Supporting Information

Enhanced electron transfer by In doping in SnO₂ for efficient CO₂

electroreduction to C₁ products

Chemicals:

All reagents were of analytical grade and used without further purification. The Indium chloride (InCI₃) and sodium stannate trihydrate (Na₂SnO₃) were purchased from Macklin Biochemical Co., Ltd. The ethanol (C₂H₅OH), potassium bicarbonate (KHCO₃), potassium hydroxide (KOH), ethnanolamine (C₂H₇NO) and dimethyl sulfoxide (DMSO) were purchased from Sinopharm Chemical Reagent Co., Ltd. The Nafion 211 membrane, bipolar membrane, carbon paper, gas diffusion layer, carbon rods and glassy carbon electrode were purchased from Gaoss Union Technology Co., Ltd. The PH test papers (1-14) and nickel foam were bought from Taobao. All the deionized water (18.25 k Ω) used for solution preparation and instrument cleaning was homemade by UPT-II-10T ultrapure water system.

Synthesis:

To prepare In-SnO₂-1/1, 1 mmol InCI₃, 1 mmol Na₂SnO₃ were first uniformly dispersed in 25 mL ultrapure water to form a white suspension. Then, 5 M NaOH was added drop by drop to the above solution and vigorously stirred more than 30 min. Subsequently, the fully dissolved transparent solution was transferred into a 50 mL Teflon-lined autoclave and kept at 180°C for 24 h in an oven. After washed with ethanol and deionized water alternately for three times, the obtained white precipitate was dried in a vacuum oven at 60°C. For comparison, the In-SnO₂-0/1, In-SnO₂-0.5/1, In-SnO₂-2/1, In-SnO₂-1/0 were synthesized by changing the content of InCI₃ and Na₂SnO₃. For In-SnO₂-1/1-150, the reaction temperature was 150°C and the content of InCI₃ and Na₂SnO₃ was 1:1. Other processes were in line with the fabrication of In-SnO₂-1/1. To prepare the In-SnO₂-1/1-12 and In-SnO₂-1/1-36, the reaction time was 12 and 36 h, respectively. Other parameters remained unchanged. These samples were ready for using after grinding.

Characterization:

The X-ray diffraction (XRD) patterns of catalysts were recorded on an X-ray

diffractometer (D/max 2550) with Cu Kα radiation at a scan rate of 10° min⁻¹ from 10° to 90°. The Raman spectra were tested by a Raman spectrometer (LabRAM HR apparatus) with a test range from 0 to 2000 cm⁻¹. For X-ray photoelectron spectroscopy (XPS), a Thermo Fisher Escalab 250Xi XPS instrument with Al Kα as emission source was applied. The spectra were calibrated with the position of C 1s peak (284.8 eV). Electron paramagnetic resonance (EPR) experiments of sample were performed on JES-FA300 under normal conditions. Contact angle measurements of sample were performed on DSA-XROLL. And the FEI TECNAI G2 F20 transmission electron microscope (TEM) was used to observe the morphology of catalysts and analyze their internal structure.

Electrochemical measurements:

To prepare catalyst ink, 6 mg freshly prepared sample and 2 mg acetylene black were dispersed in 970 µL isopropanol/H₂O (1:3) solution containing 30 µL nafion membrane solution. After continuous ultrasound treatment for 2 h, 40 µL catalyst ink was uniformly dripped on a piece carbon paper in a 0.5 cm×0.5 cm area (catalyst loading of 0.96 mg cm⁻²). After dried at 60°C, the carbon paper with catalysts was directly used as work electrode. Using an electrochemical workstation (CHI 630E), the electrochemical measurements were carried out in a H-type cell with the three-electrode system and Nafion 117 membrane as a separator. The Ag/AgCl electrode and carbon rod served as reference electrode and counter electrode, respectively. And the 0.5 M KHCO₃ aqueous solution (30 mL for each half cell) was used as electrolyte. Linear sweep voltammetry (LSV) curves were recorded at the scanning rate of 5 mV s⁻¹ after the continuous Ar/CO₂ (99.99%) bubbling more than 30 min. For constant voltage electrolysis, the CO₂ delivered into cathodic electrolyte kept an average rate of 10 mL min⁻¹ during the whole electrolysis process. All voltages were calibrated to potentials relative to reversible hydrogen electrode (RHE) according to the equation: E_{RHE} = E_{Ag/AgCl}+0.0591×pH+0.197 V.

