Supporting information

First observation of \([\text{Pu}_6(\text{OH})_4\text{O}_4]^{12+}\) cluster during the hydrolytic formation of \(\text{PuO}_2\) nanoparticles using H/D kinetic isotope effect

Manon Cot-Auriol \(^a\), Matthieu Virot \(^a\), Thomas Dumas \(^b\), Olivier Diat \(^a\), Denis Menut \(^c\)
Philippe Moisy \(^b\), Sergey I. Nikitenko \(^a\)

\(^a\) ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.
\(^b\) CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France.
\(^c\) Synchrotron SOLEIL, MARS beamline, l’Orme des Merisiers, Saint Aubin BP 48, 91192 Gif-sur-Yvette, France.

I. Materials and methods

Synthesis of Pu(IV) intrinsic colloids
Experiments with plutonium were carried out at Atalante Facility, Marcoule (France). The concentrated Pu(IV) solution used was purified onto anion exchange resin and was stabilized in ca. 2.4 M \(\text{HNO}_3\). The isotopic composition (wt%) was 96.9\% \(^{239}\text{Pu}\), 2.9\% \(^{240}\text{Pu}\), 0.1\% \(^{242}\text{Pu}\) and 0.1\% \(^{238}\text{Pu}\). Hydrolytic colloid suspensions were prepared by diluting a small volume of Pu(IV) concentrated solution with pure water (Milli-Q water, 18.2 \(\text{M} \Omega \cdot \text{cm}\) at 25 °C) or pure deuterium oxide solution (\(\text{D}_2\text{O}\)), under vigorous stirring. The final concentration of Pu was 5 mM and the solutions presented a green emerald colour which is characteristic of the Pu(IV) colloid species. In some cases, the initial pH of \(\text{H}_2\text{O}\) or \(\text{D}_2\text{O}\) were adjusted by adding 0.1 M \(\text{HNO}_3\) prepared in \(\text{H}_2\text{O}\) or \(\text{D}_2\text{O}\), respectively.

Spectroscopic, SAXS and XAS characterizations
Plutonium solutions were analysed by Vis-NIR absorption spectroscopy with a 1 cm plastic cuvette (UV3600 Shimadzu spectrophotometer, 350-900 nm range). SAXS and XAS characterizations were realized on the MARS beamline, at the SOLEIL Synchrotron Radiation Facility (Saint-Aubin, France; 6 GeV at 200 mA). The optical part was composed of a double-crystal monochromator (DCM) framed by two Pt-coated mirrors for beam collimation and rejection of higher-order harmonics. Energy calibration was made at the yttrium edge (17 038 eV). Plutonium samples were put in a specific cell, which was composed of Teflon sample holders (slots of 250 \(\mu\text{L}\)) closed by Kapton® layers.

SAXS analyses were performed for 5 s acquisition time per sample, with an X-ray energy of 17 keV and a sample to detector (MAR345) distance of 764 mm. The beam stop was fixed in front of the detector and placed in a He gas reservoir in order to reduce the air scattering. The scattering intensity \(I(Q)\) was obtained after averaging the isotropic 2D scattering data using Fit2D software. The final absolute scattering intensity for colloids was calculated by subtracting the empty cell, solvent and background contributions, and using a normalisation procedure with a benchmarked polyethylene sample. SAXS fitting procedure was performed using SASview 5.0 software.
XAS spectra were recorded in fluorescence mode at Pu L$_3$-edge (HPGe multi-element detector) with a sample orientation of 45° to the incident beam. A metallic Zr foil was used to calibrate the incident energy (K-edge defined at 17 988 eV). Pu ionization energy was defined at the maximum of the white line ($E_0 = 18 068$ eV) and each XAS spectrum results from an average of 3 scans realized at Pu L$_{III}$ edge. In the case of D$_2$O, a XAS spectrum of Pu(VI) was subtracted from the experimental spectrum before fitting the data. EXAFS data analysis was carried out with Athena and Artemis software from the IFFEFIT package.$^{[1]}$ Fits were performed with Artemis code (Kaiser-Bessel window, 2.7-13 Å$^{-1}$ k range). The fit of EXAFS data was based on the crystalline fcc PuO$_2$ structure with a two O-shell model (short oxygen and medium oxygen) for the first coordination sphere. The model was composed of four single scattering paths (O$_s$, O$_m$, Pu, O$_2$) with the distance Pu-O$_2$ (4.46 Å) and $S_0^2 = 0.9$ as fixed parameters. Pu and O$_2$ scattering paths describe the interactions in the second coordination sphere. Coordination numbers, Debye-Waller factors and others distances were considered as floating parameters.

