Supplementary Information

Hydrazone-based Boron Difluoride Complexes as Triplet Photosensitizers for Singlet Oxygen Generation

Sven van Vliet, Johannes G. H. Hermens, Youxin Fu, Lukas Pfeifer, Ben L. Feringa*

Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

E-mail: b.l.feringa@rug.nl

Table of contents

S1 Synthesis & Characterization	3
General Synthetic Procedures	3
Synthetic Procedures	4
Characterization	5
S2 Singlet oxygen quantum yield	17
S3 Photosensitizer Stability	21
S4 Photosensitizer luminescence	22
S5 Reaction kinetics photooxygenation	23
S6 Preparative Scale Photooxygenation	27
S7 Single Crystal X-ray Determination	28

S1 Synthesis & Characterization

General Synthetic Procedures

All reactions involving air sensitive reagents were performed under a N₂ atmosphere. Reagents were purchased from Sigma Aldrich, Acros or TCI Europe and used as received. Solvents were reagent-grade and used without prior water removal unless otherwise indicated. Anhydrous THF was obtained from a solvent purification system (MBraun SPS-800). Thin layer chromatography (TLC) was carried out on aluminium sheets coated with silica gel 60 F254 (Merck). Compounds were visualised with a UV lamp (254 nm) and/or by staining with KMnO4 or Cerium Ammonium Molybdate.

¹H and ¹³C NMR spectra were recorded on a Varian Mercury-Plus 400 or a Bruker Avance 600 NMR spectrometer at 298 K unless otherwise indicated. Chemical shifts are given in parts per million (ppm) relative to the residual solvent signal (for $CD_2Cl_2 \delta$ 5.32 for ¹H, δ 53.84 for ¹³C). Multiplets in ¹H NMR spectra are designated as follows: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet), br (broad). High resolution mass spectrometry (ESI+) was performed on an LTQ Orbitrap XL spectrometer.

For experimental details and procedures regarding photooxygenation reactions, see S5 and S6.

General procedure condensation hydrazone ligands L1 & L2

The fluorene-based ketone (1.0 eq) was dissolved in EtOH (0.3 M), 2-hydrazinopyridine (3.0 eq) was added and the mixture was heated at reflux for 16 h. Hereafter, the solution was allowed to reach room temperature and stored in the freezer at -25 °C for several hours to induce crystallization. The resulting crystals were filtered off, washed with a minimal amount of ice cold EtOH and air-dried to obtain the desired hydrazone ligand.

General procedure Boron complexation BH1 & BH2

The aforementioned bidentate hydrazone ligand (1.0 eq) was suspended in anhydrous toluene (0.1 M), whereafter the mixture was heated to 90 °C. Hereafter, BF_3 Et₂O (5.0 eq) and DIPEA (3.0 eq) were added dropwise. The intensely coloured mixture was stirred at 90 °C for 20 h before it was cooled down to room temperature. After cooling down, the mixture was poured onto a Silica plug (10 cm) and washed with toluene until the filtrate became colourless. The organic volatiles were removed in vacuo to obtain the boron difluoride complexes as lustrous solids.

Characterization

(*Z*)-2-((*9*H-fluoren-9-ylidene)hydrazineylidene)-1,2-dihydropyridine **L1**.

Starting from 9H-fluoren-9-one (3.06 g, 17.0 mmol), the title compound was obtained as orange crystals (3.45 g, 75%)

¹H NMR (400 MHz,CD₂Cl₂) δ 9.39 (br, 1H), 8.24 (d, J = 4.9, 1.9 Hz, 1H), 8.07 (d, J = 7.5, 1.0 Hz, 1H), 7.94 - 7.85 (m, 1H), 7.83 (dt, J = 7.5, 1.0 Hz, 1H), 7.79 - 7.66 (m, 2H), 7.64 (d, J = 8.4, 1.0 Hz, 1H), 7.50 (t, J = 7.5, 1.0 Hz, 1H), 7.40 (m, 3H), 6.94 (ddd, J = 7.2, 4.9, 1.1 Hz, 1H).

