Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information (ESI)

Data-driven efficient synthetic exploration of lanthanide-based metal-organic frameworks

Yu Kitamura,^a Yuiga Nakamura,^b Kunihisa Sugimoto,^c Hirofumi Yoshikawa,^d and Daisuke Tanaka^{*a}

- a. Department of Chemistry, School of Science, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
- b. Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayocho, Sayo-gun, Hyogo 679-5198, Japan
- c. Department of Chemistry, Kindai University, 3-4-1Kowakae, Higashi-osaka, Osaka 577-8502, Japan
- d. Program of Materials Science, School of Engineering, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan

*Corresponding Author. E-mail: <u>dtanaka@kwansei.ac.jp</u>.

Table of Contents

- S1. General information
- S2. Synthesis
- S3. Synthetic conditions for previous Ln-BDC-MOFs
- S4. Initial and additional synthetic screening
- S5. Crystallographic data
- S6. Cluster analysis
- S7. Decision tree analysis
- S8. Crystal structure
- S9. Optimized synthetic conditions using various trivalent lanthanide metal ions
- S10. Elemental analysis
- S11. Stability Evaluation
- S12. Sensing of metal cations

S1. General information

Chemicals. All reagents were purchased and used without further purification. Terephthalic acid (H₂BDC, 95.0%), *N*,*N*-dimethylformamide (DMF, 99.95%), and triethylamine (tea) were purchased from FUJIFILM Wako Pure Chemical Corporation, Japan. *N*-Methyldiethanolamine (meda, >99.0%) was purchased from Tokyo Chemical Industry Co., Ltd., Japan. Lanthanide nitrates were purchased from various companies: Gd(NO₃)₃·6H₂O (99.95%) and Tb(NO₃)₃·6H₂O (99.95%) were purchased from Kanto Chemical Co., Inc., Japan; Eu(NO₃)₃·6H₂O (99.9%) was purchased from Kishida Chemical Co., Ltd., Japan; and La(NO₃)₃·6H₂O (99.99%), Ce(NO₃)₃·6H₂O (99.99%), Pr(NO₃)₃·6H₂O (99.9%), Nd(NO₃)₃·6H₂O (99.9%), Sm(NO₃)₃·6H₂O (99.99%), Eu(NO₃)₃·5H₂O (99.9%), Gd(NO₃)₃·6H₂O (99.9%), Tb(NO₃)₃·6H₂O (99.99%), Dy(NO₃)₃·1H₂O (99.9%), Ho(NO₃)₃·5H₂O (99.99%), Er(NO₃)₃·5H₂O (99.9%), and Y(NO₃)₃·6H₂O (99.8%) were purchased from Sigma-Aldrich Co. LLC, Japan.

Characterization. Powder X-ray diffraction (PXRD) patterns were recorded on a Rigaku MiniFlex600 diffractometer at 40 kV and 15 mA using a Cu target tube. The samples were examined without grinding, and the data were collected for 20 values of 2° -30° using Cu K α radiation. The excitation and emission spectra were obtained using a HITACHI F-7000 spectrofluorophotometer. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were performed using a JEOL JSM-7001FA or JCM-6000 microscope. Crystals were coated with osmium or gold for SEM observations. Thermogravimetry (TG) was performed using a Shimadzu DTG-60 instrument in the temperature range of 30–500 °C at 10 °C min⁻¹ under a nitrogen atmosphere. The PXRD patterns were simulated based on single-crystal data using the diffraction crystal module of the Mercury software program (version 3.10), which is available free of charge at http://www.iucr.org.

Crystal structure determination. Crystallographic data for KGF-15(Gd, Er, Y) were collected with a CCD diffractometer using Mo K α radiation. The CrysAlisPro 1.171.40.53 program (Rigaku, 2019) was used to integrate the diffraction profiles. The crystal structure was solved by direct methods using the SHELXT program and refined using SHELXL. Triethylammonium cations were disordered. One terminal methyl group was not visible. Anisotropic thermal parameters were used to refine all non-H atoms (CCDC number: 2169872, 2169876, 2169877).

Synchrotron crystal structure determination. Crystallographic data for KGF-15(Sm, Eu, Tb, Dy, Ho) were collected on a CCD diffractometer with synchrotron radiation ($\lambda = 0.41760, 0.41310, 0.41260, \text{ or } 0.41340 \text{ Å}$) at the BL02B1 beamline of the SPring-8 synchrotron radiation facility. The CrysAlisPro 1.171.40.53 program (Rigaku, 2019) was used to integrate the diffraction profiles. The crystal data were solved by direct methods using the SHELXT program and were refined with SHELXL. Triethylammonium cations were disordered. One terminal methyl group was not visible. Anisotropic thermal parameters were used to refine all non-H atoms (CCDC number: 2169870, 2169871, 2169873–2169875).

Machine-learning analysis. Cluster analysis was carried out using PDXL 2.8 (Rigaku)¹. Powder patterns were compared with each other using a weighted mean of the Pearson and Spearman coefficients with every measured intensity data point. The Pearson coefficient is defined as

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} ((y_i - \bar{y}))^2}}$$

where x_i and y_i are the measured data points for the two patterns. The Spearman coefficient is defined as

$$\rho_{xy} = \frac{\sum_{i=1}^{n} R(x_i) R(y_i) - n\left(\frac{n+1}{2}\right)^2}{\sqrt{\sum_{i=1}^{n} R(x_i)^2 - n\left(\frac{n+1}{2}\right)^2} \sqrt{\sum_{i=1}^{n} R(y_i)^2 - n\left(\frac{n+1}{2}\right)^2}}$$

where x_i and y_i are the measured data points for the two patterns.

Decision tree analysis (Partition) was performed using JMP® Pro 15.2.1 (SAS Institute Inc., Cary, NC, USA) with the default settings, and the minimum degree of branching was set to 6.

S2. Synthesis

Synthetic conditions 1 (initial screening : exploratory experiments).

Dy(NO₃)₃·nH₂O (0.005–0.25 mmol) was dissolved in MeOH (0.25–1.75 mL, 2–125 mM), and H₂BDC (0.01–0.18 mmol) was separately dissolved in DMF (0.25–1.75 mL, 5–88 mM). The two solutions were mixed in a 4 mL Teflon-lined stainless-steel container. Subsequently, tea (140 or 400 μ L) and meda (1 drop (40) or 60, 200, or 400 μ L) were added, and the reaction mixture was heated at 130, 150, or 170 °C for 48 or 120 h. At the end of the heating process, the container was cooled to 30 °C. The heating time was 5 h, and the cooling time was 12 h.

Synthetic conditions 2 (additional screening : detailed exploratory experiments).

Ln(NO₃)₃·nH₂O (Ln = La–Lu, excluding Pm) (0.005–0.15 mmol) was dissolved in MeOH (0.25–1.75 mL, 5–25 mM), and H₂BDC (0.02–0.12 mmol) was separately dissolved in DMF (0.25–1.75 mL, 15–61 mM). The two solutions were mixed in a 4 mL Teflon-lined stainless-steel container. Subsequently, tea (400 μ L) and meda (1 drop (40 μ L)) were added, and the reaction mixture was heated at 170 °C for 48 h. At the end of the heating process, the container was cooled to 30 °C. The heating time was 5 h, and the cooling time was 12 h.

Synthetic conditions 3 (optimized synthetic conditions). $Ln(NO_3)_3 \cdot xH_2O$ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, or Y) (0.12 mmol) was dissolved in MeOH (0.25 mL), and H₂BDC (0.035 mmol) was separately dissolved in DMF (1.75 mL). The two solutions were mixed in a 4 mL Teflon-lined stainless-steel container, and the reaction mixture was heated at 170 °C for 48 h. At the end of the heating process, the container was cooled to 30 °C. The heating time was 5 h, and the cooling time was 12 h.

Synthetic conditions 4 (optimized synthetic conditions for bulk synthesis A).

 $Ln(NO_3)_3 \cdot xH_2O$ (Ln = Eu, Gd, Tb, or Dy) (0.3 mmol) was dissolved in MeOH (6.3 mL), and H₂BDC (0.9 mmol) was separately dissolved in DMF (44.0 mL). The two solutions were mixed in a 100 mL Teflon-lined stainless-steel container. Subsequently, tea (10 mL) was added, and the reaction mixture was heated at 170 °C for 48 h. At the end of the heating process, the container was cooled to 30 °C. The heating time was 5 h, and the cooling time was 12 h. The obtained residue was washed with MeOH (× 3).

