Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Chiral phosphoric acid-catalyzed dual ring formation for

enantioselective construction of N-N axially chiral 3,3'-

bisquinazolinones

XXX, \ddagger^a XXX, \ddagger^a XXX*,^b and XX*,^a

a XXXX

^b XXXX

E-mail: XXX

Table of Contents

1. General Considerations	S3
2. Experimental Procedures	S4
3. Synthetic applications	S25
4. One-mmol-scale synthesis of compound 3aa	S28
5. Synthesis of Substrates	S28
6. References	S31
7. Copies of the ¹ H NMR and ¹³ C NMR Spectra	S32

1. General Considerations

All chemicals were used as received without further purification unless stated otherwise. ¹H NMR and ¹³C NMR spectra were recorded at ambient temperature on a 500 MHz spectrometer (125 MHz for ¹³C). NMR experiments are reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (δ 7.26 or 77.0 ppm) and DMSO_{d-6} (δ 2.5 or 36.5 ppm) as the internal standard. The coupling constants *J* are given in Hz. Column chromatography was performed using EM Silica gel 60 (300-400 meshes) or neutral aluminum oxide (200-300 meshes).

2. Experimental Procedures.

2.1 General procedure

An oven-dried 25 mL Schlenk tube charged with **1a** (0.1 mmol), CPA (0.01 mmol, 6.1 mg), and DDQ (0.28 mmol, 63.5 mg), 4Å MS (400 mg), 4 mL of CHCl₃ added by syringe and benzaldehyde (0.2 mmol, 20 μ L) added by pipette. After 24 h, **2a** (0.2 mmol) was added to the reaction mixture. After 36 h, **2a** (0.2 mmol) was added to the reaction mixture. After 48 h, **2a** (0.2 mmol) was added to the reaction mixture. Then, the tube was vacuumed and refilled with Ar for 3 times and was placed in 35 °C oil-bath for 60 h. The crude reaction mixture was concentrated in vacuo and the residue was purified by silica gel flash column chromatography to afford the corresponding products.

2.2 Stability on racemization of product 3ba

3ha 92%ee

We investigated the racemization temperature of this axially chiral 6,6'-difluoro-2,2'-diphenyl-4*H*,4'*H*-[3,3'-biquinazoline]-4,4'-dione scaffold.

-			
entry	T / (°C)	Time (h)	ee of recovered 3ba (%)
1	80	12	92
2	90	12	92
3	100	12	91
4	110	12	92
5	120	12	91

6	130	12	91
7	140	12	92
8	150	24	92

2.3 Characterization Data for the Products

(S)-2,2'-diphenyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3aa)

Flash column chromatography on silica gel gave the product (40.2 mg, 91% yield) as a white solid: M.p. 187-189 °C; $[\alpha]_D^{25} = +130.7$ (c = 0.12 in CHCl₃, 96:4 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, λ = 254 nm, t (major) = 40.1min, t (minor) = 61 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.40 (d, *J* = 7.5 Hz, 2H), 7.82 (t, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.58 (t, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.26–7.23 (m, 8H); ¹³C NMR (CDCl₃, 125 MHz) δ 159.8, 154.0, 146.6, 135.5, 135.5, 132.2, 130.8, 130.8, 128.3, 128.3, 128.1, 127.8, 127.7, 120.8; HRMS (ESI) m/z calcd for C₂₈H₁₉N₄O₂⁺ (M+H)⁺ 443.1503, found 443.1501.

(S)-6,6'-difluoro-2,2'-diphenyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ba)

Flash column chromatography on silica gel gave the product (28.7 mg, 60% yield) as a white solid: M.p. 205-206 °C; $[\alpha]_D^{25} = +195.0$ (c = 0.12 in CHCl₃, 96:4 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 70/30, 1.0 mL/min, λ = 254 nm, t (major) = 25.4 min, t (minor) = 30.2 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.02 (d, *J* = 4.0 Hz, 2H), 7.72 (d, *J* = 4.5 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.25 (d, *J* = 5.0 Hz, 4H), 7.20(s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 161.3 (d, *J* = 250 Hz), 159.1, 159.0, 153.1, 153.1, 143.2, 131.8, 130.9, 130.7 (d, *J* = 8.7 Hz), 128.3, 128.1, 124.1 (d, *J* = 23.7 Hz), 122.1 (d, *J* = 8.7 Hz), 112.7 (d, *J* = 23.7 Hz); ¹⁹F NMR (471 MHz CDCl₃) δ -110.5; HRMS (ESI) m/z calcd for C₂₈H₁₇F₂N₄O₂+ (M+H)⁺ 479.1314, found 479.1323.

