Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Supporting Information

A host-guest interaction activated Bobbitt oxidant for

highly efficient oxidation of alcohols

Jinyang Wu,‡ Youran Luo,‡ Lingxuan Chen, Xuan Sun, Xinnan Chen, Song Qin, Wen Feng,* Xiaowei Li,* and Lihua Yuan*

Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610065 ‡These authors contributed equally to the work.

> E-mail: lhyuan@scu.edu.cn wfeng9510@scu.edu.cn lixw@scu.edu.cn

Materials and methods
Synthesis and characterization4
Host-guest chemistry of 1a and AcNH-TEMPO⁺BF₄⁻ 5
Job plot for determination of stoichiometry5
HRMS spectra of AcNH-TEMPO⁺BF₄⁻⊂1a 6
UV-vis titration experiments6
¹ H NMR spectra for 1a and AcNH-TEMPO⁺BF 4 ⁻ interactions8
Host-guest chemistry of 1a and AcNH-TEMPOH 8
Job plot for determination of stoichiometry9
MALDI-TOF-MS spectrum of AcNH-TEMPOH⊂1a 9
UV-Vis titration experiments10
¹ H NMR spectra of 1a and AcNH-TEMPOH 11
2D NOESY spectrum for AcNH-TEMPOH⊂1a12
Oxidation reactions of unactivated alcohols in two-phase H ₂ O/CDCl ₃ system12
Background reactions of without AcNH-TEMPO⁺BF ⁻ 13
Evaluation of the stability of AcNH-TEMPO⁺BF ₄ 13
Phase transfer of AcNH-TEMPO⁺BF ₄ ⁻ monitored by conductivity experiments
Phase transfer of AcNH-TEMPOH monitored by ¹ H NMR experiments
Apparent kinetics of the catalytic biphasic oxidation17
Turnover number of AcNH-TEMPO⁺BF₄⁻⊂1a 21
Apparent kinetics of the monophasic oxidation22
X-ray crystal structure of AcNH-TEMPO⁺BF₄⁻⊂1b 26
DFT calculation for Mulliken charge distribution
¹ H NMR Spectra

Table of Contents

Materials and methods

All chemicals were obtained from commercial suppliers and were used as received unless other-wise noted. Solvents were dried and distilled following usual protocols. Solvents for NMR were purchased from Cambridge Isotope Laboratories (CIL). Analytical NMR spectra were recorded on Bruker AVANCE AV II-400/600 MHz at room temperature of 298 K (¹H: 400 MHz; 2D: 600 MHz). Chemical shifts are reported in \overline{o} values in ppm using tetramethylsilane (TMS) or residual solvent as internal standard and coupling constants (J) are denoted in Hz. Multiplicities are denoted as follows: s = singlet, d = doublet, t = triplet, dd = double doublet and m = multiplet. MALDI-TOF mass spectrum was recorded on a Bruker Autoflex III mass spectrometer, matrix is 2,6dihydroxyacetophenone (DHAP). High resolution mass (HRMS) data were collected by WATERS Q-TOF Premier. UV-vis spectra were measured by SHIMADZU UV-2450. Conductivity experiments were implemented on DDSJ-308A (Shanghai Precision Instruments Co., Ltd.). Single crystal X-ray data were measured on a Xcalibur E diffractometer with graphite monochromated Cu-K α radiation (λ =1.54184 Å). Data collection and structure refinement details can be found in the CIF files or obtained free of charge via *https://www.ccdc.cam.ac.uk/*.

Synthesis and characterization

Scheme S1 Synthetic route of 1a and 1b.

1a and 1b were prepared according to literature procedures.^[1]

1a, white solid power (yield: 84.3 %). ¹H NMR (400 MHz, CDCl₃, 298 K) δ 9.41 (s, 3H, H_a), 9.40 (s, 3H, H_c), 9.32 (s, 6H, H_b), 6.50 (s, 3H, H_e), 6.48 (s, 3H, H_d), 4.08 (d, J = 5.8 Hz, 12H, H_f), 3.86 (s, 18H, H_j), 2.06 (p, J = 6.1 Hz, 6H, H_h), 1.52 (h, J = 7.7, 7.0 Hz, 48H, H_{i-l}), 1.43 – 1.19 (m, 128H, H_{m-t}), 0.86 (td, J = 6.8, 2.2 Hz, 36H, H_{v/u}). MADLI-TOF MS m/z calculated for C₁₄₄H₂₃₄N₆O₁₈ [M+H]⁺ 2337.768, found 2337.422.

1b, white solid power (yield: 80.4 %). ¹H NMR (400 MHz, CDCl₃, 298 K) δ 9.73 – 9.66 (m, 3H, H_a), 9.63 – 9.55 (m, 6H, H_b), 9.20 (dd, J = 5.2, 2.4 Hz, 3H, H_c), 6.61 (t, J = 3.3 Hz, 6H, H_{d/e}), 4.20 (d, J = 5.0 Hz, 12H, H_f), 3.95 (dd, J = 3.8, 1.7 Hz, 18H, H_j), 2.21 (m, 6H, H_h), 1.63 (q, J = 6.8 Hz, 24H, H_{i/j}), 1.03 (m, J = 7.9, 2.9, 2.3 Hz, 36H, H_{k/l}). MADLI-TOF MS m/z calculated for C₈₄H₁₁₄N₆O₁₈ [M+H]⁺ 1495.826, found 1495.890.

Scheme S2 Synthetic routes of AcNH-TEMPOH.

The compounds of AcNH-TEMPOH-HCI and AcNH-TEMPOH were prepared according to the literature procedures.^[2]

ACNH-TEMPOH-HCI: white solid power (yield: 78.6 %). ¹H NMR (400 MHz, D₂O, 298 K) δ 4.21 (m, J = 12.5, 7.8, 3.9 Hz, 1H, H₃), 2.17 – 2.08 (m, 2H, H₄^e), 1.90 (s, 3H, H₅), 1.71 (t, J = 13.3 Hz, 2H, H₄^a), 1.42 (s, 6H, H₆^e), 1.37 (s, 6H, H₆^a).

ACNH-TEMPOH: ¹H NMR (400 MHz, D₂O, 298 K) δ 4.087 (m, J = 12.5, 7.8, 3.9 Hz, 1H, H₃),1.89 (s, 3H, H₅), 1.84 (m, J = 13.4, 3.4, 1.6 Hz, 2H, H₄^e), 1.43 (t, J = 12.8 Hz, 2H, H₄^a), 1.18 (s, 6H, H₆^e), 1.14 (s, 6H, H₆^a).

Host-guest chemistry of 1a and AcNH-TEMPO⁺BF₄⁻

Scheme S3 Chemical structures of 1a (host) and AcNH-TEMPO+BF4⁻ (guest).

Guest (AcNH-TEMPO⁺BF₄⁻) was obtained from commercial supplier (Tokyo Chemical Industry, TCI) and was used as received.

Job plot for determination of stoichiometry

Because of the poor solubility of guest AcNH-TEMPO⁺BF₄⁻ in CHCl₃, the mixed solvent of CHCl₃/CH₃CN (5:1, v/v) was used for Job plot and binding constant.