Ln(NO₃)₃·nH₂O (Ln = Ho or Lu) (0.15 mmol) was dissolved in MeOH (3.0 mL), and H₂BDC (0.42 mmol) was separately dissolved in DMF (21.0 mL). The two solutions were mixed in a 50 mL Teflon-lined stainless-steel container. Subsequently, tea (5 mL) was added, and the reaction mixture was heated at 170 °C for 48 h. At the end of the heating process, the container was cooled to 30 °C. The heating time was 5 h, and the cooling time was 12 h. The obtained residue was washed with MeOH (× 3).

 $Er(NO_3)_3 \cdot 5H_2O$ (0.013 mmol) was dissolved in MeOH (0.25 mL), and H₂BDC (0.035 mmol) was separately dissolved in DMF (1.75 mL). The two solutions were mixed in a 4 mL Teflon-lined stainless-steel container. Subsequently, tea (400 µL) was added, and the reaction mixture was heated at 170 °C for 48 h. At the end of the heating process, the container was cooled to 30 °C. The heating time was 5 h, and the cooling time was 12 h. The obtained residue was washed with MeOH (× 3).

Synthetic conditions 5 (optimized synthetic conditions for bulk synthesis B).

 $Sm(NO_3)_3 \cdot 6H_2O$ (0.12 mmol) was dissolved in MeOH (12.6 mL), and H₂BDC (3.06 mmol) was separately dissolved in DMF (38.0 mL). The two solutions were mixed in a 100 mL Teflon-lined stainless-steel container. Subsequently, tea (10 mL) was added, and the reaction mixture was heated at 170 °C for 48 h. At the end of the heating process, the container was cooled to 30 °C. The heating time was 5 h, and the cooling time was 12 h. The obtained residue was washed with MeOH (× 3).

Synthetic conditions 6 (optimized synthetic conditions for bulk synthesis C).

 $Ln(NO_3)_3 \cdot 5H_2O$ (Ln = Tm or Yb) (0.13 mmol) was dissolved in MeOH (6.8 mL), and H₂BDC (0.88 mmol) was separately dissolved in DMF (44.0 mL). The two solutions were mixed in a 100 mL Teflon-lined stainless-steel container. Subsequently, tea (10 mL) was added, and the reaction mixture was heated at 170 °C for 48 h. At the end of the heating process, the container was cooled to 30 °C. The heating time was 5 h, and the cooling time was 12 h. The obtained residue was washed with MeOH (× 3).

Synthetic conditions 7 (preparation of a single crystal of KGF-15(Sm)).

Sm(NO₃)₃·6H₂O (0.005 mmol) was dissolved in MeOH (0.25 mL), and H₂BDC (0.1225 mmol) was dissolved in DMF (1.75 mL). The solutions were then mixed in a 4 mL Teflon-lined stainless-steel container. Subsequently, tea (400 μ L) and meda (1 drop) were added, and the reaction mixture was heated at 170 °C for 48 h. At the end of the heating process, the container was cooled to 30 °C. The heating time was 5 h, and the cooling time was 12 h.

Synthetic conditions 8 (preparation of a single crystal of KGF-15(Eu, Gd, Tb, Er,

or Y)). Ln(NO₃)₃·nH₂O (Ln = Eu, Gd, Tb, Er, or Y) (0.025 mmol) was dissolved in MeOH (0.5 mL), and H₂BDC (0.045 mmol) was dissolved in DMF (1.5 mL). The solutions were then mixed in a 4 mL Teflon-lined stainless-steel container. Subsequently, tea (400 μ L) and meda (1 drop) were added, and the reaction mixture was heated at 170 °C for 48 h. At the end of the heating process, the container was cooled to 30 °C. The heating time was 5 h, and the cooling time was 12 h.

Synthetic conditions 9 (preparation of a single crystal of KGF-15(Ho)).

Ho(NO₃)₃·5H₂O (0.025 mmol) was dissolved in MeOH (0.5 mL), and H₂BDC (0.045 mmol) was dissolved in DMF (1.5 mL). The solutions were then mixed in a 4 mL Teflon-lined stainless-steel container. Subsequently, tea (400 μ L) was added, and the reaction mixture was heated at 170 °C for 48 h. At the end of the heating process, the container was cooled to 30 °C. The heating time was 5 h, and the cooling time was 12 h.

Synthetic conditions 10 (preparation of a single crystal of KGF-15(Dy)).

Dy(NO₃)₃·nH₂O (0.015 mmol) was dissolved in MeOH (0.75 mL), and H₂BDC (0.0875 mmol) was dissolved in DMF (1.25 mL). The solutions were then mixed in a 4 mL Teflon-lined stainless-steel container. Subsequently, tea (400 μ L) and meda (1 drop) were added, and the reaction mixture was heated at 170 °C for 48 h. At the end of the heating process, the container was cooled to 30 °C. The heating time was 5 h, and the cooling time was 12 h.

S3. Synthetic conditions for previous Ln-BDC-MOFs

No.	Formula	Ln	Metal source	BDC source	H ₂ O / %	DMF / %	Alcohol / %	Temp. / °C	Reference
1	Ln ₂ (BDC) ₃ (DMF) ₂ (H ₂ O) ₂	Gd	LnCl ₃	H ₂ BDC	17	83	0	55	2
2		Eu, Dy, Y	Ln(NO ₃) ₃ ·nH ₂ O	Na ₂ BDC	50	50	0	30	3
3		Tb	Ln(NO ₃) ₃ ·nH ₂ O	H_2BDC	50	50	0	100	4
4		Er, Tm	LnCl ₃	H ₂ BDC	0	67	33	110	5
5		Er, Tm	LnCl ₃	H_2BDC	0	67	33	110	6
6		Eu	Ln(NO ₃) ₃ ·nH ₂ O	H_2BDC	50	50	0	115	7
7		Gd, Tb	Ln(NO ₃) ₃ ·nH ₂ O	H_2BDC	50	50	0	80	8
8		Yb	LnCl ₃	H_2BDC	50	50	0	100	9, 10
9		Er	Ln(NO ₃) ₃ ·nH ₂ O	H_2BDC	25	38	38	80	11
10	Ln(BDC) _{1.5} (H ₂ O)·(DMF)(H ₂ O)	Tb	[Tb ₆ O(OH) ₈ (NO 3) ₆ (H ₂ O) ₁₂] ²⁺	H ₂ BDC	0	100	0	30	12
11	Ln ₂ (BDC) ₃ (H ₂ O) ₄	Nd, Er	Ln ₂ O ₃	H ₂ BDC	100	0	0	170	13
12		Ce, Eu, Tb	Ln(NO ₃) ₃ ·nH ₂ O	H_2BDC	100	0	0	120	14
13		La–Tm, Y (excluding Pm)	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	100	0	0	140	15-21
14	Ln(BDC)(NO ₃)(DMF) ₂	Eu	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	0	50	50	80	22
15		Gd	Ln(NO ₃) ₃ ·nH ₂ O	H_2BDC	0	100	0	85	23
16		Tb	Ln(NO ₃) ₃ ·nH ₂ O	H_2BDC	0	50	50	30	24

