Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Tuning Lattice and Porosities of 2D Imine Covalent Organic Frameworks by Chemically Integrating 4-Aminobenzaldehyde as Bifunctional Linker

Qing Sun, ^{1, 2} Hongyun Niu, ² Yali Shi, ^{1, 2} Yongliang Yang, ^{2, 4} Yaqi Cai^{1, 2, 3, 4, *}

¹School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China

²State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

³Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China

⁴University of Chinese Academy of Sciences, Beijing 100049, China

*Correspondence: caiyaqi@rcees.ac.cn (Y. Cai).

Table of Contents

Section S1 General Information	2
Section S2 Synthetic Procedures	3
Section S3 Powder X-ray diffraction analysis	5
Section S4 Structure modeling	9
Section S5 N_2 isotherm, BET surface area, and pore width distribution	15
Section S6 Nuclear magnetic resonance (NMR) spectra	18
Section S7 Fourier-transform infrared (FTIR) spectra	20
Section S8 Thermogravimetric analysis (TGA)	22
Section S9 X-ray photoelectron spectroscopy (XPS) analysis	24
Section S10 Conformation of Tp-ABA-Pa-1	25
Section S11 Atomic coordinates of COFs	28
Section S12 References	32

Section S1 General Information

1.1 Chemicals and reagents

All reagents were purchased from commercial sources and used without further purification.

1,3,5-triformylphloroglucinol (Tp), 1,3,5-Tris(4-aminophenyl)benzene (TAPB), 1,3,5-tris(4aminophenyl)triazine (TAPT) were obtained from Jilin Chinese Academy of Sciences - Yanshen Technology Co., Ltd. (Jilin, China). 1,4-phenylenediamine (Pa-1), anhydrous 1,4-dioxane and mesitylene were purchased from J&K Scientific Ltd. (Beijing, China). 2,5-dimethyl-pphenylenediamine (Pa-2), 4-aminobenzaldehyde (ABA) were acquired from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China).

1.2 Characterization

Powder X-ray diffraction (PXRD) data were collected from a Bruker D8-ADVANCE diffractometer (Bruker, Germany) using a Cu K α (λ = 1.5418 Å) radiation ranging from 2° to 30° with a resolution of 0.02°.

Fourier transform infrared (FTIR) spectra in the 4000–400 cm⁻¹ region was recorded on a Nicolet iS10 FTIR spectrometer (Thermo Fisher Scientific, Waltham, MA).

Solid-state nuclear magnetic resonance (ssNMR) spectra were obtained on a 600 MHz Bruker Avance III spectrometer (Bruker, Germany).

Surface analysis by X-ray photoelectron spectroscopy (XPS) was carried out using Thermo Fisher ESCALAB 250Xi equipment (Waltham, MA), and the X-ray source was Al Kα radiation (1486.6 eV, monochromatic).

Elemental analysis (EA) was conducted on an Vario EL cube elemental analyzer (Elementar, Germany).

Surface area and pore volume were measured by Brunauer-Emmett-Teller (BET) methods (ASAP2460; Micrometritics, Norcross, GA).

Thermogravimetric analysis (TGA) curves were recorded on a TGA/DSC 3+ thermal analysis system under N₂-flow (METTLER TOLEDO, Swiss).

Section S2 Synthetic Procedures

COF TpPa-1 and TpPa-2: Following a modified procedure ^[1], a quartz tube measuring 10×8 mm (o.d. \times i.d.) was charged with 1,3,5-triformylphloroglucinol (Tp) (63 mg, 0.3 mmol), 1,4-phenylenediamine (Pa-1) (48 mg, 0.45 mmol) or 2,5-dimethyl-p-phenylenediamine (Pa-2) (61 mg, 0.45 mmol), 1 mL of dioxane, 2 mL of mesitylene, and 0.5 mL of 3 M aqueous acetic acid. The tube was flash frozen at 77 K in liquid N₂ bath, degassed by three freeze-pump-thaw cycles, and flame sealed. The reaction was heated at 120 °C for 72 h yielding a red precipitate at the bottom of the tube. The powder was isolated by centrifugation and washed with acetone (25 mL×3), and dried at room temperature and evacuated under vacuum at 100 °C, 12 h to afford a red powder.