(S)-6,6'-dichloro-2,2'-diphenyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ca)

Flash column chromatography on silica gel gave the product (40.8 mg, 80% yield) as a white solid: M.p. 200-202 °C; $[\alpha]_D^{25} = +$ 61.3 (c = 0.14 in CHCl₃, 87:13 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 70/30, 1.0 mL/min, λ = 254 nm, t (major) = 28..3 min, t (minor) = 47.1 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.33 (s, 2H), 7.74 (d, *J* = 8.5 Hz, 2H), 7.64 (d, *J* = 8.5 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.30 (d, *J* = 7.5Hz, 4H), 7.17(d, *J* = 7.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 158.7, 154.0, 145.0, 136.0, 133.9, 131.7, 131.0, 129.8, 129.8, 128.4, 128.0, 126.9, 126.9, 121.7; HRMS (ESI) m/z calcd for C₂₈H₁₇Cl₂N₄O₂⁺ (M+H)⁺ 511.0723, found 511.0724.

(S)-6,6'-dibromo-2,2'-diphenyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3da)

Flash column chromatography on silica gel gave the product (47.2 mg, 79% yield) as a white solid: M.p. 189-190 °C; $[\alpha]_D^{25} = + 96.3$ (c = 0.19 in CHCl₃, 97:3 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 35.8 min, t (minor) = 58.9 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.50 (s, 2H), 7.88 (d, *J* = 8.5 Hz, 2H), 7.57 (d, *J* = 8.5 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.24 (d, *J* = 8.5 Hz, 4H), 7.17(d, *J* = 7.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 158.5, 154.1, 145.3, 138.8, 131.7, 131.1, 130.1, 130.0, 130.0, 128.4, 128.0, 128.0, 122.0, 121.6; HRMS (ESI) m/z calcd for C₂₈H₁₇Br₂N₄O₂+ (M+H)⁺ 598.9713, found 598.9724.

(S)-6,6'-dimethyl-2,2'-diphenyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ea)

Flash column chromatography on silica gel gave the product (8.5 mg, 18% yield) as a white solid: M.p. 217-219 °C; $[\alpha]_D^{25} = +52.5$ (c = 0.16 in CHCl₃, 89:11 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel OD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 25.9 min, t (minor) = 10.1 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.12 (s, 2H), 7.62 (s, 4H), 7.35 (s, 2H), 7.21 (s, 8H); ¹³C NMR (125 MHz, CDCl₃) δ 159.8, 153.2, 144.6, 138.2, 136.9, 136.9, 132.3, 130.6, 128.2, 128.2, 127.9, 127.9, 127.1, 120.6, 21.4; HRMS (ESI) m/z calcd for C₃₀H₂₃N₄O₂⁺ (M+H)⁺ 471.1816, found 471.1823.

(S)-7,7'-dichloro-2,2'-diphenyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3fa)

Flash column chromatography on silica gel gave the product (35.7 mg, 70% yield) as a white solid: M.p. 285-286 °C; $[\alpha]_D^{25} = +208.3$ (c = 0.14 in CHCl₃, 84:16 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 31.7 min, t (minor) = 16.5 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.32 (d, *J* = 8.5 Hz, 2H), 7.71 (s, 2H), 7.53 (d, *J* = 8.5 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.25 (s, 4H), 7.18 (d, *J* = 7.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 159.1, 155.1, 147.4, 142.0, 131.7, 131.1, 129.0, 128.5, 128.4, 128.4, 128.0, 127.9, 127.9, 119.1; HRMS (ESI) m/z calcd for C₂₈H₁₇Cl₂N₄O₂⁺ (M+H)⁺ 511.0723, found 511.0730.

(S)-2-(6-nitrocyclohexa-2,4-dien-1-yl)-2'-(2-nitrophenyl)-4H,4'H-[3,3'biquinazoline]-4,4'-dione (3ab)

Flash column chromatography on silica gel gave the product (16.2 mg, 30% yield) as a white solid: M.p. 243-245 °C; $[\alpha]_D^{25} = +$ 125.5 (c = 0.15 in CHCl₃, 99:1 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 60/40, 1.0 mL/min, λ = 254 nm, t (major) = 53.6 min, t (minor) = 33.2 min ; ¹H NMR (CDCl₃, 500 MHz) δ 8.40 (d, *J* = 8.0 Hz, 2H), 8.03 (d, *J* = 3.0 Hz, 2H), 7.87- 7.81 (m, 4H), 7.63-7.59 (m, 8H), ¹³C NMR (125 MHz, CDCl₃) δ 161.0, 150.7, 147.9, 146.2, 136.0, 133.5, 131.6, 128.8, 128.3, 128.3, 127.7, 127.6, 125.3, 120.8, HRMS (ESI) m/z calcd for C₂₈H₁₈N₆O₆⁺ (M+H)⁺ 535.1361, found 535.1351.