Table S1. Previously reported conditions for the synthesis of Ln-BDC-MOFs

No	Formula	In	Metal source	BDC	H2O / %	DMF / %	Alcohol / %	Temn / °C	Reference
INU.	Formula	LII	Wietar source	source	1120770		Alcohol / /0	Temp. / C	Reference
17	$Ln_4(BDC)_6(H_2O)_6$	Er	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	91	0	9	160	25
18		Er	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	100	0	0	180	26
19	Ln ₂ (BDC)(OH) ₄	Eu	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	100	0	0	250	27
20	Ln ₂ (BDC) ₃ (H ₂ O) ₆	Lu	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	100	0	0	180	28
21		Yb	Ln_2O_3	H ₂ BDC	100	0	0	170	29
22		Yb	Ln_2O_3	H ₂ BDC	100	0	0	170	13
23		Er	LnCl ₃	Na ₂ BDC	100	0	0	30	30, 31
24	$Ln_2(BDC)_3(H_2O)_6 \cdot (H_2O)_2$	Er	LnCl ₃	Na ₂ BDC	100	0	0	30	31
25	$Ln_2(BDC)_3(H_2O)_8\cdot(H_2O)_2$	Yb	Ln ₂ O ₃	H ₂ BDC	100	0	0	170	13
26		Yb	LnCl ₃	H ₂ BDC	100	0	0	180	32
27		Er	LnCl ₃	Na ₂ BDC	100	0	0	30	31
28	$Ln_2(BDC)_3(H_2O)_6\cdot(H_2O)_2$	Er	LnCl ₃	Na ₂ BDC	100	0	0	30	31
29	$Ln_2(BDC)_3(H_2O)_6 \cdot H_2O$	Er	LnCl ₃	Na ₂ BDC	100	0	0	30	31
30	Ln ₃ (BDC) _{4.5} (DMF) ₂ (H ₂ O) ₃ ·(DMF)(H ₂ O)	Er	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	14	71	14	55	31
21	Ln ₃ (BDC) _{4.5} (DMF) ₂ (H ₂ O) ₃ ·(DMF)(EtOH)				1.4	71	14	~~	31
31	0.5(H ₂ O)0.5	Dy, Ho, Er	$Ln(NO_3)_3 \cdot nH_2O$	H_2BDC	14	/1	14	22	
32	Ln ₃ (BDC) _{4.5} (DMF) ₂ (H ₂ O) ₃ ·(DMF) ₂	Yb	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	0	83	17	60	33
33	Ln ₃ (BDC) _{3.5} (OH) ₂ (H ₂ O) ₂ ·(H ₂ O)	Er, Yb, Y	LnCl ₃	H ₂ BDC	100	0	0	190	34
34	Ln ₂ (BDC) ₃ (MeOH) ₄ ·(MeOH) ₈	Eu	LnCl ₃	H ₂ BDC	0	0	100	heat	35
35	Ln ₂ (BDC) ₃ (MeOH) ₄ ·(Cl)(MeOH)(H ₂ O) _{0.25}	Eu, Gd, Tb	LnCl ₃	H ₂ BDC	0	0	100	heat	35
36	Ln ₂ (BDC) ₃ (NO ₃)(MeOH) ₂ ·(MeCN)(H ₂ O)	Eu, Gd	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	0	0	100	heat	35

No.	Formula	Ln	Metal source	BDC	H ₂ O / %	DMF / %	Alcohol / %	Temp. / °C	Reference
37	Ln(BDC) _{1.5} (DEF)	La, Ce, Nd	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	2	98	0	130	36
38	Ln ₂ (BDC) ₃ (DMF) ₂ ·(H ₂ O)	Yb	LnCl ₃	H ₂ BDC	3		0	100	9, 37
39	Ln ₂ (BDC) ₃ (DMF) ₂	Er	LnCl ₃	H ₂ BDC	0	100	0	85	38
40	Ln ₂ (BDC) ₃ (DMF) ₂	Yb	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	50	50	0	100	39
41	Ln ₆ (BDC) ₉ (DMF) ₆ (H2O) ₃ ·(DMF) ₃	La, Ce, Nd	Ln(NO ₃) ₃ ·nH ₂ O	Na ₂ BDC	50	50	0	30	3
42	$Ln_2(BDC)_3(H_2O)_2$	Yb	Ln ₂ O ₃	H ₂ BDC	100	0	0	170	13
43	$Ln_2(BDC)_3(DMF)_2(H_2O)_2 \cdot (DMF)(H_2O)$	Pr, Nd, Sm, Eu	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	14	71	14	60	40
44	Ln ₃ (BDC) _{4.5} (H ₂ O)(DMF) ₂	Tb	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	50	50	0	100	4
45	Ln ₂ (BDC) ₃ (DMF) ₂ ·(H ₂ O) _{0.7}	Eu	LnCl ₃	H ₂ BDC	0	100	0	120	41
46	$Ln_2(BDC)_3(DMF)_2 \cdot (H_2O)$	Gd	Ln(NO ₃) ₃ ·nH ₂ O	H_2BDC	0	100	0	110	42
47	Ln ₂ (BDC) ₃ (DMF) ₂ (DMSO) ₂	Ce	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	0	80	0	120	43
40	Ln ₄ (BDC) ₆ (H ₂ O) ₂ (DMF)(EtOH)·(DMF) ₂ (T			22			20	6
48	H ₂ O) ₂	Im	$Ln(NO_3)_3 \cdot nH_2O$	H ₂ BDC	33	33	33	30	
49	Ln(BDC)(HCOO)	Dy, Er	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	0	100	0	180	44
50		Eu, Gd, Tb	Ln(NO ₃) ₃ ·nH ₂ O	H_2BDC	60	40	0	160	45
51		Yb	LnCl ₃	H_2BDC	50	50	0	120	9
52		Gd	Ln_2O_3	H_2BDC	50	50	0	180	46
53	Ln(BDC) _{1.5} (H ₂ O)·(DMF) _{0.5} (EtOH)(H ₂ O) ₂	Tm	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	13	63	25	50	6
54	Ln ₆ (BDC) ₆ (OH) ₄ O ₄	Ce	Ln(NH ₄) ₂ (NO ₃) ₆	H ₂ BDC	0	100	0	100	47
55	Ln ₂ (BDC)(OH) ₄ (H ₂ O) ₂	Eu	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	100	0	0	180	48
56	Ln ₅ (BDC) _{7.5} (DMF) ₄	Се	Ln(NH ₄) ₂ (NO ₃) ₆	H ₂ BDC	0	100	0	150	49

No	Formula	In	Metal source	BDC	H2O / %	DMF / %	Alcohol / %	Temn / °C	Reference
INU.	Formula	LII	Wietar source	source	11207 70		Alcohol / /0	Temp. / C	Reference
57	Ln ₆ (BDC) ₇ (OH) ₄ (H ₂ O) ₄	Yb	LnCl ₃	MOF	100	0	0	200	10
58	Ln ₂ (BDC) ₃	Yb	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	100	0	0	200	10
59	[(CH ₃) ₂ NH ₂]·Ln ₃ (BDC) ₃ (HCOO) ₃ (OH)	Tb, Er, Y	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	19	81	0	105	10
60	Ln ₁₀ (BDC) ₃ (HCOO) ₄ (OH) ₁₂ (CO ₃) ₄ (H ₂ O) ₂	Dy, Ho, Y	Ln(NO ₃) ₃ ·nH ₂ O	H ₂ BDC	60	40	0	150	50

Fig. S1. 3D plot of synthetic conditions, focusing on DMF, H₂O, and reaction temperature. Red stars indicate the synthetic conditions used in this study, and black circles indicate previously reported synthetic conditions. The data of No. 19 and 34-36 are excluded from the synthetic conditions of Table S1, and the same solvent and reaction temperature, but different concentrations, etc., are described in the same plot.

S4. Initial and additional synthetic screening

								5		0					
Experiment	PXRD	М	L	T/M	EtOH	DMF	DMF	Metal	Meda	Tea	Rising	Reaction	Cooling	Reaction	Reaction vessel
No.	(cluster)	/mM	/mM	L/ 1 V1	/mL	/mL	/EtOH	source	$/\mu L$	$/\mu L$	time	time	time	temp.	/mL
YU343_3	1	19	25	1.3	1.5	0.5	0.33	Dy	60	140	5	120	12	130	4
YU343_4	1	13	50	3.8	1.0	1.0	1.00	Dy	60	140	5	120	12	130	4
YU343_6	5	19	13	0.7	1.5	0.5	0.33	Dy	60	140	5	120	12	130	4
YU343_7	1	13	25	1.9	1.0	1.0	1.00	Dy	60	140	5	120	12	130	4
YU343_11	1	94	25	0.3	1.5	0.5	0.33	Dy	60	140	5	120	12	130	4
YU343_12	7	63	50	0.8	1.0	1.0	1.00	Dy	60	140	5	120	12	130	4
YU343_13	4	31	75	2.4	0.5	1.5	3.00	Dy	60	140	5	120	12	130	4
YU343_14	1	94	13	0.1	1.5	0.5	0.33	Dy	60	140	5	120	12	130	4
YU343_15	1	63	25	0.4	1.0	1.0	1.00	Dy	60	140	5	120	12	130	4
YU343_16	7	13	38	2.9	0.5	1.5	3.00	Dy	60	140	5	120	12	130	4
YU343_19	1	94	13	0.1	1.5	0.5	0.33	Dy	60	140	5	120	12	130	4
YU343_20	7	63	25	0.4	1.0	1.0	1.00	Dy	60	140	5	120	12	130	4
YU343_21	4	31	38	1.2	0.5	1.5	3.00	Dy	60	140	5	120	12	130	4
YU343_22	1	94	6	0.1	1.5	0.5	0.33	Dy	60	140	5	120	12	130	4
YU343_23	1	63	13	0.2	1.0	1.0	1.00	Dy	60	140	5	120	12	130	4
YU343_24	7	31	19	0.6	0.5	1.5	3.00	Dy	60	140	5	120	12	130	4
YU344_1	8	38	5	0.1	1.5	0.5	0.33	Dy	200	400	5	48	12	130	4
YU344_2	1	25	10	0.4	1.0	1.0	1.00	Dy	200	400	5	48	12	130	4

