## Electronic Supplementary Information

# Synthesis of naphthalene-substituted aromatic esters via Rh(III)catalyzed C-H bond naphthylation and cascade directing group transformation 

Yue Cui, ${ }^{\text {a }}$ Siyu Li, ${ }^{\text {a }}$ Hesheng Wang, ${ }^{\text {a }}$ Jing Zeng, ${ }^{\text {a }}$ Yichen Wang, ${ }^{\text {a }}$<br>Xiubin Bu,*a Xiaobo Yang*a,b and Zhen Zhao ${ }^{\text {a }}$

aInstitute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P.R. China.
${ }^{b}$ Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

E-mail: bxy1223@gmail.com; yangxb@synu.edu.cn; buxb@synu.edu.cn.

## Table of Contents

I. General remarks ..... S2
II. General procedure for the synthesis of starting materials ..... S2
III. General procedure for the synthesis of compounds 3 ..... S3
IV. Scale-up reaction and derivatization ..... S3
V. Mechanistic studies ..... S5
VI. Characterization data of compounds ..... S10
VII. References ..... S22
VIII. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds ..... S24

## I. General remarks

NMR spectra were recorded on Bruker 400 NMR, Bruker 500 NMR, Bruker 600 NMR in either $\mathrm{CDCl}_{3}$ or DMSO- $d_{6}$. Abbreviations for data quoted are $s$, singlet; brs, broad singlet; $d$, doublet; $t$, triplet; dd, doublet of doublets; m, multiplet or unresolved. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta H=7.26 \mathrm{ppm}, \delta \mathrm{C}=77.16 \mathrm{ppm} ; \mathrm{DMSO}-\mathrm{d}_{6}\right.$ : $\delta \mathrm{H}=2.50 \mathrm{ppm}, \delta \mathrm{C}=39.52 \mathrm{ppm})$. High-resolution mass spectra were recorded on a Bruker solariX 7T mass spectrometer or Thermo LCQ Deca XP Max mass spectrometer. Silica gel 60 H (200-300 mesh) and preparative TLC ( $200 \times 200 \mathrm{~mm}, 0.2-0.25 \mathrm{~mm}$ in thickness) manufactured by Qingdao Haiyang Chemical Group Co. (China) were used for general chromatography. All commercially available reagents and solvents were used as received unless otherwise specified.

## II. General procedure for the synthesis of starting materials

1. General procedure for the synthesis of ethyl benzimidates ${ }^{1-4}$


To a stirred solution of a nitrile (1 equiv.) and an alcohol (12 equiv.), AcCl was added (8 equiv.) dropwise at $0{ }^{\circ} \mathrm{C}$. The Schlenk tube was stoppered tightly, and the stirring was continued at $25^{\circ} \mathrm{C}$. After the reaction was complete, the volatiles was removed under reduced pressure to isolate the benzimidate hydrochloride. Then slowly mixed benzimidate hydrochloride and saturated aqueous $\mathrm{NaHCO}_{3}$ solution in an ice bath until gas evolution had ceased. The product was extracted into EtOAc, and the organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and concentrated under reduced pressure to obtain the benzimidates.
2. General procedure for the synthesis of oxa bicyclic alkenes ${ }^{5-7}$


2b

2c

2d

2e

2f

2g

To a stirred solution of substituted 1,2-dibromobenzene ( 7.0 mmol ) in anhydrous THF ( 15 mL ) under Ar, freshly distilled furan ( 15 mL ) was added. Then $n$-BuLi ( 2.5 M in hexane, $3.4 \mathrm{~mL}, 8.4 \mathrm{mmol}, 1.2$ equiv.) was added dropwise at $-78^{\circ} \mathrm{C}$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 2.0 h . Then, distilled water $(20 \mathrm{~mL})$ was added to the reaction mixture, which was left to warm up to room temperature. $\mathrm{Et}_{2} \mathrm{O}$ was added to the reaction mixture, and the organic phase was separated. The aqueous solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$, and the combined organic solution was dried over $\mathrm{MgSO}_{4}$. The $\mathrm{Et}_{2} \mathrm{O}$ was then removed in vacuo, and the resulting mixture was purified by a flash silica gel column using a mixture of $\mathrm{PE} / \mathrm{EtOAc}$ as eluent to give the desired pure product. Note that freshly prepared lithium diisopropylamide (LDA) was used rather than n-BuLi for compound 2d, and anhydrous toluene was used as the solvent for compound $\mathbf{2 f}$.
3. General procedure for the synthesis of ethyl benzimidate- $\mathrm{d}_{5} 8,9$


A three-neck flask was charged with bromobenzene- $\mathrm{d}_{5}(4.86 \mathrm{~g}, 30 \mathrm{mmol}), \mathrm{CuCN}(3.13 \mathrm{~g}, 35 \mathrm{mmol})$, and 4.5 mL of DMF. The mixture was heated to reflux for 22 h under argon. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with 6 M HCl and water, dried over $\mathrm{MgSO}_{4}$, and concentrated. Purification of the crude material by distillation and then by silica gel column chromatography ( $\mathrm{PE} / E t O A c=20 / 1$ ) afforded benzonitrile- $\mathrm{d}_{5}$ as a colorless oil ( $1.50 \mathrm{~g}, 46 \%$ yield ).