COF Tp-TAPT and Tp-TAPB: A quartz tube measuring $10 \times 8 \text{ mm}$ (o.d. × i.d.) was charged with 1,3,5-triformylphloroglucinol (Tp) (42 mg, 0.2 mmol), 2,4,6-Tris(4-aminophenyl)-1,3,5-triazine (TAPT) (71 mg, 0.2 mmol) or 1,3,5-Tris(4-aminophenyl)benzene (TAPB) (70 mg, 0.2 mmol), 1 mL of dioxane, 2 mL of mesitylene, and 0.5 mL of 3 M aqueous acetic acid. The tube was flash frozen at 77 K in liquid N₂ bath, degassed by three freeze-pump-thaw cycles, and flame sealed. The reaction was heated at 120 °C for 72 h yielding a yellowish-brown precipitate at the bottom of the tube. The powder was isolated by centrifugation and washed with acetone (25 mL×3), and dried at room temperature and evacuated under vacuum at 100 °C, 12 h to afford an orange powder.

COF Tp-ABA_x-Pa-1 and Tp-ABA_x-Pa-2: Following the procedure for COF TpPa-1 and TpPa-2 except a certain amount of 4-aminobenzaldehyde (ABA) were added after Tp (The exact amount to be added can be found in Table S1). The powder was isolated by centrifugation and washed with acetone ($25 \text{ mL} \times 3$), and dried at room temperature and evacuated under vacuum at 100 °C, 12 h to afford a red powder.

COF Tp-ABA_x-TAPT and Tp-ABA_x-TAPB: Following the procedure for COF Tp-TAPT and Tp-TAPB except a certain amount of 4-aminobenzaldehyde (ABA) were added after Tp (The exact amount to be added can be found in Table S1). The powder was isolated by centrifugation and washed with acetone ($25 \text{ mL} \times 2$), chloroform ($15 \text{ mL} \times 2$) and hexanes ($15 \text{ mL} \times 1$), and dried at room temperature and evacuated under vacuum at 100 °C, 12 h to afford an orange or yellow powder.

COF		Тр	ABA	Amine	Product	Yield
		(mg)	(mg)	(mg)	(mg)	(%)
TpP	a-1		0		97.4	87.2
	x=0.2		10.9		104.4	85.2
	x=0.4		21.8	48.7	114.8	86.0
Tp-ABA _x - Pa-1	x=0.6	63.0	32.7		107.5	74.4
	x=0.8		43.6		118.2	76.1
	x=1		54.5		122.2	73.5
	x=1.5		82.0		130.7	67.5
	x=2		109.0		134.7	61.0
TpPa-2			0		105.7	85.1
Tp-ABA _x -	x=0.25	63.0	13.6	61.2	117.6	85.3
Pa-2	x=0.5		27.3		128.4	84.8

Table S1. Amounts of monomers used to synthesize COFs.

	x=0.75		40.9		142.0	86.0
	x=1		54.5		140.4	78.6
	x=1.5		81.8		133.4	64.8
	x=2		109.0		135.5	58.1
Tp-T	APT		0		102.8	91.1
	x=0.75		18.2		110.0	84.0
	x=1.5		36.3		125.3	84.0
Tp-ABA _x -	x=2.25	42.0	54.5	70.8	138.3	82.7
TAPT	x=3		72.6		137.5	74.2
	x=4.5		109.0		143.8	64.8
	x=6		145.3		144.3	55.9
Tp-T	APB		0		107.2	95.5
	x=0.75		18.2		119.1	91.3
	x=1.5		36.3		126.8	85.4
Tp-ABA _x -	x=2.25	42.0	54.5	70.2	135.2	81.1
TAPB	x=3		72.6		137.1	74.2
	x=4.5		109.0		143.2	64.7
	x=6		145.3		147.3	57.2

Section S3 Powder X-ray diffraction analysis

Pawley refinements were performed using the Reflex module in Materials Studio. All the patterns were refined using the Pseudo-Voigt function, with all FWHM parameters (U, V, W), profile parameters (NA, NB), and line shift allowed to vary. Lattice parameter were also refined.

Figure S1. Stacked PXRD spectra of Monomers, product of Tp react with ABA, and simulated PXRD patterns compared with the experimental spectra of Tp-ABA-Pa-1 COF.

Figure S2. The original PXRD patterns of Tp-ABA_x-Pa-1 COFs.

Figure S3. The original PXRD patterns of Tp-ABA_x-Pa-2 COFs.

Figure S4. PXRD patterns of Tp-ABA-TAPT COF (red pots: experimentally observed, black: Pawley refinement, blue: their difference, orange: simulated with eclipsed mode, green: Brag position.)

