Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Hoechst-tagged radioiodinated BODIPY derivative for Auger-electron cancer therapy

Ryotaro Onoue, Hiroyuki Watanabe*, Masahiro Ono*

Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences,

Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.

*Address correspondence to: Phone +81-75-753-4566, Fax: +81-75-753-4568, E-mail:

hwatanabe@pharm.kyoto-u.ac.jp (H. Watanabe), ono@pharm.kyoto-u.ac.jp (M. Ono).

Table of contents

1.	General remarksS3
2.	ChemistryS3
3.	General procedure for the radioiodinationS7
4.	Determination of fluorescence parametersS8
5.	Cell culture ······S9
6.	Nuclear uptake ······S9
7.	3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assayS10
8.	γ-H2AX assay ······S11
9.	¹ H NMR and HRMS spectra
10.	ReferencesS23

Materials and Methods

General remarks

Reagents purchased from commercial sources were used without further purification. The syntheses of compounds were carried under a nitrogen atmosphere. [125I]NaI was purchased from Perkin Elmer (Boston, USA) as a non-carrier added solution in 0.1 M aqueous NaOH with specific activity of 629 GBq/mg. Purification of crude products was performed using Smart Flash EPCLC W-Prep 2XY (Yamazen Corporation, Osaka, Japan). Reversed phase high performance liquid chromatography (RP-HPLC) was carried on a Shimadzu system (an LC-20AT pump with an SPD-20A UV detector, $\lambda = 254$ nm; Shimadzu, Kyoto, Japan) with a Cosmosil C₁₈ column $(5C_{18}$ -AR-II, 4.6×150 or 10×250 mm; Nacalai Tesque, Kyoto, Japan). ¹H NMR spectra were obtained from a JEOL JNM-ECS400 system (JEOL, Tokyo, Japan) with tetramethylsilane as an internal standard. Coupling constants are reported in Hertz. Multiplicity was defined by s (singlet), d (doublet), t (triplet), q (quartet), br (broad), and m (multiplet). High-resolution mass spectra (HRMS) were conducted with LCMS-IT-TOF (Shimadzu, Kyoto, Japan). Fluorescence parameters were obtained using UV-1800 (Shimadzu, Kyoto, Japan) and RF-6000 (Shimadzu, Kyoto, Japan).

Chemistry

Hoechst33258, I-BODIPY-NHS, and BODIPY-NHS were synthesized according to the previous procedure reported by Chandrika *et al.*¹, Ono *et al.*², and Nepomnyashchii *et al.*³, respectively.

Compound 1

To a stirred suspension of Hoechst33258 (48.8 mg, 115 µmol) and K₂CO₃ (43.5 mg, 315 µmol) in *N*,*N*-dimethylformamide (DMF) (1 mL), *tert*-butyl (4-bromobutyl)carbamate (86.2 mg, 342 µmol) was added and the reaction mixture was heated at 60 °C and stirred overnight. The mixture was diluted with CHCl₃/washed with water and brine, and then dried over Na₂SO₄. The organic layer was evaporated under reduced pressure and the residue was purified by silica gel chromatography (MeOH:CHCl₃ = 1:4) to afford **1** (12.6 mg, 18.4%). ¹H NMR (400 MHz, CD₃OD) δ 8.31-8.22 (m, 1H) 8.04 (d, *J* = 8.4 Hz, 2H) 7.97-7.89 (m, 1H) 7.61 (d, *J* = 8.0 Hz, 1H) 7.51 (d, *J* = 8.4 Hz, 1H) 7.21-7.12 (m, 1H) 7.07 (d, *J* = 9.2 Hz, 2H) 7.04-7.00 (m, 1H) 4.08-4.05 (t, *J* = 6.0 Hz, 2H) 3.30-3.26 (m, 4H) 3.14-3.10 (t, *J* = 7.2 Hz, 2H) 2.86-2.71 (m, 4H) 2.46 (s, 3H) 1.84-1.80 (m, 2H) 1.68-1.64 (m, 2H) 1.44 (s, 9H). HRMS (ESI) *m/z* calcd for C₃₄H₄₂N₇O₃⁺, 596.3344 [M+H]⁺: found 596.3340.

