Chiral phosphoric acid-catalyzed dual ring formation for enantioselective construction of $\mathbf{N}-\mathbf{N}$ axially chiral 3,3'-
bisquinazolinones

$$
X X X, \ddagger^{\mathrm{a}} \mathrm{XXX}, \stackrel{\leftarrow}{a}^{\mathrm{a}} \mathrm{XXX}^{*, b} \text { and } \mathrm{XX}^{*, a}
$$

${ }^{a}$ XXXX
${ }^{b}$ XXXX

E-mail: $X X X$

Table of Contents

1. General Considerations S3
2. Experimental Procedures S4
3. Synthetic applications S25
4. One-mmol-scale synthesis of compound 3aa S28
5. Synthesis of Substrates S28
6. References S31
7. Copies of the ${ }^{\mathbf{1}} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra S32

1. General Considerations

All chemicals were used as received without further purification unless stated otherwise. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at ambient temperature on a 500 MHz spectrometer (125 MHz for ${ }^{13} \mathrm{C}$). NMR experiments are reported in δ units, parts per million (ppm), and were referenced to $\mathrm{CDCl}_{3}(\delta 7.26$ or 77.0 ppm) and $\mathrm{DMSO}_{\mathrm{d}-6}(\delta 2.5$ or 36.5 ppm) as the internal standard. The coupling constants J are given in Hz. Column chromatography was performed using EM Silica gel 60 (300-400 meshes) or neutral aluminum oxide (200-300 meshes).

2. Experimental Procedures.

2.1 General procedure

An oven-dried 25 mL Schlenk tube charged with $1 \mathbf{1 a}(0.1 \mathrm{mmol})$, CPA $(0.01 \mathrm{mmol}, 6.1 \mathrm{mg})$, and DDQ $(0.28 \mathrm{mmol}, 63.5 \mathrm{mg}), 4 \AA \mathrm{MS}(400 \mathrm{mg}), 4 \mathrm{~mL}$ of CHCl_{3} added by syringe and benzaldehyde $(0.2 \mathrm{mmol}, 20 \mu \mathrm{~L})$ added by pipette. After $24 \mathrm{~h}, \mathbf{2 a}(0.2 \mathrm{mmol})$ was added to the reaction mixture. After $36 \mathrm{~h}, \mathbf{2 a}(0.2 \mathrm{mmol})$ was added to the reaction mixture. After $48 \mathrm{~h}, \mathbf{2 a}(0.2 \mathrm{mmol})$ was added to the reaction mixture. Then, the tube was vacuumed and refilled with Ar for 3 times and was placed in $35{ }^{\circ} \mathrm{C}$ oil-bath for 60 h . The crude reaction mixture was concentrated in vacuo and the residue was purified by silica gel flash column chromatography to afford the corresponding products.

2.2 Stability on racemization of product 3ba

We investigated the racemization temperature of this axially chiral 6,6'-difluoro-2,2'-diphenyl$4 H, 4^{\prime} H$-[3,3'-biquinazoline]-4,4'-dione scaffold.

2．3 Characterization Data for the Products

（S）－2，2＇－diphenyl－4H，4＇H－［3，3＇－biquinazoline］－4，4＇－dione（3aa）

Flash column chromatography on silica gel gave the product（ $40.2 \mathrm{mg}, 91 \%$ yield）as a white solid： M．p． $187-189{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+130.7\left(\mathrm{c}=0.12\right.$ in $\mathrm{CHCl}_{3}, 96: 4$ e．r．）；The enantiomeric ratio was determined by Daicel Chiralcel AD－H（ $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ），Hexanes $/ \mathrm{IPA}=80 / 20, \lambda=254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=40.1 \mathrm{~min}, \mathrm{t}($ minor $)=61 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.82$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26-7.23(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 159.8,154.0,146.6,135.5,135.5,132.2,130.8$ ， 130．8，128．3，128．3，128．1，127．8，127．7，120．8； $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 443.1503 ，found 443.1501 ．

m

PDA Ch1 254nm

Peak\＃Ret．Time	Area	Height	Area\％	
1	40.396	8868863	114966	49.914
2	61.389	8899351	73226	50.086
总计		17768214	188193	100.000

PDA Ch1 254nm				
Peak\＃	Ret．Time	Area	Height	Area\％
1	40.072	1229897	16514	4.420
2	61.059	26594982	213462	95.580
总计		27824879	229975	100.000

（S）－6，6＇－difluoro－2，2＇－diphenyl－4H，4＇ \mathbf{H}－［3，3＇－biquinazoline］－4，4＇－dione（3ba）

Flash column chromatography on silica gel gave the product（ $28.7 \mathrm{mg}, 60 \%$ yield）as a white solid：
M．p． $205-206{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+195.0\left(\mathrm{c}=0.12\right.$ in $\mathrm{CHCl}_{3}, 96: 4$ e．r．）；The enantiomeric ratio was determined by Daicel Chiralcel AD－H（ $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ），Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=25.4 \mathrm{~min}, \mathrm{t}($ minor $)=30.2 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.02(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.3(\mathrm{~d}, J=250 \mathrm{~Hz}), 159.1,159.0$ ， $153.1,153.1,143.2,131.8,130.9,130.7(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 128.3,128.1,124.1(\mathrm{~d}, J=23.7 \mathrm{~Hz})$ ， $122.1(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 112.7(\mathrm{~d}, J=23.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR（ $471 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$ ）$\delta-110.5$ ；HRMS（ESI） m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 479.1314$ ，found 479．1323．
mav