Figure S1 Job plot for determination of stoichiometry of **1a** and **AcNH-TEMPO*BF**₄^{*} based on the absorbance at 365 nm in CHCl₃/CH₃CN (5:1, v/v, 298 K). [**1a**] + [**AcNH-TEMPO*BF**₄^{*}] = 50 μM.

HRMS spectra of AcNH-TEMPO⁺BF₄⁻⊂1a

Figure S2 Full HRMS spectrum of AcNH-TEMPOH⊂1a complex derived from AcNH-TEMPO+BF₄·⊂1a complex in CHCl₃/CH₃CN (5:1, v/v) under ESI-MS condition. The AcNH-TEMPOH⊂1a complex was produced in situ from a mixture of AcNH-TEMPO+BF₄⁻ and 1a. HRMS (ESI) calculated for [1a+AcNH-TEMPOH+H]⁺, m/z, 2551.9373, found 2551.9323.

UV-vis titration experiments

To determinate the binding constant (K_a) of macrocycle **1a** and guest **AcNH-TEMPO+BF**₄⁻, UV-vis titration experiments were performed in CHCl₃/CH₃CN (5:1, v/v, 298 K) at a constant concentration of **1a** (50 µM) and varying concentration of **AcNH-TEMPO+BF**₄⁻. For the titration, at least 20 data points were collected. Binding constant was calculated by a global fitting analysis according to a 1:1 binding model using the website (*http://supramolecular.org/*).

Figure S3 Stacked UV-vis spectra of **1a** (50 μ M) titrated with **AcNH-TEMPO+BF**₄⁻ in CHCl₃/CH₃CN (5:1, v/v) at 298 K. Inserted are expanded spectra in the wavelength range from 340 nm to 400 nm.

Figure S4 Curve fitting of the binding constant of **AcNH-TEMPO⁺BF**₄⊂**1a** in CHCl₃/CH₃CN (5:1, v/v, 298 K). The reported binding constant is the average value based on fitting of the absorbance at 355 nm, 360 nm and 365 nm.

¹H NMR spectra for 1a and AcNH-TEMPO⁺BF₄⁻ interactions

Figure S5 ¹H NMR spectra (400 MHz, CDCl₃/CD₃CN, 9:1, v/v 298 K) of (a) 1.0 mM 1a, (b) 1.0 mM 1a and 1.0 mM AcNH-TEMPO+BF₄⁺, (c) 2.0 mM 1a and 1.0 mM AcNH-TEMPO+BF₄⁺.

Host-guest chemistry of 1a and AcNH-TEMPOH

Job plot for determination of stoichiometry

Figure S6 Job plot for determination of stoichiometry of 1a and AcNH-TEMPOH based on the absorbance at 355 nm in CHCl₃/CH₃CN (5:1, v/v, 298 K). [1a] + [AcNH-TEMPOH] = 50 μM.

MALDI-TOF-MS spectrum of AcNH-TEMPOH⊂1a

Figure S7 Full MALDI-TOF-MS spectrum of AcNH-TEMPOH⊂1a complex. MALDI-TOF-MS calculated for [1a+AcNH-TEMPOH+H]⁺, m/z, 2551.937, found 2551.902.

UV-Vis titration experiments

To determinate the binding constant (K_a) of macrocycle **1a** and guest **AcNH-TEMPOH**, UV-vis titration experiments were performed in CHCl₃/CH₃CN (5:1, v/v, 298 K) at a constant concentration of **1a** (50 µM) and varying concentration of **AcNH-TEMPOH**. For the titration, at least 20 data points were collected. Binding constant was calculated by a global fitting analysis according to a 1:1 binding model using the website (*http://supramolecular.org/*).

Figure S8 Stacked UV-Vis spectra of **1a** (50 µM) titrated with **AcNH-TEMPOH** in CHCl₃/CH₃CN (5:1, v/v) at 298 K. Inserted are expended spectra in the wavelength range from 340 nm to 400 nm.

Figure S9 Curve fitting of the binding constant of **AcNH-TEMPOH**⊂**1a** in CHCl₃/CH₃CN (5:1, v/v, 298 K). The reported binding constant is the average value based on fitting of the absorbance at 355 nm, 360 nm and 365 nm.

¹H NMR spectra of 1a and AcNH-TEMPOH

Figure S10 ¹H NMR spectra of (400 MHz, CDCI₃, 298 K) (a) 1 mM **1a** and excess NaHCO₃ (s), (b) **1a** and **AcNH-TEMPOH-HCI** in the presence of excess NaHCO₃ (s), (c) **AcNH-TEMPOH-HCI** in the presence of excess NaHCO₃ (s).

2D NOESY spectrum for AcNH-TEMPOH⊂1a

Figure S11 Expanded 2D-NOESY spectrum of AcNH-TEMPOH⊂1a (CD₂Cl₂, 298 K, 600 MHz, mixing time=0.4 s).

Oxidation reactions of unactivated alcohols in two-phase H₂O/CDCl₃ system

The standard Anelli's procedure for the biphasic catalytic oxidation of alcohols: ^[3] A solution of 0.1 M (1 equiv) alcohol in CDCl₃ (0.5 mL) was mixed with a buffer solution of 0.5 M NaHCO₃ (1 mL), following by addition of AcNH-TEMPO⁺BF₄⁻ (2 mol %), or AcNH-TEMPO⁺BF₄⁻ CB[7] (2 mol %), or AcNH-TEMPO⁺BF₄⁻ C1a (2 mol %). 60 μ L of 1.13 M NaClO solution was then added dropwise. The reaction mixture was stirred at 25 °C. Finally, the internal standard CHCl₂CHCl₂ (2.0 equiv) was added, and the mixture was stirred for 2 minutes. The CDCl₃ phase was collected into the NMR tube for the analysis of reaction yield.

Background reactions of without AcNH-TEMPO⁺BF₄⁻

No reactions were observed with benzyl alcohol and phenylpropanol in the absence of AcNH-TEMPO*BF4-.

Figure S12 Background reactions of (a) benzyl alcohol and (b) phenylpropanol catalyzed by 1a and NaClO; (c) benzyl alcohol catalyzed by NaClO alone.

Evaluation of the stability of AcNH-TEMPO⁺BF₄⁻

The procedure for evaluating the stability of AcNH-TEMPO⁺BF₄⁻ in the presence of NaClO (10 equiv) solution. To evaluate the stability of AcNH-TEMPO⁺BF₄⁻, the decay kinetic study on the oxidation process of AcNH-TEMPO⁺BF₄⁻ was performed in the presence of NaClO (10 eq.). By monitoring the evolution of the UV-vis spectra, we found that the UV-vis absorbance gradually increases during the first 3 hours (Figure S13). The time-retention ratio relationship was plotted based on the absorption at 270 nm. The results indicated that AcNH-TEMPO⁺BF₄⁻ decomposes rapidly in 3 h under the oxidation condition (Figure S14).

Figure S13 The evolutions of UV-vis spectra of **AcNH-TEMPO+BF**⁺ in aqueous phase (NaHCO₃ buffer) in the presence of NaClO (10 equiv).

Figure S14 The stability of **AcNH-TEMPO⁺BF** in aqueous phase (NaHCO₃ buffer) in the presence of NaClO (10 equiv) monitored by UV-vis spectroscopy. Results based on the absorbance at 270 nm.