 $R_{\rm p} = 3.10\%$, $R_{\rm wp} = 4.27\%$.

Figure S5. PXRD patterns of Tp-ABA-TAPB COF (red pots: experimentally observed, black: Pawley refinement, blue: their difference, orange: simulated with eclipsed mode, green: Brag position.)

 $R_{\rm p} = 2.05, R_{\rm wp} = 2.61\%$.

Figure S6. The original PXRD patterns of Tp-ABA_x-TAPT COFs.

Figure S7. The original PXRD patterns of Tp-ABA_x-TAPB COFs.

Section S4 Structure modeling

Structural models of COFs were generated using the Accelrys Materials Studio 7.0 software package. The proposed model was geometry optimized using the Forcite Module (Universal force fields, Ewald summations) to obtain the optimized lattice parameters.

Figure S8. 2×2×2 cells of TpPa-1 COF from Materials Studio.

Figure S9. 2×2×2 cells of TpPa-2 COF from Materials Studio.

Figure S10. 2×2×2 cells of Tp-TAPT COF from Materials Studio.

Figure S11. 2×2×2 cells of Tp-TAPB COF from Materials Studio.

Figure S12. 2×2×2 cells of Tp-ABA-Pa-1 COF from Materials Studio.

Figure S13. 2×2×2 cells of Tp-ABA-Pa-2 COF from Materials Studio.

Figure S14. 2×2×2 cells of Tp-ABA-TAPT COF from Materials Studio.

Figure S15. 2×2×2 cells of Tp-ABA-TAPB COF from Materials Studio.

Section S5 N_2 isotherm, BET surface area, and pore width distribution

Figure S16. N_2 adsorption (filled symbols) and desorption (empty symbols) isotherms of Tp-ABA_x-TAPT COFs.

Figure S17. N₂ adsorption (filled symbols) and desorption (empty symbols) isotherms of Tp-ABA_x-TAPB COFs.

Tp-AB.	Tp-ABA _x -Pa-1		Tp-ABA _x -Pa-2		Tp-AB.	A _x -TAPT	Tp-ABA,	x-TAPB
Mole ratio of ABA/Pa- 1	surface area (m²/g)		Mole ratio of ABA/Pa- 2	surface area (m²/g)	Mole ratio of ABA/T APT	surface area (m²/g)	Mole ratio of ABA/TA PB	surface area (m²/g)
0	592		0	230	0	1126	0	681
0.2	877		0.25	700	3	728	3	857
0.4	993		0.5	838	4.5	1137	4.5	1133
0.6	1138		0.75	989	6	1513	6	1213
0.8	1521		1	1352				
1	1526		1.5	1488				
1.5	1770		2	1297				
2	1846							

Table S2. BET surface area values of Tp-ABA series COFs.

Table S3. The observed and predicted BET surface areas of Tp- and Tp-ABA series COFs.

COF	Observ ed BET	Predict ed BET	Observed/ Predicted	COF	Observe d BET	Predicted BET	Observed/ Predicted
TpPa-1	592	1622	37%	Tp-ABA-Pa-1	1846	2127	87%
TpPa-2	230	1810	13%	Tp-ABA-Pa-2	1488	1811	82%
Tp- TAPT	1126	1440	78%	Tp-ABA-TAPT	1513	2022	75%
Tp- TAPB	681	1485	46%	Tp-ABA-TAPB	1213	2099	58%

Figure S18. Pore width distributions of (a) Tp-ABA_x-Pa-1 COFs and (b) Tp-ABA_x-Pa-2 COFs derived from N_2 sorption isotherm measured at 77 K, fitted with DFT model of N_2 on Cylindrical Pores.

Figure S19. Pore width distributions of (a) Tp-ABA_x-TAPT COFs and (b) Tp-ABA_x-TAPB COFs derived from N₂ sorption isotherm measured at 77 K, fitted with DFT model of N₂ on Cylindrical Pores.

Section S6 Nuclear magnetic resonance (NMR) spectra

Figure S20. ¹³C ssNMR spectra of selected Tp-ABA_x-Pa-1 COFs.

Figure S21. ¹³C ssNMR spectra of selected Tp-ABA_x-Pa-2 COFs.

Figure S22. ¹³C ssNMR spectra of selected Tp-ABA_x-TAPT COFs.

Figure S23. ¹³C ssNMR spectra of selected Tp-ABA_x-TAPB COFs.