PDA Ch1 254nm					PDA Ch1 254nm				
Peak\＃	Ret．Time	Area	Height	Area\％	Peak\＃	Ret．Time	Area	Height	Area\％
1	25.235	7939779	88324	50.551	1	25.357	11165266	125249	96.057
2	30.049	7766703	67900	49.449	2	30.188	458302	4093	3.943
总计		15706482	156224	100.000	总计		11623568	129342	100.000

（S）－6，6＇－dichloro－2，2＇－diphenyl－4H，4＇H－［3，3＇－biquinazoline］－4，4＇－dione（3ca）

Flash column chromatography on silica gel gave the product（ $40.8 \mathrm{mg}, 80 \%$ yield）as a white solid： M．p． $200-202{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+61.3\left(\mathrm{c}=0.14\right.$ in $\mathrm{CHCl}_{3}, 87: 13$ e．r．）；The enantiomeric ratio was
determined by Daicel Chiralcel AD－H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ ，Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}$（major）$=28 . .3 \mathrm{~min}, \mathrm{t}($ minor $)=47.1 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.33(\mathrm{~s}, 2 \mathrm{H})$, $7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H})$ ， $7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.7,154.0,145.0,136.0,133.9,131.7$, 131．0，129．8，129．8，128．4，128．0，126．9，126．9，121．7；HRMS（ESI） m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+} 511.0723$ ，found 511.0724.

PDA Ch1 254nm					PDA Ch1 254 nm PreaPeak\＃Ret Time Area				
Peak\＃	Ret．Time	Area	Height	Area\％				Height	Area\％
1	28.396	4136295	18380	49.819	1	28.323	10368618	45829	87.382
2	47.128	4166294	10549	50.181	2	47.124	1497291	3798	12.618
总计		8302589	28929	100.000	总计		11865909	49627	100.000

（S）－6，6＇－dibromo－2，2＇－diphenyl－4H，4＇H－［3，3＇－biquinazoline］－4，4＇－dione（3da）

Flash column chromatography on silica gel gave the product（ $47.2 \mathrm{mg}, 79 \%$ yield）as a white solid： M．p． $189-190{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+96.3\left(\mathrm{c}=0.19\right.$ in $\mathrm{CHCl}_{3}, 97: 3$ e．r．）；The enantiomeric ratio was determined by Daicel Chiralcel AD－H（ $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ），Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=35.8 \mathrm{~min}, \mathrm{t}($ minor $)=58.9 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.50(\mathrm{~s}, 2 \mathrm{H})$, $7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H})$ ， $7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.5,154.1,145.3,138.8,131.7,131.1$, 130．1，130．0，130．0，128．4，128．0，128．0，122．0，121．6；HRMS（ESI）m／z calcd for $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+} 598.9713$ ，found 598.9724 ．

（S）－6，6＇－dimethyl－2，2＇－diphenyl－4H，4＇H－［3，3＇－biquinazoline］－4，4＇－dione（3ea）

Flash column chromatography on silica gel gave the product（ $8.5 \mathrm{mg}, 18 \%$ yield）as a white solid： M．p． $217-219{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+52.5\left(\mathrm{c}=0.16\right.$ in $\mathrm{CHCl}_{3}, 89: 11$ e．r．$)$ ；The enantiomeric ratio was determined by Daicel Chiralcel OD－H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ ，Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=25.9 \mathrm{~min}, \mathrm{t}($ minor $)=10.1 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.12(\mathrm{~s}, 2 \mathrm{H})$ ， $7.62(\mathrm{~s}, 4 \mathrm{H}), 7.35(\mathrm{~s}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 8 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 159.8,153.2,144.6,138.2$, 136．9，136．9，132．3，130．6，128．2，128．2，127．9，127．9，127．1，120．6，21．4；HRMS（ESI）m／z calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 471.1816$ ，found 471.1823 ．

PDA Ch1 254nm				
Peak\＃Ret．Time	Area	Height	Area\％	
1	10.108	696603	22312	48.958
2	28.186	726249	4196	51.042
总计		1422852	26508	100.000

PDA Ch1 254nm

Peak\＃	Ret．Time	Area	Height	Area\％
1	10.087	1170069	36862	11.200
2	25.871	9277089	52237	88.800
总计		10447158	89099	100.000

Flash column chromatography on silica gel gave the product（ $35.7 \mathrm{mg}, 70 \%$ yield）as a white solid： M．p． $285-286{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+208.3\left(\mathrm{c}=0.14\right.$ in $\mathrm{CHCl}_{3}, 84: 16$ e．r．）；The enantiomeric ratio was determined by Daicel Chiralcel AD－H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ ，Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=31.7 \mathrm{~min}, \mathrm{t}($ minor $)=16.5 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.32(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR（125 MHz， $\left.\mathrm{CDCl}_{3}\right) \delta 159.1,155.1,147.4,142.0,131.7,131.1,129.0,128.5$ ， 128．4，128．4，128．0，127．9，127．9，119．1；HRMS（ESI）m／z calcd for $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}^{+}(\mathrm{M}+\mathrm{H})^{+}$ 511.0723 ，found 511.0730 ．

PDA Ch1 254nm				
Peak\＃	Ret．Time	Area	Height	Area\％
1	16.602	15383956	327569	50.318
2	32.018	15189670	162603	49.682
总计		30573626	490172	100.000