 ^{13}C NMR (400 MHz, CD_2Cl_2) 157.19, 148.25, 141.79, 141.76, 138.86, 138.63, 138.10, 130.36, 130.30,

129.04, 128.27, 128.21, 125.42, 121.27, 121.06, 120.06, 117.64, 107.87.

HRMS (ESI+, m/z) calcd for $C_{18}H_{13}N_3$ [M+H⁺]= 272.1182, found 272.1175.

(*Z*)-2-((2,7-dibromo-9H-fluoren-9-ylidene)hydrazineylidene)-1,2-dihydropyridine L2

Starting from 2,7-dibromo-9-fluorenone (4.95 g, 14.6 mmol), the title compound was obtained as yellow crystals (4.90 g, 78%)

¹H NMR (400 MHz, CD_2Cl_2) δ 9.40 (s, br), 8.26 (ddd, J = 5.0, 1.8, 1.0 Hz, 1H), 8.22 (d, J = 1.6 Hz, 1H), 8.01 (d, J = 1.8 Hz, 1H), 7.78 (m, 1H), 7.70 – 7.59 (m, 3H), 7.58 – 7.47 (m, 2H), 6.99 (ddd, J = 7.3, 5.0, 1.0 Hz, 1H).

 ^{13}C NMR (600 MHz, CD_2Cl_2) δ 156.25, 147.84, 139.46, 139.11, 138.43, 138.33, 136.16, 132.65, 131.37, 131.16, 127.71, 124.02, 121.99, 121.94, 121.52, 121.18, 117.97, 107.82.

HRMS (ESI+, m/z) calcd for $C_{18}H_{11}Br_2N_3$ [M+H⁺]= 427.9393, found 427.9384.

 $2-(9H-fluoren-9-ylidene)-3,3-difluoro-2,3-dihydro-2\lambda^4,3\lambda^4-[1,2,4,3]$ triazaborolo[4,5-a]pyridine **BH1**

Starting from **L1** (0.737 g, 2.72 mmol), the title compound was obtained as shiny, deep red solid (0.850 g, 95%)

¹H NMR (400 MHz, CD_2Cl_2) δ 9.07 (d, J = 7.8 Hz, 1H), 8.44 – 8.35 (m, 1H), 7.70 – 7.63 (m, 3H), 7.59 (ddd, J = 9.0, 6.8, 1.6 Hz, 1H), 7.48 (td, J = 7.6, 1.2 Hz, 1H), 7.40 (dtd, J = 14.4, 7.6, 1.2 Hz, 2H), 7.31 (td, J = 7.6, 1.2 Hz, 1H), 6.97 (d, J = 9.0 Hz, 1H), 6.59 – 6.52 (m, 1H).

¹³C NMR (600 MHz, CD₂Cl₂) δ 142.30, 141.79, 141.76, 136.12, 132.57, 132.08, 131.51, 129.67, 128.93, 128.59, 126.53, 126.44, 126.34, 120.87, 120.51, 120.10, 113.91, 111.69.

¹⁹F NMR (400 MHz, CD₂Cl₂) δ -150.3.

HRMS (ESI+, m/z) calcd for $C_{18}H_{12}BF_2N_3$ [M+H⁺]= 320.1165, found 320.1159.

 $2-(2,7-dibromo-9H-fluoren-9-ylidene)-3,3-difluoro-2,3-dihydro-2\lambda^4,3\lambda^4-[1,2,4,3]triazaborolo[4,5-a]pyridine BH2$

Starting from **L2** (0.495 g, 1.15 mmol), the title compound was obtained as lustrous, purple solid (0.495 g, 90%)

¹H NMR (600 MHz, CD_2Cl_2) δ 9.23 (d, J = 1.8 Hz, 1H), 8.51 – 8.47 (m, 1H), 7.78 – 7.66 (m, 2H), 7.62 (d, J = 7.9 Hz, 1H), 7.58 – 7.49 (m, 2H), 7.11 (d, J = 8.9 Hz, 1H), 6.70 (t, J = 6.5 Hz, 1H).