(S)-2,2'-bis(2-bromophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ac)

Flash column chromatography on silica gel gave the product (47.8 mg, 80% yield) as a white solid: M.p. 280-281 °C; $[\alpha]_D^{25} = + 344.3$ (c = 0.12 in CHCl₃, 91:9 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 20.1 min, t (minor) = 23.8 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.41 (s, 2H), 7.86 (s, 2H), 7.79 (s, 2H), 7.66-7.56 (m, 6H), 7.18 (d, J = 20 Hz, 4H), ¹³C NMR (125 MHz, CDCl₃) δ 160.7, 151.9, 146.0, 135.8, 134.9, 132.5, 131.6, 128.5, 128.3, 128.2, 127.7, 127.1, 124.3, 121.0, HRMS (ESI) m/z calcd for C₂₈H₁₇Br₂N₄O₂⁺ (M+H)⁺ 598.9713, found 598.9709.

(S)-2,2'-bis(2-fluorophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ad)

Flash column chromatography on silica gel gave the product (19.1 mg, 40% yield) as a white solid: M.p. 230-233 °C; $[\alpha]_D^{25} = + 94.3$ (c = 0.11 in CHCl₃, 99:1 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 45.0 min, t (minor) = 26.6 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.40 (d, *J* = 8.0 Hz, 2H), 7.83 (t, *J* = 7.5 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.59 (t, *J* = 8.0 Hz, 2H), 7.40-7.34 (m, 4H), 7.09 (t, *J* = 9.5Hz, 2H), 6.99 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 159.8 (d, *J* = 252.5 Hz), 159.7, 149.2, 146.2, 135.6, 132.8 (d, *J* = 7.5 Hz), 129.1, 128.3, 128.2, 127.6, 124.0 (d, *J* = 2.5 Hz), 121.0, 120.1 (d, *J* = 13.7 Hz), 116.7 (d, *J* = 22.5 Hz), ¹⁹F NMR (471 MHz CDCl₃) δ - 112.1; HRMS (ESI) m/z calcd for C₂₈H₁₇F₂N₄O₂⁺ (M+H)⁺ 479.1314, found 479.1323.

(S)-2,2'-di-o-tolyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ae)

Flash column chromatography on silica gel gave the product (24.0 mg, 51% yield) as a white solid: M.p. 262-263 °C; $[\alpha]_D^{25} = +249$ (c = 0.18 in CHCl₃, 90:10 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 17.8 min, t (minor) = 9.5min; ¹H NMR (CDCl₃, 500 MHz) δ 8.44 (d, *J* = 8.0 Hz, 2H), 7.84 (t, *J* = 8.0 Hz, 2H), 7.70 (d, *J* = 8.5 Hz, 2H), 7.59 (t, *J* = 8.0 Hz, 2H), 7.35 (s, 2H), 7.23-7.19 (m, 4H), 6.99 (t, *J* = 7.5 Hz, 2H), 1.58(s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 160.5, 146.2, 138.4, 135.5, 131.6, 131.1, 130.3, 128.0, 128.0, 127.8, 127.7, 127.0, 125.6, 120.9, 19.4; HRMS (ESI) m/z calcd for C₃₀H₂₂N₄O₂⁺ (M+H)⁺ 471.1816, found 471.1807.

(S)-2,2'-bis(2-chlorophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3af)

Flash column chromatography on silica gel gave the product (15.8 mg, 31% yield) as a white solid: M.p. 259-261 °C; $[\alpha]_D^{25} = +$ 145.4 (c = 0.15 in CHCl₃, 90:10 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel OD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, λ = 254 nm, t (major) = 30.7 min, t (minor) = 14.2min; ¹H NMR (CDCl₃, 500 MHz) δ 8.41 (d, *J* = 8.0 Hz, 2H), 7.86 (t, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.61 (t, *J* = 7.5 Hz, 2H), 7.54 (s, 2H), 7.45 (d, *J* = 8.5 Hz, 2H), 7.29 (t, *J* = 8.0 Hz, 2H), 7.11(t, *J* = 8.0 Hz 2H); ¹³C NMR (125 MHz, CDCl₃) δ 160.6, 150.9, 146.1, 135.8, 134.4, 131.5, 131.3, 131.3, 130.6, 128.3, 128.2, 127.7, 126.5, 121.0; HRMS (ESI) m/z calcd for C₂₈H₁₆Cl₂N₄O₂⁺ (M+H)⁺ 511.0723, found 511.0714.

