Supporting information

Synthesis of a nanoscale $Cu(II)_{31}$ -oxo-carboxylate cluster, and effect of Cuoxo cluster size on visible-light absorption

Thomas J. Barnes, Jack Payne, Sebastian D. Pike*

Contents	
Experimental Details	1
Synthetic Procedures	2
Supporting Figures	4
Bond Valence Sum Calculation Tables	23
Crystallography Data Tables	30
References	31

Associated datasets can be found at http://wrap.warwick.ac.uk/171021/

Experimental details

All reactions were performed at room temperature, under air unless otherwise stated. Oxygen or water sensitive reactions were performed under a nitrogen atmosphere using standard Schlenk line techniques. Dry solvents were either purchased in a dry form or dried *via* distillation, using CaH₂ (or Mg/I₂ for EtOH) as drying agent, and all were degassed by bubbling with N₂ and stored under N₂ over 4 Å molecular sieves (or 3 Å for alcohols). Reagents were purchased from Acros Organics (Cu(NO₃)₂.3H₂O and LiOEt), Sigma Aldrich (Pivalic acid and NaO₂C^tBu), Fischer Scientific (NEt₃) and Alfa Aesar (CuCl₂).

Powder X-ray diffraction (PXRD) patterns were measured on a Panalytical Empyrean with Cu source. Single crystal X-ray diffraction of **4** was carried out on a Bruker D8VENTURE equipped with highbrilliance I μSCu-Kα radiation (1.54178 Å) (at 180K) Data integration and reduction were undertaken with SAINT and XPREP. Multi-scan empirical absorption corrections were applied to the data using SADABS.¹ Single crystal X-ray diffraction of other compounds was carried out with a Rigaku-Agilent Synergy diffractometer equipped with a HyPix-6000HE HPC detector, again with Cu-Kα radiation, at 100 K. All structures were solved ab initio using or Superflip² then refined with Crystals.³ Crystallographic data have been deposited with the CCDC. Solution UV/Vis spectroscopy was carried out using an Implen C40 nanoPhotometer. Solid state UV/vis spectroscopy was carried out using a Shimadzu 2600i in diffuse reflectance mode with an integrating sphere attachment and was subtracted from a baseline of BaSO₄. Elemental analysis was conducted on samples dried thoroughly under vacuum and was determined at London Metropolitan University by Orla McCullough. FTIR spectroscopy were conducted using an Agilent Technologies Cary 630 KBr FT-IR spectrometer with a Cary FTIR Diamond ATR accessory.

UV/vis spectra at varying concentrations were typically collected by serial dilution (50% dilution each step). Absorbance data was proportional to concentration consistent with the Beer Lambert rule. Where diluted solutions were used to calculate molar extinction coefficients the concentration was estimated by using the Beer Lambert rule with respect to the original (higher concentration) solution to reduce any propagating errors during serial dilution (1, estimated by serial dilution 0.015 mM, by Beer Lambert 0.023 mM; 2, estimated by serial dilution 0.015 mM, by Beer Lambert 0.013 mM; 3,

estimated by serial dilution 0.015 mM, by Beer Lambert 0.009 mM; **4**, estimated by serial dilution 0.0075 mM, by Beer Lambert 0.011 mM). This gave very good agreement in molar extinction values for the similar clusters **1-3**. Extinction values for **4** are given with ± 33% accuracy.

Scheme S1. Overview of synthetic routes to Compounds 1-7 and compound list.

1. [Cu₁₆O₄(OH)₄(OⁿPr)₈(O₂C^tBu)₁₂(ⁿPrOH)], procedure optimised from Christou et al.⁴

Cu(NO₃)₂.3H₂O (1.0 g, 4.14 mmol) was dissolved in 50 mL of n-propanol. Pivalic acid (356 μ L, 3.10 mmol) was added to the solution. NEt₃ (1.16 mL, 4.16 mmol) was added dropwise to the stirring solution, causing a colour change from blue to green. The solution was stirred for 30 minutes before sealing the flask and leaving it to sit for 24 hours. The solvent was then reduced to ~2 mL and pentane (~ 15 mL) was added to precipitate [NHEt₃][NO₃]. The precipitate was discarded, and the solution placed at –20 °C to yield green crystals (400 mg, 53%).

CHN analysis: Predicted $(Cu_{16}O_4(OH)_4(O^PPr)_8(O_2C^Bu)_{12})$ - C: 35.59%, H: 5.97%. Found – C: 35.58%, H: 5.84%. N.B. centrally bound ⁿPrOH neutral ligand not present by elemental analysis, this is likely removed by prolonged vacuum.

2. [Cu₁₆O₄(OH)₄(OⁿBu)₈(O₂C^tBu)₁₂(ⁿBuOH)], procedure optimised from Christou et al.⁴

Cu(NO₃)₂.3H₂O (1.0 g, 4.14 mmol) was dissolved in 50 mL of n-butanol. Pivalic acid (356 μ L, 3.10 mmol) was added to the solution. NEt₃ (1.16 mL, 4.16 mmol) was added dropwise to the stirring solution, causing a colour change from blue to green. The solution was stirred for 30 minutes before sealing the flask and leaving it to sit for 24 hours. The solvent was then reduced to ~2 mL and pentane (~15 mL) was added to precipitate [NHEt₃][NO₃]. The precipitate was discarded, and the solution placed at -20 °C to yield green crystals (423 mg, 53%).

CHN analysis: Predicted – C: 38.16%, H: 6.47%. Found – C: 38.12%, H: 6.39%.

3. [Cu₁₆O₄(OH)₄(OEt)₈(O₂C^tBu)₁₂(H₂O)]

 $Cu(NO_3)_2.3H_2O$ (1.0 g, 4.14 mmol) was dissolved in 30 mL of ethanol. Pivalic acid (356 μ L, 3.10 mmol) was added to the solution. NEt₃ (1.16 mL, 4.16 mmol) was added dropwise to the stirring solution, causing a colour change from blue to green. The solution was stirred for 30 minutes before sealing the flask and leaving to sit for three days to allow green solids to form. The solution was discarded, and the solids washed twice with ethanol. The remaining solids were dried under vacuum. 440 mg collected (62% yield).

CHN analysis: Predicted – C: 33.31%, H: 5.66%. Found – C: 32.72%, H: 5.31%.