## III. General procedure for the synthesis of compounds 3



A reaction tube with a magnetic stir bar was charged with $\mathbf{1}(0.10 \mathrm{mmol}), \mathbf{2}(0.15 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ ( 0.0025 mmol ), $\mathrm{AgSbF}_{6}$ ( 0.01 mmol ) was evacuated and purged with argon gas five times. Then, TFE (2 mL ) was added to the system, and the mixture was stirred at $120^{\circ} \mathrm{C}$ (oil bath) for 12 h and monitored by TLC. Upon completion, the solvent was removed under reduced pressure, and the residue was purified by silica gel flash chromatography (PE/EtOAc) to afford the desired product 3.

## IV. Scale-up reaction and derivatization

## 1. Scale-up reaction



A reaction tube with a magnetic stir bar was charged with $\mathbf{1 a}(6.71 \mathrm{mmol}, 1.0 \mathrm{~g}), \mathbf{2 a}(10.07 \mathrm{mmol})$, $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.168 \mathrm{mmol}), \mathrm{AgSbF}_{6}(0.671 \mathrm{mmol})$ was evacuated and purged with argon gas five times. Then, TFE ( 20 mL ) was added to the system, and the mixture was stirred at $120^{\circ} \mathrm{C}$ (oil bath) for 12 h and monitored by TLC. Upon completion, the solvent was removed under reduced pressure, and the residue was purified by silica gel flash chromatography ( $\mathrm{PE} / E t O A c=20 / 1$ ) to afford the desired product 3aa (1.39g, 75\%).

## 2. Derivatization of 3aa ${ }^{10-15}$



3aa ( 0.1 mmol )


4aa, 69\%

A reaction tube with a magnetic stir bar was charged with 3aa ( 0.10 mmol ), NaOH ( 100 equiv.) in (DMF/ $\left.\mathrm{H}_{2} \mathrm{O}=1 / 1\right)(4.0 \mathrm{~mL})$, and the mixture was stirred for 24 h at $100^{\circ} \mathrm{C}$. The reaction solution was then cooled to room temperature. The reaction mixture was poured into water ( $3 \times 20 \mathrm{~mL}$ ) and extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$. The combined water layer was washed with water $(2 \times 20 \mathrm{~mL})$, saturated $\mathrm{HCl}(2$ $\times 20 \mathrm{~mL})$, extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$, brine, and dried over anhydrous $\mathrm{MgSO}_{4}$. The solvent was removed under vacuum and got the desired product 4aa. (17.0 mg, 69\%).


A reaction tube with a magnetic stir bar was charged with 4aa ( 0.10 mmol ), $\left[\mathrm{IrCp}^{*} \mathrm{Cl}_{2}\right]_{2}(3.99 \mathrm{mg}, 0.005$ $\mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(82.70 \mathrm{mg}, 0.30 \mathrm{mmol})$ and purged with argon gas five times. Then, HFIP ( 2 mL ) was added to the system, and the mixture was stirred at $120^{\circ} \mathrm{C}$ (oil bath) for 12 h and monitored by TLC. Upon completion, the solvent was removed under reduced pressure, and the residue was purified by silica
gel flash chromatography to afford the desired product 5aa (22 mg, 90\%).


A reaction tube with a magnetic stir bar was charged with 4aa ( 0.10 mmol ), methyl acrylate ( 21.60 mg , $0.25 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(0.0025 \mathrm{mmol}), \mathrm{NaHCO}_{3}(0.05 \mathrm{mmol}), \mathrm{AcOH}(0.07 \mathrm{mmol})$ and purged with $\mathrm{O}_{2}$ five times. Then, DCE ( 2 mL ) was added to the system, and the mixture was stirred at $60^{\circ} \mathrm{C}$ (oil bath) for 24 h and monitored by TLC. Upon completion, the solvent was removed under reduced pressure, and the residue was purified by silica gel flash chromatography to afford the desired product 6aa ( 16 mg , 49\%).

## V. Mechanistic studies

## 1. ${ }^{18} \mathrm{O}$ Labeling experiment with $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ and TFE



1a ( 0.10 mmol ), 2a ( $0.15 \mathrm{mmol}, 1.5$ equiv.), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}\left(0.0025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%\right.$ ), $\mathrm{AgSbF}_{6}(0.01 \mathrm{mmol}$, $10 \mathrm{~mol} \%)$, TFE ( 2 mL ) and $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ ( 100 equiv., $98 \%{ }^{18} \mathrm{O}$ incorporation) were charged into a reaction tube. The reaction mixture was stirred for 12 h at $120^{\circ} \mathrm{C}$ under Ar . Then the mixture was immediately cooled down to room temperature. Upon completion, solvents were removed under reduced pressure, and the residue was purified by silica gel flash chromatography ( $\mathrm{PE} / E t O A c=20 / 1$ ) to afford 3aa ( $84 \%$ ). HR$\mathrm{MS}(\mathrm{ESI})[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{2}$ 277.1229, found 277.1220.