The procedure for evaluating the stability of the complex AcNH-TEMPO⁺BF₄⁻ \subset 1a in the organic phase under oxidation conditions. To evaluate the stability of AcNH-TEMPO⁺BF₄⁻ \subset 1a in the organic under the oxidation condition, the kinetic study in biphasic H₂O/CHCl₃ system was performed. A mixture containing a solution of 3 mM 1a in CHCl₃ (3 mL) and a solution of 3 mM AcNH-TEMPO⁺BF₄⁻ in water (3 mL) was stirred at 25 °C for 5 min. AcNH-TEMPO⁺BF₄⁻ was rapidly transferred by 1a from the aqueous phase into the organic phase. After centrifugation, 0.1 mL CHCl₃ was removed from the organic phase and transferred to a cuvette, and 2.9 mL CHCl₃ was added. The absorption was recorded for the final solution (Figure S15).

NaClO (10 eq.) was added to the above two-phase $H_2O/CHCl_3$ system, and then the mixture was stirred. At different time, 0.1 mL CHCl_3 was removed from the organic phase and transferred to a cuvette after centrifugation, and 2.9 mL CHCl_3 was added. The absorption was recorded for the final solution. The results shown in Figure S16 indicated that the absorbance of AcNH-TEMPO⁺BF₄⁻C1a is fluctuated in a certain range (0.702-0.810 at 365 nm) in the presence of excess NaClO. Therefore, we concluded that the complex AcNH-TEMPO⁺BF₄⁻C1a is stable in the organic phase under oxidation conditions for at least 4 h.

Figure S15 The evolution of UV-vis spectra of AcNH-TEMPO*BF₄·⊂1a in organic phase in the presence of NaClO from 0 to 4 h.

Figure S16 Time-absorbance curves for the complex AcNH-TEMPO*BF4°C1a. Results based on the absorbance at 310 nm.

Phase transfer of AcNH-TEMPO⁺BF₄⁻ monitored by conductivity experiments

ACNH-TEMPO⁺**BF**₄⁻ has a much larger solubility in H₂O (11.5 g/100 mL) than in CHCl₃ (18 mg/100 mL).^[4] The macrocycle **1a** is able to bind **ACNH-TEMPO**⁺ due to the presence of an electron-rich cavity, which has the ability

to transfer the cationic catalyst from the aqueous phase to the organic phase. The percentages of the transferred **AcNH-TEMPO*BF**₄⁻ to the organic phase under the catalytic condition in the presence of different amount of **1a** can be estimated by conductivity experiments. First, the standard conductivity curve of **AcNH-TEMPO*BF**₄⁻ was conducted (Figure S17). Then, 25 mL of CHCl₃ solution of **1a** (5 mM) was mixed with 25 mL of H₂O solution of **AcNH-TEMPO*BF**₄⁻ (5 mM). The mixture was slightly stirred. The electrode was carefully soaked in the aqueous solution above without touching the organic phase below. The amount of the decrease of monitored conductivity was contributed by the transferred **AcNH-TEMPO*BF**₄⁻. As shown in Figure S18, the percentage of transferred **AcNH-TEMPO*BF**₄⁻ was calculated to be ~17% in the presence of **1a** (1 equiv) until the phase transfer reached the equilibrium.

Figure S17 . Standard conductivity curve of AcNH-TEMPO*BF4⁻ in water.

Figure S18 Time-dependent percentage curves for the AcNH-TEMPO+BF4 in water in the presence of 1a.

Phase transfer of AcNH-TEMPOH monitored by ¹H NMR experiments

Figure S19 ¹H NMR spectra of (400 MHz, 298 K) a) the mixture of 1.0 mM **AcNH-TEMPOH** and 1.0 mM **1a** in CDCl₃ before adding D₂O, b) CDCl₃ phase after adding D₂O to the solution above, and c) D₂O Phase after adding D₂O to the solution above. CHCl₂CHCl₂ was used as an internal standard.

Apparent kinetics of the catalytic biphasic oxidation

The apparent kinetics of the biphasic catalytic oxidation were measured using phenylproanol as a model substrate. As shown in **Figure S20-S21**, the oxidation process was nearly completed about 2 hr. The oxidation catalyzed by **AcNH-TEMPO+BF**₄⁻**C1a** displayed a faster reaction rate with a higher final conversion than that by using **AcNH-TEMPO+BF**₄⁻ alone.

Figure S20 Stacked ¹H NMR spectra (400 MHz, CDCl₃, v/v, 298 K) of the biphasic oxidation of phenylproanol catalyzed by AcNH-TEMPO+BF₄·c1a. The spectra from bottom to top correspond to the reaction at (a) 1 min, (b) 3 min, (c) 5 min, (d) 7 min, (e) 10 min, (f) 15 min, (g) 20 min, (h) 30 min, (i) 40 min, (j) 50 min, (k) 60 min, (l) 80 min, (m) 100 min, (n) 120 min.

Figure S21 Stacked ¹H NMR spectra (400 MHz, CDCl₃, v/v, 298 K) of conversions of biphasic oxidation of phenylproanol catalyzed by AcNH-TEMPO+BF₄⁻. The spectra from bottom to top correspond to the reaction at (a) 1 min, (b) 3 min, (c) 5 min, (d) 7 min, (e) 10 min, (f) 15 min, (g) 20 min, (h) 30 min, (i) 40 min, (j) 50 min, (k) 60 min, (l) 80 min, (m) 100 min, (n) 120 min.

Entry	Time (min)	[Phenylproar	nol] (<i>C_a</i> , mol/L)	Ln (C _{a,0} / C _a) ^[a]		
⊑nu y	nne (mn)	With 1a	Without 1a	With 1a	Without 1a	
а	1	0.0982	0.1003	0.0769	0.0555	
b	3	0.0930	0.0964	0.1312	0.0954	
С	5	0.0867	0.0936	0.2009	0.1244	
d	7	0.0789	0.0894	0.2957	0.1708	
е	10	0.0688	0.0847	0.4323	0.2244	
f	15	0.0602	0.0789	0.5656	0.2957	
g	20	0.0530	0.0742	0.6931	0.3567	

Table S1 Kinetic study of biphasic oxidation catalyzed by AcNH-TEMPO⁺BF₄⁻⊂1a or AcNH-TEMPO⁺BF₄⁻

[a] C_{a,0}=0.106 mol/L.

Figure S22 Linear curve fitting of the concentration of phenylproanol against reaction time, indicating a pseudo first order dependence of the reaction rate on phenylproanol.

Figure S23 Linear curve fitting of the concentration of phenylproanol against reaction time, indicating a pseudo first order dependence of the reaction rate on phenylproanol.

Figure S24 The time-conversion relationships of the biphasic oxidation using phenylpropanol as the substrate catalyzed by AcNH-TEMPO+BF₄⁻ and AcNH

Turnover number of AcNH-TEMPO⁺BF₄⁻ \subset 1a

A solution of 0.1 M (1 eq.) alcohol (phenylpropanol and benzyl alcohol) in CDCl₃ (0.5 mL) was mixed with a buffer solution of 0.5 M NaHCO₃ (1 mL), following by addition of **AcNH-TEMPO⁺BF**⁴⁻ **C 1a** (0.5 mol %). 60 μ L of 1.13 M NaClO was then added dropwise. The reaction mixture was stirred at 25 °C for 2 h. Finally, the CDCl₃ phase was collected for ¹H NMR analysis of the reaction conversions. No side products were observed from the ¹H NMR results.