4. [Cu₃₁O₁₂(OH)₁₈(O₂C^tBu)₁₈(NO₃)₂(ⁱPrOH)₆].6(ⁱPrOH)

Cu(NO₃)₂.3H₂O (1.0 g, 4.14 mmol) was dissolved in 200 mL of isopropanol. Pivalic acid (276 μ L, 2.4 mmol) was added to the solution. NEt₃ (1.7 mL, 12.2 mmol) was added dropwise to the stirring solution, causing a colour change from blue to green. The solution was stirred for 30 minutes before sealing the flask and leaving it to sit in the dark for two weeks to allow crystalline material to form. The solution was discarded and the solids isolated (72 mg, 11%).

CHN analysis: Predicted $Cu_{31}O_{12}(OH)_{18}(O_2C^tBu)_{18}(NO_3)_2(^iPrOH)_6.4(^iPrOH) - C: 28.75\%, H: 5.23\%, N: 0.56\%.$ Found – C: 28.65%, H: 5.23%, N: 0.58%. N.B. two molecules of co-crystallised ⁱPrOH solvent appear to be lost under prolonged vacuum.

5. $[Cu_{31}O_{12}(OH)_{18}(O_2C^tBu)_{18}(NO_3)_2(CypOH)_6].12(CypOH)$

250 mg (1.03 mmol) of Cu(NO₃)₂.3H₂O was dissolved in 7.5 mL cyclopentanol in a round bottomed flask. To this 89 μ L (0.77 mmol) of pivalic acid was added whilst stirring. After 30 minutes stirring, 290 μ L (2.06 mmol) of NEt₃ was added to give a green solution. This was sealed and left in a dark place for two weeks to yield a small quantity of crystals of **6** on the walls of the flask, which were characteried by single-crystal X-ray diffraction only.

6. [Cu₆(OEt)₆(O₂C^tBu)₆].(C₇H₈)

Cu(OEt)₂ was prepared from CuCl₂ and LiOEt by literature routes.⁵ Cu(OEt)₂ (0.5 g, 3.25 mmol) was suspened in dry toluene (70 mL) under a nitrogen atmosphere. Pivalic acid (374 μ L, 3.25 mmol) was added and the reaction stirred at 70 °C for 24 hours, producing a dark blue precipitate and a green solution. The solution was discarded, and the solids dried under vacuum to give **6** as a dark blue crystalline solid (300 mg, 50% yield).

CHN analysis: Predicted $[Cu_6(OEt)_6(O_2C^tBu)_6].(C_7H_8)_{0.7} - C: 42.58\%$, H: 6.83%. Found – C: 42.56%, H: 6.73%. N.B. partial removal of co-crystallised toluene occurs under prolonged vacuum.

7. [Cu₁₇O₅(OH)₆(OⁱPr)₆(O₂C^tBu)₁₀(NO₃)₂]·([NEt₃H][NO₃])₂

Cu(NO₃)₂.3H₂O (0.5 g, 2.06 mmol) was dissolved in 30 mL of isopropanol. Pivalic acid (138 μ L, 1.20 mmol) was added to the solution. NEt₃ (575 μ L, 4.14 mmol) was added dropwise to the stirring solution, causing a colour change from blue to green. The solution was stirred for 30 minutes before 3Å molecular sieves (~10 g) were added and the solution was degassed by bubbling with N₂ gas. The

flask was sealed under a nitrogen atmosphere and left in the dark. Crystals of **7** formed on the side of the flask after one month (54 mg isolated, 14% yield).

CHN analysis: Predicted – C: 31.19%, H: 5.56%, N: 2.73%. Found – C: 30.52%, H: 5.16%, N: 2.62%

8. [Cu₂(O₂C^tBu)₄(ⁱPrOH)₂].[Cu₂(O₂C^tBu)₄(H₂O)₂].(ⁱPrOH)₂

A similar preparation was used as for previously reported Cu-pivalate paddlewheel compounds.⁶ 1 g (4.14 mmol) of Cu(NO₃).3H₂O and 1.2 g (8.28 mmol) Na(O₂C^tBu) were added to 30 mL isopropanol. The resulting suspension was stirred at room temperature for 30 minutes, and filtered. The solution was then dried to a turquoise solid under vacuum which was recrystallised from DCM at –20°C to give a microcrystalline compound (251 mg, 19% yield). The crystalline compound was found to exist as a co-crystallisation of $[Cu_2(O_2C^tBu)_4(^iPrOH)_2]$ and $[Cu_2(O_2C^tBu)_4(H_2O)_2]$ with two isopropanol solvent molecules which coordinate through H-bonding. The two clusters vary only in the terminal ligands (ⁱPrOH or H₂O), it is expected that these ligands are in dynamic exchange in solution.

CHN analysis: Predicted $[Cu_2(O_2C^tBu)_4(HO^iPr)_2]$. $[Cu_2(O_2C^tBu)_4(H_2O)] - C$: 45.31%, 7.61%. Found – C: 45.26%, H: 6.73%. N.B. co-crystallised isopropanol molecules likely lost under elongated vacuum.

Figure S1: X-ray crystal structure of **1** (data taken from Christou et al.⁴) Green = Cu, Red = O, Grey = C. Ellipsoids displayed at 50% and hydrogens omitted for clarity.

Figure S2: X-ray crystal structure of **2** (data taken from Christou et al.¹). Green = Cu, Red = O, Grey = C. Ellipsoids displayed at 50% and hydrogens omitted for clarity.

Figure S3: Powder X-ray diffraction pattern of a bulk sample of 2.

Figure S4: X-ray crystal structure of **3** shown in polyhedron view. Cyan = 4-coordinate Cu, Green = 5-coordinate Cu, Red = O, Grey = C. Ellipsoids displayed at 50% and hydrogens omitted for clarity.

Figure S5: Powder X-ray diffraction pattern of a bulk sample of 3.

Figure S6: X-ray crystal structure of **4** from three angles. Green = Cu, Light blue = N, Red = O, Grey = C (non-coordinated/H-bonded ⁱPrOH Cs shown in yellow, coordinated ⁱPrOH Cs shown in orange). Ellipsoids displayed at 50% and hydrogens omitted for clarity.

Figure S7: Powder X-ray diffraction pattern of a bulk sample of **4**. Minor impurities are identified by the sharp peaks at $2\theta = 12.8$ and 25.8° from a Cu₂(OH)₃(NO₃),⁷ and other minor peaks are consistent with small amount of paddlewheel by-product Cu₂(O₂C^tBu)₄(NEt)₃.⁸

Figure S8: X-ray crystal structure of **5**. Green = Cu, Light blue = N, Red = O, Grey = C (non-coordinated/H-bonded ⁱPrOH Cs shown in yellow, coordinated ⁱPrOH Cs shown in orange). Ellipsoids displayed at 50% and hydrogens and 6 non-coorinated CypOH solvent molecules omitted for clarity.