PDA Ch1 254nm				
Peak\＃	Ret．Time	Area	Height	Area\％
1	16.531	11400024	223401	16.456
2	31.724	57875472	612961	83.544
总计		69275495	836362	100.000

（S）－2－（6－nitrocyclohexa－2，4－dien－1－yl）－2＇－（2－nitrophenyl）－4H，4＇H－［3，3＇－

biquinazoline］－4，4＇－dione（3ab）

Flash column chromatography on silica gel gave the product（ $16.2 \mathrm{mg}, 30 \%$ yield）as a white solid：
M．p． $243-245{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+125.5$（ $\mathrm{c}=0.15$ in CHCl_{3} ，99：1 e．r．）；The enantiomeric ratio was
determined by Daicel Chiralcel AD－H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ ，Hexanes $/ \mathrm{IPA}=60 / 40,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=53.6 \mathrm{~min}, \mathrm{t}($ minor $)=33.2 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.40(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 8 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR（125 MHz， $\left.\mathrm{CDCl}_{3}\right) \delta 161.0,150.7,147.9,146.2,136.0,133.5,131.6,128.8,128.3,128.3,127.7,127.6,125.3$ ， 120．8，HRMS（ESI）m／z calcd for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 535.1361$ ，found 535．1351．

PDA Ch1 254nm					PDA Ch1 254nmPeak\＃Ret．Time		Area	Height	Area\％
Peak\＃	Ret．Time	Area	Height	Area\％					
1	33.142	1223982	18953	49.793	1	33.188	41019	664	1.352
2	53.584	1234168	11476	50.207	2	53.575	2993412	27542	98.648
总计		2458150	30429	100.000	总计		3034430	28206	100.000

（S）－2，2＇－bis（2－bromophenyl）－4H，4＇H－［3，3＇－biquinazoline］－4，4＇－dione（3ac）

Flash column chromatography on silica gel gave the product（ $47.8 \mathrm{mg}, 80 \%$ yield）as a white solid： M．p． $280-281{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+344.3\left(\mathrm{c}=0.12\right.$ in $\mathrm{CHCl}_{3}, 91: 9$ e．r．）；The enantiomeric ratio was determined by Daicel Chiralcel AD－H（ $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ），Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=20.1 \mathrm{~min}, \mathrm{t}($ minor $)=23.8 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.41(\mathrm{~s}, 2 \mathrm{H})$ ， $7.86(\mathrm{~s}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.66-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{~d}, J=20 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ） $\delta 160.7,151.9,146.0,135.8,134.9,132.5,131.6,128.5,128.3,128.2,127.7,127.1,124.3,121.0$, HRMS（ESI）m／z calcd for $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 598.9713$ ，found 598．9709．

PDA Ch1 254nmPeak\＃Ret．Time		PDA Ch1 254nm							
		Area	Height	Area\％	Peak\＃	Ret．Time	Area	Height	Area\％
1	20.128	1037574	29781	50.686	1	20.101	5320236	149591	90.704
2	23.833	1009489	24481	49.314	2	23.830	545280	16237	9.296
总计		2047064	54262	100.000	总计		5865516	165829	100.000

（S）－2，2＇－bis（2－fluorophenyl）－4H，4＇H－［3，3＇－biquinazoline］－4，4＇－dione（3ad）

Flash column chromatography on silica gel gave the product（ $19.1 \mathrm{mg}, 40 \%$ yield）as a white solid： M．p． $230-233{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+94.3\left(\mathrm{c}=0.11\right.$ in $\mathrm{CHCl}_{3}, 99: 1$ e．r．$)$ ；The enantiomeric ratio was determined by Daicel Chiralcel AD－H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ ，Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=45.0 \mathrm{~min}, \mathrm{t}($ minor $)=26.6 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.40(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}$, 4H）， $7.09(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.8(\mathrm{~d}, J=$ $252.5 \mathrm{~Hz}), 159.7,149.2,146.2,135.6,132.8(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 129.1,128.3,128.2,127.6,124.0(\mathrm{~d}, J$ $=2.5 \mathrm{~Hz}), 121.0,120.1(\mathrm{~d}, J=13.7 \mathrm{~Hz}), 116.7(\mathrm{~d}, J=22.5 \mathrm{~Hz}),{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz} \mathrm{CDCl}{ }_{3}\right) \delta-$ 112．1；HRMS（ESI） m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 479.1314$ ，found 479．1323．

mav

PDA Ch1 254nm					
Peak\＃	Ret．Time	Area	Height		
1	26.680	3219169	25325		
2	45.304	3006174	11527		
总计		6225343	36852		

PDA Ch1 254nm

$\mid r$	PDea	Height	Area\％	
1	26.578	192395	1551	0.567
2	44.986	33712024	127610	99.433
总计		33904419	129161	100.000

(S)-2,2'-di-o-tolyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ae)

Flash column chromatography on silica gel gave the product ($24.0 \mathrm{mg}, 51 \%$ yield) as a white solid: M.p. $262-263{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+249\left(\mathrm{c}=0.18\right.$ in $\mathrm{CHCl}_{3}, 90: 10$ e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=17.8 \mathrm{~min}, \mathrm{t}($ minor $)=9.5 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.44(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 2 \mathrm{H})$, 7.23-7.19 (m, 4H), $6.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 160.5$, $146.2,138.4,135.5,131.6,131.1,130.3,128.0,128.0,127.8,127.7,127.0,125.6,120.9,19.4 ;$ HRMS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 471.1816$, found 471.1807 .