The electrochemical active surface area (ECSA) was estimated from the electrochemical double-layer capacitance (C_{dl}). To eliminate the impact of carbon

paper, the 40 μ L prepared catalyst ink without acetylene black was coated on a carbon paper (0.5×0.5 cm²). In this case, a typically potential window of 0.1 V in non-Faradaic potential range was selected. With the scan rates of 20, 30, 50, 80, 100 and 120 mV s⁻¹, the cyclic voltammetry curves were separately recorded in a single cell applying 0.5 M KHCO₃ as electrolyte. Using the Δj ($\Delta j = j_a$ - j_c , j_c and j_a respectively represented the cathodic and anodic current densities under the OCP against the scan rate to linearly fit a line, half of the slope was the value of C_{dl}. Assuming the average C_{dl} of metal was 20 μ F cm⁻², it can be concluded as follows: ECSA = S×Rf =S×C_{dl}/ (20 μ F cm⁻²). Here, the Rf was roughness factor; S was the surface area of catalytic electrode (0.25 cm⁻²). The electrochemical impedance spectroscopy (EIS) was evaluated in a similar electrochemical device of ECSA. The test voltage was set to -0.7 V, while the test frequency was 10⁻²-10⁶ Hz. For flow cell configurations, both the catholyte and anolyte were 1 M KOH. The flow rate of CO₂ was 20 mL min⁻¹, while the flow rate of electrolyte was 10 mL min⁻¹.

Product analysis:

After electrolysis process, the gas products collected by air bags were detected through a gas chromatograph (GC) equipped with a thermal conductivity detector and a flame ionization detector, which could respectively quantify the H_2 and CO. The Ar (99.99%) acted as carrier gas. Before experiment, the GC was calibrated by standards gas (CO and H_2) with different concentrations.

The Faraday efficiency (FE) of different reduction products can be calculated as follows: $FE = c \times V \times n \times F \times Q^{-1}$

Here, c represented the concentration of products; V represented the total volume, which was 600 mL for gas and 30 mL for liquid, respectively; n was the number of transferred electrons, which is 2 for both CO, H₂ and HCOO-; F was the Faraday constant (96485 C mol⁻¹); Q was the total charge passing through the circuit during electrolysis, which can be recorded by electrochemical workstation. Further, the partial current density $j_p = j_{total} \times FE \times S^{-1}$.

Fig. S1 The optical photo of $In-SnO_2-1/1$.

Fig. S2 The XPS survey spectra of In-SnO₂-1/1, In-SnO₂-0.5/1, In-SnO₂-2/1 and In-SnO₂-0/1.

Fig. S3 (a) Sn 3d, (b) In 3d and (c) O 1s spectra of $In-SnO_2-0.5/1$ and $In-SnO_2-2/1$.

Fig. S5 (a, b) The HRTEM images of $In-SnO_2-1/1$.

Fig. S6 The EDS elemental mapping images of In-SnO₂-1/1.

Fig. S7 The LSV curves of different samples under $\rm CO_2$ atmosphere.

ig. S8 The i-t curves of (a) $In-SnO_2-1/1$, (b) $In-SnO_2-0.5/1$, (c) $In-SnO_2-2/1$, (d) $In-SnO_2-0/1$ and (e) $In-SnO_2-1/0$.

Fig. S9 The CV curves at different scan rates of (a) $In-SnO_2-1/1$, (b) $In-SnO_2-0.5/1$, (c) $In-SnO_2-2/1$, (d) $In-SnO_2-0/1$ and (e) $In-SnO_2-1/0$.

Fig. S10 The XRD patterns of samples under different synthesis conditions.

The XRD patterns of samples with different reaction conditions were displayed in Fig. S10, ESI[†]. All samples showed identical characteristic peaks for tetragonal rutile-like SnO₂. As the temperature reduced to 150°C, the obtained sample attained the maximum FE_{C1} of 91.08% at -0.85 V, lowering than that of In-SnO₂-1/1 (Fig. S11, ESI[†]). The pH value of solution was also vital. Sample without NaOH addition displayed a poor selectivity (FE_{C1} < 90%) in all potentials (Fig. S12, ESI[†]), which was possibly ascribed to the effect of alkaline environment on the conversion processes of Na₂SnO₃ to SnO₂. Besides, when the reaction time was shortened to 12 h or extended to 36 h, both the FE and the partial current density for C₁ products significantly decreased (Fig. S13, ESI[†]).

Fig. S11 (a) The LSV, (b) FE, (c) partial current density and (d) i-t curves of In-SnO₂- $1/1-150^{\circ}$ C.

Fig. S12 (a) The LSV, (b) FE, (c) partial current density and (d) i-t curves of $In-SnO_2$ -1/1 without NaOH addition.

Fig. S13 (a) The LSV, (b) FE and (c) partial current density curves of different samples. The i-t curves of (d) $In-SnO_2-1/1-12$ h and (e) $In-SnO_2-1/1-36$ h.

Fig. S14 (a) The LSV curves, (b) FE, (c) partial current density of reduction products and (d) i-t curves at different potentials for $In-SnO_2-1/1$ in flow cells.