 ^{13}C NMR (600 MHz, CD_2Cl_2) δ 143.30, 139.22, 136.52, 134.93, 134.06, 133.92, 133.87, 133.79, 133.18, 129.06, 128.99, 128.92, 122.73, 122.45, 121.87, 121.44, 114.40, 113.24.

¹⁹F NMR (400 MHz, CD₂Cl₂) δ -150.1.

HRMS (ESI+, m/z) calcd for $C_{18}H_{10}BBr_2F_2N_3$ [M+H⁺]= 475.9375, found 475.9359.

(Z)-2-((9H-fluoren-9-ylidene)hydrazineylidene)-1,2-dihydropyridine L1.

¹H NMR (CD₂Cl₂)

(Z)-2-((2,7-dibromo-9H-fluoren-9-ylidene)hydrazineylidene)-1,2-dihydropyridine L2 1 H NMR (CD₂Cl₂)

2-(9H-fluoren-9-ylidene)-3,3-difluoro-2,3-dihydro- $2\lambda^4$, $3\lambda^4$ -[1,2,4,3]triazaborolo[4,5-a]pyridine **BH1** ¹H NMR (CD₂Cl₂)

-140 -141 -142 -143 -144 -145 -146 -147 -148 -149 -150 -151 -152 -153 -154 -155 -156 -157 -158 -159 -160

2-(2,7-dibromo-9H-fluoren-9-ylidene)-3,3-difluoro-2,3-dihydro- $2\lambda^4$, $3\lambda^4$ -[1,2,4,3]triazaborolo[4,5-a]pyridine **BH2** ¹H NMR (CD₂Cl₂)

¹³C NMR (CD₂Cl₂)

-142 -140 -141 -143 -144 -145 -146 -147 -148 -149 -150 -151 -152 -153 -154 -155 -156 -157 -158 -159

S2 Singlet oxygen quantum yield

A 2.0 mL solution containing the photosensitizer (3 μ M) along with 1,3-diphenylisobenzofuran (DPBF) as a singlet oxygen scavenger (120 μ M) in pre-oxygenated DCM or CH₃CN was placed in a 2 mL cuvette. A 2.0 mL solution containing the photosensitizer (3 μ M) was used as baseline. Thereafter, the photosensitizer + DPBF solutions were irradiated (λ_{irr} = 535 nm) with a UV/Vis-mounted Sahlmann Photochemical Solutions 535 nm LED system (peak wavelength = 535 nm, FWHM 32 nm). During 535 nm irradiation, the solutions' UV/Vis spectrum was monitored for the disappearance on the shoulder of the absorption band of DPBF at 441 nm, signifying consumption of the singlet oxygen acceptor by the generated singlet oxygen, to produce the graph shown below (measured as triplicates, single measurements shown in **Figure S2** –**Figure S5**). The rate of singlet oxygen formation was determined at the initial decay of absorbance of DPBF at 95% to 80% assuming every molecule of singlet oxygen is captured by the excess of scavenger present. The quantum yield (average of triplicate measurement) was calculated following the equations accordingly:

$$A = log_{10} \frac{I_0}{I}$$
 where $I_0 = 1$

Gives

$$I = \frac{1}{10^A}$$

Where A = absorbance of photosensitizer at $\lambda_{Irr,}$ I₀ = intensity incident light and I = transmitted intensity.