(S)-2,2'-bis(2-chlorophenyl)-4H,4' \boldsymbol{H}-[3,3'-biquinazoline]-4,4'-dione (3af)

Flash column chromatography on silica gel gave the product ($15.8 \mathrm{mg}, 31 \%$ yield) as a white solid:
M.p. $259-261{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+145.4\left(\mathrm{c}=0.15\right.$ in $\mathrm{CHCl}_{3}, 90: 10$ e.r.); The enantiomeric ratio was
determined by Daicel Chiralcel OD－H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ ，Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=30.7 \mathrm{~min}, \mathrm{t}($ minor $)=14.2 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.41(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.86(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 2 \mathrm{H})$, $7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=8.0 \mathrm{~Hz} 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR（125 MHz， $\left.\mathrm{CDCl}_{3}\right) \delta 160.6,150.9,146.1,135.8,134.4,131.5,131.3,131.3,130.6,128.3,128.2,127.7,126.5$, 121．0；HRMS（ESI）m／z calcd for $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$511．0723，found 511．0714．

PDA Ch1 254nm

Peak\＃	Ret．Time	Area	Height	Area\％	PDA Ch1 254nmPeak\＃Ret．Time		Area	Height	Area\％
1	14.203	1094307	25711	50.513					
2	34.837	1072100	25711 5269	49.487	1	14.216	1612448	38124	9.610
					2	30.679	15165811	68510	90.390
总计		2166406	30981	100.000	总计		16778259	106633	100.000

（S）－2，2＇－bis（2－iodophenyl）－4H，4＇H－［3，3＇－biquinazoline］－4，4＇－dione（3ag）

Flash column chromatography on silica gel gave the product（ $34.7 \mathrm{mg}, 50 \%$ yield）as a white solid： M．p． $270-272{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+174.1\left(\mathrm{c}=0.14\right.$ in $\mathrm{CHCl}_{3}, 90: 10$ e．r．）；The enantiomeric ratio was determined by Daicel Chiralcel AD－H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ ，Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=12.9 \mathrm{~min}, \mathrm{t}($ minor $)=20.9 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.43(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR（125 MHz， $\left.\mathrm{CDCl}_{3}\right) \delta 160.8,153.5,146.0,142.0,135.9,135.9,131.7,128.3,128.2,128.0,128.0,127.7,121.0$, 99．5；HRMS（ESI）m／z calcd for $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$694．9435，found 694.9432 ．

PDACh	254nm				PDA	m			
Peak\＃	Ret．Time	Area	Height	Area\％	Peak\＃	Ret．Time	Area	Height	Area\％
1	12.950	8544109	203607	50.193	1	12.943	14662066	349297	89.874
2	20.902	8478533	169033	49.807	2	20.944	1651944	32922	10.126
总计		17022642	372640	100.000	总计		16314011	382219	100.000

（S）－2，2＇－bis（3－chlorophenyl）－4H，4＇H－［3，3＇－biquinazoline］－4，4＇－dione（3ah）

Flash column chromatography on silica gel gave the product（ $28.1 \mathrm{mg}, 55 \%$ yield）as a white solid： M．p． $217-220{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+140.1\left(\mathrm{c}=0.13\right.$ in $\mathrm{CHCl}_{3}, 87: 13$ e．r．）；The enantiomeric ratio was determined by Daicel Chiralcel AD－H（ $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ），Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=27.8 \mathrm{~min}, \mathrm{t}($ minor $)=16.9 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.48(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 2 \mathrm{H})$, $7.33(\mathrm{~s}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 159.7,152.4,146.3,135.8,134.6,133.6$ ， 131．1，129．6，128．8，128．3，128．3， 127.7 125．7，120．8；HRMS（ESI） m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+} 511.0723$ ，found 511.0717.

mav

PDA Ch1 254nm

Peak\＃Ret．Time	Area	Height	Area\％	
1	16.896	1790954	27589	49.945
2	27.879	1794903	13816	50.055
总计		3585857	41405	100.000

PDA Ch1 254nm

Peak\＃	Ret．Time	Area	Height	Area\％
1	16.883	1240309	18777	13.404
2	27.839	8012917	60797	86.596
总计		9253226	79574	100.000

（S）－2，2＇－bis（4－iodophenyl）－4H，4＇H－［3，3＇－biquinazoline］－4，4＇－dione（3ai）

Flash column chromatography on silica gel gave the product（ $43.7 \mathrm{mg}, 63 \%$ yield）as a white solid： M．p．277－279 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+235.9\left(\mathrm{c}=0.16\right.$ in $\mathrm{CHCl}_{3}, 85: 15$ e．r．）；The enantiomeric ratio was determined by Daicel Chiralcel AD－H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ ，Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=83.3 \mathrm{~min}, \mathrm{t}($ minor $)=30.0 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.38(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR（125 MHz， CDCl_{3} ）$\delta 159.7,152.9,146.4,137.6,137.6,135.8,131.7,129.6$ ， 129．6，128．4，128．2，127．7，120．7，97．8；HRMS（ESI） m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}^{+}(\mathrm{M}+\mathrm{H})^{+}$ 694．9435，found 694.9434 ．