Fig. S15 The stability test of In-SnO₂-1/1 at -0.8 V in flow cell.

Potential (V vs. RHE)	FE _{HCOO-} (%)	FE _{CO} (%)
-0.70	63.98	28.85
-0.75	73.32	23.14
-0.80	74.06	21.26
-0.85	72.45	21.19
-0.90	69.31	21.16
-0.95	70.19	18.63

Table S1 The product distribution (HCOO⁻ and CO) of $In-SnO_2-1/1$ at different potentials in H-type electrolyzers

Catalysts	Main raw materials	Methods	Reaction conditions	Electrolytes	FE (%)	J _{C1} (mA cm ⁻²)	Notes	Refs.
In-SnO ₂ -1	Na ₂ SnO ₃ , InCI ₃ , NaOH, deionized water	Hydrothermal	180°C, 24 h	0.5 M KHCO ₃	96.46% (-0.75 V)	-20.12 (-0.95 V)		This work
V ₀ -rich N-SnO ₂ NS	SnCl ₂ ·2H ₂ O, ethylenediamine, ammonia	Hydrothermal, ammonification reaction	180°C, 24 h; 550°C, 1 h	0.1 M KHCO ₃	99.05% (-1.1 V)	-16.75 (-1.2 V)	High temperature	1
Pd-timtmb ^{Me}	1,3,5- tris(bromomethyl)- 2,4,6-trimethylbenzene, 1-methylimidazole, 1- Isopropylimidazole, acetone, palladium foil	Organic transformation, calcination, in situ transformation	Room temperature, 6 h; 600°C, 8 h; room temperature, 12 h	0.5 M KHCO3	86% (-0.57 V)	-5.86 (-0.87 V)	High temperature and multi- procedure synthesis	2
WIT SnO ₂	$SnCl_2 \cdot 2H_2O$, PVP, DMF_ethanol	Electrospinning,	Room temperature, 15 kV;	0.1 M KHCO2	93% (-0.99 V)	-10.8 (-1 29 V)	High temperature	3
Sn NCs:S	1,2-BDT, SnCl ₄	Self-assembly	Ice bath, 17 h	0.5 M KHCO ₃	97% (-0.97 V)	-30.56 (-0.97 V)	High toxicity	4
P2-GaIn CNPs/PDDA- MWCNTs	P2-GaIn crystals, acetone, MWCNTs, borate buffer, PDDA	Electrostatic self- assembly	Room temperature, 30 min	0.1 M KHCO ₃	84.4% (-1.0 V)	-8.2 (-1.0 V)	Poor CO ₂ RR performance	5
Sn/SnO ₂ -2h	SnCl ₂ 2H ₂ O, PTA, TMA, deionized water	Hydrothermal, thermal reduction	180°C, 24 h; 400°C, 2 h	0.5 M KHCO ₃	92.5% (-1.0 V)	-27.02 (-1.0 V)	High temperature	6

Table S2 The preparation and performance comparison of various electrocatalysts for CO_2RR to C_1 .

In ₂ O ₃ -0	In ₂ O ₃ power	Magnetron	Room temperature, 120 W,	0. 1M	83%	-2.86	Poor CO ₂ RR	7
		sputtering	oxygen partial pressure of 0		(-U.85 V)	(-0.85 V)	performance	
In/In oxide	IPA, DMF,	Oil bath,	120°C, 20 min;	0.5 M	98.45%	-45.4/	High temperature	8
neterostructures SnO₂⊃NC@EEG	PVP, 2MeIm, DMF, EEG suspension,	Electrochemical exfoliation, hydrothermal, pyrolysis	400°C, 4 h; Room temperature, 2 h; 160°C, 12 h; 500°C, 3 h	кнсо ₃ 0.1 М КНСО ₃	(-0.7 V) 93.2% (-1.2 V)	(-1.1 V) -11.93 (-1.2 V)	High temperature and high overpotentials	9
P-SnO ₂ -0	Sn, Se, choline chloride, N ₂ H ₄ ·H ₂ O,	Hydrothermal, calcination	150°C, 24 h; 800°C, 0 min	0.1 M KHCO ₃	94.5% (-1.06 V)	-11.5 (-1.06 V)	High temperature and small current density of C_1	10
CuSn _{0.175} NPs on NG	Graphene oxide, DMF, Cu(NO ₃) ₂ ·2H ₂ O, SnCl ₄ , dicyandiamide	Hydrothermal, pyrolysis	200°C, 4 h; 900°C, 2 h	0.5 M KHCO3	93% (-1.0 V)	-13.02 (-1.0 V)	High temperature and small current density of C ₁	11
D-NR	$\begin{array}{l} Bi(NO_3)_3\cdot 5H_2O,\\ C_5H_{10}NNaS_2\cdot 3H_2O \end{array}$	Hydrothermal	140°C, 10 h;	0.5 M KHCO ₃	82% (-1.0 V)	-11 (-1.2 V)	Poor CO ₂ RR performance	12
Cu ₁ Ni ₂ @ N-MWCNT	Cu(NO ₃) ₂ ·3H ₂ O, MWCNTs Ni(NO ₃)2·6H ₂ O, citric acid Monohydrate	Hydrothermal, calcination	80°C, 12 h; 200°C, 1 h	0.5 M KHCO ₃	90% (-0.53 V)	-5.4 (-0.53 V)	High temperature and small current density of C ₁	13
Oct-{111} NPs	SnCl ₄ 5H ₂ O, HCl, PVP ethanol, distilled water	Hydrothermal	200°C, 12h	0.5 M NaHCO ₃	96.02% (-1.0 V)	-10.08 (-1.0 V)	High temperature and small current density of C_1	14