Following from the aforementioned equations the quantum yield for singlet oxygen formation (Φ_{Δ}) is defined as: ¹

$$\Phi_{\Delta BH1-2} = \frac{I_{RB}}{I_{BH1-2}} \cdot \frac{k_{BH1-2}}{k_{RB}} \cdot \Phi_{\Delta RB}$$

Where *k* = rate of scavenger consumption at λ_{Irr} and $\Phi_{\Delta RB} = 0.53$ (lit. value).^{2,3}

Figure S1 UV-Vis spectrum of DPBF (CH₃CN, 293 K).

Figure S2 Decay of DPBF (120 μ M) over time (s) monitored at λ = 441 nm in CH₃CN at 293 K.

Figure S3 Rate of decay of DPBF (120 μ M) over time (s) monitored at λ = 441 nm in CH₃CN at 293 K, measured from the initial decay at 95% to 80% absorbance.

Figure S4. Decay of DPBF (120 μ M) over time (s) monitored at λ = 441 nm in CH₃CN at 293 K

Figure S5. Rate of decay of DPBF (120 μ M) over time (s) monitored at λ = 441 nm in CH₃CN at 293 K, measured from the initial decay at 95% to 80% absorbance.

S3 Photosensitizer Stability

The stability of the photosensitizers was measured by following the disappearance of the main absorption band of the photosensitizer in the absence of a scavenger (**BH1**: λ_{max} = 525 nm, **BH2**: λ_{max} = 519 nm). For comparison, the stability of Rose Bengal was determined in CH₃CN.

Figure S6 Decay of photosensitizers (3 μ M) over time (s) monitored at the main absorption bands in CH₂Cl₂ at 293 K.

Figure S7 Decay of photosensitizers (3 μ M) over time (s) monitored at the main absorption bands in CH₃CN at 293 K.

S4 Photosensitizer luminescence

A solution of the photosensitizer was prepared (3.0 ml, 3.0 μ M in CH₂Cl₂) in a 3 ml cuvette to measure the emission wavelength and luminescence quantum yield Φ_{lum} . The emission spectrum (**Figure S8** – **Figure S9**) was recorded on an Edinburgh Instruments FS5 Steady State Spectrofluorometer with integrating sphere.

Figure S8 Normalized UV-Vis and emission spectrum of BH1 (CH₂Cl₂, 293 K)

Figure S9 Normalized UV-Vis and emission spectrum of BH2 (CH₂Cl₂, 293 K)

S5 Reaction kinetics photooxygenation

General experimental procedure photooxidation reaction kinetics

The model substrate (1.0 eq) and and photosensitizer (0.05 eq) were dissolved in the respective solvent (0.1 M), whereafter the mixture was irradiated at 293 K in a home-built irradiation setup (λ_{irr} = 514 nm) (**Figure S10**). At regular intervals a sample of 0.4 mL was taken from the reaction mixture, kept in darkness, dried in vacuo and dissolved in CDCl₃ for determination of the conversion by ¹H-NMR spectroscopy. The conversion was calculated by product : substrate ratio as all photooxidation reactions are selective.

Figure S10 Home-built irradiation setup (left), normalized emission spectrum of green LED (right).

Figure S11 ¹H-NMR resonances over time indicating consumption of DPBF and production of 1,3-dibenzoylbenzene (left) using **BH1** as photosensitizer. Zoomed ¹H-NMR (right).

Figure S12 ¹H-NMR resonances over time indicating consumption of DPBF and production of 1,3-dibenzoylbenzene (left) using **BH2** as photosensitizer. Zoomed ¹H-NMR (right).

Figure S13 ¹H-NMR resonances over time indicating consumption of furoic acid and production of 5-hydroxyfuran-2(5H)-one (left) using **BH1** as photosensitizer. Zoomed ¹H-NMR (right).

Figure S14 ¹H-NMR resonances over time indicating consumption of furoic acid and production of 5-hydroxyfuran-2(5H)-one (left) using **BH2** as photosensitizer. Zoomed ¹H-NMR (right).

Figure S15 ¹H-NMR resonances over time indicating consumption of TPP and production of TPPO (left) using **BH1** as photosensitizer. ³¹P-NMR (right).