PDA Ch1 254nm					PDA Ch1 254nm				
Peak\＃	Ret．Time	Area	Height	Area\％	Peak\＃	Ret．Time	Area	Height	Area\％
1	30.023	1210802	10342	46.740	1	29.930	635760	5493	15.248
2	83.331	1379717	6470	53.260	2	83.273	3533734	16939	84.752
总计		2590520	16812	100.000	总计		4169494	22432	100.000

（S）－2，2＇－bis（4－bromophenyl）－4H，4＇H－［3，3＇－biquinazoline］－4，4＇－dione（3aj）

Flash column chromatography on silica gel gave the product（ $54.4 \mathrm{mg}, 91 \%$ yield）as a white solid： M．p． $255-258{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+88.5\left(\mathrm{c}=0.14\right.$ in $\mathrm{CHCl}_{3}, 89: 11$ e．r．）；The enantiomeric ratio was determined by Daicel Chiralcel AD－H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ ，Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=72.0 \mathrm{~min}, \mathrm{t}($ minor $)=25.6 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.38(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.5$ ， 4H）， $7.13(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR（125 MHz， $\left.\mathrm{CDCl}_{3}\right) \delta 159.7,152.8,146.4,135.8,131.7$ ， 131．7，131．1，129．7，129．7，128．3，128．2，127．7，125．6，120．7；HRMS（ESI）m／z calcd for $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}^{+}(\mathrm{M}+\mathrm{H})^{+}$598．9713，found 598．9706．

PDA Ch1 254nm					PDA Ch1 254nm				
Peak\＃	Ret．Time	Area	Height	Area\％	Peak\＃	Ret．Time	Area	Height	Area\％
1	27.050	15571028	332616	50.027	1	27.109	4867565	103922	11.175
2	77.178	15554513	107591	49.973	2	77.648	38688408	262148	88.825
总计		31125541	440207	100.000	总计		43555972	366069	100.000

（S）－2，2＇－bis（4－chlorophenyl）－4H，4＇H－［3，3＇－biquinazoline］－4，4＇－dione（3ak）

Flash column chromatography on silica gel gave the product（ $47.9 \mathrm{mg}, 94 \%$ yield）as a white solid： M．p． $225-226{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+71.9\left(\mathrm{c}=0.16\right.$ in $\mathrm{CHCl}_{3}, 80: 20$ e．r．）；The enantiomeric ratio was determined by Daicel Chiralcel AD－H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ ，Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}$（major）$=62.9 \mathrm{~min}, \mathrm{t}($ minor $)=21.7 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.41(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=4.5$ $\mathrm{Hz}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR（125 MHz， $\left.\mathrm{CDCl}_{3}\right) \delta 159.7,152.7,146.4,137.2,135.8$ ， $130.6,130.6,129.5,129.5,128.7,128.3,128.2,127.7,120.7 ; H R M S$（ESI） m / z calcd for
$\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 511.0723$ ，found 511．0728．

（S）－2，2＇－di－p－tolyl－4H，4＇H－［3，3＇－biquinazoline］－4，4＇－dione（3al）

Flash column chromatography on silica gel gave the product（ $21.2 \mathrm{mg}, 45 \%$ yield）as a white solid： M．p． $219-220{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+135.9\left(\mathrm{c}=0.20\right.$ in $\mathrm{CHCl}_{3}, 87: 13$ e．r．）；The enantiomeric ratio was determined by Daicel Chiralcel AD－H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ ，Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=68.5 \mathrm{~min}, \mathrm{t}($ minor $)=19.2 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.39(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 4 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 159.9,154.2,146.7,141.0,135.4$ ， 129．4，128．9，128．9，128．1，128．1，128．1，127．7，127．6，120．8，21．4；HRMS（ESI）m／z calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}^{+}(\mathrm{M}+\mathrm{H})^{+} 471.1816$ ，found 471．1824．

PDA Ch1 254nm

Peak\＃Ret．Time	Area	Height	Area\％	
1	19.174	2435725	23341	50.062
2	68.207	2429677	6885	49.938
总计		4865402	30225	100.000

PDA Ch1 254nm

Peak\＃	Aret．Time	Height	Area\％	
1	19.223	2515860	24027	13.100
2	68.456	16689794	47704	86.900
总计		19205653	71731	100.000

(S)-2,2'-di(naphthalen-2-yl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3am)

Flash column chromatography on silica gel gave the product ($27.1 \mathrm{mg}, 50 \%$ yield) as a white solid: M.p. $260-263{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+58.8\left(\mathrm{c}=0.15\right.$ in $\mathrm{CHCl}_{3}, 99: 1$ e.r. $)$; The enantiomeric ratio was determined by Daicel Chiralcel AD-H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=50.3 \mathrm{~min}, \mathrm{t}($ minor $)=30.7 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.48(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.81(\mathrm{t}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.62-7.48(\mathrm{~m}, 10 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 160.0,153.9,146.6,135.5,133.9,132.3,129.5,129.2,128.6$, $128.2,128.2,128.0,127.9,127.7,127.7,126.9,124.0,120.9 ; H R M S$ (ESI) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}^{+}(\mathrm{M}+\mathrm{H})^{+} 543.1816$, found 543.1819.