Figure S1. HR-MS for the product of the reaction with $\mathrm{H}_{2}{ }^{18} \mathrm{O}$.

## 2. ${ }^{18} \mathrm{O}$ Labeling experiment with $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ and dry DCE



1a ( 0.10 mmol ), 2a ( $0.15 \mathrm{mmol}, 1.5$ equiv.), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}\left(0.0025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%\right.$ ), $\mathrm{AgSbF}_{6}(0.01 \mathrm{mmol}$, $10 \mathrm{~mol} \%$ ), dry DCE ( 2 mL ) and $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ ( 10 equiv., $98 \%{ }^{18} \mathrm{O}$ incorporation) were charged into a reaction tube. The reaction mixture was stirred for 12 h at $120^{\circ} \mathrm{C}$ under Ar. Then the mixture was immediately cooled down to room temperature. Upon completion, solvents were removed under reduced pressure, and the residue was purified by silica gel flash chromatography ( $\mathrm{PE} / \mathrm{EtOAc}=5 / 1$ ) to afford naphthol. HR-MS (ESI)[M+H] ${ }^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}$ 145.0647, found 145.0648 .



Figure S2. The HR-MS and ${ }^{1} \mathrm{H}$ NMR spectrum for the product of the reaction with dry DCE and $\mathrm{H}_{2}{ }^{18} \mathrm{O}$

## 3. Reaction with dry molecular sieves



1a ( 0.10 mmol ), 2a ( $0.15 \mathrm{mmol}, 1.5$ equiv.), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}\left(0.0025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%\right.$ ), $\mathrm{AgSbF}_{6}$ ( 0.01 mmol , $10 \mathrm{~mol} \%$ ), TFE ( 2 mL ) and dry molecular sieves ( 4 A ) ( 100 mg ) were charged into a reaction tube. The
reaction mixture was stirred for 12 h at $120^{\circ} \mathrm{C}$ under Ar. Then the mixture was immediately cooled down to room temperature. After the filtration, solvents were removed under reduced pressure, and the residue was purified by silica gel flash chromatography ( $\mathrm{PE} / E t O A c=20 / 1$ ) to afford 3aa ( $87 \%$ ).

## 4. Reaction of ethyl benzoate and oxa bicyclic alkene 2a



Ethyl benzoate ( 0.10 mmol ), 2a ( $0.15 \mathrm{mmol}, 1.5$ equiv.), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.0025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}$ ( $0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$ ), TFE ( 2 mL ) were charged into a reaction tube. The reaction mixture was stirred for 12 h at $120^{\circ} \mathrm{C}$ under Ar. No desired naphthylated product 3aa was observed by the reaction mixture's crude ${ }^{1} \mathrm{H}$ NMR and thin-layer chromatography (TLC).

## 5. The H/D exchange experiment



1 j ( 0.1 mmol ), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(0.0025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and TFE- $\mathrm{d}_{3}(2 \mathrm{~mL})$ were charged into a reaction tube. The reaction mixture was stirred for 12 h at $120^{\circ} \mathrm{C}$ under Ar. Then the mixture after the filtration, solvents were removed under reduced pressure, and the residue was purified by silica gel flash chromatography ( $\mathrm{PE} / E t O A c=20 / 1$ ) to afford $\mathbf{1 j}$ and $\mathbf{D}_{\mathbf{2}} \mathbf{- 1} \mathbf{j}$. The deuterium incorporation was calculated using the ${ }^{\mathbf{1}} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1 j}$ and $\mathbf{D}_{\mathbf{2}} \mathbf{- 1} \mathbf{j}$.




Figure $\mathbf{S 3}$. The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{1 j} / \mathbf{D}_{\mathbf{2}} \mathbf{- 1} \mathbf{j}$.

## 6. The measurement of kinetic isotope effect (KIE) value

(1) Two parallel reactions



1a ( 0.1 mmol ) or $\mathbf{D}_{5}$ - $1 \mathbf{a}$ ( 0.1 mmol ), 2a ( 0.15 mmol , 1.5 equiv.), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(10$ $\mathrm{mol} \%$ ), and TFE ( 2 mL ) were added into a 25 mL Schlenk tube, and the tube was sealed. Then the reaction mixture was stirred at $120^{\circ} \mathrm{C}$ under Ar for $1.5 \mathrm{~min}, 3 \mathrm{~min}, 4.5 \mathrm{~min}$, or 6 min , respectively. After the corresponding reaction time, the mixture was immediately cooled down to room temperature with cold water. The corresponding yields of 3aa or $\mathbf{D}_{\mathbf{4}}$-3aa were calculated as follows:

|  | 0 min | 1.5 min | 3.0 min | 4.5 min | 6 min |
| :---: | :---: | :---: | :---: | :---: | :---: |
| The yield of 3aa (\%) | 0 | 7 | 15 | 25 | 36 |
| The yield of $\mathrm{D}_{4}$-3aa (\%) | 0 | 4 | 7 | 11 | 14 |



$$
\mathrm{KIE}=\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}=6.00 / 2.30=2.61
$$