 Table S2. Initial synthetic screening conditions

Experiment	PXRD	М	L	τ /λ.τ	EtOH	DMF	DMF	Metal	Meda	Tea	Rising	Reaction	Cooling	Reaction	Reaction vessel
No.	(cluster)	/mM	/mM	L/M	/mL	/mL	/EtOH	source	$/\mu L$	$/\mu L$	time	time	time	temp.	/mL
YU344_3	2	13	15	1.2	0.5	1.5	3.00	Dy	200	400	5	48	12	130	4
YU344_4	1	38	13	0.3	1.5	0.5	0.33	Dy	200	400	5	48	12	130	4
YU344_5	2	25	25	1.0	1.0	1.0	1.00	Dy	200	400	5	48	12	130	4
YU344_6	2	13	38	2.9	0.5	1.5	3.00	Dy	200	400	5	48	12	130	4
YU344_7	8	38	5	0.1	1.5	0.5	0.33	Dy	400	400	5	48	12	130	4
YU344_8	1	25	10	0.4	1.0	1.0	1.00	Dy	400	400	5	48	12	130	4
YU344_9	1	13	15	1.2	0.5	1.5	3.00	Dy	400	400	5	48	12	130	4
YU344_10	1	38	13	0.3	1.5	0.5	0.33	Dy	400	400	5	48	12	130	4
YU344_11	2	25	25	1.0	1.0	1.0	1.00	Dy	400	400	5	48	12	130	4
YU344_12	2	13	38	2.9	0.5	1.5	3.00	Dy	400	400	5	48	12	130	4
YU344_13	2	15	25	1.7	1.5	0.5	0.33	Dy	200	400	5	48	12	130	4
YU344_14	2	10	50	5.0	1.0	1.0	1.00	Dy	200	400	5	48	12	130	4
YU344_15	7	5	75	15	0.5	1.5	3.00	Dy	200	400	5	48	12	130	4
YU344_16	2	15	10	0.7	1.5	0.5	0.33	Dy	200	400	5	48	12	130	4
YU344_17	2	10	20	2.0	1.0	1.0	1.00	Dy	200	400	5	48	12	130	4
YU344_18	2	5	30	6.0	0.5	1.5	3.00	Dy	200	400	5	48	12	130	4
YU344_19	2	15	25	1.7	1.5	0.5	0.33	Dy	400	400	5	48	12	130	4
YU344_20	2	10	50	5.0	1.0	1.0	1.00	Dy	400	400	5	48	12	130	4
YU344_21	2	5	75	15	0.5	1.5	3.00	Dy	400	400	5	48	12	130	4
YU344_22	1	15	10	0.7	1.5	0.5	0.33	Dy	400	400	5	48	12	130	4
YU344_23	2	10	20	2.0	1.0	1.0	1.00	Dy	400	400	5	48	12	130	4

Experiment	PXRD	М	L	тла	EtOH	DMF	DMF	Metal	Meda	Tea	Rising	Reaction	Cooling	Reaction	Reaction vessel
No.	(cluster)	/mM	/mM	L/M	/mL	/mL	/EtOH	source	$/\mu L$	$/\mu L$	time	time	time	temp.	/mL
YU344_24	2	5	30	6.0	0.5	1.5	3.00	Dy	400	400	5	48	12	130	4
YU345_1	1	38	5	0.1	1.5	0.5	0.33	Dy	200	400	5	48	12	150	4
YU345_2	2	25	10	0.4	1.0	1.0	1.00	Dy	200	400	5	48	12	150	4
YU345_3	2	13	15	1.2	0.5	1.5	3.00	Dy	200	400	5	48	12	150	4
YU345_4	2	38	13	0.3	1.5	0.5	0.33	Dy	200	400	5	48	12	150	4
YU345_5	2	25	25	1.0	1.0	1.0	1.00	Dy	200	400	5	48	12	150	4
YU345_6	2	13	38	2.9	0.5	1.5	3.00	Dy	200	400	5	48	12	150	4
YU345_7	2	38	5	0.1	1.5	0.5	0.33	Dy	400	400	5	48	12	150	4
YU345_8	1	25	10	0.4	1.0	1.0	1.00	Dy	400	400	5	48	12	150	4
YU345_9	1	13	15	1.2	0.5	1.5	3.00	Dy	400	400	5	48	12	150	4
YU345_10	1	38	13	0.3	1.5	0.5	0.33	Dy	400	400	5	48	12	150	4
YU345_11	1	25	25	1.0	1.0	1.0	1.00	Dy	400	400	5	48	12	150	4
YU345_12	2	13	38	2.9	0.5	1.5	3.00	Dy	400	400	5	48	12	150	4
YU345_13	2	15	25	1.7	1.5	0.5	0.33	Dy	200	400	5	48	12	150	4
YU345_14	2	10	50	5.0	1.0	1.0	1.00	Dy	200	400	5	48	12	150	4
YU345_15	3	5	75	15	0.5	1.5	3.00	Dy	200	400	5	48	12	150	4
YU345_16	1	15	10	0.7	1.5	0.5	0.33	Dy	200	400	5	48	12	150	4
YU345_17	2	10	20	2.0	1.0	1.0	1.00	Dy	200	400	5	48	12	150	4
YU345_18	2	5	30	6.0	0.5	1.5	3.00	Dy	200	400	5	48	12	150	4
YU345_19	2	15	25	1.7	1.5	0.5	0.33	Dy	400	400	5	48	12	150	4
YU345_20	2	10	50	5.0	1.0	1.0	1.00	Dy	400	400	5	48	12	150	4

Experiment	PXRD	М	L	т /л л	EtOH	DMF	DMF	Metal	Meda	Tea	Rising	Reaction	Cooling	Reaction	Reaction vessel
No.	(cluster)	/mM	/mM	L/M	/mL	/mL	/EtOH	source	$/\mu L$	$/\mu L$	time	time	time	temp.	/mL
YU345_21	2	5	75	15	0.5	1.5	3.00	Dy	400	400	5	48	12	150	4
YU345_22	1	15	10	0.7	1.5	0.5	0.33	Dy	400	400	5	48	12	150	4
YU345_23	2	10	20	2.0	1.0	1.0	1.00	Dy	400	400	5	48	12	150	4
YU345_24	2	5	30	6.0	0.5	1.5	3.00	Dy	400	400	5	48	12	170	4
YU346_1	2	38	5	0.1	1.5	0.5	0.33	Dy	200	400	5	48	12	170	4
YU346_2	2	25	10	0.4	1.0	1.0	1.00	Dy	200	400	5	48	12	170	4
YU346_3	6	13	15	1.2	0.5	1.5	3.00	Dy	40	400	5	48	12	170	4
YU346_4	1	38	13	0.3	1.5	0.5	0.33	Dy	40	400	5	48	12	170	4
YU346_5	4	25	25	1.0	1.0	1.0	1.00	Dy	40	400	5	48	12	170	4
YU346_6	3	13	38	2.9	0.5	1.5	3.00	Dy	40	400	5	48	12	170	4
YU346_7	1	38	5	0.1	1.5	0.5	0.33	Dy	400	400	5	48	12	170	4
YU346_8	1	25	10	0.4	1.0	1.0	1.00	Dy	400	400	5	48	12	170	4
YU346_9	1	13	15	1.2	0.5	1.5	3.00	Dy	400	400	5	48	12	170	4
YU346_10	1	38	13	0.3	1.5	0.5	0.33	Dy	400	400	5	48	12	170	4
YU346_11	1	25	25	1.0	1.0	1.0	1.00	Dy	400	400	5	48	12	170	4
YU346_12	2	13	38	2.9	0.5	1.5	3.00	Dy	400	400	5	48	12	170	4
YU346_13	1	15	25	1.7	1.5	0.5	0.33	Dy	200	400	5	48	12	170	4
YU346_14	3	10	50	5.0	1.0	1.0	1.00	Dy	200	400	5	48	12	170	4
YU346_15	3	5	75	15	0.5	1.5	3.00	Dy	40	400	5	48	12	170	4
YU346_16	1	15	10	0.7	1.5	0.5	0.33	Dy	40	400	5	48	12	170	4
YU346_17	3	10	20	2.0	1.0	1.0	1.00	Dy	40	400	5	48	12	170	4