(S)-2,2'-di(thiophen-2-yl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3an)

Flash column chromatography on silica gel gave the product（ $18.2 \mathrm{mg}, 40 \%$ yield）as a white solid： M．p． $270-272{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+118.3\left(\mathrm{c}=0.18\right.$ in $\mathrm{CHCl}_{3}, 75: 25$ e．r．）；The enantiomeric ratio was determined by Daicel Chiralcel OD－H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ ，Hexanes $/ \mathrm{IPA}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=34.2 \mathrm{~min}, \mathrm{t}($ minor $)=40.4 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.24(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 4 \mathrm{H}), 7.50(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=4.5,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4,148.4,147.1,135.7,134.1,131.6,131.1,128.2,128.1,127.8,127.4,120.6 ;$ HRMS（ESI）m／z calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 455.0631$ ，found 455.0638 ．

mau

PDA Ch1 254nm Peak\＃Ret．Time

Peak\＃	Ret．Time	Area	Height	Area\％	Peak\＃	Ret．Time	Area	Height	Area\％
1	35.820	1162929	10102	50.986	1	34.224	7405596	59671	74.523
2	40.744	1117956	10752	49.014	2	40.365	2531763	24384	25.477
总计		2280885	20854	100.000	总计		9937359	84055	100.000

（S）－2，2＇－di（thiophen－3－yl）－4H，4＇H－［3，3＇－biquinazoline］－4，4＇－dione（3ao）

Flash column chromatography on silica gel gave the product（ $13.6 \mathrm{mg}, 30 \%$ yield）as a white solid： M．p．247－249 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+84.2\left(\mathrm{c}=0.16\right.$ in CHCl_{3} ，69：31 e．r．）；The enantiomeric ratio was determined by Daicel Chiralcel OD－H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$ ，Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=38.4 \mathrm{~min}, \mathrm{t}($ minor $)=16.4 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.30(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~s}, 2 \mathrm{H})$, $7.23(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR（125 MHz， $\left.\mathrm{CDCl}_{3}\right) \delta 159.5,149.8,146.9,135.6,132.8,128.5,128.2,127.7$, 127．7，127．6，126．5，120．7；HRMS（ESI）m／z calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 455.0631$ ，found 455.0632 ．

PDA Ch1 254nm					PDA Ch1 254nm				
Peak\＃	Ret．Time	Area	Height	Area\％	Peak\＃	Ret．Time	Area	Height	Area\％
1	16.261	6526259	154708	50.560	1	16.415	2627731	61877	30.849
2	38.233	6381667	42713	49.440	2	38.362	5890371	39650	69.151
总计		12907927	197421	100.000	总计		8518102	101527	100.000

3. Synthetic applications

3aj, 89:11 er

(a)

A dried 25 mL Schlenk tube was charged with 3aj ($0.20 \mathrm{mmol}, 119.8 \mathrm{mg}$), p-tolylboronic acid (0.5 $\mathrm{mmol}, 68 \mathrm{mg})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.02 \mathrm{mmol}, 23.1 \mathrm{mg}), \mathrm{CsF}(0.8 \mathrm{mmol}, 121.5 \mathrm{mg}), 4 \mathrm{~mL}$ of THF added by syringe. The reaction tube was vacuumed and refilled with Ar for 3 times, and was placed in 70 ${ }^{\circ} \mathrm{C}$ oil-bath for 16 h . The crude reaction mixture was concentrated in vacuo and the residue was purified by silica gel flash column chromatography to afford the corresponding products 4.

A dried 25 mL Schlenk tube was charged with 3aj ($0.20 \mathrm{mmol}, 119.8 \mathrm{mg}$), 4-methyl phenylacetylene $(0.3 \mathrm{mmol}, 38 \mu \mathrm{~L}), \mathrm{CuI}(0.02 \mathrm{mmol}, 3.8 \mathrm{mg})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.02 \mathrm{mmol}, 14 \mathrm{mg})$, triethylamine $(0.8 \mathrm{mmol}, 111 \mu \mathrm{~L}), 4 \mathrm{~mL}$ of THF added by syringe. The reaction tube was vacuumed and refilled with Ar for 3 times, and was placed in $70^{\circ} \mathrm{C}$ oil-bath for 3 h . The crude reaction mixture was concentrated in vacuo and the residue was purified by silica gel flash column chromatography to afford the corresponding products 5.

(S)-2,2'-bis(4'-methyl-[1,1'-biphenyl]-4-yl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione

(4)

Flash column chromatography on silica gel gave the product ($104.5 \mathrm{mg}, 84 \%$ yield) as a white solid: M.p. $250-251{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+91.8\left(\mathrm{c}=0.13\right.$ in $\mathrm{CHCl}_{3}, 90: 10$ e.r. $)$; The enantiomeric ratio was determined by Daicel Chiralcel AD-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=91.7 \mathrm{~min}, \mathrm{t}($ minor $)=21.9 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.42(\mathrm{~s}, 2 \mathrm{H})$, $7.83(\mathrm{~s}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 2 \mathrm{H}), 7.58(\mathrm{~s}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 8 \mathrm{H}), 7.34(\mathrm{~s}, 4 \mathrm{H}), 7.23(\mathrm{~s}, 4 \mathrm{H}), 2.38(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 159.9,153.9,146.7,143.4,138.1,136.7,135.5,130.7,129.6$, 128.7, 128.2, 127.8, 127.7, 126.9, 126.6, 120.8, 21.1; HRMS (ESI) m/z calcd for $\mathrm{C}_{42} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+} 623.2442$, found 623.2452 .