(S)-2,2'-bis(2-iodophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ag)

Flash column chromatography on silica gel gave the product (34.7 mg, 50% yield) as a white solid: M.p. 270-272 °C; $[\alpha]_D^{25} = + 174.1$ (c = 0.14 in CHCl₃, 90:10 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 12.9 min, t (minor) = 20.9 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.43 (d, *J* = 6.5 Hz, 2H), 7.99 (d, *J* = 7.5 Hz, 2H), 7.88 (t, *J* = 7.5 Hz, 2H), 7.81 (t, *J* = 7.5 Hz, 2H), 7.62 (t, *J* = 7.5Hz, 2H), 7.56 (s, 2H), 7.20 (t, *J* = 7.5 Hz, 2H), 7.03 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 160.8, 153.5, 146.0, 142.0, 135.9, 135.9, 131.7, 128.3, 128.2, 128.0, 128.0, 127.7, 121.0, 99.5; HRMS (ESI) m/z calcd for C₂₈H₁₆I₂N₄O₂⁺ (M+H)⁺ 694.9435, found 694.9432.

(S)-2,2'-bis(3-chlorophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ah)

Flash column chromatography on silica gel gave the product (28.1 mg, 55% yield) as a white solid: M.p. 217-220 °C; $[\alpha]_D^{25} = + 140.1$ (c = 0.13 in CHCl₃, 87:13 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 27.8 min, t (minor) = 16.9 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.48 (d, *J* = 8.5 Hz, 2H), 7.93 (t, *J* = 8.0 Hz, 2H), 7.80 (t, *J* = 8.0 Hz, 2H), 7.68 (t, *J* = 8.5 Hz, 2H), 7.46 (s, 2H), 7.33 (s, 2H), 7.25 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 159.7, 152.4, 146.3, 135.8, 134.6, 133.6, 131.1, 129.6, 128.8, 128.3, 128.3, 127.7 125.7, 120.8; HRMS (ESI) m/z calcd for C₂₈H₁₇Cl₂N₄O₂⁺ (M+H)⁺ 511.0723, found 511.0717.

(S)-2,2'-bis(4-iodophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ai)

Flash column chromatography on silica gel gave the product (43.7 mg, 63% yield) as a white solid: M.p. 277-279 °C; $[\alpha]_D^{25} = +235.9$ (c = 0.16 in CHCl₃, 85:15 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 83.3 min, t (minor) = 30.0 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.38 (d, *J* = 8.0 Hz, 2H), 7.86 (t, *J* = 7.5 Hz, 2H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 6H), 6.98 (d, *J* = 8.0 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 159.7, 152.9, 146.4, 137.6, 137.6, 135.8, 131.7, 129.6, 129.6, 128.4, 128.2, 127.7, 120.7, 97.8; HRMS (ESI) m/z calcd for C₂₈H₁₇I₂N₄O₂⁺ (M+H)⁺ 694.9435, found 694.9434.

(S)-2,2'-bis(4-bromophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3aj)

Flash column chromatography on silica gel gave the product (54.4 mg, 91% yield) as a white solid: M.p. 255-258 °C; $[\alpha]_D^{25} = + 88.5$ (c = 0.14 in CHCl₃, 89:11 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, λ = 254 nm, t (major) = 72.0 min, t (minor) = 25.6 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.38 (d, *J* = 7.5 Hz, 2H), 7.85 (t, *J* = 7.5 Hz, 2H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.60 (t, *J* = 7.5 Hz, 2H), 7.40 (d, *J* = 7.5, 4H), 7.13 (d, J = 7.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 159.7, 152.8, 146.4, 135.8, 131.7, 131.7, 131.1, 129.7, 129.7, 128.3, 128.2, 127.7, 125.6, 120.7; HRMS (ESI) m/z calcd for C₂₈H₁₇Br₂N₄O₂⁺ (M+H)⁺ 598.9713, found 598.9706.

