Electronic Supplementary Information

Synthesis and reactivity of a μ -1,2-dinitrogen dinickel(II) complex with C-H activated silaamidinate pincer ligand

Chaopeng Hu,‡^a Yazhou, Ding,‡^a Yunping Bai,^a Lulu Guo,^a Chunming Cui*^a

^a State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

‡ These authors contribute equally to this work.

Table of Contents

1. Experimental Section	1
2. Crystallographic Data	4
3. Computational Details	5
4. NMR Spectra	8
5. IR Spectra	13
6. Mechanistic Studies	15
Reference	18
Coordinates of the Studied Molecules	19

1. Experimental Section

General Information. All reactions were carried out under an atmosphere of nitrogen using standard Schlenk line and glovebox techniques. Solvents were dried over Na/K and degassed before use. ¹H, ¹³C, ²⁹Si NMR spectra were obtained with Bruker 400 or 600 (¹H: 600 MHz) NMR spectrometer at 298 K, usually in C₆D₆ with Me₄Si (¹H, ¹³C, and 29 Si) as internal standards. NMR multiplicities are abbreviated (s = singlet, d = doublet, t = triplet, m = multiplet). Coupling constants J are given in Hz. Melting points were measured with a capillary melting point apparatus (Melting Point M-560, BUCHI). Elemental analyses were carried out on an Elementar Vario EL analyzer. IR spectra were recorded in the range of 500–4000 cm⁻¹ on a Bruker Alpha II spectrophotometer in a glovebox filled with argon gas. The generated H₂ was analyzed by injection of 1 mL aliquots from reaction vial headspace into gas chromatography (GC, FuLi 97902II) equipped with TCD detector. The NaHBEt₃ (1 M in THF), EtMgBr (1 M in THF), and 2,6-dimethylphenyl isocyanide were purchased from Aladdin or J&K Scientific Ltd and diluted to 0.1 M in THF before use. The gases of CO (purity \geq 99.99%), Argon (purity > 99.99%), and H₂ (purity > 99.99%) were purchased from Tianjin HAOLUN. The gas of N₂ (purity \geq 99.99%) was supplied by Liquefied Air (Tianjin). The silaamidinate ligand was prepared according to the literature procedures.¹

with *n*-hexane (30 mL). The residuals were extracted with diethyl ether (50 mL). It was filtered off and subsequent recrystallization from hexane at -40 °C gave 1 as red solid (1.18 g, 46%). Single crystals were obtained by slow evaporation of a concentrated diethyl ether solution of 1. Mp: 118 °C(dec). Anal. Calcd for C₄₇H₇₅Br₂LiN₄NiO₂Si (978.35): C, 57.51 ; H, 7.70 ; N, 5.71 ; Found: C, 57.42 ; H, 7.77 ; N, 5.84 ; Magnetic Susceptibility (MSB, 300 K): $\mu_{eff} = 3.08 \mu_{B}$.

Synthesis of [LSi(NAr)(NAr)Ni]₂(μ -1,2-N₂) (2, Ar = 2-C(CH₃)₂-6-*i*PrC₆H₃). A solution of 2 (0.20 g, 0.20 mmol) and NaHBEt₃ in degassed THF (5 mL) was stirred at room temperature for 2 hours under nitrogen atmosphere. Solvent was removed under vacuum and the remaining solid was washed with *n*-hexane (10 mL). Diethyl ether (30 mL) and toluene (5 mL) were transferred to the remaining residual. It was filtered off and concentrated. Crystallization from diethyl ether

and toluene at -40 °C gave **2** as red solid (0.03 g, 21%). Mp: 89-91 °C (decomposed to black oil). ¹H NMR (600 MHz, C₆D₆) δ 7.25 (d, J = 7.6 Hz, 4H), 7.21 (d, J = 7.4 Hz, 6H), 7.11 (d, J = 8.9 Hz, 2H), 7.06 (t, J = 7.6 Hz, 2H), 6.96 – 6.82 (m, 8H), 4.66 (hept, J = 6.6 Hz, 4H, *Me* in *i*Pr group for the side non-C-H bond activation), 3.31 (hept, J = 6.4 Hz, 2H, *Me* in *i*Pr group for the side C-H bond activation), 1.64 (d, J = 6.7 Hz, 12H, *Me* in *i*Pr group), 1.60 (s, 12H, *Me* in NiC(CH₃)₂ group), 1.49 (d, J = 7.0 Hz, 12H, *Me* in *i*Pr group), 1.35 (d, J = 6.8 Hz, 12H, *Me* in *i*Pr group), 1.04 (s, 36H, *tBu*) ppm. Satisfactory ¹³C NMR spectrum, ²⁹Si NMR spectrum, and elemental analysis cannot be obtained due to the easy decompose of **2**. IR (cm⁻¹): \tilde{v} (s, N≡N) 2101. After many attempts, we are very unfortunately failed to synthesize the ¹⁵N-labeled **2**, mainly due to the poor stability of the nickel(II) dinitrogen compound and the difficulty in realizing the strictly anaerobic ¹⁵N₂ gas under our conditions.