Section S7 Fourier-transform infrared (FTIR) spectra

Figure S24. FTIR spectra of ABA and Tp-ABA_x-Pa-1 COFs.

Figure S25. FTIR spectra of Tp-ABA_x-Pa-2 COFs.

Figure S26. FTIR spectra of Tp-ABA_x-TAPT COFs.

Figure S27. FTIR spectra of Tp-ABA_x-TAPB COFs.

Section S8 Thermogravimetric analysis (TGA)

Figure S28. TGA data of TpPa-1 COF compare with Tp-ABA-Pa-1 COF.

Figure S29. TGA data of TpPa-2 COF compare with Tp-ABA-Pa-2 COF.

Figure S30. TGA data of Tp-TAPT COF compare with Tp-ABA-TAPT COF.

Figure S31. TGA data of Tp-TAPB COF compare with Tp-ABA-TAPB COF.

Section S9 X-ray photoelectron spectroscopy (XPS) analysis

Figure S32. N 1s XPS spectra of selected Tp-ABA_x-Pa-2 COFs.

Figure S33. N 1s XPS spectra of Tp-ABA_x-TAPT COFs.

Figure S34. N 1s XPS spectra of Tp-ABA_x-TAPB COFs.

Section S10 Conformation of Tp-ABA-Pa-1

As the bifunctional linker ABA can react with both Tp and Pa-1, there are two potential conformations of the connecting arms between each two knots (as shown in the figure below). Therefore, the structural model of Tp-ABA-Pa-1 COF had many possibilities. We found that most potential conformations are not spatially repetitive and thus cannot be represented by a simple model. For Tp-ABA-Pa-1 COF, there are only two simple models that can be repeatedly extended in plane (Model 1 and Model 2), and the other possible conformations need to contain at least four types of cells to extend in plane. We also listed three other possible models for comparison in following figure.

In order to show the different structures of COF more clearly, we replace the connecting arms and knots with the following patterns.

Note that the six letters in parenthesis in the following figure represent the cell type of the six connecting arms clockwise from the left when viewed from the center of the current cell.

									Predicted	Total
M. 1.1		Cell Type					paramet	ers	Total	energy
Model				Group				energy	per cell	
	Cell 1	Cell 2	Cell 3	Cell 4		а	b	с	kcal/mol	kcal/mol
1	ABABAB	ABABAB	ABABAB	ABABAB	P3 143	68.05	68.05	3.57	463.41	115.85
2	AAABBB	AAABBB	AAABBB	AAABBB	PM 6	69.32	69.27	3.44	580.12	145.03
3	BBBBBB	ABBAAA	AABAAA	BBABAA	PM 6	69.20	69.26	3.44	580.83	145.21
4	AABAAB	BABBAB	BBABBA	ABAABA	PM 6	69.00	69.36	3.44	575.27	143.82
5	AAAAAA	BBBBAA	BBBBBA	ABBAAB	PM 6	69.22	69.31	3.44	580.74	145.19

The predicted total energy of the other four types of conformations listed in the table is significantly greater than that of Model 1. For these models, the model used in the manuscript (Model 1) that has the lowest energy per cell. Although only five possible conformations are listed, it can be speculated from the table that the predicted total energy of Model 1 is the lowest among all possible conformations: Models 1 and 2 contain only one type of cell, while the other models (including those not listed in the table) contain at least four types of cells. Among these cells, only the cell of model 1 has the lowest energy, so it is only possible that the total energy of model 1 is the lowest. From another point of view, we can also obtain this conclusion: For every knot of Tp-ABA-Pa-1 COF, each knot has three connecting arms in three directions, and only when the types of connecting arms in these three directions are the same, the force on the knot is uniform. It can also be seen from the above structural diagram that only each knot of Model 1 has the most uniform stress.

Since Model 1 has the lowest total energy, that is to say, except the Model 1, all the other models are more thermodynamically unstable, so the products should tend to form the conformation with the lowest energy. It is worth noting that this conformation (Model 1) has the best symmetry among all possible conformations.