Determination of the Pu(VI) concentration and the corresponding rate of Pu(VI) consumption

The Pu(VI) concentration (c) was calculated over time with the Beer-Lambert law (Eq. 1) by considering the absorbance value (A) at $\lambda = 830$ nm, with the molar absorption coefficient (ε) equal to 470 L·mol$^{-1}$·cm$^{-1}$ and the distance taken by the light in the sample (l) equal to 1 cm.$^{[2]}$ The error was estimated at 10%.

$$A = \varepsilon \times l \times c$$ \hspace{1cm} (Eq. 1)

Assuming that Pu(VI) consumption follows a a first order reaction rate on Pu(VI), the following equation can be used.

$$\ln\left(\frac{[Pu^{VI}]_t}{[Pu^{VI}]_{max}}\right) = -kt$$ \hspace{1cm} (Eq. 2)

Deconvolution of Vis-NIR absorption spectra

A deconvolution of the Vis-NIR spectra was performed to determine the participation of each species present in the solution. This treatment is based on the additivity of the absorbance (Eq. 2). A_i is the absorbance of the species i and a_i is the corresponding participation coefficient.

$$A_{total} = \sum_i a_i A_i$$ \hspace{1cm} (Eq. 3)

Reference spectra for Pu(III), Pu(IV), Pu(VI) were used. Each one corresponds to a known concentration (Table S1). In the case of the colloid reference spectrum, it was obtained from a spectrum measured on an aged colloidal solution (> 1 month in H$_2$O), from which the participation of Pu(VI) was subtracted. We assumed that the rest of the Pu in solution was considered to be only in the colloid form. The same approach was applied to obtain a reference spectrum of the cluster, by subtracting the participation of Pu(III), Pu(IV), Pu(VI) and Pu colloid. The final reference concentration for the cluster was equaled to the difference between the Pu total concentration (5 mM) and the concentrations of the different subtracted species. An illustration of the application of deconvolution is given in Fig. S1. The error is
the difference between the experimental spectrum and the simulated spectrum (fit). To optimize the fit quality, the sum of the squares of the error (Eq. 3) must tend towards 0.

Table S1: Molar absorption coefficients (ε) and concentrations (c) of the plutonium references for Pu(III), Pu(IV), Pu(VI), Pu_{coll} and Pu_{cluster}. Pu(IV) is for hydrolyzed Pu(IV) species.

<table>
<thead>
<tr>
<th>Espèce</th>
<th>λ (nm)</th>
<th>ε (L·mol^{-1}·cm^{-1})</th>
<th>C (mol·L^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu(III)</td>
<td>601</td>
<td>39</td>
<td>0.002</td>
</tr>
<tr>
<td>Pu(IV)</td>
<td>475</td>
<td>70</td>
<td>0.011</td>
</tr>
<tr>
<td>Pu(VI)</td>
<td>830</td>
<td>470</td>
<td>0.003</td>
</tr>
<tr>
<td>Pu_{coll}</td>
<td>616</td>
<td>17</td>
<td>0.005</td>
</tr>
<tr>
<td>Pu_{cluster}</td>
<td>-</td>
<td>-</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Fig. S1: Deconvolution result of the Vis-NIR absorption spectrum obtained at 2 min after dilution of the concentrated Pu(IV) solution in H_{2}O.

\[
\text{Error}_{\text{total}} = \sum_{\lambda} (A_{\text{exp}}(\lambda) - A_{\text{fit}}(\lambda))^2 \tag{Eq. 4}
\]

Determination of the rate of colloid formation

The determination of the colloid formation rate is based on the deconvolution of experimental Vis-NIR spectra. After extracting the contribution of the colloid spectral signature in the experimental spectra, the colloid concentration in the solution can be plotted as a function of time. Assuming that the colloid formation reaction is total and with a first order, the rate can be calculated by using the following equation.

\[
\ln \left(1 - \frac{[\text{Pu}_{\text{coll}}]_t}{[\text{Pu}_{\text{coll}}]_{\text{max}}} \right) = -kt \tag{Eq. 5}
\]

Theoretical isotopic separation factor for OH/OD bonds splitting

The isotopic separation factor (\(\alpha_{(H/D)}\)) is calculated using semiclassical zero-point energy approximation according to the Eq. 5. \(\Delta E\) is the zero-point energy difference for OH/OD bonds (\(\Delta E = 5.89\) kJ·mol\(^{-1}\)), \(R\) is the molar gas constant and \(T\) is the temperature.