(S)-2,2'-bis(4-chlorophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ak)

Flash column chromatography on silica gel gave the product (47.9 mg, 94% yield) as a white solid: M.p. 225-226 °C; $[\alpha]_D^{25} = + 71.9$ (c = 0.16 in CHCl₃, 80:20 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 62.9 min, t (minor) = 21.7 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.41 (d, *J* = 8.0 Hz, 2H), 7.88 (t, *J* = 8.0 Hz, 2H), 7.76 (d, *J* = 8.5 Hz, 2H), 7.63 (t, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 4.5 Hz, 4H), 7.22 (d, *J* = 8.0 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 159.7, 152.7, 146.4, 137.2, 135.8, 130.6, 130.6, 129.5, 129.5, 128.7, 128.3, 128.2, 127.7, 120.7; HRMS (ESI) m/z calcd for $C_{28}H_{17}Cl_2N_4O_2{}^+\ (M{+}H){}^+\ 5{11.0723},\ found\ 5{11.0728}.$

(S)-2,2'-di-p-tolyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3al)

Flash column chromatography on silica gel gave the product (21.2 mg, 45% yield) as a white solid: M.p. 219-220 °C; $[\alpha]_D^{25} = +135.9$ (c = 0.20 in CHCl₃, 87:13 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 68.5 min, t (minor) = 19.2 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.39 (d, *J* = 7.5 Hz, 2H), 7.81 (t, *J* = 7.5 Hz, 2H), 7.71 (d, *J* = 8.5 Hz, 2H), 7.56 (t, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 4H), 7.03 (d, *J* = 8.0 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 159.9, 154.2, 146.7, 141.0, 135.4, 129.4, 128.9, 128.9, 128.1, 128.1, 128.1, 127.7, 127.6, 120.8, 21.4; HRMS (ESI) m/z calcd for C₃₀H₂₃N₄O₂⁺ (M+H)⁺ 471.1816, found 471.1824.

(S)-2,2'-di(naphthalen-2-yl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3am)

Flash column chromatography on silica gel gave the product (27.1 mg, 50% yield) as a white solid: M.p. 260-263 °C; $[\alpha]_D^{25} = +58.8$ (c = 0.15 in CHCl₃, 99:1 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 50.3 min, t (minor) = 30.7 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.48 (d, *J* = 8.0 Hz, 2H), 7.81 (t, *J* = 8.5 Hz, 4H), 7.67 (t, *J* = 7.5 Hz, 4H), 7.62-7.48 (m, 10H), 7.29 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 160.0, 153.9, 146.6, 135.5, 133.9, 132.3, 129.5, 129.2, 128.6, 128.2, 128.2, 128.0, 127.9, 127.7, 127.7, 126.9, 124.0, 120.9; HRMS (ESI) m/z calcd for C₃₆H₂₃N₄O₂⁺ (M+H)⁺ 543.1816, found 543.1819.

(S)-2,2'-di(thiophen-2-yl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3an)

Flash column chromatography on silica gel gave the product (18.2 mg, 40% yield) as a white solid: M.p. 270-272 °C; $[\alpha]_D^{25} = + 118.3$ (c = 0.18 in CHCl₃, 75:25 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel OD-H (0.46 cm × 25 cm), Hexanes/IPA = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 34.2 min, t (minor) = 40.4 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.24 (d, *J* = 8.0 Hz, 2H), 7.86 (s, 4H), 7.50 (d, *J* = 17.5 Hz, 4H), 7.42 (s, 2H), 6.94 (t, *J* = 4.5, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 159.4, 148.4, 147.1, 135.7, 134.1, 131.6, 131.1, 128.2, 128.1, 127.8, 127.4, 120.6; HRMS (ESI) m/z calcd for C₂₄H₁₅N₄O₂S₂⁺ (M+H)⁺ 455.0631, found 455.0638.

(S)-2,2'-di(thiophen-3-yl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ao)

Flash column chromatography on silica gel gave the product (13.6 mg, 30% yield) as a white solid: M.p. 247-249 °C; $[\alpha]_D^{25} = + 84.2$ (c = 0.16 in CHCl₃, 69:31 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel OD-H (0.46 cm × 25 cm), Hexanes/IPA = 80/20, 1.0 mL/min, λ = 254 nm, t (major) = 38.4 min, t (minor) = 16.4 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.30 (d, *J* = 7.5 Hz, 2H), 7.85 (t, *J* = 7.5 Hz, 2H), 7.79 (d, *J* = 9.0 Hz, 2H), 7.55 (t, *J* = 6.5 Hz, 2H), 7.50 (s, 2H), 7.23(s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 159.5, 149.8, 146.9, 135.6, 132.8, 128.5, 128.2, 127.7, 127.7, 127.6, 126.5, 120.7; HRMS (ESI) m/z calcd for C₂₄H₁₅N₄O₂S₂⁺ (M+H)⁺ 455.0631, found 455.0632.