Potential (V vs. RHE)	FE _{HCOO-}	FE _{CO}
-0.5	81.71	14.44
-0.6	85.27	8.81
-0.7	88.93	6.93
-0.8	92.17	5.21
-0.9	93.38	4.51
-1.0	93.4	4.06

Table S3 The product distribution (HCOO⁻ and CO) of $In-SnO_2-1/1$ at different potentials in flow cells

References

[1] Z. J. Li, A. Cao, Q. Zheng, Y. Y. Fu, T. T. Wang, K. T. Arul, J. L. Chen, B. Yang, N. M. Adli, L. C. Lei, C. L. Dong, J. P. Xiao, G. Wu and Y. Hou, *Adv. Mater.*, 2021, 33, 2005113.

[2] Z. Cao, J. Derrick, J. Xu, R. Gao, M. Gong, E. Nichols, P. Smith, X. W. Liu, X. D. Wen, C. Coperet and C. Chang, *Angew. Chem. Int. Ed.*, 2018, **57**, 4981.

[3] L. Fan, Z. Xia, M. J. Xu, Y. Y. Lu and Z. J. Li, *Adv. Funct. Mater.*, 2018, 28, 1706289.

[4] X. Wang, F. L. Li, W. J. Yin, Y. B. Si, M. Miao, X. M. Wang and Y. Z. Fu, *Appl. Catal. B-Environ.*, 2022, **304**, 120936.

[5] X. Wang, X. L. Wang, J. Lv, Z. Wu, J. X. Zhang, D. D. Hu, C. Z. Xue, D. S. Li, X. Zhu and T. Wu, *Chem. Eng. J.*, 2021, **422**, 130045.

[6] X. Y. Cao, B. R. Wulan, B. H. Zhang, D. X. Tan and J. T. Zhang, *J. Mater. Chem. A*, 2021, **9**, 14741.

[7] X. Y. Du, Y. Y. Qin, B. Gao, K. Wang, D. Li, Y. H. Li, S. J. Ding, Z. X. Song, Y.
 Q. Su and C. H. Xiao, *Appl. Surf. Sci.*, 2021, 563, 150405.

[8] W. F. Yang, Y. Zhao, S. Chen, W. H. Ren, X. J. Chen, C. Jia, Z. Su, Y. Wang and C. Zhao, *Inorg. Chem.*, 2020, **59**, 12437.

[9] Y. Y. Fu, T. T. Wang, W. Z. Zheng, C. J. Lei, B. Yang, J. Chen, Z. J. Li, L. C. Lei, C. Yuan and Y. Hou, *ACS Appl. Mater. Interfaces*, 2020, **12**, 16178.

[10] S. Zhang, M. Sun, K. Y. Wang, L. Cheng, S. Zhang and C. Wang, *ACS Sustainable Chem. Eng.*, 2021, **9**, 2358.

[11] W. Xiong, J. Yang, L. Shuai, Y. Hou, M. Qiu, X. Y. Li and M. K. H. Leung, *ChemElectroChem*, 2019, 6, 1.

[12] Y. T. Wang, L. Cheng, J. Z. Liu, C. Q. Xiao, B. Zhang, Q. H. Xiong, T. Zhang, Z. L. Jiang, H. Jiang, Y. H. Zhu, Y. H. Li and C. Z. Li, *ChemElectroChem*, 2020, 7, 2864.
[13] M. C. Wang, Z. Z. Cai, B. K. Zhang, K. W. Yang, T. Y. Shou, M. T. Bernards, P. F. Xie, Y. He and Y. Shi, *Energy Fuels*, 2022, 36, 5833.

[14] M. L. Fang, Z. P. Zheng, J. Y. Chen, Q. Chen, D. Y. Liu, B. B. Xu, J. Y. Wu, Q. Kuang and Z. X. Xie, *Sustainable Energy Fuels*, 2020, 4, 600.