Synthesis of LSi(NAr)(NAr)NiCO (3). A solution of 2 (0.06 g, 0.04 mmol) in degassed tetrahydrofuran was exposed to an atmosphere of carbon monoxide (CO) for 0.5 hour, which led to a color change to brownish red. Solvent was removed under vacuum and hexane (30 mL) was transferred to the remaining residual. It was filtered off. Evaporation of hexane and subsequent recrystallization from hexane at -10 °C gave 3 as orange solid (0.05 g, 82%). Mp: 196-198 °C

(turns to a brown powder). ¹H NMR (400 MHz, C₆D₆) δ 7.24 (d, *J* = 8.0 Hz, 2H), 7.20-7.14 (m, 4H), 7.07 (t, *J* = 8.0 Hz, 1H), 6.96 (t, *J* = 8.0 Hz, 1H), 6.91-6.82 (m, 3H), 4.57-4.54 (m, 2H, C*H*(CH₃)₂ in Ar group), 3.33-3.30 (m, 1H, C*H*(CH₃)₂ in Ni–Ar), 1.89 (s, 6H, Ni–C(C*H*₃)₂), 1.64 (d, *J* = 8.0 Hz, 6H, CH(C*H*₃)₂ in Ar group), 1.48 (d, *J* = 8.0 Hz, 6H, CH(C*H*₃)₂ in Ar group), 1.36 (d, *J* = 8.0 Hz, 6H, CH(C*H*₃)₂ in Ar group), 0.99 (s, 18H, C(C*H*₃)₃) ppm. ¹³C NMR (101 MHz, C₆D₆) δ 191.0(CO), 178.5 (NCN), 153.9 (Ar-C), 152.3 (Ar-C), 148.0 (Ar-C), 143.2 (Ar-C), 135.7 (Ar-C), 131.0 (CH), 129.6 (Ar-C), 129.3 (Ar-C), 128.4 (CH), 128.3 (CH), 127.8 (CH), 123.3 (CH), 122.7 (CH), 122.2 (CH), 120.8 (CH), 118.8 (CH), 55.7 (Ni-C), 54.9 (*C*(CH₃)₃), 34.4 ((CH₃)₂CH), 30.9 (C(CH₃)₃), 28.3 ((CH₃)₂CH), 27.6 ((CH₃)₂CH in Ni–Ar), 25.8 ((CH₃)₂CH), 24.2 ((*C*H₃)₂CH), 24.1 ((*C*H₃)₂CH) ppm. ²⁹Si NMR (79 MHz, C₆D₆) δ –87.1 ppm. Anal. Calcd for C₄₀H₅₆N₄NiOSi (694.36): C, 69.06; H, 8.11; N, 8.05; Found: C, 69.34; H, 8.03; N, 8.32. IR (cm⁻¹): \tilde{v} (s, C=O) 2009.

Synthesis of LSi(NAr)(NAr)NiCNAr' (4). The 2,6dimethylphenyl isocyanide (0.80 mL, 0.1 M in THF, 0.08 mmol) was added to a solution of 2 (0.06 g, 0.04 mmol) in degassed tetrahydrofuran and stirred for 1 hours, which led to a color change to brownish red. Solvent was removed under vacuum and hexane (30 mL) was transferred to the remaining residual. It was Evaporation of hexane filtered off. and subsequent