PDA Ch1 254nm			PDA Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area%	Peak#	Ret. Time	Area	Height	Area%
1	16.261	6526259	154708	50.560	1	16.415	2627731	61877	30.849
2	38.233	6381667	42713	49.440	2	38.362	5890371	39650	69.151
总计		12907927	197421	100.000	总计		8518102	101527	100.000

3. Synthetic applications

A dried 25 mL Schlenk tube was charged with **3aj** (0.20 mmol, 119.8 mg), *p*-tolylboronic acid (0.5 mmol, 68 mg) and Pd(PPh₃)₄ (0.02 mmol, 23.1 mg), CsF (0.8 mmol, 121.5 mg), 4 mL of THF added by syringe. The reaction tube was vacuumed and refilled with Ar for 3 times, and was placed in 70 °C oil-bath for 16 h. The crude reaction mixture was concentrated in vacuo and the residue was purified by silica gel flash column chromatography to afford the corresponding products **4**.

A dried 25 mL Schlenk tube was charged with **3aj** (0.20 mmol, 119.8mg), 4-methyl phenylacetylene (0.3 mmol, 38 μ L), CuI (0.02mmol, 3.8 mg) and Pd(PPh₃)₂Cl₂ (0.02 mmol, 14 mg), triethylamine(0.8 mmol, 111 μ L), 4 mL of THF added by syringe. The reaction tube was vacuumed and refilled with Ar for 3 times, and was placed in 70 °C oil-bath for 3 h. The crude reaction mixture was concentrated in vacuo and the residue was purified by silica gel flash column chromatography to afford the corresponding products **5**.

(*S*)-2,2'-bis(4'-methyl-[1,1'-biphenyl]-4-yl)-4*H*,4'*H*-[3,3'-biquinazoline]-4,4'-dione (4)

Flash column chromatography on silica gel gave the product (104.5 mg, 84% yield) as a white solid: M.p. 250-251 °C; $[\alpha]_D^{25} = + 91.8$ (c = 0.13 in CHCl₃, 90:10 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 91.7 min, t (minor) = 21.9 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.42 (s, 2H), 7.83 (s, 2H), 7.74 (s, 2H), 7.58 (s, 2H), 7.45 (d, *J* = 16.5 Hz, 8H), 7.34 (s, 4H), 7.23 (s, 4H), 2.38 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 159.9, 153.9, 146.7, 143.4, 138.1, 136.7, 135.5, 130.7, 129.6, 128.7, 128.2, 127.8, 127.7, 126.9, 126.6, 120.8, 21.1; HRMS (ESI) m/z calcd for C₄₂H₃₁N₄O₂⁺ (M+H)⁺ 623.2442, found 623.2452.

(*S*)-2-(4-bromophenyl)-2'-(4-(p-tolylethynyl)phenyl)-4*H*,4'*H*-[3,3'-biquinazoline]-4,4'-dione (5)

Flash column chromatography on silica gel gave the product (62.1 mg, 49% yield) as a white solid: M.p. 220-223 °C; $[\alpha]_D^{25} = + 87.8$ (c = 0.15 in CHCl₃, 87:13 e.r.); The enantiomeric ratio was determined by Daicel Chiralcel AD-H (0.46 cm × 25 cm), Hexanes/IPA = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 54.9 min, t (minor) = 28.7 min; ¹H NMR (CDCl₃, 500 MHz) δ 8.39 (d, *J* = 7.5 Hz, 2H), 7.84 (t, *J* = 7.5 Hz, 2H), 7.76-7.70 (m, 2H), 7.60 (t, *J* = 7.5 Hz, 2H), 7.39 (s, 6H), 7.22 (d, *J* = 7.5 Hz, 2H), 7.13 (t, *J* = 10.5 Hz, 4H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.7, 159.6, 153.1, 152.8, 146.5, 146.4, 139.1, 135.7, 135.7, 131.6, 131.5, 131.3, 131.3, 131.1, 129.7, 129.2, 128.3, 128.1, 128.1, 127.7, 126.3, 125.6, 120.7, 120.6, 119.3, 92.4, 87.6, 21.5; HRMS (ESI) m/z calcd for C₃₇H₂₄BrN₄O₂⁺ (M+H)⁺ 635.1077, found 635.1082.

4. One-mmol-scale synthesis of compound 3aa

An oven-dried 100 mL Schlenk tube charged with **1a** (1 mmol), **CPA11** (0.1 mmol, 61 mg), and DDQ (2.8 mmol, 635 mg), 4Å MS (1000 mg), 10 mL of CHCl₃ added by syringe and benzaldehyde (2 mmol, 200 μ L) added by pipette. After 24 h, **2a** (2 mmol) was added to the reaction mixture. After 36 h, **2a** (2 mmol) was added to the reaction mixture. After 48 h, **2a** (2 mmol) was added to the reaction mixture. Then, the tube was vacuumed and refilled with Ar for 3 times and was placed in 35 °C oil-bath for 60 h. The crude reaction mixture was concentrated in vacuo and the residue was purified by silica gel flash column chromatography to afford the corresponding products.