Figure S25 Stacked ¹H NMR spectra (400 MHz, CDCl₃, v/v, 298 K) of (a) phenylpropanol, (b) the conversions of biphasic oxidation of

phenylpropanol catalyzed by AcNH-TEMPO+BF4-C1a (0.5 mol%).

Figure S26 Stacked ¹H NMR spectra (400 MHz, CDCl₃, v/v, 298 K) of (a) benzyl alcohol, (b) the conversions of biphasic oxidation of benzyl alcohol catalyzed by AcNH-TEMPO+BF₄⁻⊂1a (0.5 mol%).

Apparent kinetics of the monophasic oxidation

As shown in Figure S26-S32, the apparent kinetics of the oxidation in organic phase was measured with benzyl alcohol and phenylpropanol as model substrates. ¹H NMR yields of the products were determined using 1,1,2,2-tetrachloroethane as an internal standard. The oxidation catalyzed by **AcNH-TEMPO+BF**₄⁻ \subset 1a displayed a faster reaction rate than that by the free catalyst **AcNH-TEMPO+BF**₄⁻.

Figure S27 Stacked ¹H NMR spectra (400 MHz, CDCI₃-CD₃-CN, 5;1, v/v, 298 K) of yields of monophasic oxidation of phenylpropanol catalyzed by **AcNH-TEMPO+BF**₄-**C1a**. The spectra from bottom to top correspond to the reaction at (a) 5 min, (b) 12 min, (c) 25 min, (d) 40 min, (e) 50 min, (f) 120 min. (g) Zoomed ¹H NMR spectra of for protons *b* and *c* during catalysis.

Figure S28 Stacked ¹H NMR spectra (400 MHz, CDCl₃-CD₃CN, 5;1, v/v, 298 K) of yields of monophasic oxidation of phenylpropanol catalyzed by **AcNH-TEMPO+BF**₄⁻. The spectra from bottom to top correspond to the reaction at (a) 0 min, (b) 5 min, (c) 12 min, (d) 24 min, (e) 36 min, (f) 60 min, (g) 70 min, (i) 120 min.

Figure S29 Stacked ¹H NMR spectra (400 MHz, CDCl₃/CD₃CN, 5;1, v/v, 298 K) of oxidation reaction of benzyl alcohol using AcNH-TEMPO⁺BF₄⁺⊂1a as catalyst after adding benzyl alcohol at (a) 2 min, (b) 4 min, (c) 6 min, (d) 8 min, (e) 10 min, (f) 12 min, (g) 14 min, and (h) 20 min. CHCl₂CHCl₂ was used as an internal standard.

Figure S30 Stacked ¹H NMR spectra (400 MHz, CDCl₃/CD₃CN, 5;1, v/v, 298 K) of oxidation reaction of benzyl alcohol using **AcNH-TEMPO*BF4**·**C1a** as catalyst after adding benzyl alcohol at (a) 0 min (b) 4 min, (c) 10 min, (d) 15 min, (e) 37 min, (f) 48 min, (g) 64 min. CHCl₂CHCl₂ was used as an internal standard.

Time (min)	Benzyl alcohol C _a (mol/L)	In (C _{a,0} /C _a)	
0	0.00209	0	
2	0.001505	0.328504	
4	0.001233	0.527633	
6	0.000878	0.867501	
8	0.00069	1.108663	
10	0.000523	1.386294	
12	0.000293	1.966113	

Table S2 Kinetic study of monophasic oxidation catalyzed by AcNH-TEMPO⁺BF4⁻C1a

Figure S31 Linear curve fitting of the concentration of benzyl alcohol against reaction time, indicating a pseudo first-order kinetic of the reaction rate on benzyl alcohol.

Time (min)	Benzyl alcohol C _a (mol/L)	$Ln (C_{a,0}/C_a)$
0	0.0152	0
4	0.0108	0.35
10	0.0081	0.63
15	0.0067	0.82
37	0.0039	1.33
48	0.0030	1.61
64	0.0025	1.80

Table S3 Kinetic study of monophasic oxidation catalyzed by AcNH-TEMPO⁺BF4⁻

Figure S32 Linear curve fitting of the concentration of benzyl alcohol against reaction time, indicating a pseudo first-order dependence of the reaction rate on benzyl alcohol.

Figure S33 The time-yield relationship of the oxidation of benzyl alcohol catalyst by AcNH-TEMPO+BF₄⁻ and AcNH-TEMPO+BF

X-ray crystal structure of AcNH-TEMPO⁺BF₄⁻⊂1b

Crystallographic data (excluding structure factors) for **AcNH-TEMPO⁺BF**₄**⁻⊂1b** reported in this communication have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC–2039200. Data collection and structure refinement details can be found in the CIF files or obtained free of charge via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Identification code	AcNH-TEMPO⁺BF₄⁻⊂1b
CCDC No.	2039200
Empirical formula	$C_{200}H_{293}B_2F_8N_{22}O_{45}$
Formula weight	3899.20
Temperature/K	100.00 (10)
Crystal system	monoclinic
Space group	P21/c
a/Å	23.8670 (3)
b/Å	20.5849 (3)
c/Å	23.4795 (3)
α/°	90
β/°	117.284 (3)
٧/°	90
Volume/Å ³	10252.1 (3)
Z	2
$ ho_{cale}g/cm^3$	1.263
µ/mm ⁻¹	0.775
F(000)	4178.0
Crystal size/mm ³	0.22 × 0.2 × 0.18
Radiation	CuKα (λ = 1.54184)
20 range for data collection/°	4.166 to 154.568
Index ranges	$-29 \le h \le 30, -25 \le k \le 25, -29 \le l \le 22$
Reflections collected	83534
Independent reflections	20836 [$R_{int} = 0.0396$, $R_{sigma} = 0.1427$]
Data/restraints/parameters	20836/717/1390
Goodness-of-fit on F ²	0.927
Final R indexes [I>=2σ (I)]	$R_1 = 0.0930$, $wR_2 = 0.2433$
Final R indexes [all data]	$R_1 = 0.1390$, $wR_2 = 0.2627$
Largest diff. peak/hole / e Å ⁻³	0.73/-0.72

Table S4 Crystallographic data and structure refinement for AcNH-TEMPO*BF4⁻C1b

Figure S34 Crystal packing structure of AcNH-TEMPO+BF₄ ⊂1b. BF₄⁻ counterions and all hydrogen atoms were omitted for clarity.

Figure S35 Hydrogen bonding between the two cationic guests (AcNH-TEMPO*BF4). The side chains and hydrogen atoms of 1b were omitted for clarity (C orange and cyan, O red, N blue, H white).

Table S5 C-H···O hydrogen bonds between the two cationic guests AcNH-TEMPO*BF4-

Figure S36 H-bonds between the carbonyl oxygens of AcNH-TEMPO*BF₄⁻ and the side chains of 1b. The side chains and part hydrogen atoms were omitted for clarity (C orange and cyan, O red, N blue, H white).