Figure S4. The kinetic investigation of the above two parallel reactions.
(2) An intermolecular competition reaction


1a ( 0.05 mmol ), $\mathbf{D}_{5}$-1a ( 0.05 mmol ), 2a ( $0.15 \mathrm{mmol}, 1.5$ equiv.), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(0.0025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{AgSbF}_{6}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and TFE ( 2 mL ) were evacuated and purged with argon gas five times. The reaction mixture was stirred for 10 minutes at $120^{\circ} \mathrm{C}$ under Ar. Then the mixture was immediately cooled down to room temperature with water. After the filtration, solvents were removed under reduced pressure, and the residue was purified by silica gel flash chromatography ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ) to afford 3aa and $\mathbf{D}_{\mathbf{4}}$-3aa. The ratio of the compounds was determined by ${ }^{1} \mathrm{H}$ NMR integration to give an intermolecular kinetic isotopic effect (KIE) value ( $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}=3.00$ ).


Figure $\mathbf{S 5}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{aa} / \mathbf{D}_{4}$ - $\mathbf{3 a a}$.

## VI. Characterization data of compounds ethyl 2-(naphthalen-2-yl) benzoate (3aa) ${ }^{16}$



According to the general procedure (PE/EtOAc = 20/1), 3aa was obtained in 87\% yield ( 24 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.88(\mathrm{~m}, 4 \mathrm{H}), 7.80(\mathrm{~s}$, $1 \mathrm{H}), 7.57(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.9,142.5,139.2,133.3,132.6,131.5$, 131.4, 131.1, 130.0, 128.2, 127.8, 127.5, 127.4, 127.2, 127.0, 126.3, 126.1, 61.1, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{2}$ 277.1229, found 277.1224.
ethyl 4-methyl-2-(naphthalen-2-yl) benzoate (3ba)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3ba was obtained in $87 \%$ yield ( 25 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.84(\mathrm{~m}, 4 \mathrm{H})$, $7.79(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.7,142.8,141.9,139.5,133.4,132.5,131.9,130.3,128.5,128.1,128.1,127.8,127.4,127.3,126.9$, 126.3, 126.0, 60.9, 21.6, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{2} 291.1385$, found 291.1386. ethyl 4-methoxy-2-(naphthalen-2-yl) benzoate (3ca)


According to the general procedure ( $\mathrm{PE} / E t O A c=20 / 1$ ), 3ca was obtained in $59 \%$ yield ( 18 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.95$ (d, J = 8.5 Hz, 1H), $7.86(\mathrm{~m}, 3 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=$ 8.4, 1.4 Hz, 2H), $6.96(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$ ) $\delta 168.0,161.9,145.4,139.6,133.3,132.6,132.6,128.2,127.8$, 127.3, 127.2, 126.8, 126.3, 126.0, 123.3, 116.6, 112.8, 60.7, 55.6, 13.8. HR-MS (ESI) [M+H] ${ }^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3} 307.1334$, found 307.1333.
ethyl 4-chloro-2-(naphthalen-2-yl) benzoate (3da)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3da was obtained in $78 \%$ yield $(24 \mathrm{mg})$. Light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~m}$, $4 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{td}, J=8.2,1.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right)$ 8167.9, 144.4, 137.9, 137.4, 133.2, 132.7, 131.6, 131.1, 129.7, 128.2, 127.8, 127.6, 127.5, 127.1, 126.8, 126.5, 126.4, 61.3, 13.8. $\mathrm{HR}-\mathrm{MS}(\mathrm{ESI})[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClO}_{2} 311.0839$, found 311.0835.
ethyl 4-bromo-2-(naphthalen-2-yl) benzoate (3ea) ${ }^{17}$


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3ea was obtained in $77 \%$ yield ( 27 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.87$ (m, $3 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H}), 7.40$ $(\mathrm{m}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right)$ § 168.0, 144.5, 137.8, 134.0, 133.2, 132.7, 131.7, 130.5, 130.2, 128.2, 127.8, 127.7, 127.1, 126.9, 126.5, 126.4, 125.9, 61.3, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrO}_{2} 355.0334$, found 355.0329 . ethyl 4-iodo-2-(naphthalen-2-yl) benzoate (3fa)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3fa was obtained in $53 \%$ yield ( 21 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.86(\mathrm{~m}, 4 \mathrm{H})$, $7.80(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=$ $8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.1,144.3,139.9,137.7,136.5,133.2,132.7,131.5,130.9,128.2,127.8,127.6,127.1$, 126.9, 126.5, 126.3, 98.3, 61.3, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{IO}_{2}$ 403.0195, found 403.0186.
ethyl 4-cyano-2-(naphthalen-2-yl) benzoate (3ga)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=10 / 1$ ), 3ga was obtained in $67 \%$ yield ( 20 mg ). Brown solid. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.93$ (d, $\mathrm{J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~m}, 3 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.73(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}$, $1 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right)$ $\delta 167.5,143.3,136.7,135.7,134.5,133.3,132.9,130.8,130.5,128.3,128.1,127.9,127.4,126.8$, 126.8, 126.4, 118.1, 115.0, 61.8, 13.7. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO}_{2} 302.1181$, found 302.1183.
ethyl 2-(naphthalen-2-yl)-4-(trifluoromethyl) benzoate (3ha)