recrystallization from hexane at -10 °C gave 4 as orange solid (0.05 g, 78%). Mp: 195-198 °C (turns to a brownish red powder). ¹H NMR (400 MHz, C₆D₆) δ 7.35 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.20 – 7.18 (m, 3H), 7.01 (t, J = 8.0 Hz, 2H), 6.91 (d, J = 8.0 Hz, 2H), 6.88 - 6.84 (m, 1H), 6.71 (t, J = 8.0 Hz, 2H)1H), 6.59 (d, J = 8.0 Hz, 2H), 4.75 – 4.68 (m, 2H, CH(CH₃)₂ in Ar group), 3.53 – 3.46 (m, 1H, CH(CH₃)₂ in Ni-Ar), 2.00 (s, 6H, CH₃ in Ar' group), 1.95 (s, 6H, NiC(CH₃)₂ in Ni–Ar), 1.65 (d, J = 8.0 Hz, 6H, CH(CH₃)₂ in Ar group), 1.52 (d, J = 8.0 Hz, 6H, $CH(CH_3)_2$ in Ar group), 1.45 (d, J = 8.0 Hz, 6H, $CH(CH_3)_2$ in Ar group), 1.11 (s, 18H, C(CH₃)₃). ¹³C NMR (101 MHz, C₆D₆) δ 177.5 (NCN), 162.6 (Ni-CNAr'), 155.7 (Ar-C), 153.1 (Ar-C), 149.8 (Ar-C), 143.3 (Ar-C), 135.6 (Ar-C), 135.1 (Ar-C), 130.7 (Ar-C), 130.3 (CH), 129.1 (Ar-C), 128.2 (CH), 128.0 (CH), 127.9 (CH), 127.9 (CH), 127.3 (CH), 123.1 (CH), 122.1 (CH), 122.0 (CH), 119.6 (CH), 117.9 (CH), 54.7 (C(CH₃)₃), 46.3 (Ni-C), 34.8 ((CH₃)₂CH), 31.1 (C(CH₃)₃), 28.3 ((CH₃)₂CH), 27.6 ((CH₃)₂CH in Ni-Ar), 25.8 ((CH₃)₂CH), 24.4 ((CH₃)₂CH), 24.3 ((CH₃)₂CH), 18.9 (CH₃ in Ar'). Anal. Calcd for C46H65N5NiSi (797.44): C, 72.17; H, 8.20; N, 8.77; Found: C, 72.29; H, 8.61; N, 8.52. IR (cm⁻¹): \tilde{v} (s, C=N) 2101.

2. Crystallographic Data

All intensity data were collected with a Rigaku Saturn 724 CCD diffractometer using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 113 K. The structures were resolved by direct methods and refined by full-matrix least-squares on $F^{2,2}$ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were considered in calculated positions. Crystallographic data and CCDC numbers were listed in Table S1.

Table S1. Crystallographic Data for Compounds 1 - 4

	1	2	3	4
formula	C47H75Br2LiN4NiO2Si	C ₇₈ H ₁₁₂ N ₁₀ Ni ₂ Si ₂	C40H57LiN4NiOSi	C48H65N5NiSi
fw	981.67	1360.73	703.63	798.85
T(K)	113.15	113.15	293(2)	113.15
space group	$P2_1/n$	P-1	P-1	P21/c
a (Å)	17.4789(11)	15.2773(9)	11.4166(3)	24.045(2)
b (Å)	16.6281(8)	16.5998(8)	12.1080(5)	12.0991(16)
c (Å)	21.2921(10)	18.2805(10)	16.0882(6)	15.7064(15)
α (deg.)	90	103.515(5)	73.179(3)	90
β (deg.)	104.114(6)	111.529(5)	73.148(3)	100.380(9)
γ (deg.)	90	96.493(4)	67.295(3)	90
V (Å3)	6001.5(6)	4090.5(4)	1923.38(13)	4494.6(9)
Ζ	4	2	2	4
$\rho_{calc} \ g/cm3$	1.086	1.161	1.215	1.181
F(000)	2064.0	1536.0	756.0	1720.0
GOF	1.000	1.005	1.015	1.047
R1	0.0639	0.0682	0.0701	0.0810
wR2 (all data)	0.1528	0.1615	0.2131	0.1669
CCDC	2108050	2108053	2108055	2108056

3. Computational Details

All stationary points were fully optimized at the density functional theory level with the Gaussian 09 E01 suit of program,³ using the pbe1pbe functional without symmetry constraints.⁴ The basis set of def2-TZVP was used for Ni, Si, and Br, and the def2-SVP basis set was used for H, C, O, N, and Li.⁵ All optimized species were verified as minima by the presence of zero imaginary vibrational frequency. Natural bond orbital (NBO) and natural localized molecular orbital (NLMO) calculations were carried out using NBO 6.0 program.⁶ Optimized structures were visualized by the Chemcraft program.⁷

Figure S1. Calculated spin density map of 1 (isovalue=0.05)

Figure S2. Selected NLMOs of **2** (isovalue=0.05). (a-d) Four d-type nonbonding electron pairs at Ni1. (e) Ni1–C1 σ -bond. (f) N1–N2 π -bond. (g) N1–N2 π -bond. (h) N1–N2 σ -bond.