(S)-2-(4-bromophenyl)-2'-(4-(p-tolylethynyl)phenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (5)

Flash column chromatography on silica gel gave the product ($62.1 \mathrm{mg}, 49 \%$ yield) as a white solid: M.p. $220-223{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+87.8\left(\mathrm{c}=0.15\right.$ in $\mathrm{CHCl}_{3}, 87: 13$ e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}($ major $)=54.9 \mathrm{~min}, \mathrm{t}($ minor $)=28.7 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.39(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 6 \mathrm{H}), 7.22(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=10.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.7,159.6$, $153.1,152.8,146.5,146.4,139.1,135.7,135.7,131.6,131.5,131.3,131.3,131.3,131.1,129.7$, 129.2, 128.3, 128.1, 128.1, 127.7, 126.3, 125.6, 120.7, 120.6, 119.3, 92.4, 87.6, 21.5; HRMS (ESI) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{24} \mathrm{BrN}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$635.1077, found 635.1082.

"

PDA Ch1 254nm Peak\# Ret Time

Peak\#	Ret. Time	Area	Height	Area\%
1	28.691	5451723	87470	13.000
2	54.859	36483786	278374	87.000
总计		41935509	365845	100.000

4. One-mmol-scale synthesis of compound 3aa

An oven-dried 100 mL Schlenk tube charged with 1a (1 mmol), CPA11 ($0.1 \mathrm{mmol}, 61 \mathrm{mg}$), and DDQ ($2.8 \mathrm{mmol}, 635 \mathrm{mg}$), $4 \AA \mathrm{MS}(1000 \mathrm{mg}), 10 \mathrm{~mL}$ of CHCl_{3} added by syringe and benzaldehyde ($2 \mathrm{mmol}, 200 \mu \mathrm{~L}$) added by pipette. After $24 \mathrm{~h}, \mathbf{2 a}(2 \mathrm{mmol})$ was added to the reaction mixture. After $36 \mathrm{~h}, \mathbf{2 a}(2 \mathrm{mmol})$ was added to the reaction mixture. After $48 \mathrm{~h}, \mathbf{2 a}(2 \mathrm{mmol})$ was added to the reaction mixture. Then, the tube was vacuumed and refilled with Ar for 3 times and was placed in $35^{\circ} \mathrm{C}$ oil-bath for 60 h . The crude reaction mixture was concentrated in vacuo and the residue was purified by silica gel flash column chromatography to afford the corresponding products.

5. Synthesis of Substrates

To an efficiently stirred suspension of isatoic anhydride in 1,4-dioxane was added hydrazine monohydrate and the mixture heated at reflux for 16 h . The crude reaction mixture was concentrated in vacuo and the residue was purified by silica gel flash column chromatography to afford the corresponding products $\mathbf{1 a - 1 f}$.

2-amino- N^{\prime}-(2-aminobenzoyl)benzohydrazide (1a)

Flash column chromatography on silica gel gave the product ($1.08 \mathrm{~g}, 80 \%$ yield) as a white solid: M.p. $210-212{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}-6}, 500 \mathrm{MHz}\right) \delta 10.04(\mathrm{~s}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{t}, J=7.5 \mathrm{~Hz} 2 \mathrm{H}), 6.42(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\mathrm{DMSO}_{\mathrm{d}-6}$) $\delta 168.6,145.0,132.4,128.3,116.5,114.8,112.8 ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}^{+}(\mathrm{M}+\mathrm{H})^{+}$271.1190, found 271.1182.

Flash column chromatography on silica gel gave the product ($428 \mathrm{mg}, 70 \%$ yield) as a white solid: M.p. 226-229 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{\mathrm{d}-6}, 500 \mathrm{MHz}\right) \delta 10.18(\mathrm{~s}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=9.5 \mathrm{~Hz} 2 \mathrm{H}), 7.12(\mathrm{~s}$, 2H), $6.77(\mathrm{~s}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}-6}\right) \delta 167.5,152.6(\mathrm{~d}, J=230 \mathrm{~Hz})$, $146.8,120.1(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 117.9(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 113.5(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 112.0(\mathrm{~d}, J=5.0 \mathrm{~Hz}) ;$ ${ }^{19} \mathrm{~F}$ NMR (471 MHz $\mathrm{DMSO}_{\mathrm{d}-6}$) $\delta-129.7$; RMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 307.1001, found 307.1009.

2-amino- N^{\prime}-(2-amino-5-chlorobenzoyl)-5-chlorobenzohydrazide (1c)

Flash column chromatography on silica gel gave the product ($473.2 \mathrm{mg}, 70 \%$ yield) as a white solid: M.p. $255-258{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}_{\mathrm{d}-6}, 500 \mathrm{MHz}\right) \delta 10.22(\mathrm{~s}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H), $6.73(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}-6}\right) \delta 167.3,148.8,132.2$, 127.5, 118.2, 117.8, 113.2; HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 339.0410$, found 339.0419.

2-amino- N^{\prime}-(2-amino-5-bromobenzoyl)-5-bromobenzohydrazide (1d)

Flash column chromatography on silica gel gave the product ($707.0 \mathrm{mg}, 83 \%$ yield) as a white solid: M.p. 239-240 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}-6}, 500 \mathrm{MHz}\right) \delta 10.23(\mathrm{~s}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, 2H), $6.72(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}-6}\right) \delta 167.2,149.1,134.8$, 130.3, 118.6, 113.9, 104.9; HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 426.9400$, found 426.9407.