 $\textbf{Table S6} \ C-H\cdots O \ hydrogen \ bonds \ between \ the \ carbonyl \ oxygens \ of \ \textbf{AcNH-TEMPO+BF}_4 \ and \ the \ side \ chains \ of \ \textbf{1b}$

No. of C-H····O interaction	H…O / Å		H···O / Å	
	C-H···O angles	No. of C-H····O Interaction	C-H···O angles	
A	2.66 (164.2°)	A'	2.66 (164.2°)	
В	2.90 (126.6°)	Bʻ	2.90 (126.6°)	
С	2.52 (168.3°)	C'	2.52 (168.3°)	

Figure S37 Cation-dipole interactions between 1b and AcNH-TEMPO*BF₄⁻. The side chains and all hydrogen atoms were omitted for clarity (C orange and cyan, O red, N blue, H white).

 Table S7 N*···O cation dipole interactions in the crystal structure of AcNH-TEMPO*BF4⁻C1b

Figure S38 H-bonding interactions between 1b and AcNH-TEMPO+BF₄. The side chains and part hydrogen atoms were omitted for clarity (C orange and cyan, O red, N blue, H white).

Table S8 H-bonding interactions between 1b and AcNH-TEMPO*BF4⁻.

No. of C/N-H···O interaction	H…O / Å C/N-H…O angles	No. of C/N-H···O interaction	H…O / Å C/N-H…O angles
а	2.68 (125.4°)	е	2.38 (146.5°)
b	3.02 (134.2°)	f	2.37 (143.8°)
с	2.38 (158.6°)	g	2.47 (126.0°)
d	2.67 (139.4°)	h	2.82 (127.9°)

DFT calculation for Mulliken charge distribution

All side chains of **CA[6]** are replaced by CH₃ for simplicity. The geometries of **AcNH-TEMPO⁺**, **AcNH-TEMPO⁺**⊂**1c** and **1c** were fully optimized at the B3LYP(PCM,chloroform)/ 6-311G (2d,2p) level of theory with the keyword UAHF method. The contained structures were confirmed without any imaginary frequency. The Mulliken population analysis on these geometries was carried out at the same level. All calculations were performed in Gaussian 09 program package. ^[5]

Atom	Mulliken charge	Atom	Mulliken charge
A-N1	0.403	A-N2	-0.121
A-01	-0.183	A-02	-0.529
A-C1	0.398	A-C7	-0.543
A-C2	-0.529	A-C8	-0.668
A-C3	-0.549	A-C9	-0.152
A-C4	0.547	A-C10	0.498
A-C5	-0.638	A-C11	-0.570
A-C6	-0.548		

(b)						
A_02	Atom	Mulliken charge	Atom	Mullikan charge		
A-C11 A-C10 A-C5 A-C6	A-N1	0 765	ALOIN A-N2	Mulliken charge		
A-N2 A-C9 A-C4 0.765	A-01	-0.168	A-02	-0.555		
	A-C1	-0.349	A-C7	-0.471		
A-C8 A-01	A-C2	-0.925	A-C8	-0.695		
TATI C	A-C3	-0.853	A-C9	0.204		
	A-C4	0.039	A-C10	0.466		
ALC ALC	A-C5	-0.715	A-C11	-0.670		
	A-Co	-0.764	8			
90°					-	
	Atom	Mulliken charge	Atom	Mulliken charge	Atom	Mulliken charge
C39 C37	02	-0.589	C/	0.310	C25	0.381
N1 In In In	03	-0.050	C8	-0.077	C26	-0.266
C3 C42 C41 C36 NO C32	04	-0.612	C10	-0.311	C28	-0.132
C4 C2 C42 C35 C33 C31	05	-0.603	C11	0.336	C29	0.176
	06	-0.700	C12	-0.165	C30	0.136
C6 C29	N1	-0.390	C13	-0.015	C31	0.155
N2 OF	N2	-0.340	C14	0.475	C32	0.196
N2 02 N5	N3	-0.415	C15	0.065	C33	0.235
	N4	-0.456	C16	0.198	C34	-0.299
C9 C13 C26	N5	-0.430	C17	0.161	C35	0.350
03 04 027 026	N6	-0.403	C18	0.135	C36	-0.156
C10 C12 C24	C1	-0.206	C19	0.117	C37	0.340
our our czr czs	C2	0.191	C20	-0.144	C38	-0.270
N3 C20 N4	C4	0.096	C22	0.313	C40	0.447
C12 C13	C5	0.149	C23	0.418	C41	-0.081
C16 C18	C6	0.193	C24	-0.245	C42	0.550
C17	-	13000000				
(C)						
C39 C37	Atom	Mulliken charge	Atom	Mulliken charge	Atom	Mulliken charge
N1 C40 C36 N6	01	-0.663	C7	0.414	C25	0.174
CA C3 CA2 C41 C35 C32	02	-0.630	60	0.151	C26	0.143
C4 C2 C42 C00 C38 C31	04	-0.583	C10	0.079	C27	-0.042
	05	-0.604	C11	0 241	C29	0.494
C29	06	-0.611	C12	0.173	C30	0.151
N2 02 05 N5	N1	-0.476	C13	-0.090	C31	0.082
28	N2	-0.509	C14	0.514	C32	0.151
C8 006	N3	-0.451	C15	0.212	C33	0.142
C9 C13 027 C25	N4	-0.346	C16	0.149	C34	-0.129
C10 C12 03 04 022 024	N5	-0.482	C17	-0.072	C35	0.438
C11 C14 C21 C23	NO C1	-0.454	C18	0.198	C36	0.086
N3 620	C2	0.240	C 20	-0.091	C37	0.158
Nº C15 C19 N4	C3	0.085	C21	0.369	C39	-0.512
C16 C18	C4	-0.111	C22	0.177	C40	0.126
617	C5	0.129	C23	0.043	C41	-0.100
	C6	0.426	C24	-0.543	C42	0.504
•	-	- 100 AND A 10 - 20 20	-			20000000000000000000000000000000000000

Figure S39 The partial atomic Mulliken charges of all atoms in (a) AcNH-TEMPO⁺, (b) AcNH-TEMPO⁺⊂1c and 1c were calculated by Mulliken population analysis. Hydrogen atoms were omitted for clarity.