Compound 2 (BH)

Trifluoroacetic acid (1 mL) was added to a solution of 1 (12.6 mg, 21.2 µmol) in CH₂Cl₂ (1.5 mL). The reaction mixture was stirred at room temperature for 1 h. The mixture was evaporated under reduced pressure. The residue was dissolved with DMF (1.5 mL), and then I-BODIPY-NHS (12.5 mg, 21.1 µmol) and N,N-diisopropylethylamine (DIPEA) (31 µL, 178 µmol) were added to the solution. The reaction mixture was stirred at room temperature for 7 h. The mixture was diluted with CHCl₃/and washed with water and brine, and then dried over Na₂SO₄. The organic layer was evaporated under reduced pressure and the residue was purified by silica gel chromatography (MeOH:CHCl₃ = 1:4) to afford 2 (4.3 mg, 20.9%). ¹H NMR (400 MHz, CD_3OD) δ 8.36-8.28 (m, 1H) 8.09 (d, J = 8.4 Hz, 2H) 8.01-7.96 (m, 1H) 7.89 (d, J = 8.0 Hz, 2H) 7.82 (d, *J* = 8.4 Hz, 1H) 7.71 (d, *J* = 9.2 Hz, 1H) 7.40 (d, *J* = 7.6 Hz, 2H) 7.37-7.34 (m, 1H) 7.32-7.29 (m, 1H) 7.18 (d, J = 9.2 Hz, 2H) 6.11 (s, 1H) 4.26-4.20 (m, 2H) 3.55-3.49 (m, 2H) 3.29-3.28 (m, 4H) 3.24-3.18 (m, 4H) 3.02 (s, 3H) 2.48 (s, 3H) 2.45 (s, 3H) 1.98-1.87 (m, 4H) 1.36 (s, 3H) 1.33 (s, 3H). HRMS (ESI) m/z calcd for $C_{49}H_{50}BF_2IN_9O_2^+$, 972.3118 [M+H]⁺: found 972.3110.

Compound 3 (BH precursor)

Trifluoroacetic acid (1.5 mL) was added to a solution of 1 (26.6 mg, 44.7 μ mol) in CH₂Cl₂ (2 mL). The reaction mixture was stirred at room temperature for 1 h. The mixture was evaporated under reduced pressure. The residue was dissolved with DMF (2 mL), and then

BODIPY-NHS (20 mg, 43 µmol) and DIPEA (63 µL, 362 µmol) were added to the solution. The reaction mixture was stirred at 50 °C for 6 h. The mixture was diluted with $CHCl_3$ /washed with water and brine, and then dried over Na₂SO₄. The organic layer was evaporated under reduced pressure and the residue was purified by silica gel chromatography (MeOH:CHCl₃ = 1:4) to afford **3** (7.6 mg, 20.9%). ¹H NMR (400 MHz, CD₃OD) δ 8.30-8.25 (m, 1H) 8.06 (d, *J* = 8.8 Hz, 2H) 7.99-7.96 (m, 1H) 7.93 (d, *J* = 8.0 Hz, 2H) 7.72-7.65 (m, 1H) 7.52 (d, *J* = 8.8 Hz, 1H) 7.42 (d, *J* = 8.0 Hz, 2H) 7.19-7.15 (m, 1H) 7.12 (d, *J* = 8.8 Hz, 2H) 7.07 (d, *J* = 8.0 Hz, 1H) 5.99 (s, 2H) 4.22-4.14 (m, 2H) 3.57-3.47 (m, 2H) 3.29-3.23 (m, 4H) 2.84-2.73 (m, 4H) 2.45 (s, 3H) 2.44 (s, 6H) 1.98-1.84 (m, 4H) 1.35 (s, 6H). HRMS (ESI) *m/z* calcd for C₄₉H₅₁BF₂N₉O₂⁺, 846.4221 [M+H]⁺: found 846.4229.