Figure S16 ¹H-NMR resonances over time indicating consumption of TPP and production of TPPO (left) using **BH2** as photosensitizer. ³¹P-NMR (right).

S6 Preparative Scale Photooxygenation

A PhotoVap reactor⁴ was used for the preparative 1 g photooxygenation of 2-FA, as it allows for efficient larger scale photooxygenation due the fast rotation creating a thin film, optimal for light penetration, and creating a high mass transfer of oxygen into the solution. To allow for an oxygen atmosphere in the rotary photoreactor, the photoreactor was purged with O₂ through vacuum/oxygen cycles using an O₂ filled balloon that was attached to the rotary evaporator. A home-built white light setup (575 lm, 8 W each; 5750 lm, 80 W total) consisting of standard white light LED bulbs was placed at a distance of approximately 5 cm around the 1 L flask, containing the reaction mixture (1.0 g 2-FA, 0.5 mol% **BH2**, 20 mL CH₃CN). After 6 h, the solvent was evaporated and the crude product was purified by column chromatography (SiO₂; Pentane / EtOAc 1:1) providing 5-hydroxyfuran-2(5H)-one in quantitative yield.

Figure S17. Rotary photoreactor in operation: Reaction conditions: 1 L flask, 1 g 2-FA in CH₃CN (20 mL),10 x 8W LED, 0.5 mol% **BH2.**

S7 Single Crystal X-ray Determination

Single-crystals were mounted on a cryoloop and placed in the nitrogen stream (100 K) of a Bruker-AXS D8 Venture diffractometer. Data collection and processing was carried out using the Bruker APEX3 software suite.^{5,6} A multi-scan absorption correction was applied, based on the intensities of symmetry-related reflections measured at different angular settings (*SADABS*).⁷ The structures were solved using *SHELXT⁸* and refinement was performed using *SHELXL*.⁹ The hydrogen atoms were generated by geometrical considerations, constrained by idealized geometries and allowed to ride on their carrier atoms with an isotropic displacement parameter related to the equivalent displacement parameter of their carrier atoms.

Figure S18 ORTEP image (ellipsoid at 50% probability) of complex BH1.

BH1

 $C_{18} H_{12} B_1 F_2 N_3$ 319.12 monoclinic 100(2) P 2₁/n 9.1067(3) 12.5882(4) 12.6809(4) 90 98.1690(10) 90 1438.95(8) 4 1.473 $Cu\;K_{\alpha}\,1.54178$ 656 -11, 11 -15, 15 -15, 15 0.885 0.22 x 0.14 x 0.12 Lustrous dark red block 0.0281 4.975, 74.470 27803 2944, 217, 0 1.046 -0.240 0.200 I>2sigma(I) 0.0356 0.0793

References

- L. V. Lutkus, S. S. Rickenbach and T. M. McCormick, J. Photochem. Photobiol. A., 2019, 378, 131 – 135.
- 2. W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1993, 22, 113-262.
- 3. N.E. Elezcano, V. M. Martínez, E. P. Cabrera, C. F. A. G. Durán, I. L. Arbeloaa and S. Lacombec *RSC Adv.*, 2016, **6**, 41991-41998.
- 4. C. A. Clark, D. S. Lee, S. J. Pickering, M. Poliakoff and M. W. George, *Org. Process Res. Dev.*, 2016, **20**, 1792–1798.
- 5. Bruker, APEX3 (V2016.1-0), SAINT (Version 8.37A) and SADABS (Version 2014/5). Bruker AXS Inc., Madison, Wisconsin, USA.
- 6. Bruker, APEX3 (V2019.1-0), SAINT (Version 8.40A) and SADABS (Version 2016/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- 7. L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke. J. Appl. Crystallogr., 2015, 48, 3–10.
- 8. G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 3–8.
- 9. G. M. Sheldrick, *Crystallogr Sect. A*, 2008, **64**, 112–122.