT-COF2** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.

**Isolated 2e:** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ (ppm) 7.63 (s, 1H), 7.46-7.42 (m, *J* = 16.0 Hz, 3H), 2.70 (s, 3H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz): δ (ppm) 147.83, 131.17, 130.59, 123.60, 121.61, 44.01. HRMS (ESI) m/z [M+Na]<sup>+</sup> calcd for C<sub>7</sub>H<sub>8</sub>ClOS 196.9804 found:196.9783.



Fig. S36 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 2e.



**Fig. S37** Yield of **2f** catalyzed by **BT-COF1** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.



**Fig. S38** Yield of **2f** catalyzed by **BT-COF2** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.

**Isolated 2f:** <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  (ppm) 7.77 (s, 1H), 7.59-7.57 (d, J = 8.0 Hz, 1H), 7.51-7.49 (d, J = 8.0 Hz, 1H), 7.38-7.34 (t, J = 16.0 Hz, 1H), 2.70 (s,3H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  (ppm) 147.98, 134.10, 130.85, 126.45, 123.58, 122.10, 44.04. HRMS (ESI) m/z [M+Na]<sup>+</sup> calcd for C<sub>7</sub>H<sub>8</sub>BrOS:240.9299 found:240.9305.



Fig. S39 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 2f.



**Fig. S40** Yield of **2g** catalyzed by **BT-COF1** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.



1.21 1.20 1.18

Fig. S41 Yield of 2g catalyzed by BT-COF2 and determined by <sup>1</sup>H-NMR with DPAT as internal standard.

**Isolated 2g:** <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz): δ (ppm) 7.61-7.58 (m, *J* = 12.0 Hz, 2H), 7.53-7.47 (m, J = 24.0 Hz, 3H), 2.91-2.72 (m, J = 36.0 Hz, 2H), 1.20-1.16 (t, J = 16.0 Hz, 3H). <sup>13</sup>C- NMR (CDCl<sub>3</sub>, 100 MHz): δ (ppm) 143.29, 130.92, 129.13, 124.16, 50.27, 5.94. HRMS (ESI) m/z  $[M+Na]^+$  calcd for  $C_8H_{10}OS:177.0348$  found:177.0346.



Fig. S42 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 2g.



-5.14

2.30 2.29 2.27 2.25 2.25

**Fig. S43** Yield of **2h** catalyzed by **BT-COF1** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.



**Fig. S44** Yield of **2h** catalyzed by **BT-COF2** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.

**Isolated 2h:** <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  (ppm) 7.64-7.62 (m, J = 8.0 Hz, 2H), 7.48-7.46 (m, J = 8.0 Hz, 3H), 2.26-2.19 (m, J = 28.0 Hz, 1H), 1.21-1.17 (m, J = 16.0Hz, 1H), 1.00-0.89 (m, J = 44.0 Hz, 3H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  (ppm) 144.88, 130.92, 129.16, 124.01, 33.78, 3.41, 2.75. HRMS (ESI) m/z [M+Na]<sup>+</sup> calcd for C<sub>9</sub>H<sub>10</sub>OS:189.0350 found:189.0358.



Fig. S45 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 2h.



**Fig. S46** Yield of 2i catalyzed by **BT-COF1** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.



**Fig. S47** Yield of 2i catalyzed by **BT-COF2** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.

**Isolated 2i:** <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  (ppm) 7.49-7.37 (m, J = 48.0 Hz, 5H), 7.29-7.23 (m, J = 24.0 Hz, 3H), 7.00-6.98 (m, J = 8.0 Hz, 2H), 4.12-4.09 (d, J = 12.0 Hz, 1H), 4.02-3.99 (d, J = 12.0 Hz, 1H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  (ppm) 142.81, 131.17, 130.37, 129.16, 128.86, 128.46, 128.26, 124.46, 63.62. HRMS (ESI) m/z [M+Na]<sup>+</sup> calcd for C<sub>13</sub>H<sub>12</sub>OS:239.0507 found:239.0495.