\[
\alpha_{(H/D)} = e^{\frac{\Delta E}{RT}} \tag{Eq. 6}
\]

SAXS fitting model
The definition of the SAXS scattering diagrams for diluted systems is generally based on the
\textbf{Eq. 6}, with \(\phi \) the volume fraction, \(P(Q) \) the form factor related to size and shape of the
scattering objects and \(S(Q) \) the structure factor related with particle interactions. Due to the
low concentration of colloidal particles, we considered the absence of interaction between
them, which means that the last parameter \(S(Q) \) is equal to 1.

\[I(Q) = \Phi P(Q)S(Q) \quad \text{(Eq. 7)} \]

For the data adjustment, an approach was applied for the form factor \(P(Q) \) using a model for
homogeneous spheres with a Gaussian size distribution. For this model, there are four
parameters with \(\phi \) the volume fraction, \(R \) the particle radius, \(\Delta \rho \) the scattering length density
difference and \(PD \) the polydispersity (ratio between the half width of the Gaussian distribution
function and the particle radius). The theoretical volume fraction was estimated at \(\phi_{th} = 1.2 \times 10^{-4} \),
considering a full conversion of plutonium solution into PuO\(_2\) particles. Theoretical \(\Delta \rho \)
could be calculated from molar volume and considering dense oxide PuO\(_2\) particles. All
parameters used for fit application are summarized in \textbf{Table S2} and \textbf{S3}.

\textbf{Table S2}: Molar volume \((V_m) \), X-ray scattering length density \((\rho) \) and the corresponding difference \(\Delta \rho \) used for
SAXS diagram simulation calculations. Values for PuO\(_2\) are based on the dense oxide density \((d = 11.5) \).

<table>
<thead>
<tr>
<th>Solvent</th>
<th>(V_m) ((10^{-23} \text{ cm}^3))</th>
<th>(\rho) ((10^{10} \text{ cm}^{-2}))</th>
<th>(\Delta \rho) ((10^{10} \text{ cm}^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>PuO(_2)</td>
<td>3.99</td>
<td>77.78</td>
<td></td>
</tr>
<tr>
<td>H(_2)O</td>
<td>2.99</td>
<td>9.42</td>
<td>PuO(_2)/H(_2)O</td>
</tr>
<tr>
<td>D(_2)O</td>
<td>3.00</td>
<td>9.41</td>
<td>PuO(_2)/D(_2)O</td>
</tr>
</tbody>
</table>

\textbf{Table S3}: SAXS data fitting parameters for a homogeneous sphere model with a Gaussian distribution in radius
around a mean value \(R \) and a polydispersity value (PD). \(\phi \) and \(\Delta \rho \) being respectively the volume fraction and the
scattering length density difference between the particle and the aqueous solvent.

<table>
<thead>
<tr>
<th>Sphere model</th>
<th>Solvent</th>
<th>(R) (nm)</th>
<th>PD</th>
<th>(\phi_{th}) ((10^{-4}))</th>
<th>(\Delta \rho) (cm(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2)O</td>
<td>0.9 ± 0.1</td>
<td>0.15</td>
<td>1.5</td>
<td>69.2</td>
<td></td>
</tr>
<tr>
<td>D(_2)O</td>
<td>1.1 ± 0.1</td>
<td>0.15</td>
<td>0.75</td>
<td>69.0</td>
<td></td>
</tr>
</tbody>
</table>

\textbf{II. pH effect}

Light and heavy waters did not have the same initial pH\(_i\) value (\textbf{Table S4}). To check that this
parameter did not affect the kinetics observed by Vis-NIR absorption spectroscopy, their pH\(_i\)
was adjusted by adding 0.1 M HNO\(_3\) (prepared in the corresponding medium) before adding
the concentrated Pu(IV) solution (\textbf{Table S4}). The corresponding Vis-NIR spectra obtained in
such conditions (not shown) did not exhibit any real differences from those presented in \textbf{Fig. S3}. This observation could be confirmed by SAXS analyses, where no differences were noted in the
SAXS diagrams (\textbf{Fig. S2}). So, it can be assumed that the initial pH of the solvents (H\(_2\)O, D\(_2\)O) has no influence on the kinetics of Pu(IV) colloid formation. This may be explained by the
high acidity of the concentrated Pu(IV) solution which will control the final pH of the Pu
colloidal solution.