Figure S3. Selected NBOs of **2** for the second-order perturbation theory analysis. (a) LP (N1) to LV (Ni1). (b) d-type nonbonding electron (Ni) to π^* -bond (N1–N2). (isovalue=0.05)

Atom	Ni1	Ni2	Si3	Si4	N5	N6
Ni1	0.0000	0.0159	0.0492	0.0003	0.4209	0.1624
Ni2	0.0159	0.0000	0.0003	0.0492	0.1624	0.4209
Si3	0.0492	0.0003	0.0000	0.0000	0.0034	0.0021
Si4	0.0003	0.0492	0.0000	0.0000	0.0021	0.0034
N5	0.4209	0.1624	0.0034	0.0021	0.0000	2.5903
N6	0.1624	0.4209	0.0021	0.0034	2.5903	0.0000

Table S2. Wiberg Bond Index Matrix in the NAO Basis

4. NMR Spectra

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2: f1 (ppm)

5. IR Spectra

Figure S14. IR spectrum of reaction of 3.

Figure S15. IR spectrum of reaction of 4.

6. Mechanistic Studies

6.1 Detection of the Nickel Hydride Species by NMR Spectroscopy

1a) Reaction of 1 with NaHBEt₃ under Ar.

In an argon-filled glove box, a d_8 -THF (0.6 mL), **1** (10 mg, 0.010 mmol) and NaHBEt₃ (10 μ L, 0.010 mmol) were loaded in a dried J-Young-Tube at room temperature, the tube was sealed and the reaction was monitored by NMR spectroscopy. The ¹H NMR spectrum was detected after 20 minutes.

Figure S16. ¹H NMR spectrum of the reaction of 1 with NaHBEt₃ in D₈-THF

1b) Reaction of 1 with NaHBEt3 under Ar.

In an argon-filled glove box, the C₆D₆ (0.4 mL), **1** (20 mg, 0.02 mmol), NaHBEt₃ (20 μ L, 0.02 mmol, 1 M in THF) were loaded in a dried J-Young-Tube at room temperature, the tube was sealed immediately and the reaction was monitored by NMR spectroscopy. The ¹H NMR spectrum was detected after 20 minutes.

Figure S17. ¹H NMR spectrum of the reaction of **1** with NaHBEt₃ (600MHz, C₆D₆). * marks solvent residue of THF in NaHBEt₃.

- 6.2 Detection of the H₂ Gas by GC Spectroscopy.
- 2a) The GC spectrum for H_2 gas.

The purchased H₂ was analyzed by injection of 0.1 mL aliquots into GC.

Figure S18. GC spectrum for H₂ gas (Retention time: 0.685 min).

2b) Reaction of 1 with NaHBEt₃ under Ar.

In an argon-filled glove box, the THF (1.0 mL), **1** (50 mg, 0.05 mmol), NaHBEt₃ (0.5 mL, 0.05 mmol) were loaded in a dried schlenk tube at room temperature, the tube was sealed. After 2 hours, the reaction was analyzed by injection of 1 mL gaseous aliquots into GC.

Figure S19. GC spectrum for this reaction.

2c) Reaction of 1 with NaHBEt₃ under N₂.

In a nitrogen-filled glove box, the THF (1.0 mL), 1 (50 mg, 0.05 mmol), NaHBEt₃ (0.5 mL, 0.05 mmol) were loaded in a dried schlenk tube at room temperature, the tube was sealed. After 2 hours, the reaction was analyzed by injection of 1 mL gaseous aliquots into GC.

Figure S20. GC spectrum for this reaction.

2d) Reaction of 1, NaHBEt₃ with isocyanide under Ar.

In an argon-filled glove box, the THF (1.0 mL), **1** (50 mg, 0.05 mmol), NaHBEt₃ (0.5 mL, 0.05 mmol) and 2,6-Me₂C₆H₃NC (0.5 mL, 0.05 mmol) were loaded in a dried schlenk tube at room temperature. The tube was sealed. After 2 hours, the reaction was analyzed by injection of 1 mL gaseous aliquots into GC.

Figure S21. GC spectrum for this reaction.

Reference

- [1] a) D. Liu, D. Zhou, H. Yang, J. Li, C. Cui, *Chem. Commun.* 2019, 55, 12324-12327; b) C. Hu, J. Zhang, H. Yang, L. Guo, C. Cui, *Inorg. Chem.* 2021, 60, 14038-14046.
- [2] a) G. M. Sheldrick, Acta Crystallogr A 2008, 64, 112-122; b) G. S. SHELXS, Sect. A 1990, 46, 467-473.
- [3] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, CT, 2016.
- [4] a) C. Adamo, V. Barone, J. Chem.l Phys. 1999, 110, 6158-6170; b) J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem.l Phys. 1996, 105, 9982-9985.
- [5] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- [6] E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429-1437.
- [7] G. A. Andrienko, ChemCraft, http://www.chemcraftprog.com.