Center	Atomic	Atomic	Coord	dinates (Angst	troms)	
Number	Number	Туре	Х	Y	Z	
1	8	0	-3.265253	1.198250	0.445399	
2	8	0	3.218756	0.480965	-0.154086	
3	7	0	1.882868	0.138846	-0.516534	
4	7	0	-2.238374	-0.744413	-0.083651	
5	1	0	-2.356601	-1.539715	-0.386729	
6	6	0	-0.433592	0.929478	-0.456634	

Standard orientation for th	optimized structure of AcNH	-TEMPO ⁺
-----------------------------	-----------------------------	---------------------

7	1	0	-1.022877	1.652602	-0.193896
8	1	0	-0.519842	0.812384	-1.416330
9	6	0	1.004483	1.323754	-0.138421
10	6	0	-0.881521	-0.337381	0.229536
11	1	0	-0.787709	-0.233125	1.198940
12	6	0	-3.322580	0.032444	0.067117
13	6	0	2.330137	-2.244971	-0.846949
14	1	0	2.202721	-2.030315	-1.773520
15	1	0	2.028528	-3.140781	-0.680811
16	1	0	3.261656	-2.174343	-0.626554
17	6	0	1.527326	-1.269118	0.016818
18	6	0	0.031338	-1.468824	-0.250084
19	1	0	-0.096393	-1.581912	-1.205283
20	1	0	-0.248955	-2.292016	0.179872
21	6	0	1.896383	-1.414625	1.479474
22	1	0	2.816224	-1.168274	1.603816
23	1	0	1.769670	-2.325869	1.753089
24	1	0	1.337634	-0.840839	2.009267
25	6	0	1.203040	1.689306	1.336022
26	1	0	0.777401	1.031185	1.889664
27	1	0	0.814428	2.551089	1.507523
28	1	0	2.141695	1.717368	1.535454
29	6	0	1.448298	2.494350	-0.992323
30	1	0	2.357098	2.719569	-0.780837
31	1	0	0.882642	3.250699	-0.819698
32	1	0	1.386294	2.254796	-1.920668
33	6	0	-4.652398	-0.648715	-0.272879
34	1	0	-5.347821	-0.284787	0.279162
35	1	0	-4.578018	-1.592382	-0.114899
36	1	0	-4.862744	-0.494269	-1.196845

Standard orientation for the optimized structure of AcNH-TEMPO⁺C1c

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	8	0	1.261516	7.855115	-0.137480	
2	8	0	-6.330367	-5.895025	-0.489015	
3	8	0	5.503181	5.559371	-0.314088	
4	8	0	-7.582144	-2.393579	-0.123230	
5	8	0	-2.365909	8.516789	-0.321531	
6	8	0	-3.475191	-2.054156	-0.863091	
7	8	0	8.010415	2.861845	-0.597802	
8	8	0	3.499016	2.023834	0.448202	
9	8	0	-7.640709	2.436183	0.110380	
10	8	0	-2.017922	-8.183624	-0.469349	
11	8	0	8.118026	-1.993639	-0.964009	
12	8	0	5.689382	-4.785198	-0.468892	
13	8	0	3.380907	-1.443261	-1.371931	
14	8	0	1.574499	-7.303917	-0.272373	
15	8	0	-0.377607	-3.627527	-0.666000	
16	8	0	-6.546695	5.994989	-0.303912	
17	8	0	-3.523115	2.277010	-0.542923	
18	7	0	-0.973438	6.269967	-0.142867	
19	1	0	-0.623063	7.038462	-0.305160	
20	7	0	-5.117728	-3.564622	-0.584084	
21	1	0	-5.967050	-3.682642	-0.517355	
22	7	0	-5.215185	3.723955	-0.185815	
23	1	0	-6.060919	3.789343	-0.044985	

24	8	0	-0.520923	4.130263	0.435146
25	7	0	5.370959	2.821499	-0.538608
26	1	0	5.769624	3.530264	-0.818255
27	7	0	5.492113	-2.096914	-0.928054
28	1	0	6.004311	-2.779876	-0.825041
29	7	0	-0.755882	-5.862693	-0.634954
30	1	0	-0.378415	-6.635308	-0.634653
31	6	0	-5.639005	1.290879	-0.324557
32	6	0	-2.922265	-4.702390	-0.640032
33	1	0	-2.485722	-3.883408	-0.698268
34	6	0	2.021323	6.724335	-0.120896
35	6	0	-5.616435	-1.157691	-0.490409
36	6	0	-3.081148	4.972863	-0.159009
37	1	0	-2.600390	4.179307	-0.096308
38	6	0	-2.399218	6.183209	-0.192877
39	6	0	1.907436	9.141087	-0.237035
40	1	0	2.406771	9.217340	-1.180301
41	1	0	2.621014	9.243963	0.553613
42	6	0	1.347697	5.485792	0.050008
43	6	0	-4.690909	-2.299877	-0.661132
44	6	0	-4.313930	-4.727148	-0.601024
45	6	0	-0.122412	5.252582	0.137784
46	6	0	-4.713719	2.480831	-0.357465
47	6	0	4.140330	5.579103	-0.207799
48	6	0	2.120730	4.344592	0.081551
49	1	0	1.685765	3.530575	0.197345
50	6	0	3.403684	6.747839	-0.246875
51	1	0	3.840145	7.561373	-0.358015
52	6	0	-4.226405	-7.138969	-0.499473
53	1	0	-4.663645	-7.958811	-0.458705
54	6	0	-4.471862	4.927638	-0.217941
55	6	0	-6.997492	-1.173751	-0.219804
56	6	0	-5.000824	0.093196	-0.524876
57	1	0	-4.087088	0.117191	-0.696675
58	6	0	-7.025262	1.250829	-0.090107
59	6	0	-2.840845	-7.094742	-0.519898
60	6	0	3.505787	4.325872	-0.048310
61	6	0	-2.176695	-5.855278	-0.593653
62	6	0	-4.961205	-5.965919	-0.539972
63	6	0	6.110132	-0.812462	-0.911122
64	6	0	2.276544	-6.162893	-0.482208
65	6	0	-3.119060	7.363064	-0.274532
66	6	0	7.462604	1.620254	-0.683077
67	6	0	-5.180705	6.125845	-0.269532
68	6	0	4.173762	-2.336139	-1.092326
69	6	0	0.067146	-4.794734	-0.675463
70	6	0	6.059115	1.597904	-0.670353
71	6	0	-7.692929	0.024690	-0.057780
72	1	0	-8.613467	0.006762	0.074772
73	6	0	8.179567	0.436372	-0.801370
74	1	0	9.109257	0.452635	-0.817204
75	6	0	4.343511	-4.908772	-0.593050
76	6	0	3.645830	-3.732253	-0.881616
77	6	0	5.403344	0.381714	-0.828673
78	1	0	4.474876	0.366986	-0.880747
79	6	0	7.500121	-0.772799	-0.896948
80	6	0	6.223497	6.801862	-0.326584
81	1	0	5.835283	7.446855	0.433794
82	1	0	6.111390	7.269527	-1.282419
83	6	0	4.133399	2.973086	-0.006633
84	6	0	2.269972	-3.820441	-0.934039
85	1	0	1.793332	-3.046950	-1.131791