According to the general procedure $(\mathrm{PE} / \mathrm{EtOAc}=20 / 1)$, 3ha was obtained in $82 \%$ yield ( 28 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.16$ (s, $1 \mathrm{H}), 7.88(\mathrm{~m}, 3 \mathrm{H}), 7.81(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, \mathrm{J}=$ 8.4, 1.5 Hz, 1H), $4.10(q, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 167.6,146.0,137.7,133.2,132.8,132.2,131.7,129.8(q, J=33.3 \mathrm{~Hz}), 128.2,127.9$, $127.9(q, J=4.0 \mathrm{~Hz}), 127.9,127.8,127.2,127.1(q, J=3.0 \mathrm{~Hz}), 126.7,126.6,123.9(q, J=273.7 \mathrm{~Hz}), 61.6$, 13.8. ${ }^{19} \mathrm{~F}$ NMR (471 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-62.90$. $\mathrm{HR}-\mathrm{MS}(\mathrm{ESI})[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{2} 345.1102$, found
345.1101.

## 1-ethyl 4-methyl 2-(naphthalen-2-yl) terephthalate (3ia)



According to the general procedure $(\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$, 3ia was obtained in $51 \%$ yield ( 17 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.17(\mathrm{~m}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{~m}, 3 \mathrm{H})$, $7.82(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 2 \mathrm{H})$, $3.96(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.3,166.4,142.5,138.1,135.6,133.4$, $132.8,132.5,132.1,123.0,128.3,128.2,127.8,127.8,127.3,126.9,126.5,126.3,61.5,52.6,13.8$. HR$\mathrm{MS}(E S I)[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{4} 335.1283$, found 335.1285.
ethyl 3-(naphthalen-2-yl)-[1,1'-biphenyl]-4-carboxylate (3ja)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3ja was obtained in $63 \%$ yield ( 22 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.87(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~m}, 4 \mathrm{H}), 7.55(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~m}, 3 \mathrm{H}), 7.33$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.79(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.5,144.2,143.3,140.0,139.3,133.4,132.6,130.8,130.0,129.9$, 129.1, 128.2, 128.2, 127.8, 127.5, 127.4, 127.3, 127.1, 126.3, 126.1, 126.0, 61.0, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{2} 353.1542$, found 353.1545.
ethyl 5-methyl-2-(naphthalen-2-yl) benzoate (3ka)
 According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3ka was obtained in $80 \%$ yield ( 23 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.86(\mathrm{~m}, 3 \mathrm{H})$, $7.78(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~m}$, $2 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.1,139.6,139.1,137.3,133.4,132.5,132.1,131.3,131.0,130.5,128.1,127.8,127.4$, 127.4, 127.0, 126.3, 125.9, 61.1, 21.1, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{2} 291.1385$, found 291.1386.
ethyl 5-fluoro-2-(naphthalen-2-yl) benzoate (3la)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3la was obtained in $21 \%$ yield ( 6 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.86(\mathrm{~m}, 3 \mathrm{H})$, $7.75(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}$, $1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 167.5(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}), 161.0(\mathrm{~d}, \mathrm{~J}=248.2 \mathrm{~Hz}), 138.7(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 138.2,133.3,133.0(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz})$,
$132.9(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}), 132.6,128.1127 .8,127.6,127.2,127.2,126.5,126.2,118.4(\mathrm{~d}, \mathrm{~J}=21.4 \mathrm{~Hz}), 116.9$ (d, J = 23.9 Hz), 61.4, 13.8. ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-114.61$. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FO}_{2} 295.1134$, found 295.1141 .
ethyl 3-fluoro-2-(naphthalen-2-yl) benzoate (3la')