Compound 4 (BD)

To a solution of I-BODIPY-NHS (38.7 mg, 65.4 μ mol) in CH₂Cl₂ (10 mL), 4aminobutanol (6.1 μ L, 65.7 μ mol) and DIPEA (93.5 μ L, 537 μ mol) were added dropwise and the reaction mixture was stirred overnight at room temperature. The mixture was diluted with CHCl₃/washed with water and brine, and then dried over Na₂SO₄. The organic layer was evaporated under reduced pressure and the residue was purified by silica gel chromatography (AcOEt:Hexane = 5:1) to afford 4 (33 mg, 89.2%). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 2H) 7.30 (d, J = 8.0 Hz, 2H) 6.65 (br s, 1H) 5.98 (s, 1H) 3.70 (t, J = 6.0 Hz, 2H) 3.49 (q, J = 6.4 Hz, 2H) 2.57 (s, 3H) 2.50 (s, 3H) 1.88-1.62 (m, 4H) 1.30 (s, 3H) 1.29 (s, 3H). HRMS (ESI) m/z calcd for C₂₄H₂₈BF₂IN₃O₂⁺, 566.1282 [M+H]⁺: found 566.1280.

Compound 5 (BD precursor)

To a solution of BODIPY-NHS (115.4 mg, 248 µmol) in CH₂Cl₂ (10 mL), 4aminobutanol (23 µL, 248 µmol) and DIPEA (353 µL, 2027 µmol) were added dropwise and the reaction mixture was stirred overnight at room temperature. The mixture was diluted with CHCl₃/washed with water and brine, and then dried over Na₂SO₄. The organic layer was evaporated under reduced pressure and the residue was purified by silica gel chromatography (AcOEt:Hexane = 5:1) to afford **5** (89.6 mg, 82.3%). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 2H) 7.32 (d, *J* = 8.4 Hz, 2H) 6.54 (br s, 1H) 5.92 (s, 2H) 3.70 (t, *J* = 5.6 Hz, 2H) 3.49 (q, *J* = 6.4 Hz, 2H) 2.49 (s, 6H) 1.77-1.62 (m, 4H) 1.29 (s, 6H). HRMS (ESI) *m/z* calcd for C₂₄H₂₉BF₂N₃O₂⁺, 440.2315 [M+H]⁺: found 440.2317.

General procedure for the radioiodination

N-Chlorosuccinimide in MeOH (50 μ L, 0.5 mg/mL) was added to a mixture of a corresponding precursor in MeOH containing 1% CH₃COOH (25 μ L, 1 mg/mL) and 6.85 MBq

of [¹²⁵I]NaI. The reaction mixture was vortexed and allowed to react for 30 min at room temperature, and quenched by the addition of 50 μ L of H₂O and 100 μ L of saturated NaHSO₃, followed by neutralization with saturated NaHCO₃. The reaction mixture was extracted with ethyl acetate (400 μ L×3). The combined organic layers were evaporated under a stream of nitrogen. The residues were purified by RP-HPLC. The collected fractions containing products were evaporated to dryness under a stream of nitrogen. The identification of radioiodinated products was performed by coelution with reference compounds using a Cosmosil 5C₁₈-AR-II column (4.6 × 150 mm) eluted at a flow rate of 1.0 mL/min (Figure S1).

Figure S1. RP-HPLC coelution of [¹²⁵I]BH with nonradioactive BH (A) and [¹²⁵I]BD with BD

(B). Mobile phase condition: (A) H₂O / MeCN / Trifluoroacetic acid = 70 / 30 / 0.1 \rightarrow 20 / 80 /

0.1 (0-40 min, gradient). (B) $H_2O / MeCN / Trifluoroacetic acid = 50 / 50 / 0.1$.