86	6	0	1.543481	-4.993629	-0.709050
87	6	0	3.670117	-6.112996	-0.431367
88	1	0	4.153396	-6.894681	-0.289238
89	6	0	-7.045748	-7.113430	-0.716679
90	1	0	-7.988267	-6.931769	-0.738236
91	1	0	-6.856093	-7.732816	-0.007398
92	1	0	-6.773297	-7.493238	-1.554449
93	6	0	-4.507506	7.338244	-0.313988
94	1	0	-4.985658	8.134027	-0.371068
95	6	0	9.451155	2.946496	-0.613302
96	1	0	9.718335	3.866210	-0.545709
97	1	0	9.784905	2.575577	-1.432996
98	1	0	9.808449	2.454463	0.129796
99	6	0	-8.962307	-2.481604	0.308577
100	1	0	-9.608393	-2.253531	-0.513283
101	1	0	-9.133289	-1.783354	1.101113
102	6	0	-3.088453	9.762174	-0.387532
103	1	0	-2.470398	10.484038	-0.523286
104	1	0	-3.565000	9.899478	0.434670
105	1	0	-3.711473	9.732553	-1.117163
106	6	0	-2.655714	-9.463666	-0.390681
107	1	0	-3.257442	-9.475819	0.358131
108	1	0	-1.991404	-10.146723	-0.278221
109	1	0	-3.148689	-9.625873	-1.198575
110	6	0	9.553645	-1.994659	-0.952803
111	1	0	9.880072	-1.536055	-1.730568
112	1	0	9.873049	-2.900020	-0.957851
113	1	0	9.868139	-1.548904	-0.162920
114	6	0	6.481690	-5.877793	0.048272
115	1	0	6.714439	-6.556536	-0.745476
116	1	0	5.928622	-6.391805	0.806433
117	6	0	-9.076134	2.481117	0.268522
118	1	0	-9.362371	1.873656	1.101564
119	1	0	-9.544559	2.111868	-0.619810
120	6	0	-7.311650	7.189186	-0.297852
121	1	0	-7.038521	7,746350	-1.031588
122	1	0	-7.169265	7.656010	0.527985
123	1	0	-8.241893	6.973634	-0.389399
124	6	0	2.311269	-8.540506	-0.051159
125	1	0	3.159852	-8.343802	0.570221
126	1	0	2.640445	-8.932516	-0.990772
127	8	0	3.749769	-1.529100	3.954998
128	8	0	-2.240391	-1.497148	1.302979
129	7	0	-0.819989	-1.539082	1.185883
130	7	0	3.247740	-0.627599	1.944134
131	1	0	3.576375	-0.323000	1.210951
132	6	0	1.240215	-2.021845	2.417617
133	1	0	1.614566	-2.308388	3,264346
134	1	0	1.519814	-2.658825	1.740675
135	6	0	-0.281103	-2.047656	2.516104
136	6	0	1.802958	-0.665663	2.070499
137	1	0	1.516914	-0.012887	2,742420
138	6	0	4,107950	-1.033425	2.891278
139	6	0	-0.710930	-0.195371	-0.857241
140	1	0	-0.464487	-1.028931	-1.263799
141	1	õ	-0.270066	0.525870	-1.311659
142	1	õ	-1.661728	-0.078227	-0.916824
143	6	Ő	-0.290232	-0.202651	0.614442
144	6	0 0	1,238405	-0.268379	0.704132
145	1	0 0	1,556325	-0.904681	0.044164
146	1	0 0	1.596572	0.601000	0 465452
147	6	0 0	-0.879875	0.984237	1.349532
		•	2.2. 30.0	2.00 .201	

148	1	0	-1.837509	0.912613	1.357482	
149	1	0	-0.623659	1.795858	0.905785	
150	1	0	-0.552978	0.996279	2.252364	
151	6	0	-0.811647	-1.192842	3.671462	
152	1	0	-0.369085	-0.341405	3.669906	
153	1	0	-0.641984	-1.639838	4.504836	
154	1	0	-1.756964	-1.062927	3.565954	
155	6	0	-0.790264	-3.464614	2.687573	
156	1	0	-1.748719	-3.457211	2.739306	
157	1	0	-0.429112	-3.840458	3.493885	
158	1	0	-0.514993	-3.996557	1.936361	
159	6	0	5.586747	-0.832504	2.543743	
160	1	0	6.083489	-0.663926	3.347257	
161	1	0	5.676726	-0.085411	1.948131	
162	1	0	5.924691	-1.623969	2.118080	
163	1	0	7.260454	6.614859	-0.140435	
164	1	0	1.173643	9.915840	-0.158263	
165	1	0	-9.384522	3.491103	0.440928	
166	1	0	-9.164539	-3.472935	0.656808	
167	1	0	1.674829	-9.253746	0.429603	
168	1	0	7.388568	-5.493905	0.466725	

Standard orientation for the optimized structure of ${\bf 1c}$

Center	Atomic	Atomic	 Coor	Coordinates (Apastroms)			
Number	Number	Туре	X	Y	Z		
1	8	0	4.768309	6.142040	0.112401		
2	8	0	-8.247965	-2.653436	-0.094572		
3	8	0	7.500806	2.163772	0.098718		
4	8	0	-7.771883	1.044186	0.154035		
5	8	0	1.842535	8.374712	-0.179017		
6	8	0	-3.952875	-0.546333	-0.490244		
7	8	0	8.507529	-1.386717	-0.055872		
8	8	0	4.097957	-0.045797	0.896343		
9	8	0	-5.627174	5.376829	0.268181		
10	8	0	-5.451423	-6.651026	0.089507		
11	8	0	6.396267	-5.768961	-0.300671		
12	8	0	2.957372	-7.132220	0.201105		
13	8	0	2.434476	-3.138027	-0.841047		
14	8	0	-1.855008	-7.495594	0.355351		
15	8	0	-1.914109	-3.348941	-0.176890		
16	8	0	-3.027892	8.032635	-0.205145		
17	8	0	-2.026734	3.340617	-0.277160		
18	7	0	2.056902	5.747719	0.089421		
19	1	0	2.720621	6.266889	-0.082702		
20	7	0	-6.106110	-1.134211	-0.215911		
21	1	0	-6.916689	-0.850718	-0.167728		
22	7	0	-2.878134	5.409812	0.001818		
23	1	0	-3.602833	5.857357	0.119672		
24	8	0	1.478773	3.656845	0.730681		
25	7	0	6.138806	-0.220111	-0.062189		
26	1	0	6.819639	0.220043	-0.348920		
27	7	0	4.011205	-4.665290	-0.328336		
28	1	0	4.154983	-5.502645	-0.195826		
29	7	0	-3.269107	-5.165042	-0.100850		
30	1	0	-3.284935	-6.024311	-0.072193		
31	6	0	-4.361885	3.432661	-0.088143		
32	6	0	-4.669188	-3.147225	-0.188784		