Coordinates of the Studied Molecules

1

1			
Atom	Х	у	Z
Br	-2.560994	0.37476	1.91174
Br	-2.614225	-0.412904	-1.749823
Ni	-0.996124	-0.021107	0.062199
Si	1.597575	-0.000456	0.003434
Ο	-5.421743	1.236365	-0.118903
Ο	-5.294421	-1.860702	0.228836
Ν	0.550261	1.243572	0.313686
Ν	0.559283	-1.26685	-0.237763
Ν	3.046014	0.490154	-1.017356
Ν	3.127774	-0.447965	0.916245
С	0.691153	2.622234	0.398215
С	0.727922	-2.643904	-0.299879
С	3.874042	0.038441	-0.076007
С	0.047309	3.488986	-0.529692
С	0.309098	4.86109	-0.48906
Н	-0.175779	5.512313	-1.220233
С	1.167092	5.41549	0.450957
Н	1.371662	6.488594	0.454492
С	1.735938	4.583467	1.40943
Н	2.372825	5.021069	2.180273
С	1.49959	3.208324	1.417134
С	2.012194	2.356707	2.560007
Н	2.3537	1.401264	2.136044
С	3.195029	2.952043	3.313215
Н	4.026262	3.210719	2.637687
Н	3.571348	2.234598	4.059194
Н	2.918214	3.864716	3.864226
С	0.856889	2.045095	3.514681
Н	0.459378	2.976503	3.947938
Н	1.18666	1.401038	4.346548
Н	0.035175	1.538669	2.987971
С	-0.98435	2.974255	-1.510379
Н	-0.818838	1.893158	-1.638301
С	-0.916696	3.612608	-2.895149
Н	-1.230242	4.668618	-2.877134
Н	-1.594093	3.084597	-3.58412
Н	0.097884	3.57363	-3.317216
С	-2.381652	3.14945	-0.914636
Н	-2.459092	2.654961	0.064367
Н	-3.142154	2.709995	-1.577635
Н	-2.604454	4.220469	-0.774627

С	1.504024	-3.235483	-1.340028
С	1.768015	-4.605572	-1.315618
Н	2.378842	-5.0466	-2.105442
С	1.261609	-5.427386	-0.314412
Н	1.48813	-6.496041	-0.304799
С	0.438319	-4.869221	0.654125
Н	0.003404	-5.513365	1.421952
С	0.148725	-3.502419	0.677383
С	-0.850275	-2.986453	1.69155
Н	-0.692312	-1.902123	1.801677
С	-2.264306	-3.184817	1.14467
Н	-2.477466	-4.25886	1.015208
Н	-2.376126	-2.699532	0.164558
Н	-3.012329	-2.7531	1.826665
С	-0.726239	-3.606304	3.080402
Н	-1.388339	-3.079378	3.784722
Н	0.301167	-3.545675	3.467898
Н	-1.023929	-4.666999	3.086915
С	1.954277	-2.398001	-2.518777
Н	2.276624	-1.421538	-2.129576
С	0.761225	-2.147043	-3.444254
Н	-0.057309	-1.64847	-2.904887
Н	0.377325	-3.101487	-3.838011
Н	1.044927	-1.518041	-4.304196
С	3.134692	-2.974483	-3.290447
Н	3.471808	-2.262463	-4.060139
Н	2.872284	-3.906555	-3.815443
Н	3.988552	-3.194902	-2.629633
С	3.48492	-1.331217	2.038267
С	4.637925	-0.756062	2.86223
Н	4.74903	-1.347807	3.782734
Н	4.434975	0.285844	3.148926
Н	5.594917	-0.793102	2.325731
С	3.847988	-2.723137	1.514781
Н	4.758257	-2.68921	0.898595
Н	3.030059	-3.147102	0.915398
Н	4.041806	-3.40005	2.360135
С	2.238177	-1.421925	2.912183
Н	1.390242	-1.804266	2.331368
Н	1.963206	-0.439703	3.319144
Н	2.418046	-2.10722	3.752082
С	3.291201	1.377406	-2.166106
С	3.610176	2.792614	-1.678033
Н	3.731198	3.464815	-2.540639
Н	2.802074	3.18702	-1.046071
Н	4.54908	2.811167	-1.105799