Tp-ABA-Pa-1, Pawley refined P3 (143)							
a = b = 30.1271 Å; $c = 3.1283$ Å							
$\alpha = \beta = 90^\circ; \gamma = 1$	20°						
Atom Name	Atom	Х	У	Z			
C1	С	0.64904	0.28359	0.51309			
C2	С	0.51747	0.53212	0.47595			
H3	Н	0.55288	0.55642	0.42396			
C4	С	0.42225	0.5803	0.4561			
C5	С	0.40808	0.53532	0.56047			
C6	С	0.43862	0.5192	0.56356			
C7	С	0.48427	0.54795	0.46448			
C8	С	0.49854	0.59277	0.35697			
C9	С	0.46786	0.60875	0.34875			
C10	С	0.29922	0.68096	0.24388			
N11	Ν	0.38957	0.5955	0.46036			
O12	0	0.42056	0.72786	0.14879			
C13	С	0.39995	0.64099	0.3715			
H14	Н	0.4266	0.48445	0.64874			
H15	Н	0.5335	0.6154	0.27584			
H16	Н	0.48033	0.64319	0.25576			
H17	Н	0.43478	0.66804	0.39506			
H18	Н	0.48735	0.86053	0.64218			
C19	С	0.28429	0.63205	0.29055			
C20	С	0.61756	0.30169	0.46836			
C21	С	0.53387	0.47092	0.56411			
C22	С	0.57938	0.49699	0.67957			
C23	С	0.60647	0.47701	0.71286			
C24	С	0.5889	0.4308	0.63138			
C25	С	0.54331	0.40489	0.51432			
C26	С	0.51608	0.42479	0.48669			
N27	Ν	0.61813	0.41167	0.67022			
C28	С	0.60467	0.36521	0.58754			
O29	0	0.57813	0.27654	0.37651			
H30	Н	0.59383	0.53239	0.75391			
H31	Н	0.52822	0.36945	0.44195			
H32	Н	0.48103	0.40429	0.39886			
H33	Н	0.5691	0.33999	0.60839			
H34	Н	0.50236	0.14367	0.80525			
N35	Ν	0.5044	0.48966	0.53617			
H36	Н	0.35743	0.57273	0.56607			
H37	Н	0.65001	0.43242	0.79023			

Section S11 Atomic coordinates of COFs

$T_{D_{a}}ABA_{P_{a}}P_{a}$ Pawley refined $P_{a}(1/3)$							
$a = b = 30.5675 \text{ Å} \cdot c = 3.7218 \text{ Å}$							
$\alpha = \beta = 90^{\circ}; \gamma = 1$	20°	1071					
Atom Name	Atom	Х	V	Z			
C1	С	0.64733	0.2825	0.26874			
C2	С	0.5188	0.5317	0.62377			
H3	Н	0.55282	0.55222	0.73716			
C4	С	0.42114	0.57814	0.77745			
C5	С	0.40738	0.5354	0.61525			
C6	С	0.43874	0.51983	0.56688			
C7	С	0.4847	0.54679	0.68086			
C8	С	0.49839	0.58909	0.84917			
С9	С	0.46693	0.60456	0.89965			
C10	С	0.29923	0.68191	1.05598			
N11	Ν	0.38781	0.59311	0.81932			
O12	0	0.42213	0.7278	1.1495			
C13	С	0.39962	0.63929	0.91847			
H14	Н	0.42708	0.48695	0.43703			
H15	Н	0.53348	0.61014	0.94369			
H16	Н	0.47866	0.63675	1.0389			
H17	Н	0.43523	0.66641	0.89272			
H18	Н	0.48576	0.85803	0.52174			
C19	С	0.28338	0.63208	1.00864			
C20	С	0.61648	0.3023	0.30986			
C21	С	0.53705	0.47556	0.35995			
C22	С	0.58534	0.50142	0.40085			
C23	С	0.61327	0.48238	0.31822			
C24	С	0.59278	0.43658	0.19247			
C25	С	0.54487	0.41155	0.13709			
C26	С	0.51693	0.43045	0.22054			
N27	Ν	0.62071	0.41589	0.12108			
C28	С	0.60574	0.36857	0.20705			
O29	0	0.57622	0.27763	0.39657			
H30	Н	0.6018	0.53668	0.49314			
H31	Н	0.52895	0.37724	0.02399			
C32	С	0.46572	0.40137	0.15709			
H33	Н	0.56904	0.34428	0.21259			
C34	С	0.48905	0.15372	0.37275			
N35	Ν	0.50778	0.4944	0.44449			
H36	Н	0.35431	0.5704	0.73235			
H37	Н	0.6532	0.43646	0.0086			
H38	Н	0.45216	0.36744	0.29073			
H39	Н	0.45905	0.39511	-0.1296			