According to the general procedure $(P E / E t O A c=20 / 1)$, 3la' was obtained in $62 \%$ yield ( 18 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.90(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~m}$, $1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 167.5(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}), 160.0(\mathrm{~d}, \mathrm{~J}=246.9 \mathrm{~Hz}), 134.1(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}), 133.2,132.8,131.8,129.9(\mathrm{~d}, \mathrm{~J}$ $=18.9 \mathrm{~Hz}), 129.0,128.9,128.4,128.2,127.8,127.9,127.5,126.3,125.5(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}), 118.9(\mathrm{~d}, J=23.9$ $\mathrm{Hz})$, 61.2, 13.6. ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-114.20. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FO}_{2}$ 295.1134, found 295.1131.
ethyl 2-(naphthalen-2-yl)-5-(trifluoromethyl) benzoate (3ma)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3ma was obtained in $79 \%$ yield ( 27 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.97$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~m}, 3 \mathrm{H}), 7.82(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~m}, 1 \mathrm{H}), 7.53$ $(\mathrm{m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 167.6,146.0,137.8,133.3,132.9,132.2,131.7,129.8(\mathrm{q}, \mathrm{J}=$ $32.8 \mathrm{~Hz}), 128.3,127.9,127.9,127.9(q, J=3.8 \mathrm{~Hz}), 127.9,127.3,127.1(q, J=3.8 \mathrm{~Hz}), 126.7,126.6,123.9$ ( $q, J=272.2 \mathrm{~Hz}$ ), 61.6, 13.8. ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-62.55$. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{2} 345.1102$, found 345.1097 .
ethyl 2-fluoro-6-(naphthalen-2-yl) benzoate (3na)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3na was obtained in $58 \%$ yield ( 17 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.87$ (m, 4H), 7.51 (m, $3 \mathrm{H}), 7.47(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.8,159.9(\mathrm{~d}, \mathrm{~J}=$ $252.0 \mathrm{~Hz}), 142.6$ (d, J = 2.5 Hz ), 137.0, 133.1, 132.9, 131.3, 131.2, 128.3, 128.2, 127.8, 127.5, 126.6, $126.5(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 125.9(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 122.2(\mathrm{~d}, J=16.4 \mathrm{~Hz}), 114.9(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 61.7,13.9 .{ }^{19} \mathrm{~F}$ NMR (471 MHz, CDCl 3 ) $\delta$-115.38. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FO}_{2}$ 295.1134, found 295.1127.
ethyl 4-(naphthalen-2-yl) thiophene-3-carboxylate (3oa)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3oa was obtained in $64 \%$ yield ( 18 mg ). Light yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~m}$, 3 H ), 7.63 (dd, J = 8.5, 1.5 Hz, 1H), 7.59 (d, J = $5.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.52 (m, 2H), 7.29 (d, J $=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right)$ § $163.5,150.8,133.2,133.0,131.1,130.3,128.9,128.6,128.3,128.1,127.8,127.4,126.7,126.5$, 124.3, 60.6, 14.2. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~S}$ 283.0793, found 283.0787.
ethyl [2,2'-binaphthalene]-3-carboxylate (3pa)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3pa was obtained in $74 \%$ yield ( 24 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.46$ (s, $1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~m}, 5 \mathrm{H}), 7.60(\mathrm{~m}, 2 \mathrm{H}), 7.53$ $(\mathrm{m}, 3 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right)$ ( 168.8, 139.4, 138.9, 134.5, 133.5, 132.6, 131.8, 131.2, 130.2, 129.7, 128.8, 128.4, 128.2, 130.0, 127.8, 127.5, 127.5, 127.1, 126.9, 126.4, 126.0, 61.2, 13.9. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{2}$ 327.1385, found 327.1386.
methyl 2-(naphthalen-2-yl) benzoate (3qa)


According to the general procedure ( $\mathrm{PE} / E t O A c=20 / 1$ ), 3qa was obtained in $73 \%$ yield (19 mg). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.89(\mathrm{~m}, 4 \mathrm{H}), 7.82(\mathrm{~s}$, $1 \mathrm{H}), 7.58(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 5 \mathrm{H}), 3.62(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.3,142.6,139.1,133.4,132.6,131.5,131.2,131.1,130.1,128.2,127.8$, 127.5, 127.4, 127.1, 127.0, 126.3, 126.1, 52.1. HR-MS (ESI) [ $\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NaO}_{2}$ 285.0892, found 285.0890 .
isopropyl 2-(naphthalen-2-yl) benzoate (3ra)


According to the general procedure (PE/EtOAc = 20/1), 3ra was obtained in $52 \%$ yield ( 15 mg ). Light yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~m}, 4 \mathrm{H}), 7.78$ (s, $1 \mathrm{H}), 7.55(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 3 \mathrm{H}), 4.96(\mathrm{p}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=$ $6.3 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.5,142.3,139.2,133.3,132.6,132.1$, 131.2, 131.0, 129.8, 128.1, 127.8, 127.6, 127.4, 127.3, 127.2, 126.3, 126.0, 68.7, 21.5. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{2}$ 291.1385, found 291.1386.
butyl 2-(naphthalen-2-yl) benzoate (3sa)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3sa was obtained in $60 \%$ yield ( 18 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.87(\mathrm{~m}, 4 \mathrm{H})$, $7.79(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 5 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~m}$, $2 \mathrm{H}), 0.57$ (m, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta$ 169.1, 142.5, 139.3, 133.4, $132.7,131.7,131.3,131.1,130.0,128.2,127.8,127.6,127.4,127.2,127.0,126.3,126.1,65.1,30.4,19.0$, 13.5. $\mathrm{HR}-\mathrm{MS}(E S I)[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NaO}_{2}$ 327.1361, found 327.1358.
(2-(naphthalen-2-yl)phenyl)(phenyl)methanone (3ta)