Supporting note 1. 4 and **5** contain a combination of four and five coordinate Cu centres and a single octahedral site at the centre. The 16 crystallographically separate Cu sites can be grouped into 3 'corner' sites, 6 'edge' sites, 3 'mid' sites, 3 'nitrate' and the central octahedral site (Fig S10, below). Most sites adopt an approximately square based pyramidal 5-coordinate geometry with variable bond lengths to the apical position. The 'mid' sites have a longer bond within the square plane and a shorter bond angled above the square plane, both Os arising from the same carboxylate in a slipped chelate mode.

Figure S9. X-ray structure of the Cu-O core of **4** with similar Cu sites grouped by colour. 'Corner' sites = orange, 'edge' sites = green, 'mid' sites = violet, 'nitrate' = yellow and the central octahedral site = black.

Figure S10. Polyhedron view of a 'corner' site = orange, 'edge' site = green, 'mid' site = violet, 'nitrate' site = yellow and the central octahedral site = black.

Table S1. Geometries of Cu centres with Cu–O bond lengths (Cu labels taken from crystal structure of **4**, with equivalent positions reported in the same column for **5**). Range of bond lengths to four Os in approximate square plane given, *with bond-length to apical O given in italics in the case of 5-coordinate centres*. Bonds beyond 2.8 Å greyed (N.B. sum of van der waals radii = 2.92 Å). Where apical site is significantly away from centre of square plane 'angled' is noted.

Cu label and description	4 Cu–O bond lengths (Å)	5 Cu–O bond lengths (Å)
1 corner	1.93-1.99 + 2.35 (+ 2.85)	1.93-1.98 <i>+ 2.30</i>
2 nitrate	1.92-2.02 + 2.77	1.89-2.01 + 2.62
3 nitrate	1.89-2.01 + 2.71	1.92-2.01
4 edge	1.91-2.00 + 2.47	1.92-1.98 + 2.52
5 centre	Octahedral 2.02-2.22	Octahedral 1.98-2.37
6 nitrate	1.92-2.03 + 2.89	1.90-2.04 + 2.74
7 mid	1.90-2.80 (+ 2.11 angled)	1.90-2.83 (+ 2.06 angled)
8 edge	1.92-1.98 + 2.44	1.92-2.00 + 2.38
9 mid	1.90-2.58 + 2.19 angled	1.91-2.28 + 2.35 angled
10 corner	1.93-1.99 + 2.31	1.93-1.98 <i>+ 2.29</i>
11 edge	1.91-2.01 + 2.43	1.91-2.00 + 2.48
12 edge	1.88-1.98 + 2.47	1.92-1.99 + 2.44
13 mid	1.90-2.66 + 2.16 angled	1.89-2.83 + 2.08 angled
14 corner	1.94-1.99 + 2.31 (+2.84)	1.93-2.00 + 2.29 (+ 2.81)
15 edge	1.89-1.95 + 2.47	1.92-2.00 + 2.40
16 edge	1.91-2.00 + 2.43	1.92-2.00 + 2.49

Figure S11: Powder X-ray diffraction patterns of the brown precipitate that formed after 2 weeks in a reaction targetting **4** but that was left open to air. Top pattern shows the crude product against the expected pattern for bulk CuO (data from Greaves et al, collection code 133363)⁹. The product contains CuO nanoparticles and unidentified molecular species (low angle peaks). Scherrer analysis of the reflections at $2\theta = 35^{\circ}$ and 38° gives estimated crystallite diamters of 8 and 15 nm. The bottom patterns show the PXRD pattern before and after washing the crude product with MeOH. A small trace of Cu₂(OH)₃(NO₃) is also noted in both spectra (peaks at $2\theta = 12.8$ and 25.8°).⁷

Figure S12. FTIR spectrum of the brown precipitate (containing CuO nanoparticles) that formed after two weeks in a reaction targetting **4** but that was left open to air. The sample was washed with MeOH before collecting the spectrum. Sample shows C–H (2963 cm⁻¹) and O=C–O (1536 and 1416 cm⁻¹) stretches expected for pivalate capping the CuO nanoparticle surfaces.¹⁰

Figure S13: X-ray crystal structure of **6**. Green = Cu, Red = O, Grey = C. Ellipsoids displayed at 50% and hydrogens omitted for clarity.

Figure S14: X-ray crystal structure of **7** from three different angles. Green = Cu, Light blue = N, Red = O, Grey = C, White = H. Ellipsoids displayed at 50% and hydrogens (except OH groups) and $[NEt_3H]^+$ cations omitted for clarity.

Figure S15. Polyhedron view of the X-ray structure of 7 from three different angles.

Figure S16: Powder X-ray diffraction pattern of a bulk sample of 7.

Figure S17: X-ray structure extract of seven coordinating pivalate anion in **7** Green = Cu, Light blue = N, Red = O, Grey = C. Ellipsoids displayed at 50% and hydrogens omitted for clarity. Carboxylate(O)–Cu bond length range 2.074(3)-2.777(3) Å.

Figure S18. The internal cleft of **7** contains disordered OⁱPr/OH moieties over four sites. Based on refining the occupancy of the carbon atoms (including disorder over two sites at each position) the disorder model shown here was used.

Figure S19: Photos showing, from left to right, CH_2CI_2 solutions of **8**, **6**, **2**, **7** and **4**. All at $[Cu] \sim 0.24$ mM (except for **7** which is approximately $[Cu] \sim 0.48$ mM)

Figure S20: Solid state pictures of (from left to right) **8**, **6**, **2**, **7**, **4** and CuO nanoparticles. All colours as solids resemble the colours of solutions, except for **8** which appears a much deeper blue when dissolved.

Figure S21. Diffuse-reflectance solid-state UV/visible spectrum of the dark brown precipitate (containing CuO nanoparticles) that formed after two weeks in a reaction targetting **4** but that was

left open to air. The precipitate was washed with MeOH before collecting this spectrum. The spectrum shows strong absorbance across the UV and visible region.

Figure S22. X-ray crystal structure of **8**. This paddlewheel structure crystallises as a co-crystal of two structures; one containing coordinated water ligands and one with coordinated ⁱPrOH ligands. Two ⁱPrOH solvent molecules form hydrogen bonding network between the coordinated water and ⁱPrOH groups on the two paddlewheel structures. Green = Cu, Red = O, Grey = C, Light blue = H. Ellipsoids displayed at 50% and hydrogens (except those involved in hydrogen bonding) omitted for clarity.