Experiment	PXRD	М	L	тла	EtOH	DMF	DMF	Metal	Meda	Tea	Rising	Reaction	Cooling	Reaction	Reaction vessel
No.	(cluster)	/mM	/mM	L/M	/mL	/mL	/EtOH	source	$/\mu L$	$/\mu L$	time	time	time	temp.	/mL
YU346_18	3	5	30	6.0	0.5	1.5	3.00	Dy	40	400	5	48	12	170	4
YU346_19	2	15	25	1.7	1.5	0.5	0.33	Dy	400	400	5	48	12	170	4
YU346_20	2	10	50	5.0	1.0	1.0	1.00	Dy	400	400	5	48	12	170	4
YU346_21	2	5	75	15	0.5	1.5	3.00	Dy	400	400	5	48	12	170	4
YU346_22	1	15	10	0.7	1.5	0.5	0.33	Dy	400	400	5	48	12	170	4
YU346_23	2	10	20	2.0	1.0	1.0	1.00	Dy	400	400	5	48	12	170	4
YU346_24	2	5	30	6.0	0.5	1.5	3.00	Dy	400	400	5	48	12	170	4
YU347_1	3	6	18	3.0	0.25	1.75	7.00	Dy	40	400	5	48	12	170	4
YU347_2	3	13	16	1.2	0.5	1.5	3.00	Dy	40	400	5	48	12	170	4
YU347_5	2	13	16	1.2	0.5	1.5	3.00	Dy	200	400	5	48	12	170	4
YU347_6	2	19	13	0.7	0.75	1.25	1.67	Dy	200	400	5	48	12	170	4
YU347_7	3	6	27	4.5	0.25	1.75	7.00	Dy	40	400	5	48	12	170	4
YU347_8	3	13	23	1.8	0.5	1.5	3.00	Dy	40	400	5	48	12	170	4
YU347_9	3	19	19	1.0	0.75	1.25	1.67	Dy	40	400	5	48	12	170	4
YU347_10	3	6	27	4.5	0.25	1.75	7.00	Dy	200	400	5	48	12	170	4
YU347_11	2	13	23	1.8	0.5	1.5	3.00	Dy	200	400	5	48	12	170	4
YU347_12	2	19	19	1.0	0.75	1.25	1.67	Dy	200	400	5	48	12	170	4
YU347_13	3	6	35	5.8	0.25	1.75	7.00	Dy	40	400	5	48	12	170	4
YU347_14	3	13	30	2.3	0.5	1.5	3.00	Dy	40	400	5	48	12	170	4
YU347_15	3	19	25	1.3	0.75	1.25	1.67	Dy	40	400	5	48	12	170	4
YU347_16	3	6	35	5.8	0.25	1.75	7.00	Dy	200	400	5	48	12	170	4

Experiment	PXRD	М	L	T /N (EtOH	DMF	DMF	Metal	Meda	Tea	Rising	Reaction	Cooling	Reaction	Reaction vessel
No.	(cluster)	/mM	/mM	L/M	/mL	/mL	/EtOH	source	$/\mu L$	$/\mu L$	time	time	time	temp.	/mL
YU347_17	2	13	30	2.3	0.5	1.5	3.00	Dy	200	400	5	48	12	170	4
YU347_18	2	19	25	1.3	0.75	1.25	1.67	Dy	200	400	5	48	12	170	4
YU347_19	3	6	44	7.3	0.25	1.75	7.00	Dy	40	400	5	48	12	170	4
YU347_20	3	13	37	2.8	0.5	1.5	3.00	Dy	40	400	5	48	12	170	4
YU347_21	3	19	31	1.6	0.75	1.25	1.67	Dy	40	400	5	48	12	170	4
YU347_22	2	6	44	7.3	0.25	1.75	7.00	Dy	200	400	5	48	12	170	4
YU347_23	2	13	37	2.8	0.5	1.5	3.00	Dy	200	400	5	48	12	170	4
YU347_24	2	19	31	1.6	0.75	1.25	1.67	Dy	200	400	5	48	12	170	4
YU347_25	3	3	88	29.3	0.25	1.75	7.00	Dy	40	400	5	48	12	170	4
YU347_26	1	5	75	15.0	0.5	1.5	3.00	Dy	40	400	5	48	12	170	4
YU347_27	1	8	63	7.9	0.75	1.25	1.67	Dy	40	400	5	48	12	170	4
YU347_28	2	3	88	29.3	0.25	1.75	7.00	Dy	200	400	5	48	12	170	4
YU347_29	2	5	75	15.0	0.5	1.5	3.00	Dy	200	400	5	48	12	170	4
YU347_30	2	8	63	7.9	0.75	1.25	1.67	Dy	200	400	5	48	12	170	4
YU347_31	3	3	61	20.3	0.25	1.75	7.00	Dy	40	400	5	48	12	170	4
YU347_32	3	5	53	10.6	0.5	1.5	3.00	Dy	40	400	5	48	12	170	4
YU347_34	2	3	61	20.3	0.25	1.75	7.00	Dy	200	400	5	48	12	170	4
YU347_35	2	5	53	10.6	0.5	1.5	3.00	Dy	200	400	5	48	12	170	4
YU347_36	2	8	44	5.5	0.75	1.25	1.67	Dy	200	400	5	48	12	170	4
YU347_37	3	3	44	14.7	0.25	1.75	7.00	Dy	40	400	5	48	12	170	4
YU347_38	3	5	37	7.4	0.5	1.5	3.00	Dy	40	400	5	48	12	170	4

Experiment	PXRD	М	L	T/M	EtOH	DMF	DMF	Metal	Meda	Tea	Rising	Reaction	Cooling	Reaction	Reaction vessel
No.	(cluster)	/mM	/mM	L/IVI	/mL	/mL	/EtOH	source	$/\mu L$	$/\mu L$	time	time	time	temp.	/mL
YU347_40	2	3	44	14.7	0.25	1.75	7.00	Dy	200	400	5	48	12	170	4
YU347_41	2	5	37	7.4	0.5	1.5	3.00	Dy	200	400	5	48	12	170	4
YU347_42	2	8	31	3.9	0.75	1.25	1.67	Dy	200	400	5	48	12	170	4
YU347_43	3	3	35	11.7	0.25	1.75	7.00	Dy	40	400	5	48	12	170	4
YU347_44	3	5	30	6.0	0.5	1.5	3.00	Dy	40	400	5	48	12	170	4
YU347_45	3	8	25	3.1	0.75	1.25	1.67	Dy	40	400	5	48	12	170	4
YU347_46	3	3	35	11.7	0.25	1.75	7.00	Dy	200	400	5	48	12	170	4
YU347_47	2	5	30	6.0	0.5	1.5	3.00	Dy	200	400	5	48	12	170	4
YU347_48	2	8	25	3.1	0.75	1.25	1.67	Dy	200	400	5	48	12	170	4

Experiment	PXRD	М	L	T /N A	EtOH	DMF	DMF	Metal	Meda	Tea	Rising	Reaction	Cooling	Reaction	Reaction vessel
No.	(cluster)	/mM	/mM	L/M	/mL	/mL	/EtOH	source	/µL	$/\mu L$	time	time	time	temp.	/mL
YU348_1	3	13	44	3.4	0.25	1.75	7.00	Dy	40	400	5	48	12	170	4
YU348_2	9	25	38	1.5	0.50	1.50	3.00	Dy	40	400	5	48	12	170	4
YU348_11	1	18	38	2.1	0.50	1.50	3.00	Dy	40	400	5	48	12	170	4
YU349_1	3	12	44	3.7	0.25	1.75	7.00	Er	40	400	5	48	12	170	4
YU349_2	10	25	38	1.5	0.50	1.50	3.00	Er	40	400	5	48	12	170	4
YU349_11	3	17	38	2.2	0.50	1.50	3.00	Er	40	400	5	48	12	170	4
YU349_18	1	17	22	1.3	0.50	1.50	3.00	Er	40	400	5	48	12	170	4
YU351_1	3	6	18	3.0	0.25	1.75	7.00	Er	40	400	5	48	12	170	4
YU351_7	3	6	26	4.3	0.25	1.75	7.00	Er	40	400	5	48	12	170	4
YU351_14	3	5	53	10.6	0.50	1.50	3.00	Er	40	400	5	48	12	170	4
YU351_15	3	8	44	5.5	0.75	1.25	1.67	Er	40	400	5	48	12	170	4
YU351_19	3	3	44	14.7	0.25	1.75	7.00	Er	40	400	5	48	12	170	4
YU351_20	3	5	38	7.6	0.50	1.50	3.00	Er	40	400	5	48	12	170	4
YU351_21	3	8	31	3.9	0.75	1.25	1.67	Er	40	400	5	48	12	170	4
YU356_1	3	13	23	1.8	0.50	1.50	3.00	Dy	40	400	5	48	12	170	4
YU356_2	3	11	23	2.1	0.50	1.50	3.00	Er	40	400	5	48	12	170	4
YU356_4	3	2	61	30.5	0.25	1.75	7.00	Dy	40	400	5	48	12	170	4
YU356_5	3	2	61	30.5	0.25	1.75	7.00	Er	40	400	5	48	12	170	4
YU356_13	3	7	32	4.6	0.75	1.25	1.67	Dy	40	400	5	48	12	170	4
YU356_14	3	7	32	4.6	0.75	1.25	1.67	Er	40	400	5	48	12	170	4