2-amino- N^{\prime}-(2-amino-5-methylbenzoyl)-5-methylbenzohydrazide (1e)

Flash column chromatography on silica gel gave the product ($298.1 \mathrm{mg}, 50 \%$ yield) as a white solid: M.p. $236-239{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}-6}, 500 \mathrm{MHz}\right) \delta 9.98(\mathrm{~s}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 4 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}-6}\right) \delta 168.5$, 147.6, 133.1, 128.2, 123.0, 116.5, 112.8, 20.0; $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 299.1503, found 299.1495.

2-amino- N^{\prime}-(2-amino-4-chlorobenzoyl)-4-chlorobenzohydrazide (1f)

Flash column chromatography on silica gel gave the product (60% yield) as a white solid: mp 274.7 $276.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO, 500 MHz$) \delta 10.15(\mathrm{~s}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 6.68$ ($\mathrm{s}, 4 \mathrm{H}$), $6.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,151.6,137.3,130.5,115.6$, 114.8, 111.7; HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$339.0410, found 339.0401.

6. References

1 M. P. Coogan and S. C. Passey J. Chem. Soc., Perkin Trans. 2, 2000, 2060-2066.

7. Copies of the ${ }^{\mathbf{1}} \mathbf{H}$ NMR and ${ }^{13} \mathbf{C}$ NMR Spectra

2,2'-diphenyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3aa)

(S)-2-(6-nitrocyclohexa-2,4-dien-1-yl)-2'-(2-nitrophenyl)-4H,4'H-[3,3'-
biquinazoline]-4,4'-dione (3ab)

(S)-2,2'-bis(2-bromophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ac)

 No№N

(S)-2,2'-bis(2-fluorophenyl)-4H,4' \mathbf{H}-[3,3'-biquinazoline]-4,4'-dione (3ad)

운 ~~~

No웅

(S)-2,2'-di-o-tolyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ae)

$\stackrel{\sim}{\sim}$

$\stackrel{\sim}{n}$
$\stackrel{\infty}{\stackrel{\infty}{m}} \stackrel{+}{\stackrel{\infty}{\top}}$

(S)-2,2'-bis(2-chlorophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3af)

(S)-2,2'-bis(2-iodophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ag)

○- $\underbrace{\text { On }}$

(S)-2,2'-bis(3-chlorophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ah)

Nơ゚

(S)-2,2'-bis(4-iodophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ai)

| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

(S)-2,2'-bis(4-bromophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3aj)

かめNNNNNNNNNN

Noำ

(S)-2,2'-di-p-tolyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3al)


```
\infty~NNNNNNNNNN
```


$\stackrel{\infty}{\stackrel{\infty}{\sim}}$

（S）－2，2＇－di（naphthalen－2－yl）－4H，4＇H－［3，3＇－biquinazoline］－4，4＇－dione（3am）

Nัロ
$\underset{1}{\infty}$
へべが

30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

(S)-2,2'-di(thiophen-2-yl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3an)

U

(S)-2,2'-di(thiophen-3-yl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ao)
$\underbrace{\infty}$

(S)-6,6'-difluoro-2,2'-diphenyl-4H,4' \mathbf{H}-[3,3'-biquinazoline]-4,4'-dione (3ba)

(S)-6,6'-dichloro-2,2'-diphenyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ca)

$$
\begin{aligned}
& \text { প্লী }
\end{aligned}
$$

				Bo														
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{aligned} & 5.0 \\ & \mathrm{fl}(\mathrm{ppm}) \end{aligned}{ }^{4.5}$	4.0	3. 5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

(S)-6,6'-dimethyl-2,2'-diphenyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ea)

Non
$\stackrel{\stackrel{N}{\sim}}{\underset{\sim}{\sim}}$

(S)-7,7'-dichloro-2,2'-diphenyl-4H,4' \mathbf{H}-[3,3'-biquinazoline]-4,4'-dione (3fa)

 1 \underbrace{n}

(S)-2,2'-bis(4'-methyl-[1,1'-biphenyl]-4-yl)-4H,4'H-[3,3'-biquinazoline]-4,4'dione (4)

(S)-2-(4-bromophenyl)-2'-(4-(p-tolylethynyl)phenyl)-4H,4'H-[3,3'-

biquinazoline]-4,4'-dione (5)

$\stackrel{N}{\sim}$

2-amino- N^{\prime}-(2-aminobenzoyl)benzohydrazide (1a)

2-amino- N^{\prime}-(2-amino-5-fluorobenzoyl)-5-fluorobenzohydrazide (1b)

2-amino- N^{\prime}-(2-amino-5-chlorobenzoyl)-5-chlorobenzohydrazide (1c)

2-amino- N^{\prime}-(2-amino-5-bromobenzoyl)-5-bromobenzohydrazide (1d)

ก	$\stackrel{m}{\square}$	\pm ¢	\bigcirc	\%	
¢ิ-	$\stackrel{\circ}{\square}$	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\infty}{\rightleftharpoons} \stackrel{\infty}{\sim}$	¢	
\bigcirc	T		\bigcirc	T	寸mलmलmm

2-amino- N^{\prime}-(2-amino-5-methylbenzoyl)-5-methylbenzohydrazide (1e)

$\stackrel{\square}{\square}$	\bigcirc	Nへ\%
$\stackrel{\odot}{6}$	*	¢్ల
\|	$\stackrel{\rightharpoonup}{5}$?

2-amino- N^{\prime}-(2-amino-4-chlorobenzoyl)-4-chlorobenzohydrazide (1f)