\textbf{Table S4}: measured pH values before adding Pu(IV) concentrated solution in H\(_2\)O and D\(_2\)O, and after synthesis of
5 mM Pu(IV) hydrolytic colloids (approx. 1 month old). *solvent pH modified by adding HNO\(_3\) 0.1 M prepared in
H\(_2\)O and D\(_2\)O, respectively. All values have an error of ± 0.2.
<table>
<thead>
<tr>
<th></th>
<th>H$_2$O</th>
<th>D$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH$_i$ before synthesis</td>
<td>5.5</td>
<td>5.3*</td>
</tr>
<tr>
<td>pH$_f$ after synthesis</td>
<td>2.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Fig. S2: SAXS diagrams of 5 mM Pu(IV) hydrolytic colloids formed in H$_2$O (red and orange dots) and D$_2$O (blue and purple dots), with two different starting pH$_i$ for each solvent. The samples were 1 month old. The oscillation at Q = 4 nm$^{-1}$ is an artefact attributed to the scattering of the Kapton windows of the sample holder.

III. ESI figures and tables

Figure S3

Fig. S3: Vis-NIR absorption spectra acquired over time during the synthesis of 5 mM Pu(IV) hydrolytic colloids in (a) H$_2$O and (b) D$_2$O.
Figure S4

Fig. S4: Vis-NIR absorption spectra just after the dispersion of Pu(IV) concentrated solution in H$_2$O (purple line) and D$_2$O (blue line). Spectra were previously treated by subtracting the Pu(IV), Pu(III), Pu(VI) and Pu colloid contributions. The Vis-NIR absorption spectrum of Pu(IV) acetate hexanuclear cluster (black line) was carried out for comparison, with courtesy of C. Tamain.[3]

Figure S5

Fig. S6: Vis-NIR absorption spectra before and after synchrotron analyses acquired on 5 mM Pu(IV) hydrolytic colloids in (a) H$_2$O and (b) D$_2$O.
Figure S6

(a) Pu-L₃ XANES and (b) corresponding derivative for 5 mM Pu(IV) hydrolytic colloids (1 month old) formed in H₂O (red line) and D₂O (blue line). (c) k³-weighted experimental EXAFS spectra acquired on 5 mM Pu(IV) hydrolytic colloids (1 month old) formed in H₂O (red line) and D₂O (blue line).

Figure S7

Fig. S7: (a) Pu-L₃ XANES and (b) corresponding derivative for 5 mM Pu(IV) hydrolytic colloids (1 month old) formed in H₂O (red line) and D₂O (blue line). (c) k³-weighted experimental EXAFS spectra acquired on 5 mM Pu(IV) hydrolytic colloids (1 month old) formed in H₂O (red line) and D₂O (blue line).

Figure S8

Fig. S8: Fourier transforms (FT) of the k³-weighted 2.709-13 Å⁻¹ range for Pu(IV) colloids formed in H₂O and D₂O. The green FT corresponds to the one of D₂O sample without Pu(VI) contribution.
Table S5

Table S5: EXAFS structural parameters of 5 mM Pu(IV) hydrolytic colloids colloids formed in H$_2$O and D$_2$O, from k^3-weighted EXAFS spectra (CN: coordination number, R: interatomic distance, σ^2: Debye-Weller factor). (*) R$_{Pu-O_2}$ = 4.46 Å was fixed according to the crystalline fcc PuO$_2$ structure. S$_0^2$ = 0.9, ΔE_0 = 2.97-3.74 eV. R-factor < 5%. The standard deviations measured using IFFEFIT software are given in parentheses.

<table>
<thead>
<tr>
<th>Shell</th>
<th>PuO$_2$</th>
<th>H$_2$O</th>
<th>D$_2$O after Pu(VI) subtraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CN</td>
<td>R (Å)</td>
<td>σ^2 (Å2)</td>
</tr>
<tr>
<td>Pu-O$_5$</td>
<td>5.4(62)</td>
<td>2.26(8)</td>
<td>0.008(6)</td>
</tr>
<tr>
<td>Pu-O$_{m}$</td>
<td>3.4(64)</td>
<td>2.42(11)</td>
<td>0.008(10)</td>
</tr>
<tr>
<td>Pu-Pu</td>
<td>5.6(9)</td>
<td>3.80(1)</td>
<td>0.006(1)</td>
</tr>
<tr>
<td>Pu-O$_2$</td>
<td>11.2(18)</td>
<td>4.46*</td>
<td>-</td>
</tr>
</tbody>
</table>

References