5. Synthesis of Substrates

To an efficiently stirred suspension of isatoic anhydride in 1,4-dioxane was added hydrazine monohydrate and the mixture heated at reflux for16 h. The crude reaction mixture was concentrated in vacuo and the residue was purified by silica gel flash column chromatography to afford the corresponding products **1a-1f**.

2-amino-N'-(2-aminobenzoyl)benzohydrazide (1a)

Flash column chromatography on silica gel gave the product (1.08 g, 80% yield) as a white solid: M.p. 210-212 °C; ¹H NMR (DMSO_{d-6}, 500 MHz) δ 10.04 (s, 2H), 7.61 (t, *J* = 5.5 Hz, 2H), 7.19 (t, *J* = 8.0 Hz, 2H), 6.74 (d, *J* = 8.0 Hz, 2H), 6.55 (t, *J* = 7.5 Hz 2H), 6.42 (s, 4H); ¹³C NMR (125 MHz, DMSO_{d-6}) δ 168.6, 145.0, 132.4, 128.3, 116.5, 114.8, 112.8; HRMS (ESI) m/z calcd for C₁₄H₁₅N₄O₂⁺ (M+H)⁺ 271.1190, found 271.1182. 2-amino-N'-(2-amino-5-fluorobenzoyl)-5-fluorobenzohydrazide

Flash column chromatography on silica gel gave the product (428 mg, 70% yield) as a white solid: M.p. 226-229 °C; ¹H NMR (DMSO_{d-6}, 500 MHz) δ 10.18 (s, 2H), 7.44 (d, *J* = 9.5 Hz 2H), 7.12 (s, 2H), 6.77 (s, 2H), 6.32 (s, 4H); ¹³C NMR (125 MHz, DMSO_{d-6}) δ 167.5, 152.6 (d, *J* = 230 Hz), 146.8, 120.1 (d, *J* = 22.5 Hz), 117.9 (d, *J* = 7.5 Hz), 113.5 (d, *J* = 22.5 Hz), 112.0 (d, *J* = 5.0 Hz); ¹⁹F NMR (471 MHz DMSO_{d-6}) δ -129.7; RMS (ESI) m/z calcd for C₁₄H₁₃F₂N₄O₂ + (M+H)⁺ 307.1001, found 307.1009.

(1b)

2-amino-N'-(2-amino-5-chlorobenzoyl)-5-chlorobenzohydrazide (1c)

Flash column chromatography on silica gel gave the product (473.2 mg, 70% yield) as a white solid: M.p. 255-258 °C; ¹H NMR (DMSO_{d-6}, 500 MHz) δ 10.22 (s, 2H), 7.65 (s, 2H), 7.23 (d, *J* = 8.5 Hz, 2H), 6.73 (d, *J* = 9.0 Hz, 2H), 6.55 (s, 4H); ¹³C NMR (125 MHz, DMSO_{d-6}) δ 167.3, 148.8, 132.2, 127.5, 118.2, 117.8, 113.2; HRMS (ESI) m/z calcd for C₁₄H₁₃Cl₂N₄O₂⁺ (M+H)⁺ 339.0410, found 339.0419.

2-amino-N'-(2-amino-5-bromobenzoyl)-5-bromobenzohydrazide (1d)

Flash column chromatography on silica gel gave the product (707.0 mg, 83% yield) as a white solid: M.p. 239-240 °C; ¹H NMR (DMSO_{d-6}, 500 MHz) δ 10.23 (s, 2H), 7.76 (s, 2H), 7.33 (d, *J* = 9.0 Hz, 2H), 6.72 (d, *J* = 9.0 Hz, 2H), 6.57 (s, 4H); ¹³C NMR (125 MHz, DMSO_{d-6}) δ 167.2, 149.1, 134.8, 130.3, 118.6, 113.9, 104.9; HRMS (ESI) m/z calcd for C₁₄H₁₃Br₂N₄O₂⁺ (M+H)⁺ 426.9400, found 426.9407.