Fig. S48 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 2i.



**Fig. S49** Yield of **2j** catalyzed by **BT-COF1** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.





**Fig. S50** Yield of **2j** catalyzed by **BT-COF2** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.

**Isolated 2j:** <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  (ppm) 8.19 (s, 1H), 7.96-7.86 (m, J = 40.0 Hz, 3H), 7.58-7.54 (m, J = 16.0 Hz, 3H), 2.76 (s, 3H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  (ppm) 142.77, 134.42, 132.91, 129.62, 128.52, 128.08, 127.80, 127.37, 124.04, 119.46, 43.81. HRMS (ESI) m/z [M+Na]<sup>+</sup> calcd for C<sub>11</sub>H<sub>10</sub>OS:213.0350 found:213.0339.



Fig. S51 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 2j.



**Fig. S52** Yield of **2k** catalyzed by **BT-COF1** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.





**Fig. S53** Yield of **2k** catalyzed by **BT-COF2** and determined by <sup>1</sup>H-NMR with DPAT as internal standard.

**Isolated 2k:** <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  (ppm) 2.68-2.55 (m, J = 28.0 Hz, 4H), 1.74-1.67 (m, J = 28.0 Hz, 4H), 1.46-1.36 (m, J = 40.0 Hz, 4H), 0.94-0.90 (t, J = 12.0 Hz, 6H). <sup>13</sup>C- NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  (ppm) 52.14, 24.59, 22.06, 13.65. HRMS (ESI) m/z [M+Na]<sup>+</sup> calcd for C<sub>8</sub>H<sub>18</sub>OS:185.0976 found:185.0977.



Fig. S54 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 2k.

# 6.5. Recycling experiments



Fig. S55 (a) Recycling experiments. (b) PXRD spectra of photocatalyst BT-COF2 (before and after five cycles).

# 7. Sunlight irradiation



**Fig. S56** Yield of 2a catalyzed by **BT-COF2** with the irradiation of natural sunlight and determined by <sup>1</sup>H-NMR with DPAT as internal standard.

## 8. Photocurrent curves



Fig. S57 Photocurrent responses of BT-COF1 (black) and BT-COF2 (red).

## 9. DFT calculations



Fig. S58 Charge density difference between the ground and first singlet state based on the ground state structure, where the purple and blue colors represent an increase and decrease in electron density, respectively.

## 10. ESR spectrum



**Fig. S59** ESR spectra of a mixture of COF (4 mg/mL) and DMPO (0.1M) in  $O_2$ -saturated EtOH in dark and upon light irradiation.

| BT-COF1 Space group: P3                                         |         |          |          |  |  |
|-----------------------------------------------------------------|---------|----------|----------|--|--|
| a = 44.86 Å, $b = 44.86$ Å, $c = 3.59$ Å                        |         |          |          |  |  |
| $\alpha = 90^{\circ}, \beta = 90^{\circ}, \gamma = 120^{\circ}$ |         |          |          |  |  |
| Atom                                                            | Х       | У        | Z        |  |  |
| C1                                                              | 0.298   | -0.34658 | 0.0265   |  |  |
| C2                                                              | 0.3108  | -0.36931 | 0.033    |  |  |
| C3                                                              | 0.28725 | -0.40743 | 0.044    |  |  |
| C4                                                              | 0.25326 | -0.42314 | 0.18636  |  |  |
| C5                                                              | 0.23234 | -0.45809 | 0.18848  |  |  |
| C6                                                              | 0.24369 | -0.47998 | 0.05743  |  |  |
| C7                                                              | 0.27723 | -0.46533 | -0.08404 |  |  |
| C8                                                              | 0.29856 | -0.42969 | -0.09344 |  |  |
| C9                                                              | 0.22092 | -0.51735 | 0.06233  |  |  |
| N10                                                             | 0.23096 | -0.53717 | -0.08549 |  |  |
| C11                                                             | 0.21162 | -0.57393 | -0.10422 |  |  |
| C12                                                             | 0.17677 | -0.59299 | #######  |  |  |
| C13                                                             | 0.15948 | -0.62875 | -0.01418 |  |  |
| C14                                                             | 0.17645 | -0.64617 | -0.13411 |  |  |
| C15                                                             | 0.21105 | -0.62695 | -0.24649 |  |  |