 Table S3. Additional synthetic screening conditions

Experiment	PXRD	М	L		EtOH	DMF	DMF	Metal	Meda	Tea	Rising	Reaction	Cooling	Reaction	Reaction vessel
No.	(cluster)	/mM	/mM	L/M	/mL	/mL	/EtOH	source	$/\mu L$	$/\mu L$	time	time	time	temp.	/mL
YU356_17	3	7	44	6.3	0.75	1.25	1.67	Er	40	400	5	48	12	170	4
YU356_19	3	18	38	2.1	0.50	1.50	3.00	Dy	40	400	5	48	12	170	4
YU356_20	3	17	38	2.2	0.50	1.50	3.00	Er	40	400	5	48	12	170	4
YU356_23	3	11	15	1.4	0.50	1.50	3.00	Er	40	400	5	48	12	170	4
YU357_1	13	2	61	30.5	0.25	1.75	7.00	La	40	400	5	48	12	170	4
YU357_2	13	2	61	30.5	0.25	1.75	7.00	Ce	40	400	5	48	12	170	4
YU357_3	3	3	61	20.3	0.25	1.75	7.00	Pr	40	400	5	48	12	170	4
YU357_4	3	3	61	20.3	0.25	1.75	7.00	Nd	40	400	5	48	12	170	4
YU357_5	3	3	61	20.3	0.25	1.75	7.00	Sm	40	400	5	48	12	170	4
YU357_6	3	3	61	20.3	0.25	1.75	7.00	Eu	40	400	5	48	12	170	4
YU357_7	3	3	61	20.3	0.25	1.75	7.00	Gd	40	400	5	48	12	170	4
YU357_8	3	2	61	30.5	0.25	1.75	7.00	Tb	40	400	5	48	12	170	4
YU357_9	3	2	61	30.5	0.25	1.75	7.00	Но	40	400	5	48	12	170	4
YU357_10	3	2	61	30.5	0.25	1.75	7.00	Tm	40	400	5	48	12	170	4
YU357_11	3	3	61	20.3	0.25	1.75	7.00	Yb	40	400	5	48	12	170	4
YU357_12	3	3	61	20.3	0.25	1.75	7.00	Lu	40	400	5	48	12	170	4
YU357_13	13	12	23	1.9	0.50	1.50	3.00	La	40	400	5	48	12	170	4
YU357_14	13	12	23	1.9	0.50	1.50	3.00	Ce	40	400	5	48	12	170	4
YU357_15	13	13	23	1.8	0.50	1.50	3.00	Pr	40	400	5	48	12	170	4
YU357_16	13	13	23	1.8	0.50	1.50	3.00	Nd	40	400	5	48	12	170	4
YU357_17	11	13	23	1.8	0.50	1.50	3.00	Sm	40	400	5	48	12	170	4

Experiment	PXRD	М	L	T/M	EtOH	DMF	DMF	Metal	Meda	Tea	Rising	Reaction	Cooling	Reaction	Reaction vessel
No.	(cluster)	/mM	/mM	L/IVI	/mL	/mL	/EtOH	source	$/\mu L$	$/\mu L$	time	time	time	temp.	/mL
YU357_18	3	13	23	1.8	0.50	1.50	3.00	Eu	40	400	5	48	12	170	4
YU357_19	3	13	23	1.8	0.50	1.50	3.00	Gd	40	400	5	48	12	170	4
YU357_20	3	12	23	1.9	0.50	1.50	3.00	Tb	40	400	5	48	12	170	4
YU357_21	3	13	23	1.8	0.50	1.50	3.00	Но	40	400	5	48	12	170	4
YU357_22	12	12	23	1.9	0.50	1.50	3.00	Tm	40	400	5	48	12	170	4
YU357_23	12	12	23	1.9	0.50	1.50	3.00	Yb	40	400	5	48	12	170	4
YU357_24	12	12	23	1.9	0.50	1.50	3.00	Lu	40	400	5	48	12	170	4

S5. Crystallographic data											
	Table S4. Crystallographic parameters and data for KGF-15(Ln)										
Compound	KGF-15(Sm)	KGF-15(Eu)	KGF-15(Gd)	KGF-15(Tb)	KGF-15(Dy)	KGF-15(Ho)	KGF-15(Er)	KGF-15(Y)			
Formula	$C_{42.5}H_{38.5}Sm_2N_2O_{16}$	C42.5H38.5Eu2N2O16	$C_{42.5}H_{38.5}Gd_2N_2O_{16}$	$C_{42.5}H_{38.5}Tb_2N_2O_{16}$	$C_{42.5}H_{38.5}Dy_2N_2O_{16}$	C42.5H38.5H02N2O16	C42.5H38.5Er2N2O16	$C_{42.5}H_{38.5}Y_2N_2O_{16}$			
Formula weight	1133.95	1137.17	1147.75	1151.09	1158.25	1163.11	1167.77	1011.07			
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic			
Space group	Iba2	Iba2	Iba2	Iba2	Iba2	Iba2	Iba2	Iba2			
a / Å	47.1720(8)	47.3677(3)	47.5920(11)	47.3077(4)	17.26240(10)	17.0266(2)	47.3291(14)	17.0356(5)			
b / Å	17.2138(4)	17.29520(10)	17.2469(4)	17.1468(2)	47.8338(4)	47.1777(5)	16.9949(5)	47.4052(16)			
c / Å	11.23970(10)	11.31890(10)	11.4052(2)	11.34970(10)	11.47730(10)	11.35380(10)	11.4233(3)	11.4193(4)			
$V / Å^3$	9126.7(3)	9272.83(11)	9361.6(3)	9206.60(16)	9477.11(13)	9120.24(17)	9188.4(5)	9222.0(5)			
Ζ	8	8	8	8	8	8	8	8			
$\rho_{calc} / \ g \ cm^{-3}$	1.651	1.629	1.629	1.661	1.624	1.694	1.688	1.456			
μ / mm^{-1}	0.627	0.655	2.877	0.742	0.789	0.846	3.698	2.574			
F(000)	4476	4492	4508	4524	4540	4556	4572	4108			
Temperature / K	100	100	150	100	100	100	150	150			
GOF	0.968	1.053	0.982	1.037	1.047	0.941	0.980	1.050			
$R_1[I \ge 2\sigma(I)]$	0.0493	0.0255	0.0271	0.0433	0.0493	0.0487	0.0480	0.0671			
$wR_2[I>2\sigma(I)]$	0.1386	0.0759	0.0995	0.1118	0.1316	0.1240	0.1259	0.1910			
CCDC number	2169870	2169871	2169872	2169873	2169874	2169875	2169876	2169877			

S6. Cluster analysis

The cluster analysis results were verified by the authors. The classification produced by the automated analysis was consistent with the intuition of the researchers, except for three data points among the 132 patterns. Specifically, experiment numbers YU344–1 and YU344–7 were changed from cluster 2 to cluster 8, and experiment number YU345–16 was changed from cluster 2 to cluster 1.

Fig. S2. Cluster analysis results. (a) Cluster analysis by PDXL (Rigaku). (b) PXRD patterns assigned according to the PDXL analysis.