С	4.423248	0.853371	-3.050653
Н	5.406538	0.945048	-2.571459
Н	4.449929	1.440785	-3.98022
Н	4.25866	-0.200493	-3.318169
С	1.992734	1.388239	-2.966397
Н	1.75502	0.388944	-3.354762
Н	2.081002	2.079006	-3.816276
Н	1.157479	1.719197	-2.337381
С	5.353007	0.074826	-0.119685
С	6.039978	1.135664	0.477457
Н	5.482095	1.926154	0.983814
С	7.431179	1.170226	0.433245
Н	7.966626	2.00048	0.898759
С	8.13708	0.146226	-0.197266
Н	9.228664	0.174053	-0.227439
С	7.450462	-0.91321	-0.789414
Н	8.00092	-1.715532	-1.285399
С	6.059039	-0.949733	-0.756345
Н	5.514852	-1.767616	-1.232946
С	-5.186848	-2.875766	-0.759688
Н	-5.052902	-3.85104	-0.258565
Н	-4.262856	-2.66093	-1.315095
С	-6.37407	-2.894925	-1.698049
Н	-7.32106	-3.08821	-1.171203
Н	-6.244505	-3.685981	-2.451917
Н	-6.461295	-1.934446	-2.227823
С	-6.057671	-2.230756	1.361014
Н	-5.538673	-3.053464	1.888931
Н	-7.040491	-2.618356	1.035731
С	-6.238701	-1.042252	2.271467
Н	-5.266047	-0.652045	2.609291
Н	-6.816534	-1.335359	3.160054
Н	-6.776924	-0.234254	1.755247
С	-6.026877	1.427674	-1.397064
Н	-6.628544	0.537352	-1.636491
Н	-5.231386	1.520064	-2.15655
С	-6.846575	2.701303	-1.268204
Н	-7.847714	2.477165	-0.865412
Н	-6.97709	3.216961	-2.230006
С	-6.029814	3.495724	-0.253898
Н	-6.605883	4.278717	0.25887
Н	-5.166928	3.971953	-0.74377
С	-5.558312	2.404631	0.692266
Н	-4.591037	2.610475	1.171883
Н	-6.302912	2.204112	1.483869
Li	-4.20757	-0.231437	0.150937

2			
Atom	Х	У	Z
Ni	2.03940300	-0.36289700	-1.13144300
Ni	-2.03936000	-0.36284100	1.13150700
Si	4.38026600	0.04642100	-0.44380300
Si	-4.38021200	0.04644500	0.44378700
Ν	0.46695300	-0.20984400	-0.30530600
Ν	-0.46690800	-0.20983700	0.30537200
Ν	3.78511100	-0.76284100	-1.76090700
Ν	3.08679200	0.96698100	-0.03747800
Ν	5.28183000	-1.00279300	0.75729300
Ν	6.04723100	0.73737000	-0.23860700
Ν	-3.78508800	-0.76269400	1.76098500
Ν	-3.08670900	0.96694100	0.03739600
Ν	-5.28180600	-1.00288400	-0.75716500
Ν	-6.04716000	0.73742700	0.23851500
С	2.66764400	-2.61299400	-2.64869600
С	-7.63538600	-0.37307700	-1.36460400
С	7.63546200	-0.37297700	1.36458600
С	1.44588100	-1.76422100	-2.37143000
С	-8.66795000	-1.10896600	-0.77587900
Н	-8.52241200	-1.55537900	0.20986100
С	-10.06053500	-0.67729100	-2.70119700
Н	-11.01118100	-0.79668300	-3.22579900
С	-9.87802000	-1.26064800	-1.44794800
Н	-10.68332900	-1.83692200	-0.98743700
С	0.55316800	2.77667700	-2.11820500
Н	0.12898800	2.00068800	-1.46914900
Н	0.35188400	2.49008700	-3.16241000
Н	-0.00159300	3.70322100	-1.90819600
С	-5.90220500	2.57137000	1.74941800
Н	-5.91101100	1.88633100	2.60915800
Н	-6.32184400	3.53658700	2.06604000
Н	-4.85908500	2.73784600	1.44441600
С	-6.39920600	-0.70696500	3.89368100
Н	-6.42092800	-1.20308900	4.87664100
Н	-7.27734300	-0.04351000	3.82715900
Н	-5.49055500	-0.08878500	3.84807900
С	-9.02989100	0.05788300	-3.28577400
Н	-9.16957700	0.51399600	-4.26821700
С	9.03006600	0.05829100	3.28561400
Н	9.16981000	0.51458000	4.26796700
С	-6.65106800	2.96909900	-0.59646700
Н	-7.07669200	3.94160100	-0.30750500
Н	-7.23129600	2.59043700	-1.45035700