## 11. Crystallographic parameters

| C16 | 0.2284  | -0.59111 | -0.2318  |
|-----|---------|----------|----------|
| C17 | 0.15833 | -0.6842  | -0.13212 |
| C18 | 0.12354 | -0.70348 | -0.2363  |
| C19 | 0.10622 | -0.73935 | -0.21976 |
| C20 | 0.12311 | -0.75674 | -0.09926 |
| C21 | 0.15821 | -0.73741 | -0.00177 |
| C22 | 0.17548 | -0.70157 | -0.01698 |
| N23 | 0.10382 | -0.7937  | -0.08495 |
| C24 | 0.11394 | -0.81396 | 0.0543   |
| C25 | 0.09117 | -0.85172 | 0.04482  |
| C26 | 0.05733 | -0.86679 | -0.09098 |
| C27 | 0.03602 | -0.9027  | -0.10397 |
| C28 | 0.04696 | -0.92511 | 0.04101  |
| C29 | 0.0811  | -0.90891 | 0.18268  |
| C30 | 0.10276 | -0.87376 | 0.17103  |
| C31 | 0.02288 | -0.96373 | 0.03649  |
| C32 | 0.03547 | -0.98689 | 0.03212  |
| N33 | 0.23757 | 0.59301  | 1.33166  |
| S34 | 0.19617 | 0.56541  | 1.44928  |
| N35 | 0.20061 | 0.53166  | 1.31798  |
| N36 | 0.09628 | 0.07505  | 1.34584  |
| S37 | 0.13759 | 0.10278  | 1.4682   |
| N38 | 0.13381 | 0.13667  | 1.32253  |
| H39 | 0.27086 | -0.35673 | 0.00936  |
| H40 | 0.28692 | -0.48126 | -0.19653 |
| H41 | 0.32333 | -0.42032 | -0.22409 |
| H42 | 0.19617 | -0.52757 | 0.19582  |
| H43 | 0.1626  | -0.58083 | 0.09363  |
| H44 | 0.13301 | -0.64276 | 0.07917  |
| H45 | 0.22461 | -0.6396  | -0.34854 |
| H46 | 0.25506 | -0.57662 | -0.31918 |
| H47 | 0.10987 | -0.69079 | -0.33421 |
| H48 | 0.07943 | -0.75375 | -0.30237 |
| H49 | 0.17261 | -0.7495  | 0.08695  |
| H50 | 0.20217 | -0.68735 | 0.06978  |
| H51 | 0.13896 | -0.80362 | 0.18208  |
| H52 | 0.04731 | -0.85082 | -0.19363 |
| H53 | 0.01122 | -0.9124  | -0.2353  |
| H54 | 0.0627  | -0.9769  | 0.02154  |

| BT-COF2            | Space group: P3              |
|--------------------|------------------------------|
| a = 44.20 Å, $b =$ | = 44.20 Å, <i>c</i> = 3.59 Å |