(D)	
YU343_3	
YU343_19	
YU343 7	
YU346 8	
YU346 10	
YU343 11	
YU344_4	
YU343 14	
YU343 22	
YU346 7	
YU346_4	
YU346_11	
YU347 27	
YU347 26	
YU343_4	
YU346 9	
YU343 15	
YU343 23	
YU345 8	
YU345 9	
YU346 22	
YU345_22	
YU346 13	
YU344 22	
YU344 9	
YU345 11	
YU346 16	
YU344_2	
YU344 8	
YU344 10	
YU345_10	
YU345 1	
X0348_2////////////////////////////////////	4444
YU343 12	
YU343_16	
YU343_20	
YU343 24	
YU344_15	

(d)
YU346_15
YU347_10
YU346_15
YU347_18
YU347_48
YU346_6
YU347_8
YU348_14
YU347_1
YU347_2
YU347_43
YU347_9
YU347_37
YU347_38
YU347_7
YU346_17
YU347_16
YU347_21
YU347_31
YU347_25
YU347_32
YU347_44
YU347_13
YU347_14
YU347_20
YU34/_19
YU34/_40
YU346_18
YU343_13
YU343_21
YU346_5
YU343_6

Fig. S3. Custer analysis results for 132 PXRD patterns. (a) Entirety of the cluster analysis results and (b–e) corresponding subparts.

Fig. S4. PXRD patterns classified as cluster 1.

Fig. S5. PXRD patterns classified as cluster 2. The purple patterns were changed from cluster 2 to cluster 8, and the red pattern was changed from cluster 2 to cluster 1 by the researcher (author).

Fig. S6. PXRD patterns classified as cluster 3.

Fig. S7. PXRD patterns classified as cluster 4.

Fig. S8. PXRD patterns classified as cluster 5.

Fig. S9. PXRD patterns classified as cluster 6.

Fig. S10. PXRD patterns classified as cluster 7.

Fig. S11. PXRD patterns classified as cluster 8.

S7. Decision tree analysis

The objective variable (the variable we wished to predict) was obtained by classifying the obtained PXRD patterns using cluster analysis. The detailed chemical descriptors (explanatory variables) for the machine-learning models were the concentrations of the metal solution (3–94 mM) and ligand solution (5–88 mM), metal-to-ligand solution ratio (0.1–29.3), volumes of EtOH (0.25–1.5 mL) and DMF (0.5–1.75 mL), DMF-to-EtOH ratio (0.33–7), amounts of meda (1 drop (40 μ L), 60, 200, or 400 μ L) and tea (140 or 400 μ L), reaction time (48 or 120 h), and reaction temperature (130, 150 or 170 °C). Decision tree analysis was performed on the dataset without any special treatment. Please see the details in the csv file for further information.

Fig. S12. Overview of the decision tree analysis process. The values in parentheses indicate the number of PXRD patterns. This decision tree is a complete decision tree with no pruning.

S8. Crystal Structure

Fig. S13. ORTEP drawing of KGF-15 along the b-axis.

S9. Optimized synthetic conditions using various trivalent lanthanide metal ions

Fig. S14. PXRD patterns acquired under optimized synthetic condition 3.

S10. Elemental analysis

	KGF-15(Ln ³⁺)	Synthetic condition	C / %	H / %	N / %	Yield / g	Yield / %
	Sm	5	45.70	4.03	2.26	0.0643	88.7
	Eu	4	45.48	4.23	2.31	0.1651	86.7
	Gd	4	45.18	4.05	2.33	0.1758	93.8
	Tb	4	45.01	4.12	2.26	0.1810	98.4
alaa	Dy	4	44.75	4.15	2.38	0.1368	73.4
obs.	Но	4	44.47	4.06	2.27	0.0772	86.0
	Er	4	44.20	3.94	2.39	0.0070	90.0
	Tm	6	45.04	4.32	2.22	0.0636	84.7
	Yb	6	45.77	4.21	2.33	0.0674	76.4
	Lu	4	44.71	4.11	2.25	0.1587	87.5
	Sm		45.50	4.17	2.41		
	Eu		45.37	4.15	2.41		
	Gd		44.96	4.12	2.38		
a a1a	Tb		44.83	4.10	2.38		
	Dy		44.56	4.08	2.36		
$[\mathrm{NH}(\mathrm{C2H5})_3]_2$	Но		44.38	4.06	2.27		
LII2(BDC)4	Er		44.21	4.05	2.34		
	Tm		44.09	4.04	2.34		
	Yb		43.79	4.01	2.32		
	Lu		43.65	4.00	2.31		

Table S5. Elemental analysis of KGF-15(Ln).

-simulated KGF-15(Eu)

¹⁰ $_{2\theta/s^{20}}$ ³⁰ $_{10}$ $_{2\theta/s^{20}}$ ³⁰ **Fig. S15.** Stability evaluation of KGF-15 in various solvents. (a) PXRD patterns of KGF-15 soaked in H₂O and simulated patterns of single crystal structures. The patterns for Tb₂(BDC)₃(H₂O)₄ were simulated from the reported crystal structures.¹⁵ (b) PXRD patterns of KGF-15 soaked in MeOH.

simulated KGF-15(Eu) 30

Fig. S16. TG curves of KGF-15(Ln).

S12. Sensing of metal cations

The sensing ability of KGF-15(Eu) for metal cations (K^+ , Co^{2+} , Ni^{2+} , Cu^{2+} , and Zn^{2+}) was investigated. Elemental analysis after soaking in the Cu^{2+} solution revealed a decrease in the nitrogen content, indicating that partial Cu^{2+} substitution occurred. In addition, the SEM-EDX results suggest that Cu^{2+} may be adsorbed on the MOF surface.

Fig. S17. (a) Emission spectra of KGF-15(Eu) in the presence of different cations. The excitation wavelength was 300 nm. (b) Digital photographs of KGF-15(Eu) in the presence of different metal cations.

Fig. S18. Solid-state excitation spectra of KGF-15(Eu) after soaking in solutions of different metal cations. The emission wavelength was 612 nm.

Fig. S19. PXRD patterns of KGF-15(Eu) after soaking in solutions of different metal cations.

Fig. S20. SEM-EDS elemental mapping images of KGF-15(Eu) after soaking in solutions of various metal cations: (a) K^+ , (b) Cu^{2+} , and (c) Zn^{2+}

KCE 15(Ex) action	Content ratio				
KGF-15(Eu)-cation	Eu^{3^+}	Cation			
KGF-15(Eu)-K ⁺	99	1			
$KGF-15(Eu)-Cu^{2+}$	51	49			
KGF-15(Eu)-Zn ²⁺	93	7			

Table S6. Metal content ratios of KGF-15(Eu) after cation sensing

Table S7. Elemental analysis of KGF-15(Eu) after cation sensing									
	Cation	C / %	H / %	N / %					
	\mathbf{K}^+	45.33	4.21	2.42					
obs.	Cu^{2+}	42.41	3.39	1.71					
	Zn^{2+}	45.46	4.14	2.68					
calc.	$[NH(C_2H_5)_3]_2 \cdot Eu_2(BDC)_4$	45.37	4.15	2.41					
	Cu·Eu ₂ (BDC) ₄	37.54	1.58	0.00					