According to the general procedure (PE/EtOAc =20/1), 3ta was obtained in $72 \%$ yield ( 22 mg ). Brown solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{~m}$, $3 H), 7.60(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
(101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta$ 198.9, 141.2, 139.3, 137.8, 137.5, 133.2, 132.9, 132.4, 130.5, 129.9, 130.0, 128.3, 128.2, 128.2, 128.1, 127.6, 127.2, 127.1, 126.3, 126.1. HR-MS (ESI) [M+H] ${ }^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O} 309.1279$, found 309.1271.
ethyl 2-(6,7-dimethylnaphthalen-2-yl) benzoate (3ab)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3ab was obtained in $86 \%$ yield ( 26 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.86(\mathrm{~d}, \mathrm{~J}=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ $(\mathrm{m}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.45(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2,142.7,138.2,136.0$, $135.8,132.3,131.6,131.5,131.2,131.0,129.9,127.6,127.3,127.2,126.5,126.3,126.1,61.1,20.4,13.8$. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{2} 305.1542$, found 305.1528 .
ethyl 2-(6,7-dimethyInaphthalen-2-yl)-4-methylbenzoate (3bb)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3bb was obtained in $85 \%$ yield ( 27 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.79$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.33 (dd, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right)$ ( 169.0, 143.0, 141.7, 138.6, 135.9, 135.7, 132.3, 131.9, 131.5, 130.2, 128.7, 127.9, 127.7, 127.3, 126.5, 126.4, 126.0, 60.8, 21.6, 20.3, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{2} 319.1698$, found 319.1699.
ethyl 4-chloro-2-(6,7-dimethylnaphthalen-2-yl) benzoate (3db)


According to the general procedure ( $\mathrm{PE} / E \mathrm{tOAc}=20 / 1$ ), 3db was obtained in $77 \%$ yield ( 26 mg ). White solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $10.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (dd, $J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 168.1,144.7,137.3,137.0,136.2,136.2,132.2,131.7,131.5,131.1,130.0,127.7$, 127.3, 126.7, 126.2, 126.0, 61.2, 20.3, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClO}_{2} 339.1152$, found 339.1158.
ethyl 4-bromo-2-(6,7-dimethylnaphthalen-2-yl) benzoate (3eb)


According to the general procedure ( $\mathrm{PE} / E t O A c=20 / 1$ ), 3eb was obtained in $76 \%$ yield ( 29 mg ). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{dd}, \mathrm{J}=8.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{dd}, \mathrm{J}=8.3,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.3,144.7,136.9,136.3,136.2,134.0$, 132.2, 131.7, 131.5, 130.4, 130.3, 127.7, 127.3, 126.7, 126.2, 126.0, 125.7, 61.3, 20.4, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrO}_{2} 383.0647$, found 383.0641.
ethyl 2-(6,7-dimethylnaphthalen-2-yl)-4-(trifluoromethyl) benzoate (3hb)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3hb was obtained in $62 \%$ yield ( 23 mg ). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.34(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.46$ ( $\mathrm{s}, 3 \mathrm{H}$ ) , $2.45(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.1,143.1,136.5,136.3,136.2$, 135.0, $132.8(d, J=32.8 \mathrm{~Hz}), 132.1,131.7,130.1,127.7(q, J=3.8 \mathrm{~Hz}), 127.6,127.2,126.8,126.2,125.7$, $123.8(q, J=3.8 \mathrm{~Hz}), 123.7(q, J=273.4 \mathrm{~Hz}), 61.4,20.2,20.2,13.6 .{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.92$. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}_{2}$ 373.1415, found 373.1426.
ethyl 2-(6,7-dimethoxynaphthalen-2-yl) benzoate (3ac)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=5 / 1$ ), 3ac was obtained in $81 \%$ yield ( 27 mg ). White solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.84(\mathrm{~m}$, $1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.07$
$(\mathrm{m}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2,149.9,149.7$, $142.6,137.5,131.7,131.2,130.9,129.8,129.1,128.3,127.1,126.0,125.7,125.4,106.5,106.2,61.0$, 56.0, 13.8. $\mathrm{HR}-\mathrm{MS}$ (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{4} 337.1440$, found 337.1439 .
ethyl 2-(6,7-dimethoxynaphthalen-2-yl)-4-methylbenzoate (3bc)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=5 / 1$ ), 3bc was obtained in $78 \%$ yield ( 27 mg ). White solid. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.78$ (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{dd}$, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H})$, $4.05(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $\left.{ }_{3}\right) \delta$ $169.0,149.9,149.7,142.9,141.6,137.8,131.8,130.1,129.1,128.6,128.3,127.8,125.8,125.6,125.6$, 106.6, 106.3, 60.8, 56.0, 56.0, 21.6, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{4} 351.1596$, found 351.1599.
ethyl 4-bromo-2-(6,7-dimethoxynaphthalen-2-yl) benzoate (3ec)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=5 / 1$ ), 3ec was obtained in $76 \%$ yield ( 32 mg ). White solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.72(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}$, $3 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.3,150.0,149.9,144.7,136.1,133.9,131.5$, $130.4,130.2,129.0,128.6,126.1,125.7,125.7,125.1,106.6,106.2,61.2,56.0,13.8 . \mathrm{HR}^{2}-\mathrm{MS}(\mathrm{ESI})[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrO}_{4} 415.0545$, found 415.0549.
ethyl 2-(6,7-dimethoxynaphthalen-2-yl)-5-methylbenzoate (3kc)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=5 / 1$ ), 3kc was obtained in $78 \%$ yield ( 27 mg ). White solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) $\delta 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.4,149.8,149.6,139.8,137.4,137.0$, $131.9,131.4,130.8,130.3,129.1,128.2,125.9,125.9,125.6,125.5,106.5,106.2,61.0,56.0,21.0,13.8$. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{4}$ 351.1596, found 351.1603.
ethyl 2-(5,8-dimethoxynaphthalen-2-yl) benzoate (3ad)