Determination of fluorescence parameters

Absorption and emission spectra were recoded using UV-1800 and RF-6000.

Fluorescence quantum yields (Φ_f) were measured and calculated using the following equation:

$$\Phi_{\rm f} = (F_{\rm s} / F_{\rm ref}) \cdot (n_{\rm s}^2 / n_{\rm ref}^2) \cdot (A_{\rm ref} / A_{\rm s}) \cdot \Phi_{\rm ref}$$

wherein *F*, *A*/and *n* represent the area under emission peak of fluorescence, absorbance at the excitation position (525 nm), and refractive index of the solvent, respectively. I-BODIPY-NHS² was used as a reference in toluene ($\Phi_f = 0.11$) (Table S1).

Table S1. Fluorescence parameters of BH and BD

Compound	$\lambda_{ m abs}~({ m nm})^a$	$\lambda_{ m em}~(m nm)^a$	ε (M ⁻¹ cm ⁻¹) ^a	$\Phi_{f}{}^{a}$
BH	517	532	22000	0.06
BD	517	532	39800	0.07

^aIn MeOH

Cell culture

HeLa, Human cervical cancer cells (JCRB, Japan), were cultured in Gibco Minimum Essential Media (EMEM) containing 1% non-essential amino acid supplemented with 10% fetal bovine serum albumin and 1% penicillin-streptomycin antibiotic solution in a humidified atmosphere of 95% air and 5% CO₂ at 37 °C.

Nuclear uptake

HeLa cells, 1.0×106 per well/were seeded in a 6-well plate and allowed to attach

overnight. The cells were incubated at 37°C for a period of 2, 4, or 6 h with 18.5 kBq of [125I]BH or [125]]BD in 2 mL of assay media (Dulbecco's Modified Eagle Medium (DMEM) with 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 0.5% MeOH and 0.2% bovine serum albumin (BSA)). After incubation, cells were removed from the plates by scraping and collected with radioactive media into a 2-mL tube. The radiocompounds in the media were removed by centrifugation of the cell suspension at 2100 g for 3 min at 4 °C, followed by washing the cellular pellet with ice-cold phosphate buffered saline (PBS). The radioactivity of the cellular pellet was measured using a y-counter (Wizard2470 PerkinElmer) to quantify the total cellular uptake of the radiocompounds. The cellular pellet was suspended by 2 mL of ice-cold cell lysis buffer (10 mM Tris, 1.5 mM MgCl₂, 140 mM NaCl) containing 0.1% of IGEPAL-ca 630 and incubated on ice for 10 min to remove the cell membrane. After incubation, the cell suspension was centrifuged at 1300 g for 2 min at 4 °C, the supernatant was separated from the pellet (nuclei) and the radioactivity in the pellet was measured with a γ -counter. The results were evaluated by Student's *t*-test.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay

HeLa cells, 1.0×10^4 per well/were added to a 96-well plate and allowed to attach overnight. Cells were incubated with 0-37 kBq of [¹²⁵I]BH, [¹²⁵I]BD, 0-4570 pM of BH/or BD for

2 h at 37 °C. Subsequently, MTT reagents were added to each well, which was then incubated for 4 h at 37 °C. After incubation, MTT-containing medium was removed/ the cells were washed with PBS, and then isopropyl alcohol containing 0.04 M HCl aq was added to dissolve MTT formazan crystals. Absorbance at 570 nm was measured using a microplate reader (iMark[™], Bio-Rad, California Hercules, USA). The results were evaluated by two-way ANOVA with Sidak's multiple comparison post-test using Graph Pad Prism version 6 software (GraphPad Software, California San Diego, USA).