References

- 1. G. Barr, W. Dong, C. Gilmore and J. Faber, *J Appl Crystallogr*, 2004, **37**, 635-642.
- 2. W.-Z. Zhang, *Acta Crystallogr. Sect. E: Struct. Rep. Online*, 2006, **62**, m1600–m1602.
- Y. Han, X. Li, L. Li, C. Ma, Z. Shen, Y. Song and X. You, *Inorg. Chem.*, 2010, 49, 10781–10787.
- 4. Q. Lei, Q.-Y. Liu, Y.-L. Wang, L.-L. Chen and S.-G. Yin, *Chin. J. Struct. Chem.*, 2016, **35**, 566–576.
- H. He, D. Yuan, H. Ma, D. Sun, G. Zhang and H. C. Zhou, *Inorg. Chem.*, 2010, 49, 7605–7607.
- H. He, H. Ma, D. Sun, L. Zhang, R. Wang and D. Sun, *Cryst. Growth Des.*, 2013, 13, 3154–3161.
- 7. Z.-H. Zhang, S.-Y. Wan, T.-a. Okamura, W.-Y. Sun and N. Ueyama, *Z. Anorg. Allg. Chem.*, 2006, **632**, 679–683.
- H.-J. Zhang, R.-Q. Fan, P. Wang, X.-M. Wang, W. Chen, X.-B. Zheng, K. Li and Y.-L. Yang, J. Inorg. Organomet. Polym. Mater., 2014, 24, 624–632.
- M. I. Breeze, T. W. Chamberlain, G. J. Clarkson, R. P. de Camargo, Y. Wu, J. F. de Lima, F. Millange, O. A. Serra, D. O'Hare and R. I. Walton, *CrystEngComm*, 2017, 19, 2424–2433.
- D. L. Burnett, R. Oozeerally, R. Pertiwi, T. W. Chamberlain, N. Cherkasov, G. J. Clarkson, Y. K. Krisnandi, V. Degirmenci and R. I. Walton, *Chem. Commun.*, 2019, 55, 11446–11449.
- B. Chen, Y. Yang, F. Zapata, G. Qian, Y. Luo, J. Zhang and E. B. Lobkovsky, *Inorg. Chem.*, 2006, 45, 8882–8886.
- F. Le Natur, G. Calvez, S. Freslon, C. Daiguebonne, K. Bernot and O. Guillou, J. Mol. Struct., 2015, 1086, 34–42.
- R. A. Zehnder, R. A. Renn, E. Pippin, M. Zeller, K. A. Wheeler, J. A. Carr, N. Fontaine and N. C. McMullen, *J. Mol. Struct.*, 2011, 985, 109–119.
- 14. M. Zhu, W. Fu and G. Zou, J. Coord. Chem., 2012, 65, 4108–4114.
- T. M. Reineke, M. Eddaoudi, M. Fehr, D. Kelley and O. M. Yaghi, J. Am. Chem. Soc., 1999, 121, 1651–1657.
- C. Daiguebonne, N. Kerbellec, O. Guillou, J. C. Bünzli, F. Gumy, L. Catala, T. Mallah, N. Audebrand, Y. Gérault, K. Bernot and G. Calvez, *Inorg. Chem.*, 2008, 47, 3700–3708.

- V. Haquin, F. Gumy, C. Daiguebonne, J. C. Bünzli and O. Guillou, *Eur. J. Inorg. Chem.*, 2009, DOI: 10.1002/ejic.200900549, 4491–4497.
- N. Kerbellec, D. Kustaryono, V. Haquin, M. Etienne, C. Daiguebonne and O. Guillou, *Inorg. Chem.*, 2009, 48, 2837–2843.
- A. Cadiau, C. D. S. Brites, P. M. F. J. Costa, R. A. S. Ferreira, J. Rocha and L. D. Carlos, *ACS Nano*, 2013, 7, 7213–7218.
- V. Haquin, M. Etienne, C. Daiguebonne, S. Freslon, G. Calvez, K. Bernot, L. Le Pollès, S. E. Ashbrook, M. R. Mitchell, J. C. Bünzli, S. V. Eliseeva and O. Guillou, *Eur. J. Inorg. Chem.*, 2013, 2013, 3464-3476.
- A. Y. Grishko, V. V. Utochnikova, A. A. Averin, A. V. Mironov and N. P. Kuzmina, *Eur. J. Inorg. Chem.*, 2015, DOI: 10.1002/ejic.201403071, 1660–1664.
- 22. D. Aulakh, J. R. Varghese and M. Wriedt, Inorg. Chem., 2015, 54, 8679-8684.
- L. Liao, C. W. Ingram, D. Vandeveer, K. Hardcastle, K. M. Solntsev, D. Sabo, Z. J. Zhang and R. T. Weber, *Inorg. Chim. Acta*, 2012, **391**, 1–9.
- 24. T. M. Reineke, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, *Angew. Chem. Int. Ed.*, 1999, **38**, 2590–2594.
- L. Pan, N. Zheng, Y. Wu, S. Han, R. Y. Yang, X. Huang and J. Li, *Inorg. Chem.*, 2001, 40, 828–830.
- J. Zhang, J. Li, Z. G. Sun, Y. Zhao, Y. Y. Zhu, N. Zhang, L. Liu and X. Lu, Z. Anorg. Allg. Chem., 2008, 634, 2629–2633.
- C. Serre, F. Millange, J. Marrot and G. Férey, *Chem. Mater.*, 2002, 14, 2409– 2415.
- S.-L. Xie, B.-Q. Xie, X.-Y. Tang, N. Wang and S.-T. Yue, Z. Anorg. Allg. Chem., 2008, 634, 842–844.
- 29. S. Feng, Acta Crystallogr. Sect. E: Struct. Rep. Online, 2010, 66, m33.
- A. Deluzet, W. Maudez, C. Daiguebonne and O. Guillou, *Cryst. Growth Des.*, 2003, 3, 475–479.
- C. Daiguebonne, N. Kerbellec, K. Bernot, Y. Gérault, A. Deluzet and O. Guillou, *Inorg. Chem.*, 2006, 45, 5399–5406.
- 32. J.-c. Yao, X.-x. Cao, L. Zhang, Y.-f. Wang, J.-b. Guo and C.-p. Fan, *J. Chem. Crystallogr.*, 2011, **41**, 1400–1405.
- L. Na, R. Hua, L. Zhang, W. Zhang and G. Ning, J. Chem. Crystallogr., 2009, 39, 688–691.
- 34. D. Weng, X. Zheng and L. Jin, *Eur. J. Inorg. Chem.*, 2006, **2006**, 4184–4190.

- X. P. Yang, R. A. Jones, J. H. Rivers and P.-j. Lai, *Dalton Trans.*, 2007, DOI: 10.1039/b706823a, 3936–3942.
- 36. L.-Q. Yu, R.-D. Huang, Y.-Q. Xu, T.-F. Liu, W. Chu and C.-W. Hu, *Inorg. Chim. Acta*, 2008, **361**, 2115–2122.
- Y. Wu, M. I. Breeze, G. J. Clarkson, F. Millange, D. O'Hare and R. I. Walton, *Angew. Chem. Int. Ed.*, 2016, 55, 4992–4996.
- Y. Zhang, J. Yang, G.-D. Li, F. Zhang and J.-S. Chen, J. Coord. Chem., 2008, 61, 945–955.
- J.-J. Wang, Y. Chen, M.-J. Liu, R.-Y. Fan, P.-P. Si, J. Yang, Y.-Y. Pan, Y. Chen, S.-S. Zhao and J. Xu, *Polyhedron*, 2018, **154**, 411–419.
- 40. R. Decadt, K. Van Hecke, D. Depla, K. Leus, D. Weinberger, I. Van Driessche, P. Van Der Voort and R. Van Deun, *Inorg. Chem.*, 2012, **51**, 11623–11634.
- 41. H. F. Clausen, J. Overgaard, R. D. Poulsen, W. Morgenroth and B. B. Iversen, *Acta Crystallogr. Sect. E: Struct. Rep. Online*, 2006, **62**, m3333–m3335.
- 42. R. D. Poulsen, J. Overgaard, M. A. Chevallier, H. F. Clausen and B. B. Iversen, *Acta Crystallogr. Sect. E: Struct. Rep. Online*, 2005, **61**, m1337–m1339.
- 43. A. Abbasi, F. Mohammadnezhad and S. Geranmayeh, *J. Inorg. Organomet. Polym. Mater.*, 2014, **24**, 1021–1026.
- 44. Z. Min, M. A. Singh-Wilmot, C. L. Cahill, M. Andrews and R. Taylor, *Eur. J. Inorg. Chem.*, 2012, **2012**, 4419–4426.
- 45. G. Huang, P. Yang, N. Wang, J.-Z. Wu and Y. Yu, *Inorg. Chim. Acta*, 2012, **384**, 333–339.
- 46. R. Sibille, T. Mazet, B. Malaman and M. Francois, *Chem. Eur. J.*, 2012, **18**, 12970–12973.
- M. Lammert, M. T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K. A. Lomachenko, D. D. Vos and N. Stock, *Chem. Commun.*, 2015, 51, 12578– 12581.
- 48. C. Serre, F. Millange, J. Marrot and G. Ferey, *Chem. Mater.*, 2002, **14**, 2409–2415.
- L. D'Arras, C. Sassoye, L. Rozes, C. Sanchez, J. Marrot, S. Marre and C. Aymonier, *New J. Chem.*, 2014, **38**, 1477–1483.
- Y. Kitamura, E. Terado, Z. Zhang, H. Yoshikawa, T. Inose, H. Uji-i, M. Tanimizu, A. Inokuchi, Y. Kamakura and D. Tanaka, *Chem. Eur. J.*, 2021, 27, 16347–16353.