Н	-5.60982600	3.13129900	-0.91403300
С	-5.45930700	-2.24937400	-2.88283600
Н	-6.54253800	-2.13154600	-3.02055300
Н	-5.15890900	-3.18664300	-3.37362300
Н	-4.94661200	-1.41878300	-3.39088300
С	-5.85632300	-3.39063400	-0.67470900
Н	-5.56832900	-3.43186800	0.38641900
Н	-5.64459000	-4.37196700	-1.12474000
Н	-6.93951300	-3.21479700	-0.74699200
С	-8.15463900	1.76331100	1.02466900
Н	-8.79114600	1.43493500	0.19198600
Н	-8.57521000	2.70031400	1.41850600
Н	-8.19930200	1.00580500	1.82139900
С	6.39928000	-0.70741500	-3.89372200
Н	6.42100500	-1.20365000	-4.87662600
Н	7.27744400	-0.04399000	-3.82725100
Н	5.49065300	-0.08919100	-3.84822100
С	-1.44589700	-1.76417200	2.37151500
С	6.65109000	2.96909300	0.59623000
Н	5.60985200	3.13132400	0.91378900
Н	7.07674100	3.94157400	0.30723900
Н	7.23129700	2.59044900	1.45014600
С	5.45943900	-2.24916100	2.88304700
Н	6.54270000	-2.13148500	3.02066000
Н	5.15894800	-3.18635100	3.37392900
Н	4.94691300	-1.41845900	3.39108500
С	3.57108000	-2.58892600	1.28734800
Н	2.98716400	-1.79629500	1.77475700
Н	3.33041100	-3.54517100	1.77248800
Н	3.25984200	-2.65165200	0.23364100
С	9.87807500	-1.26059300	1.44798700
Н	10.68334800	-1.83697400	0.98754400
С	-1.13478700	-0.91111700	3.60768300
Н	-0.31171900	-0.20468700	3.41794800
Н	-0.82777000	-1.55638200	4.45357800
Н	-2.01287800	-0.33424900	3.93479900
С	-0.23308700	-2.58958900	1.97988200
Н	-0.41398600	-3.18656000	1.07336900
Н	0.04766000	-3.29135600	2.78699300
Н	0.65176100	-1.96183100	1.80349700
С	2.44248800	0.64801000	3.20116800
Н	1.74791100	1.25493500	3.80202300
Н	2.76981800	-0.20413500	3.81889100
Н	1.88663200	0.25437400	2.33914900
С	5.85613600	-3.39059400	0.67495700
Н	5.56803500	-3.43188000	-0.38614100

Н	5.64438000	-4.37188200	1.12507700
Н	6.93934600	-3.21482900	0.74711300
С	4.43942500	2.00262300	3.91530600
Н	5.27428800	2.64338500	3.59049700
Н	4.85329000	1.15506800	4.48540000
Н	3.82631500	2.58722100	4.61916900
С	6.39477900	-1.74982700	-2.77264900
Н	6.38400100	-1.19229400	-1.82203700
С	-6.39478600	-1.74950200	2.77272600
Н	-6.38398900	-1.19207500	1.82205200
С	6.34884700	-0.21816200	0.65043500
С	-6.34879000	-0.21818900	-0.65043500
С	6.70970600	2.00000000	-0.58639100
С	5.06734300	-2.30276700	1.40584900
С	-5.06736000	-2.30292800	-1.40559500
С	-7.81532700	0.21075000	-2.62206600
Н	-7.00073100	0.77413700	-3.08175600
С	-6.70966700	2.00007100	0.58620800
С	1.13486300	-0.91118100	-3.60762900
Н	0.31184700	-0.20468100	-3.41793100
Н	0.82781000	-1.55645000	-4.45350700
Н	2.01300400	-0.33439300	-3.93475000
С	0.23301400	-2.58955300	-1.97980800
Н	0.41384500	-3.18649900	-1.07326500
Н	-0.04775200	-3.29133000	-2.78690500
Н	-0.65179700	-1.96172900	-1.80347500
С	2.65703100	-3.89872300	-3.18709200
Н	1.70967000	-4.41956100	-3.34381600
С	3.85569900	-4.52343500	-3.53700800
Н	3.84849400	-5.53601700	-3.94726900
С	7.81547900	0.21107800	2.62193100
Н	7.00092200	0.77457700	3.08155100
С	5.06220000	-3.84272700	-3.38560800
Н	5.98832800	-4.33264200	-3.69471700
С	5.11475500	-2.55409900	-2.84235500
С	3.90150400	-1.97139600	-2.41414000
С	2.05181000	2.96196000	-1.88692800
Н	2.55055900	2.00835300	-2.12553900
С	-3.57113600	-2.58921300	-1.28691800
Н	-2.98709600	-1.79665100	-1.77429100
Н	-3.33049900	-3.54549300	-1.77200500
Н	-3.26001600	-2.65193800	-0.23317700
С	3.62566100	1.49473000	2.73151100
H	4.27773700	0.82742500	2.14737900
C	2.85595300	2,24587900	0.43488400
Ċ	10.06066100	-0.67702200	2.70112600
-			