γ-H2AX assay

HeLa cells, 1.0×10^4 per well/were added to a 16-well chamber slide and allowed to attach overnight. Cells were incubated with radiocompounds for 2 h at 37 °C. After incubation, cells were washed twice with PBS and fixed with 4% formaldehyde for 5 min. After washing, cells were permeabilized with 1% Triton X-100 in PBS for 20 min. After further washing, cells were incubated with anti- γ -H2AX primary antibody solution (Dojindo, Kumamoto, Japan) for 1 h. After subsequent washing, cells were incubated with FITC-conjugated secondary antibody solution (Dojindo, Kumamoto, Japan) for 1 h. Then, after the last washing, cells were finally incubated with DAPI at 1 µg/mL for 15 min. Images of about 200 nuclei per treatment were taken with florescence microscopy, BZ-9000 (KEYENCE, Osaka, Japan). γ -H2AX foci were analyzed by BZ-II analysis application, and quantified by measuring the integrated density of foci per unit area of the nucleus (sum of mean grey density of focus × focus area divided by nucleus area). The results were evaluated by two-way ANOVA with Tukey's multiple comparison using GraphPad Prism 6 software.

NMR and HRMS spectra

¹H NMR spectrum for Compound 1

HRMS spectrum for Compound 1

Int	en. (x10,000)			v	
1.00-		596.	3340		
0.35-					
0.90-					
0.85					
0.80					
0.75					
1					
0.70-					
0.65					
0.60					
0.55					
0.50					
0.45-					
0.40-					
0.35		496. 2805			
0.30					ļ
0.25					
	270. 6381				
0.20-					
0.15-		540.2677			
0.10	368.1486 423				
0.05					
0.00	173.0292		1630.3016		
	200 008 000	500 6	edo obs	10 000 10	do 1100 1200 m/s

$^1\mathrm{H}$ NMR spectrum for $B\mathrm{H}$

HRMS spectrum for BH

¹H NMR spectrum for **pre-BH**

HRMS spectrum for pre-BH

Inten. (x10,000)						 	 		7			
1.00		423.7151											1
0.95													
0.90													
1													
0.85										1			
0.80													
1													1
0.75													
0.70													
0.65													
0.60													
1													
0.55-		·· † • · · · · † ·											
0.50													
													1
0.45		1											
0.40													
3					046 4220								8
0.35		- j j -			1								
0.30													
1													
0.25													
0.20													
													6 8
0.15													
0.10-		519.1	992										
0.05	240 0227		\$07,1376	767.303	2								
0.00	ada ada					 	 he	 	ho	ho	ho	ha' ' ' i a	

¹H NMR spectrum for **BD**

HRMS spectrum for **BD**

00	566.	1280		 	
95					
80-					
75					
70					
65					
60					
55	546.123			 	
50					
45					
40					
35				 	
30					
25					
20					
15					
					1150 0450
	499 2223				1100.2400
05	433.2223 481.0361	653, 1925	767.3024	 11	31.238

¹H NMR spectrum for **pre-BD**

HRMS spectrum for pre-BD

I <u>nten.</u>	(x10,000)	10				_											1
1.00						420.	2264										
3							0.00										
0.95																	
0.90																	
0.03																	
0.80																	
0.75																	
1																	
0.70																	
0.65																	
Ena n							440.2	317									
0.55																	
0.50																	
0.45																	
0.40																	
0.35																	
1																	
0.30																	
0.25																	
0 20																	
1																	
0.15																	
0.10																	
0.05-					355, 1449			48	5.2902	539.3	411 570.3126		669.38	65			
0.00	150	200	250	300	350	'4do '	إبلبا	450	500	إلىال	550	oba	650	700	75	 do	50 m/z

References

- N. T. Chandrika, S. K. Shrestha, H. X. Ngo and S. Garneau-Tsodikova, *Bioorg. Med. Chem.*, 2016, 24, 3680-3686.
- M. Ono, H. Watanabe, Y. Ikehata, N. Ding, M. Yoshimura, K. Sano and H. Saji, *Sci. Rep.*, 2017, 7, 3337.
- 3. A. B. Nepomnyashchii, A. J. Pistner, A. J. Bard and J. Rosenthal, J. Phys. Chem. C. Nanomater. Interfaces., 2013, 117, 5599-5609.