33	1	0	-3.906946	-2.618864	-0.255975
34	6	0	4.929551	4.790656	0.175697
35	6	0	-5.455002	1.237784	-0.193580
36	6	0	-0.409932	5.551509	0.051868
37	1	0	-0.344052	4.628692	0.145998
38	6	0	0.748709	6.317360	0.005658
39	6	0	5.930076	6.989394	-0.002207
40	1	0	6.419985	6.798830	-0.934181
41	1	0	6.603221	6.782620	0.803412
42	6	0	3.763912	4.000482	0.359755
43	6	0	-5.149310	-0.205344	-0.313024
44	6	0	-5.919784	-2.534970	-0.184236
45	6	0	2.348003	4.464524	0.416151
46	6	0	-2.995903	4.069705	-0.126767
47	6	0	6.295362	2.804748	0.170145
48	6	0	3.932014	2.634305	0.438588
49	1	0	3.172787	2.111555	0.563220
50	6	0	6.172277	4.178630	0.084028
51	1	0	6.932563	4.700424	-0.035904
52	6	0	-6.941366	-4.717813	-0.021696
53	1	0	-7.704422	-5.247202	0.028042
54	6	0	-1.667894	6.141867	-0.040941
55	6	0	-6 694812	1 860641	0.042477
56	6	0	-4.336930	2.069859	-0.243046
57	1	0	-3 510639	1 669902	-0.392318
58	6	0	-5 616840	4 035334	0 112236
59	6	0	-5 687549	-5 309348	-0.008300
60	6	0	5,157954	1.983347	0.344138
61	6	0	-4 531024	-4 510820	-0.095530
62	6	0	-7.060827	-3 340979	-0 109294
63	6	0	5 146125	-3 802732	-0.327194
64	6	0	-0 708039	-6 806425	0 135480
65	6	0	0.646128	7 692081	-0 122860
66	6	0	7 455401	-2 245333	-0 124593
67	6	0	-1 752666	7 528915	-0 139585
68	6	0	2 730505	-4 283992	-0 519865
69	6	0	-2 049626	-4 590307	-0 146669
70	6	0	6 195673	-1 626429	-0 146670
71	6	0	-6 769959	3 248889	0 157649
72	1	0	-7 599098	3 656037	0 267379
73	6	0	7 555846	-3 628964	-0 195875
74	1	0	8 391054	-4 037883	-0 188687
75	6	0	1 704387	-6 634150	0.046150
76	6	0	1 622356	-5 279345	-0 288512
77	6	0	5 059831	-2 415757	-0 291730
78	1	0	4 227178	-2 008282	-0 366790
79	6	0	6 401415	-4 399195	-0 278998
80	6	0	8 708017	2 941480	0.074050
81	1	0	8 647555	3 717306	0.808448
82	1	0	8 832004	3 3769/9	-0.805/31
83	6	0	5 100129	0 495349	0.030401
84	6	0	0 357980	-4 733763	-0 373394
85	1	0	0.288155	-3 835159	-0 601899
86	6	0	-0.825570	-5 439934	-0.138210
87	6	0	0.554687	-7 304104	0.220162
88	1	0	0.00+007	-8 304056	0.220102
80	6	0	-9 127007	-3.410024	-0 310270
90 90	1	0	-3.43/03/	-2 820260	-0.310373
90 Q1	1	0	-0 558255	-2.000203	0.00007
91 02	1	0	-9.000000	-3 000662	-1 121507
92 92	i 6	0	-9.00047	-3.909002 8 300313	-0.106645
95 Q/	1	0	-0.000742	0.000210	-0.130043
J-1	1	U	-0.0000000	0.224010	-0.20014/

95	6	0	9.828821	-1.967212	-0.037152
96	1	0	10.484744	-1.267994	0.014686
97	1	0	9.966283	-2.476321	-0.838888
98	1	0	9.914412	-2.542950	0.726491
99	6	0	-9.045493	1.607941	0.552973
100	1	0	-9.507488	2.077509	-0.290215
101	1	0	-8.888682	2.333423	1.323679
102	6	0	1.767214	9.809500	-0.293558
103	1	0	2.647689	10.166298	-0.431280
104	1	0	1.396215	10.175737	0.512790
105	1	0	1.207356	10.042303	-1.037704
106	6	0	-6.603019	-7.497493	0.183300
107	1	0	-7.152689	-7.209763	0.916798
108	1	0	-6.323979	-8.403807	0.329084
109	1	0	-7.106604	-7.444433	-0.632552
110	6	0	7.673684	-6.422483	-0.253300
111	1	0	8.181919	-6.188635	-1.033557
112	1	0	7.545775	-7.373658	-0.228211
113	1	0	8.147715	-6.142615	0.533140
114	6	0	3.159276	-8.447791	0.764559
115	1	0	3.066348	-9.184047	-0.006279
116	1	0	2.424270	-8.628514	1.520870
117	6	0	-6.886334	6.074965	0.388986
118	1	0	-7.427207	5.692195	1.229131
119	1	0	-7.461443	5.929931	-0.501584
120	6	0	-3.165094	9.443550	-0.247488
121	1	0	-2.659918	9.790816	-0.987490
122	1	0	-2.835088	9.821645	0.570036
123	1	0	-4.090336	9.671799	-0.357142
124	6	0	-1.764773	-8.923873	0.625152
125	1	0	-0.926801	-9.114169	1.262717
126	1	0	-1.639631	-9.453651	-0.296030
127	1	0	9.543863	2.309578	0.290757
128	1	0	5.628777	8.015264	0.039136
129	1	0	-6.702865	7.119794	0.528878
130	1	0	-9.680916	0.829246	0.920086
131	1	0	-2.661589	-9.253184	1.106997
132	1	0	4.136682	-8.504752	1.196222

¹H NMR Spectra

¹H NMR spectrum (CDCl₃, 400 MHz, 298 K) of **1b** in the presence of Et_3N -HCl (Δ).

¹H NMR spectra (400 MHz, D₂O, 298 K) of (a) **AcNH-TEMPOH-HCI**; (b) after adding excess NaHCO₃ to the above solution; (c) **AcNH-TEMPOH-HCI** in the presence of excess NaHCO₃.

References

- [1] a) L. H. Yuan, W. Feng, K. Yamato, A. R. Sanford, D. G. Xu, H. Guo, B. Gong, J. Am. Chem. Soc. 2004, 126, 11120-11121; b) Y.
 A. Yang, W. Feng, J. C. Hu, S. L. Zou, R. Z. Gao, K. Yamato, M. Kline, Z. H. Cai, Y. Gao, Y. B. Wang, Y. B. Li, Y. L. Yang, L. H.
 Yuan, X. C. Zeng, B. Gong, J. Am. Chem. Soc. 2011, 133, 18590-18593; c) J. C. Hu, L. Chen, Y. Ren, P. C. Deng, X. W. Li, Y. J.
 Wang, Y. M. Jia, J. Luo, X. S. Yang, W. Feng, L. H. Yuan, Org. Lett. 2013, 15, 4670-4673; d) L. Q. Yang, L. J. Zhong, K. Yamato,
 X. H. Zhang, W. Feng, P. C. Deng, L. H. Yuan, X. C. Zeng, B. Gong, New J. Chem. 2009, 33, 729-733; e) X. W. Li, B. Li, L. Chen,
 J. C. Hu, C. D. Y. Wen, Q. D. Zheng, L. X. Wu, H. Q. Zeng, B. Gong, L. H. Yuan, Angew. Chem. Int. Ed., 2015, 54, 11147-11152.
- [2] V. D. Sen, I. V. Tikhonov, L. I. Borodin, E. M. Pliss, V. A. Syroeshkin, A. I. Rusakov, J. Phys. Org. Chem. 2015, 28, 17-24
- [3] Gabriel Tojo, Marcos Fernández. Oxidation of Alcohols to Aldehydes and Ketones. Springer US, 2006, P243.
- [4] J. M. Bobbitt, N. A. Eddy, C. X. Cady, J. Jin, J. A. Gascon, S. Gelpí-Dominguez, J. Zakrzewski, M. D. Morton, J. Org. Chem. 2017, 82, 9279-9290.
- [5] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. annenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.