Н	11.01132700	-0.79634800	3.22570700
С	2.35575900	3.25770900	-0.43099900
С	2.59848000	4.02247700	-2.84174700
Н	2.06884800	4.98215800	-2.73169300
Н	2.46468600	3.69849200	-3.88589900
Н	3.66948300	4.21250600	-2.67867700
C	2.14091400	4.54301900	0.07263700
Н	1.74503900	5.31351900	-0.59378600
C	7.67045600	-2.58117900	-2.79177200
H	7.67425200	-3.34092600	-1.99500100
Н	8.55257000	-1.93422400	-2.65813300
Н	7.80352600	-3.10342000	-3.75210700
C	5.90221800	2.57117900	-1.74963800
H	5.91110200	1.88610600	-2.60934700
Н	6.32176500	3,53642800	-2.06628000
Н	4.85907300	2.73755800	-1.44466100
C	2.43039700	4.86765000	1.39282300
Н	2.26337000	5.88166800	1.76352000
C	2.93321800	3.88263700	2.23873000
Н	3.15808000	4.13559200	3.27707700
С	3.14407900	2.57908000	1.78881700
С	-2.05185300	2.96200600	1.88677900
Н	-2.55060100	2.00839700	2.12538800
С	8.66798300	-1.10899000	0.77594000
Н	8.52239200	-1.55557300	-0.20971400
С	8.15468900	1.76325300	-1.02482900
Н	8.79121000	1.43497100	-0.19212000
Н	8.57522100	2.70024000	-1.41874500
Н	8.19938200	1.00568600	-1.82150100
С	-3.62574800	1.49460800	-2.73158800
Н	-4.27780500	0.82733300	-2.14739700
С	-7.67050800	-2.58078200	2.79195600
Н	-7.67435800	-3.34060800	1.99526000
Н	-8.55259100	-1.93379500	2.65826400
Н	-7.80358700	-3.10292100	3.75234600
С	-0.55322800	2.77676800	2.11816300
Н	-0.12897400	2.00078800	1.46914500
Η	-0.35200300	2.49019900	3.16238600
Η	0.00151900	3.70332600	1.90818400
С	-2.59862100	4.02253900	2.84152500
Н	-2.06899900	4.98222800	2.73149200
Н	-2.46491300	3.69858000	3.88569600
Н	-3.66961400	4.21254300	2.67836000
С	-4.43958400	2.00247400	-3.91534100
Н	-5.27442200	2.64325100	-3.59049800
Н	-4.85349600	1.15490500	-4.48537900

Н	-3.82651300	2.58704600	-4.61926200
С	-2.44260900	0.64787100	-3.20131000
Н	-1.74810800	1.25478300	-3.80226500
Н	-2.76998000	-0.20431300	-3.81895500
Н	-1.88666600	0.25429600	-2.33932100
С	-2.66769700	-2.61286900	2.64883300
С	-2.65714700	-3.89858100	3.18727100
Н	-1.70981300	-4.41946300	3.34400900
С	-3.85584700	-4.52321600	3.53721600
Н	-3.84869200	-5.53578400	3.94751400
С	-5.06231500	-3.84245300	3.38579700
Н	-5.98846600	-4.33231200	3.69492700
С	-5.11480700	-2.55384500	2.84249300
С	-3.90152500	-1.97121900	2.41426100
С	-2.85590500	2.24582500	-0.43502600
С	-2.35572600	3.25769200	0.43081800
С	-2.14087700	4.54298100	-0.07287300
Н	-1.74499400	5.31350700	0.59351400
С	-2.43037800	4.86755900	-1.39306700
Н	-2.26336500	5.88156500	-1.76380500
С	-2.93324200	3.88252200	-2.23892300
Н	-3.15816200	4.13544900	-3.27726400
С	-3.14408300	2.57897900	-1.78896100