Figure S23: UV/vis spectrum of **1** at varying molecular concentrations in pentane. Serial dilutions consistent with Beer-Lambert law. However, due to slight inaccuratcy of serial dilutions estimated concentrations are likely closer to (2, 1.1, 0.62, 0.32, 0.17, 0.09, 0.05, 0.023, 0.011 mM).

Figure S24: UV/vis spectrum of **2** at varying molecular concentrations in pentane. Serial dilutions consistent with Beer-Lambert law.

Figure S25: UV/vis spectrum of **3** at varying molecular concentrations in CH_2Cl_2 . Serial dilutions consistent with Beer-Lambert law.

Figure S26: UV/vis spectrum of **1**, **2** and **3** at two different concentrations (dissolved in pentane for **1** and **2** and CH_2Cl_2 **3**). The differences in the spectra in the d-d region may be explained from slightly different Cu(II) geometries found in the different Cu_{16} structres.

Figure S27: UV/vis spectrum of **4** at varying compound concentrations in CH_2CI_2 . Serial dilutions consistent with Beer-Lambert law. Concentrations given with an error of ± 33%.

Figure S28: UV/vis spectrum of **6** at varying molecular concentrations in CH_2Cl_2 . Serial dilutions were inaccurate for the weaker concentrations, therefore approximate concentrations estimated using the Beer-lambert rule. Spectra were repeated separately for 1 mM and 0.02 mM. Slight shift in absorption is observed around the 450-500 nm area with changing concentration – this may be attributed to different oligomers of $[Cu(OEt)(O_2C^tBu)]n$ (e.g. $n = 4,6)^4$ forming concentration dependent equilibria.

Figure S29: UV/vis spectrum of 8 at varying molecular concentrations in CH₂Cl₂.

Figure S30: UV/vis spectrum of Cu(NO₃)₂ (0.4 mM) in ⁱPrOH.

Figure S31: UV/vis spectrum of **2**, **4**, **6** and **8** recorded as solutions at 0.1-0.4 mM concentration of Cu (mM[Cu]) in CH_2Cl_2 (or pentane for **2**) in comparison to sketch representing previously reported UV spectra of CuO nanoparticles (arbitrary scale on y-axis).^{11, 12}

Figure S32: UV/vis spectrum of **2**, **4**, **6** and **8** recorded as solutions at 0.1-0.4 mM concentration of Cu (mM[Cu]) in CH_2Cl_2 (or pentane for **2**), spectra reported as 'per copper' extinction coefficients in mM[Cu]⁻¹ cm⁻¹. Extinction coefficient for **4** with ± 33% error.

	1		1.1									
01	ОН					05	H2O					
	r	r0-r	(r0-r)/B	e((r0-r)/B)			r	r0-r	(r0-r)/B	e((r0-r)/B)		ľ
01-Cu1	2.412	-0.733	-1.9811	0.137920054		05-Cu7	2.502	-0.823	-2.2243	0.108140462		ľ
01-Cu3	1.957	-0.278	-0.7514	0.471728651		05-Cu7	2.502	-0.823	-2.2243	0.108140462		
01-Cu4	1.953	-0.274	-0.7405	0.476856086		05-H51	0.955	-0.073	-0.1973	0.820946532		ſ
01-Cu6	2.696	-1.017	-2.7486	0.064014309		O5-H52	0.956	-0.074	-0.2	0.818730753		ſ
				1.150519099	Good fit for OH					1.855958209	Good fit for H_2O	
												l
02	02-					013	ОН					l
	r	r0-r	(r0-r)/B	e((r0-r)/B)			r	r0-r	(r0-r)/B	e((r0-r)/B)		ļ
02-Cu4	1.961	-0.282	-0.7622	0.466656349		013-Cu5	1.931	-0.252	-0.6811	0.506069594		l
02-Cu5	1.93	-0.251	-0.6784	0.5074392		013-Cu5	1.931	-0.252	-0.6811	0.506069594		l
02-Cu6	1.917	-0.238	-0.6432	0.525585057						1.012139189	Good fit for OH	l
02-Cu7	1.911	-0.232	-0.627	0.534177538								
				2.033858143	Good fit for O ²⁻	019	Alkoxide					
							r	r0-r	(r0-r)/B	e((r0-r)/B)		ſ
03	02-					019-Cu3	1.904	-0.225	-0.6081	0.544379803		ſ
	r	r0-r	(r0-r)/B	e((r0-r)/B)		019-Cu8	1.908	-0.229	-0.6189	0.538526314		ſ
03-Cu3	1.958	-0.279	-0.7541	0.47045543		019-C47	1.415	-0.025	-0.0676	0.934664565		ſ
03-Cu6	1.913	-0.234	-0.6324	0.531297882						2.017570682	Good fit for alkoxide	ſ
03-Cu7	1.922	-0.243	-0.6568	0.51853033								ſ
03-Cu8	1.946	-0.267	-0.7216	0.485963568		020	Alkoxide					
				2.006247209	Good fit for O ²⁻		r	r0-r	(r0-r)/B	e((r0-r)/B)		ſ
						O20-Cu1	1.939	-0.26	-0.7027	0.495244993		ſ
04	ОН					O20-Cu2	1.927	-0.248	-0.6703	0.511570297		ſ
	r	r0-r	(r0-r)/B	e((r0-r)/B)		O20-Cu3	2.513	-0.834	-2.2541	0.104972795		ſ
02-Cu8	1.887	-0.208	-0.5622	0.569975351		O20-C49	1.433	-0.043	-0.1162	0.890282709		ſ
02-Cu8	1.887	-0.208	-0.5622	0.569975351						2.002070795	Good fit for alkoxide	ſ
				1.139950703	Good fit for OH							
												l
021	Alkoxide					022	Alkoxide					l
	r	r0-r	(r0-r)/B	e((r0-r)/B)			r	r0-r	(r0-r)/B	e((r0-r)/B)		l
021-Cu1	1.94	-0.261	-0.7054	0.493908301		022-Cu4	1.904	-0.225	-0.6081	0.544379803		l
O21-Cu2	1.927	-0.248	-0.6703	0.511570297		O22-Cu5	1.898	-0.219	-0.5919	0.553279549		L
021-Cu4	2.549	-0.87	-2.3514	0.095240372		O22-C53	1.47	-0.08	-0.2162	0.805561108		
O21-C51	1.439	-0.049	-0.1324	0.875962119						1.90322046	Good fit for alkoxide	
				1.976681088	Good fit for alkoxide							
	1											ſ

Table S2: Bond valence sum calculations for **3**. For Cu(II)–O, $r_0 = 1.679$. For C–O, $r_0 = 1.39$. B = 0.37.