H40	Н	0.44605	0.41775	0.25505				
H41	Н	0.45579	0.13035	0.50654				
H42	Н	0.4811	0.16384	0.11468				
H43	Н	0.50828	0.18514	0.53735				
Тр-АВА-ТАРТ, Р	Pawley refir	ned	<i>P3</i> (143)					
a = b = 29.5382 Å	A; $c = 3.532$							
$\alpha = \beta = 90^\circ; \gamma = 120^\circ$								
Atom Name	Atom	Х	У	Z				
C1	С	0.64226	0.28103	1.37824				
C2	С	0.53417	0.50596	1.298				
C3	С	0.43042	0.56508	0.36435				
C4	С	0.41359	0.51371	0.45891				
C5	С	0.44688	0.49405	0.43618				
C6	С	0.49802	0.52559	0.31977				
C7	С	0.51493	0.5768	0.22222				
C8	С	0.48149	0.59636	0.2411				
C9	С	0.29548	0.68384	0.19053				
C10	С	1.27759	1.62825	0.23567				
N11	Ν	1.61476	1.30565	0.37821				
C12	С	1.55053	1.4347	0.37523				
C13	С	1.60455	1.46323	0.37981				
C14	С	1.63312	1.43819	0.37993				
C15	С	1.60845	1.38427	0.37823				
C16	С	1.5545	1.35599	0.37854				
C17	С	1.52599	1.38107	0.37866				
H18	Н	1.67461	1.46119	0.38345				
H19	Н	1.53418	1.31443	0.37912				
H20	Н	1.48447	1.35859	0.37956				
N21	Ν	1.51921	1.45837	0.37925				
H22	Н	1.62506	1.50467	0.3899				
C23	С	1.40737	1.63561	0.31115				
N24	Ν	1.39476	1.58375	0.39425				
O25	0	1.30205	1.56743	0.09782				
H26	Н	1.44706	1.6656	0.33312				
H27	Н	1.35891	1.55876	0.51232				
H28	Н	0.57305	0.53186	1.2051				
H29	Н	0.37447	0.48876	0.5525				
H30	Н	0.43267	0.45433	0.51311				
H31	Н	0.55405	0.60167	0.12787				
H32	Н	0.49608	0.6357	0.15531				

Тр-АВА-ТАРВ, Р	Tp-ABA-TAPB, Pawley refined P3 (143)								
a = b = 29.5272 Å; $c = 3.6081$ Å									
$\alpha = \beta = 90^{\circ}; \gamma = 120^{\circ}$									
Atom Name	Atom	Х	У	Z					
C1	С	0.64184	0.27904	1.39844					
C2	С	0.53097	0.50603	1.42229					
C3	С	0.42582	0.56271	0.33184					
C4	С	0.40861	0.51049	0.2778					
C5	С	0.44246	0.49166	0.30664					
C6	С	0.4943	0.52483	0.39376					
C7	С	0.51139	0.57689	0.45501					
C8	С	0.47751	0.59572	0.42613					
C9	С	0.29718	0.68575	0.0606					
C10	С	1.27735	1.62996	0.10892					
C11	С	1.61325	1.30434	0.39874					
C12	С	1.54753	1.43452	0.3814					
C13	С	1.59723	1.45915	0.5333					
C14	С	1.62579	1.43422	0.54347					
C15	С	1.60606	1.38446	0.39542					
C16	С	1.55614	1.36024	0.24423					
C17	С	1.52718	1.38473	0.24335					
H18	Н	1.66277	1.45379	0.67891					
H19	Н	1.53953	1.32292	0.11469					
H20	Н	1.48905	1.3653	0.1241					
N21	Ν	1.51616	1.45802	0.36499					
H22	Н	1.61383	1.49684	0.65609					
C23	С	1.40417	1.63212	0.19141					
N24	Ν	1.3898	1.58062	0.29957					
O25	0	1.29875	1.56738	-0.03965					
H26	Н	1.4444	1.66076	0.1919					
H27	Н	1.35176	1.5542	0.36295					
H28	Н	0.57057	0.53344	1.48333					
H29	Н	0.36887	0.48437	0.20831					
H30	Н	0.42806	0.45124	0.25911					
H31	Н	0.55101	0.60303	0.52798					
H32	Н	0.49185	0.63574	0.48661					
H33	Н	1.57202	1.28197	0.39842					

Section S12 References

[1] Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of Crystalline 2D Covalent Organic Frame-works with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route. *J. Am. Chem. Soc.* 2012, *134*, 19524-19527.