| $\alpha = 90^{\circ}, \beta = 90^{\circ}, \gamma = 120^{\circ}$ |         |          |          |  |
|-----------------------------------------------------------------|---------|----------|----------|--|
| Atom                                                            | X       | у        | Z        |  |
| C1                                                              | 0.29699 | -0.34991 | -0.21146 |  |
| C2                                                              | 0.31312 | -0.37045 | -0.20836 |  |
| C3                                                              | 0.29293 | -0.40759 | -0.19292 |  |
| C4                                                              | 0.25786 | -0.42593 | -0.31885 |  |
| C5                                                              | 0.23801 | -0.46221 | -0.29234 |  |
| C6                                                              | 0.25258 | -0.48137 | -0.14645 |  |
| C7                                                              | 0.28735 | -0.46377 | -0.02572 |  |
| C8                                                              | 0.30708 | -0.42753 | -0.04513 |  |
| C9                                                              | 0.2311  | -0.51953 | -0.11624 |  |
| N10                                                             | 0.24425 | -0.5376  | 0.02081  |  |
| C11                                                             | 0.22642 | -0.57473 | 0.07249  |  |
| C12                                                             | 0.19047 | -0.59642 | 3.26E-03 |  |
| C13                                                             | 0.17473 | -0.63259 | 0.04944  |  |
| C14                                                             | 0.19408 | -0.64811 | 0.17416  |  |
| C15                                                             | 0.22973 | -0.62571 | 0.24869  |  |
| C16                                                             | 0.24517 | -0.59042 | 0.19827  |  |
| C17                                                             | 0.17716 | -0.68664 | 0.20745  |  |
| C18                                                             | 0.14235 | -0.70713 | 0.32767  |  |
| C19                                                             | 0.12555 | -0.74265 | 0.31685  |  |
| C20                                                             | 0.14177 | -0.76059 | 0.18624  |  |
| C21                                                             | 0.17717 | -0.74112 | 0.08226  |  |
| C22                                                             | 0.19453 | -0.70445 | 0.08873  |  |
| N23                                                             | 0.12091 | -0.79753 | 0.13998  |  |
| C24                                                             | 0.12924 | -0.81813 | -0.03012 |  |
| C25                                                             | 0.10276 | -0.85517 | -0.07159 |  |
| C26                                                             | 0.06848 | -0.86759 | 0.05437  |  |
| C27                                                             | 0.04361 | -0.90273 | 0.02153  |  |
| C28                                                             | 0.05197 | -0.92631 | -0.14821 |  |
| C29                                                             | 0.08625 | -0.91342 | -0.28309 |  |
| C30                                                             | 0.11146 | -0.8783  | -0.24026 |  |
| C31                                                             | 0.0253  | -0.96411 | -0.17533 |  |
| C32                                                             | 0.03542 | -0.98952 | -0.17861 |  |
| N33                                                             | 0.25212 | 0.36446  | 1.37403  |  |
| S34                                                             | 0.29293 | 0.39899  | 1.42591  |  |
| N35                                                             | 0.27937 | 0.42671  | 1.28056  |  |
| H36                                                             | 0.26898 | -0.36266 | -0.2126  |  |
| H37                                                             | 0.24567 | -0.41294 | -0.45407 |  |
| H38                                                             | 0.21129 | -0.47541 | -0.39174 |  |
| H39                                                             | 0.2991  | -0.47792 | 0.09451  |  |
| H40                                                             | 0.33278 | -0.4156  | 0.07809  |  |
| H41                                                             | 0.20439 | -0.53179 | -0.21151 |  |
| H42                                                             | 0.17413 | -0.58625 | -0.08948 |  |

| H43  | 0.14745 | -0.6482  | -0.02169 |
|------|---------|----------|----------|
| H44  | 0.19133 | -0.75365 | -0.01408 |
| H45  | 0.22098 | -0.6903  | -0.0162  |
| H46  | 0.15461 | -0.80848 | -0.15677 |
| H47  | 0.06094 | -0.85035 | 0.18686  |
| H48  | 0.01826 | -0.91124 | 0.14353  |
| H49  | 0.09365 | -0.93006 | -0.43004 |
| H50  | 0.13759 | -0.86905 | -0.34596 |
| H51  | 0.06281 | -0.98138 | -0.17629 |
| N52  | 0.12174 | 0.30498  | 1.4513   |
| \$53 | 0.08097 | 0.27229  | 1.55141  |
| N54  | 0.09207 | 0.24222  | 1.42671  |