						_						
01						06						
r	r0-r	(r0-r)/B	e((ro-r)/B)			r		r0-r	(r0-r)/B	e((ro-r)/B)		
1.9	-0.221	-0.5973	0.55029692			1	L.975	-0.296	-0.8	0.44932896		
1.91	-0.231	-0.6243	0.53562321			2	2.035	-0.356	-0.9622	0.3820659		
1.957	-0.278	-0.7514	0.47172865			1	.998	-0.319	-0.8622	0.42224813		
1.935	-0.256	-0.6919	0.50062804							1.25364299	Good fit for C	ж
			2.05827682	Good fit f	or O ²⁻							
						07						
02						r		r0-r	(r0-r)/B	e((ro-r)/B)		
r	r0-r	(r0-r)/B	e((ro-r)/B)			1	.983	-0.304	-0.8216	0.43971802		
1.914	-0.235	-0.6351	0.52986388				1.99	-0.311	-0.8405	0.43147723		
1.925	-0.246	-0.6649	0.51434303			1	986	-0.307	-0.8297	0.43616715		
2.022	-0.343	-0.927	0.39572845							1.3073624	Good fit for C	ж
1.92	-0.241	-0.6514	0.52134079									
			1.96127615	Good fit f	or O ²⁻	08						
						r		r0-r	(r0-r)/B	e((ro-r)/B)		
03						1	.921	-0.242	-0.6541	0.51993366		
r	r0-r	(r0-r)/B	e((ro-r)/B)			1	.887	-0.208	-0.5622	0.56997535		
1.913	-0.234	-0.6324	0.53129788							1.08990901	Good fit for C	ж
1.894	-0.215	-0.5811	0.5592934									
1.898	-0.219	-0.5919	0.55327955			09						
2.215	-0.536	-1.4486	0.23488749			r		r0-r	(r0-r)/B	e((ro-r)/B)		
			1.87875832	Good fit f	or O ²⁻	1	.893	-0.214	-0.5784	0.56080705		
						1	.904	-0.225	-0.6081	0.5443798		
04						1	.947	-0.268	-0.7243	0.48465193		
r	r0-r	(r0-r)/B	e((ro-r)/B)			1	.949	-0.27	-0.7297	0.48203925		
1.902	-0.223	-0.6027	0.54733036							2.07187803	Good fit for C) ²⁻
1.936	-0.257	-0.6946	0.49927682									
1.904	-0.225	-0.6081	0.5443798			010)					
1.941	-0.262	-0.7081	0.49257522			r		r0-r	(r0-r)/B	e((ro-r)/B)		
			2.0835622	Good fit f	or O ²⁻	1	.999	-0.32	-0.8649	0.42110846		
						2	2.008	-0.329	-0.8892	0.41098885		
05						2	2.011	-0.332	-0.8973	0.40766998		
r	r0-r	(r0-r)/B	e((ro-r)/B)							1.23976729	Good fit for C	ЭН
1.917	-0.238	-0.6432	0.52558506									2.515
1.902	-0.223	-0.6027	0.54733036									
			1.07291542	Good fit f	or OH							

Table S3: Bond valence sum calculations for **4**. For Cu(II)–O, $r_0 = 1.679$. For C–O, $r_0 = 1.39$. B = 0.37.

	011											
	r	r0-r	(r0-r)/B	e((ro-r)/B)		0181						
	1.911	-0.232	-0.627	0.53417754		r	r0-r	(r0-r)/B	e((ro-r)/B)			
	1.924	-0.245	-0.6622	0.51573503		2.331	-0.652	-1.7622	0.17167328			
				1.04991256	Good fit for OH	1.499	-0.109	-0.2946	0.74483349			
									0.91650676	Good fit for a	alcohol	
	012											
	r	r0-r	(r0-r)/B	e((ro-r)/B)								
	1.99	-0.311	-0.8405	0.43147723		O39						
	1.998	-0.319	-0.8622	0.42224813		r	r0-r	(r0-r)/B	e((ro-r)/B)			
	2.019	-0.34	-0.9189	0.39895011		0.944	-0.062	-0.1676	0.84571947			
				1.25267546	Good fit for OH	1.457	-0.067	-0.1811	0.8343677			
									1.68008718	Free alco	hol	
	013											
	r	r0-r	(r0-r)/B	e((ro-r)/B)								
	1.984	-0.305	-0.8243	0.4385312		0170						
	1.986	-0.307	-0.8297	0.43616715		r	r0-r	(r0-r)/B	e((ro-r)/B)			
	1.984	-0.305	-0.8243	0.4385312		2.347	-0.668	-1.8054	0.16440779			
				1.31322955	Good fit for OH	1.424	-0.034	-0.0919	0.91220376			
									1.07661155	Good fit for a	alcohol	
	014											
_	r	r0-r	(r0-r)/B	e((ro-r)/B)								
	2.072	-0.393	-1.0622	0.34570753		O40						
	1.899	-0.22	-0.5946	0.55178622		r	r0-r	(r0-r)/B	e((ro-r)/B)			
	1.933	-0.254	-0.6865	0.50334146		0.951	-0.069	-0.1865	0.82986978			
	1.916	-0.237	-0.6405	0.52700748		1.467	-0.077	-0.2081	0.81211924			
				1.92784268	Good fit for O ²⁻				1.64198901	Free alco	hol	
	029					0151						
	r	r0-r	(r0-r)/B	e((ro-r)/B)		r	r0-r	(r0-r)/B	e((ro-r)/B)			
	1.974	-0.295	-0.7973	0.45054501		2.325	-0.646	-1.7459	0.17447986			
Ī	1.985	-0.306	-0.827	0.43734758		1.444	-0.054	-0.1459	0.86420442			
Ĩ	1.986	-0.307	-0.8297	0.43616715					1.03868428	Good fit for a	alcohol	
Ĩ				1.32405974	Good fit for OH							
-												