2-amino-N'-(2-amino-5-methylbenzoyl)-5-methylbenzohydrazide (1e)

Flash column chromatography on silica gel gave the product (298.1 mg, 50% yield) as a white solid: M.p. 236-239 °C; ¹H NMR (DMSO_{d-6}, 500 MHz) δ 9.98 (s, 2H), 7.44 (s, 2H), 7.24 (d, *J* = 8.5 Hz, 2H), 6.65 (d, *J* = 8.0 Hz, 2H), 6.18 (s, 4H), 2.18 (s, 6H); ¹³C NMR (125 MHz, DMSO_{d-6}) δ 168.5, 147.6, 133.1, 128.2, 123.0, 116.5, 112.8, 20.0; HRMS (ESI) m/z calcd for C₁₆H₁₉N₄O₂⁺ (M+H)⁺ 299.1503, found 299.1495.

2-amino-N'-(2-amino-4-chlorobenzoyl)-4-chlorobenzohydrazide (1f)

Flash column chromatography on silica gel gave the product (60% yield) as a white solid: mp 274.7-276.1°C; ¹H NMR (DMSO, 500 MHz) δ 10.15 (s, 2H), 7.60 (d, *J* = 8.0 Hz, 2H), 6.81 (s, 2H), 6.68 (s, 4H), 6.57 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 168.1, 151.6, 137.3, 130.5, 115.6, 114.8, 111.7; HRMS (ESI) m/z calcd for C₁₄H₁₃Cl₂N₄O₂⁺ (M+H)⁺ 339.0410, found 339.0401.

6. References

1 M. P. Coogan and S. C. Passey J. Chem. Soc., Perkin Trans. 2, 2000, 2060-2066.

7. Copies of the ¹H NMR and ¹³C NMR Spectra

2,2'-diphenyl-4*H*,4'*H*-[3,3'-biquinazoline]-4,4'-dione (3aa)

(S)-2-(6-nitrocyclohexa-2,4-dien-1-yl)-2'-(2-nitrophenyl)-4H,4'H-[3,3'-

biquinazoline]-4,4'-dione (3ab)

(S)-2,2'-bis(2-bromophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ac)

(S)-2,2'-bis(2-fluorophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ad)

(S)-2,2'-di-o-tolyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ae)

(S)-2,2'-bis(2-chlorophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3af)

(S)-2,2'-bis(2-iodophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ag)

(S)-2,2'-bis(3-chlorophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ah)

(S)-2,2'-bis(4-iodophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ai)

(S)-2,2'-bis(4-bromophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3aj)

(S)-2,2'-bis(4-chlorophenyl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ak)

(S)-2,2'-di-p-tolyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3al)

(S)-2,2'-di(naphthalen-2-yl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3am)

(S)-2,2'-di(thiophen-2-yl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3an)

(S)-2,2'-di(thiophen-3-yl)-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ao)

(S)-6,6'-difluoro-2,2'-diphenyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ba)

(S)-6,6'-dichloro-2,2'-diphenyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ca)

(S)-6,6'-dibromo-2,2'-diphenyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3da)

(S)-6,6'-dimethyl-2,2'-diphenyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3ea)

(S)-7,7'-dichloro-2,2'-diphenyl-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (3fa)

-8.417 -8.417 7.1332 7.582 7.582 7.582 7.582 7.582 7.582 7.582 7.7339 7.7339 7.7339 -2.383 \cap 6.04 P.00-1 2.11 2.10 8.07 4.07 4.07 10.5 10.0 9.5 9.0 8.5 6.5 6.0 5.5 5.0 fl (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 8.0 7.5 7.0 156.64 135.63 135.55 155.55 15 -159.88 ₹77.25 ₹77.00 76.75 -21.11 0 90 80 f1 (ppm) 0 170 150 140 110 100 70 60 50 40 30 20 10 160 130 120

(S)-2,2'-bis(4'-methyl-[1,1'-biphenyl]-4-yl)-4H,4'H-[3,3'-biquinazoline]-4,4'-

dione (4)

(S)-2-(4-bromophenyl)-2'-(4-(p-tolylethynyl)phenyl)-4H,4'H-[3,3'-

biquinazoline]-4,4'-dione (5)

2-amino-N'-(2-aminobenzoyl)benzohydrazide (1a)

2-amino-N'-(2-amino-5-fluorobenzoyl)-5-fluorobenzohydrazide (1b)

2-amino-N'-(2-amino-5-chlorobenzoyl)-5-chlorobenzohydrazide (1c)

2-amino-N'-(2-amino-5-bromobenzoyl)-5-bromobenzohydrazide (1d)

2-amino-N'-(2-amino-5-methylbenzoyl)-5-methylbenzohydrazide (1e)

2-amino-N'-(2-amino-4-chlorobenzoyl)-4-chlorobenzohydrazide (1f)