							-						
01	ОН						07	02-					
	r	r0-r	(r0-r)/B	e((r0-r)/B)			r	r0-r	(r0-r)/B	e((r0-r)/B)		
01-Cu1	1.978	-0.299	-0.8081	0.4457			07-Cu3	1.908	-0.229	-0.6189	0.538526314		
01-Cu2	2.002	-0.323	-0.873	0.4177			07-Cu4	1.924	-0.245	-0.6622	0.515735025		
01-Cu4	2.01	-0.331	-0.8946	0.4088			07-Cu11	1.98	-0.301	-0.8135	0.443297794		
				1.2722	Good fit fo	or OH	07-Cu14	1.938	-0.259	-0.7	0.496585304		
											1.994144437	Good fit for	0 ²⁻
02	ОН												
	r	r0-r	(r0-r)/B	e((r0-r)/B)		08	ОН					
02-Cu2	1.911	-0.232	-0.627	0.5342				r	r0-r	(r0-r)/B	e((r0-r)/B)		
02-Cu6	1.924	-0.245	-0.6622	0.5157			08-Cu8	1.981	-0.302	-0.8162	0.442101309		
				1.0499	Good fit fo	or OH	08-Cu14	2.002	-0.323	-0.873	0.417707867		
							08-Cu16	1.969	-0.29	-0.7838	0.456674779		
03	ОН										1.316483956	Good fit for	он
	r	r0-r	(r0-r)/B	e((r0-r)/B)								
03-Cu1	1.979	-0.3	-0.8108	0.4445			09	02-					
03-Cu4	2.004	-0.325	-0.8784	0.4155				r	r0-r	(r0-r)/B	e((r0-r)/B)		
03-Cu5	2.002	-0.323	-0.873	0.4177			09-Cu4	1.928	-0.249	-0.673	0.510189541		
				1.2777	Good fit fo	or OH	09-Cu9	1.93	-0.251	-0.6784	0.5074392		
							04-Cu10	1.908	-0.229	-0.6189	0.538526314		
04	02-						04-Cu11	2.006	-0.327	-0.8838	0.413216428		
	r	r0-r	(r0-r)/B	e((r0-r)/B	5)						1.969371483	Good fit for	0 ²⁻
04-Cu2	1.94	-0.261	-0.7054	0.4939									
04-Cu3	1.898	-0.219	-0.5919	0.5533			010	02-					
04-Cu6	1.949	-0.27	-0.7297	0.482				r	r0-r	(r0-r)/B	e((r0-r)/B)		
04-Cu7	1.906	-0.227	-0.6135	0.5414			O10-Cu3	1.89	-0.211	-0.5703	0.565372615		
				2.0707	Good fit fo	or O ²⁻	010-Cu1	1.898	-0.219	-0.5919	0.553279549		
							010-Cu1	1.94	-0.261	-0.7054	0.493908301	· · · · · · · · · · · · · · · · · · ·	
05	02-						010-Cu1	1.942	-0.263	-0.7108	0.491245729		
	r	r0-r	(r0-r)/B	e((r0-r)/B	3)						2.103806193	Good fit for	0 ²⁻
05-Cu5	1.949	-0.27	-0.7297	0.482	, 								
05-Cu7	1,907	-0.228	-0.6162	0.54			011	ОН					
05-Cu8	1.95	-0.271	-0.7324	0.4807				r	r0-r	(r0-r)/B	e((r0-r)/B)		
05-Cu10	1,903	-0.224	-0.6054	0.5459			011-Cu9	2.036	-0.357	-0.9649	0.381034687		
				2,0486	Good fit fo	or O ²⁻	011-011	1 996	-0 317	-0.8568	0.424536728		
				2.0400	3000 111 10		011-011	1.550	-0 318	-0.8595	0 42339088		
06	02-						011-001	1.557	0.510	0.0000	1.228962296	Good fit for	он
	r	r0-r	(r0-r)/B	e((r()-r)/B	3		-				1.220502250		
06-017	. 1 007	_0 220	-0 6162	0.54	7		012	ОН					
06-019	1 907	-0.220	-0.0102	0.54			012	r	r0-r	$(r_r)/R$	$e((r_{1}-r)/B)$		
06-011	2 260	-0.219	-1 8622	0.3555			012-046	1 001	_0 212	-0 8/122	0 /302126/0		
06-Cu14	1 902	-0.069	-0.5757	0.1555			012-000	1.991	-0.312	-0.0432	0.430312049		
00-Cu14	1.092	-0.213	-0.3757	1.9100	Cood fit fo	- O ²⁻	012-009	1.969	-0.51	-0.03/8	0.452044901		
												-	

Table S4: Bond valence sum calculations for **5**. For Cu(II)–O, $r_0 = 1.679$. For C–O, $r_0 = 1.39$. B = 0.37.

037							038							
	r	r0-r	(r0-r)/B	e((r0-r)/B)				r	r0-r	(r0-r)/B	e((r0-r)/B)			
O37-Cu1	2.291	-0.612	-1.6541	0.191272904			O38-Cu1	2.287	-0.608	-1.6432	0.193351937			
O37-C56	1.448	-0.058	-0.1568	0.854911985			O38-C51	1.423	-0.033	-0.0892	0.914672511			
				1.046184889	Good f	it for CypOH					1.108024448	Good fit fo	or CypOH	_
042							039							_
	r	r0-r	(r0-r)/B	e((r0-r)/B)				r	r0-r	(r0-r)/B	e((r0-r)/B)			
O42-C71	1.492	-0.102	-0.2757	0.759059072			039-Cu1	2.298	-0.619	-1.673	0.187688243			
O42-H42	0.949	-0.067	-0.1811	0.834367705			O39-C46	1.448	-0.058	-0.1568	0.854911985			
				1.593426777	Fre	е СурОН					1.042600228	d fit for Cy	рОН	_
043														
	r	r0-r	(r0-r)/B	e((r0-r)/B)										
O43-C86	1.472	-0.082	-0.2216	0.801218471										
O43-H43	0.95	-0.068	-0.1838	0.832115701										
				1.633334172	Fre	е СурОН								
														_
							-							

Table S5: Bond valence sum calculations for **6**. For Cu(II)–O, $r_0 = 1.679$. For C–O, $r_0 = 1.39$. B = 0.37.

013									016						
	r		r0-r		(r0-r)/B	e((r0-r)/B)				r	r0-r	(r0-r)/B	e((r0-r)/B)		
013-Cu2		1.91		-0.231	-0.6243243	0.53562321			O16-Cu1	1.906	-0.227	-0.6135135	0.54144515	,	
013-Cu3		1.905		-0.226	-0.6108108	0.54291049			O16-Cu6	1.915	-0.236	-0.6378378	0.52843375	,	
013-C31		1.422		0.032	0.08648649	1.09033663			O16-C37	1.423	-0.033	-0.0891892	0.91467251		
						2.16887034	Good fit for a	Ikoxide					1.98455141	Good fit for a	alkoxide
014									017						
	r		r0-r		(r0-r)/B	e((r0-r)/B)				r	r0-r	(r0-r)/B	e((r0-r)/B)		
014-Cu2		1.9		-0.221	-0.5972973	0.55029692			O17-Cu4	1.907	-0.228	-0.6162162	0.53998376	ć	
014-Cu3		1.91		-0.231	-0.6243243	0.53562321			O17-Cu5	1.902	-0.223	-0.6027027	0.54733036	>	
014-C33		1.422		-0.032	-0.0864865	0.91714794			O17-C39	1.424	-0.034	-0.0918919	0.91220376	ć	
l						2.00306807	Good fit for a	Ikoxide					1.99951788	Good fit for a	alkoxide
015									018						
	r		r0-r		(r0-r)/B	e((r0-r)/B)				r	r0-r	(r0-r)/B	e((r0-r)/B)		
015-Cu1		1.906		-0.227	-0.6135135	0.54144515			O18-Cu4	1.908	-0.229	-0.6189189	0.53852631	L	
015-Cu6		1.903		-0.224	-0.6054054	0.54585309			018-Cu5	1.907	-0.228	-0.6162162	0.53998376	5	
O15-C35		1.419		-0.029	-0.0783784	0.92461451			018-C41	1.42	-0.03	-0.0810811	0.92211892	2	
						2.01191274	Good fit for a	Ikoxide					2.00062899	Good fit for a	alkoxide

01						06					
	r	r0-r	(r0-r)/B	e((r0-r)/B)			r	r0-r	(r0-r)/B	e((r0-r)/B)	
01-Cu1	2.003	-0.324	-0.8757	0.416580451		06-Cu2	. 1.978	-0.299	-0.8081	0.445700486	
01-Cu2	2.002	-0.323	-0.873	0.417707867		06-Cu5	1.981	-0.302	-0.8162	0.442101309	
01-Cu3	2.263	-0.584	-1.5784	0.206309383		06-Cu6	1.989	-0.31	-0.8378	0.432644961	
01-Cu4	2.001	-0.322	-0.8703	0.418838334						1.320446757	Good fit for OH
01-Cu11	2.007	-0.328	-0.8865	0.412101135							
				1 871537171	Good fit for Ω^{2}	07					
				1.0/155/1/1		0/	r	r0-r	(r0-r)/B	e((r0-r)/B)	
02						07-Cu2	1,986	-0.307	-0.8297	0.436167153	
	r	r0-r	(r0-r)/B	e((r0-r)/B)		07-Cu6	1.989	-0.31	-0.8378	0.432644961	
O2-Cu3	1.893	-0.214	-0.5784	0.560807046		07-Cu7	1.988	-0.309	-0.8351	0.433815854	
02-Cu11	1.872	-0.193	-0.5216	0.593557242						1.302627969	Good fit for OH
02-Cu12	1.941	-0.262	-0.7081	0.492575216							
02-Cu15	1.949	-0.27	-0.7297	0.482039253		08					
				2 128978757	Good fit for Ω^{2-}		r	r0-r	(r0-r)/B	$e((r_0-r)/B)$	
				2.120570757		08-Cu2	1.975	-0.299	-0.8081	0.44570049	
03						08-Cu10	1.983	-0.302	-0.8162	0.44210131	
	r	r0-r	(r0-r)/B	e((r0-r)/B)		08-Cu12	1.984	-0.31	-0.8378	0.43264496	
03-Cu3	1.894	-0.215	-0.5811	0.559293398		00 0012	1.501	0.01	0.0070	1.32044676	Good fit for OH
03-Cu4	1.881	-0.202	-0.5459	0.579293544							
03-Cu7	1.93	-0.251	-0.6784	0.5074392		09					
03-Cu8	1.947	-0.268	-0.7243	0.484651926			r	r0-r	(r0-r)/B	e((r0-r)/B)	
				2,130678068	Good fit for O ²⁻	09-Cu2	1,979	-0.3	-0.8081	0.44570049	
				2.12007,0000		09-Cu10	1.988	-0.309	-0.8162	0.44210131	
04						02-Cu13	1.99	-0.311	-0.8378	0.43264496	
	r	r0-r	(r0-r)/B	e((r0-r)/B)						1.32044676	Good fit for OH
O4-Cu1	1.893	-0.214	-0.5784	0.560807046							
O4-Cu4	1.886	-0.207	-0.5595	0.571517909		018					
O4-Cu5	1.925	-0.246	-0.6649	0.514343029			r	r0-r	(r0-r)/B	e((r0-r)/B)	
04-Cu9	1.938	-0.259	-0.7	0.496585304		018-Cu9	1.924	-0.245	-0.6622	0.515735025	
				2,143253288	Good fit for O ²⁻	018-Cu1	1,936	-0.257	-0.6946	0.499276816	
						018-C480	1.335	0.055	0.1486	1.160265257	
05									0.12.000	2.175277099	Good fit for alkoxide
	r	r0-r	(r0-r)/B	e((r0-r)/B)							
05-Cu1	1.892	-0.213	-0.5757	0.562324791		019					
05-Cu11	1.882	-0.203	-0.5486	0.577729999			r	r0-r	(r0-r)/B	e((r0-r)/B)	
05-Cu13	1.935	-0.256	-0.6919	0.500628038		019-Cu8	1.934	-0.255	-0.6892	0.501982917	
05-Cu14	1.945	-0.266	-0.7189	0.487278759		019-Cu17	1.926	-0.247	-0.6676	0.512954789	
				2.127961588	Good fit for Ω^{2}	019-C51	1.351	0.039	0,1054	1.11116099	
	1	1	1			015 051	1.001	0.000	0.1004	2.126098696	Good fit for alkoxide
		1		1							

Table S6: Bond valence sum calculations for **7**. For Cu(II)–O, $r_0 = 1.679$. For C–O, $r_0 = 1.39$. B = 0.37.

020						036					
	r	r0-r	(r0-r)/B	e((r0-r)/B)			r	r0-r	(r0-r)/B	e((r0-r)/B)	
O20-Cu14	1.942	-0.263	-0.7108	0.491245729		036-Cu7	1.916	-0.237	-0.6405	0.527007478	
020-Cu16	1.942	-0.263	-0.7108	0.491245729		036-Cu8	1.923	-0.244	-0.6595	0.517130789	
O20-C590	1.389	0.001	0.0027	1.002706358		O36-C37	1.443	-0.053	-0.1432	0.866543262	
				1.985197815	Good fit for alkoxide					1.91068153	Good fit for alkoxi
021						037					
	r	r0-r	(r0-r)/B	e((r0-r)/B)			r	r0-r	(r0-r)/B	e((r0-r)/B)	
O21-Cu15	1.934	-0.255	-0.6892	0.501982917		037-Cu12	1.908	-0.229	-0.6189	0.538526314	
021-Cu16	1.942	-0.263	-0.7108	0.491245729		037-Cu15	1.916	-0.237	-0.6405	0.527007478	
O21-C622	1.427	-0.037	-0.1	0.904837418		037-C40	1.433	-0.043	-0.1162	0.890282709	
				1.898066064	Good fit for alkoxide					1.955816501	Good fit for alkoxi
032						037					
	r	r0-r	(r0-r)/B	e((r0-r)/B)			r	r0-r	(r0-r)/B	e((r0-r)/B)	
O32-Cu5	1.911	-0.232	-0.627	0.534177538		037-Cu12	1.908	-0.229	-0.6189	0.538526314	
O32-Cu9	1.926	-0.247	-0.6676	0.512954789		037-Cu15	1.916	-0.237	-0.6405	0.527007478	
O32-C11	1.435	-0.045	-0.1216	0.885483353		O37-C40	1.433	-0.043	-0.1162	0.890282709	
				1.93261568	Good fit for alkoxide					1.955816501	Good fit for alkoxi
O35											
	r	r0-r	(r0-r)/B	e((r0-r)/B)							
	1.913	-0.234	-0.6324	0.531297882							
O35-Cu13	-	0.259	-0.6973	0.497929242							
O35-Cu13 O35-Cu14	1.937	-0.230	0.0575	0.10/020212							
O35-Cu13 O35-Cu14 O35-C14	1.937 1.428	-0.238	-0.1027	0.902395213							

Crystallography Tables

Compound	3	4	5
CCDC No.	2211399	2211400	2211401
Formula	C ₈₁ H ₁₈₀ Cu ₁₆ O ₄₁	$C_{126}H_{276}Cu_{31}N_2O_{84}$	$C_{150}H_{300}Cu_{31}N_2O_{84}$
Μ	2827	5133	5446
Crystal System	Monoclinic	Monoclinic	Monoclinic
Space group	P 2 ₁ /m	P 2 ₁ /n	P 2 ₁ /n
Т [К]	100	100	100
a [Å]	14.4485(3)	19.2171(6)	19.41100(10)
b [Å]	22.5228(4)	19.0958(6)	21.32210(10)
c [Å]	18.5406(4)	26.9688(8)	28.21580
α [deg]	90	90	90
β [deg]	96.0323(18)	90.3848(17)	92.1343
γ [deg]	90	90	90
V [ų]	6000.1(2)	9896.4(3)	11669.95(9)
Z	2	2	4
θ range [deg]	3.076 - 80.020	2.814 - 67.167	3.12 – 78.27
Refins collected	88854	130526	107115
R int	0.064	0.125	0.033
No. of	13091/2204/828	17551/1952/1420	24720/180/1412
data/restr/param			
R ₁ [I>2σ(I)]	0.0796	0.1166	0.0426
wR ₂ [all data]	0.1797	0.2273	0.1263
GoF	1.0068	1.0072	0.9958
Largest diff. pk and hole [eÅ ³]	-1.26, 1.34	-1.42, 1.71	-1.10, 1.60

Compound	6	7	8
CCDC No.	2211402	2211403	2220157
Formula	$C_{42}H_{84}Cu_6O_{18}$	C ₈₀ H ₁₇₀ Cu ₁₇ N ₆ O ₄₉	$C_{26}H_{54}Cu_2O_{11}$
М	1258.39	3080.52	669.80
Crystal System	Monoclinic	Monoclinic	Triclinic
Space group	P 2 ₁ /c	P 2 ₁ /n	P -1
T [K]	100	100	100
a [Å]	14.57980(10)	19.35030(10)	11.57930(10)
b [Å]	15.13330(10)	33.6673(3)	11.94480(10)
c [Å]	28.5685(2)	21.1824(2)	14.63380(10)
α [deg]	90	90	99.4804(8)
β [deg]	102.2096(8)	95.7608(7)	110.8148(8)
γ [deg]	90	90	105.8283(3)
V [ų]	6160.79(8)	13730.05(19)	1741.46(3)
Z	4	1	2
θ range [deg]	3.101 – 79.994	3.228 - 80.548	3.377 - 77.014
Reflns collected	147889	137951	51706
R int	0.064	0.050	0.056
No. of	13310/0/658	29195/1523/1630	7009/632/473
data/restr/param			
R ₁ [I>2σ(I)]	0.0310	0.0552	0.0498
wR ₂ [all data]	0.0911	0.1611	0.1292
GoF	1.0086	1.0000	1.0098
Largest diff. pk and hole [eÅ ³]	-0.63, 0.41	-1.18, 2.12	-1.29, 1.26

References

1. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

2. Palatinus, L.; Chapuis, G., J. Appl. Crystallogr. 2007, 40 (4), 786-790.

3. Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J., *J. Appl. Crystallogr.* **2003**, *36* (6), 1487.

4. Liu, T.-F.; Stamatatos, T. C.; Abboud, K. A.; Christou, G., *Dalton Trans.* **2010**, *39* (15), 3554-3556.

5. Singh, J. V.; Baranwal, B. P.; Mehrotra, R. C., Z. Anorg. Allg. Chem. **1981**, 477 (6), 235-240.

6. Zhou, J.-H.; Liu, Z.; Li, Y.-Z.; Song, Y.; Chen, X.-T.; You, X.-Z., *J. Coord. Chem.* **2006**, *59* (2), 147-156.

- 7. Liu, B., Nanoscale **2012**, *4* (22), 7194-7198.
- 8. Masahiro, M.; Hiroshi, A.; Ryoji, N.; Makoto, H., Chem. Lett. **1999**, 28 (1), 57-58.
- 9. Li, R.; Greaves, C., J. Solid State Chem. **2020**, 291, 121612.

10. Pike, S. D.; White, E. R.; Regoutz, A.; Sammy, N.; Payne, D. J.; Williams, C. K.; Shaffer, M. S. P., *ACS Nano* **2017**, *11* (3), 2714-2723.

- 11. Estruga, M.; Roig, A.; Domingo, C.; Ayllón, J. A., J. Nanopart. Res. **2012**, *14* (8), 1053.
- 12. Borgohain, K.; Mahamuni, S., J. Mater. Res. 2002, 17 (5), 1220-1223.