According to the general procedure ( $\mathrm{PE} / E t O A c=10 / 1$ ), 3ad was obtained in $75 \%$ yield ( 25 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.23(\mathrm{~m}, 1 \mathrm{H}), 8.18$ (m, 1H), 7.87 (dd, J = 7.7, 1.1 Hz, 1H), $7.55(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H})$, $6.72(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3 ) $\delta 169.0,149.8,149.6,142.8,139.1,131.5,131.3$, 131.2, 129.9, 127.3, 127.0, 126.3, 125.4, 121.5, 121.3, 103.6, 103.4, 61.1, 55.9, 55.8, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{4} 337.1440$, found 337.1427.
ethyl 4-chloro-2-(5,8-dimethoxynaphthalen-2-yl) benzoate (3dd)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=10 / 1$ ), 3dd was obtained in $63 \%$ yield ( 23 mg ). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.21$ (dd, $J=8.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=1.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right)$ ( 168.0, 149.8, 149.5, 144.7, 137.8, 137.3, 131.5, 131.2, 129.8, 127.4, 126.7, 126.2, 125.6, 121.7, 121.3,103.8, 103.7, 61.3, 55.9, 55.8, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClO}_{4} 371.1050$, found 371.1049.
ethyl 4-(5,8-dimethoxynaphthalen-2-yl) thiophene-3-carboxylate (3od)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=10 / 1$ ), 3od was obtained in $71 \%$ yield ( 24 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.37-8.30(\mathrm{~m}, 1 \mathrm{H})$, $8.21(\mathrm{~m}, 1 \mathrm{H}), 7.62$ (dd, $J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}$, $3 \mathrm{H}), 1.13(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.7,151.1,149.8$, $149.6,131.1,130.2,128.7,127.9,126.0,125.9,124.3,123.1,121.5,104.2,103.8,60.7,55.9,55.8,14.1$. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~S} 343.1004$, found 343.1002.
ethyl 2-(naphtho[2,3-d][1,3]dioxol-6-yl)benzoate (3ae)


According to the general procedure (PE/EtOAc = 10/1), 3ae was obtained in $82 \%$ yield $(26 \mathrm{mg})$. Light yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.43 (m, 2H), 7.29 (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~s}$, $2 \mathrm{H}), 4.07(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$ ) $\delta 169.1,148.0,147.9$,
$142.5,137.7,131.7,131.2,131.0,130.4,129.9,129.7,127.2,126.7,126.4,125.6,104.2,103.9,101.2$, 61.1, 13.8. $\mathrm{HR}-\mathrm{MS}(E S I)[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{4} 321.1127$, found 321.1121.
ethyl 4-methyl-2-(naphtho[2,3-d][1,3]dioxol-6-yl)benzoate (3be)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=10 / 1$ ), 3be was obtained in $78 \%$ yield ( 26 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~m}$, $1 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9,148.0,147.8,142.8$, 141.7, 138.0, 131.8, 130.4, 130.2, 129.6, 128.6, 127.9, 126.5, 126.3, 125.7, 104.1, 103.9, 101.1, 60.8 , 21.6, 13.8. $\mathrm{HR}-\mathrm{MS}$ (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{4} 335.1283$, found 335.1277 .

## ethyl 4-chloro-2-(naphtho[2,3-d][1,3]dioxol-6-yl)benzoate (3de)



According to the general procedure ( $\mathrm{PE} / E \mathrm{tOAc}=10 / 1$ ), 3de was obtained in $63 \%$ yield ( 22 mg ). White solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) $\delta 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=$ $8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.0,148.2,148.1,144.4,137.3,136.5,131.5,131.0,130.4,129.9,129.9$, 127.3, 126.8, 126.4, 125.3, 104.2, 103.9, 101.3, 61.2, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClO}_{4}$ 355.0737, found 355.0731.
ethyl 5-methyl-2-(naphtho[2,3-d][1,3]dioxol-6-yl)benzoate (3ke)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=10 / 1$ ), 3ke was obtained in $69 \%$ yield ( 23 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.66-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 2 \mathrm{H}), 7.27(\mathrm{dd}, \mathrm{J}=8.3,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.44$ ( $\mathrm{s}, 3 \mathrm{H}$ ), $0.91(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 169.3, 148.0, 147.8, 139.7, 137.7, 137.1, $132.0,131.4,130.9,130.4,130.4,129.6,126.6,126.4,125.8,104.1,103.9,101.2,61.0,21.1,13.9$. HR$\mathrm{MS}(E S I)[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{4} 335.1283$, found 335.1281.
ethyl 2-(naphtho[2,3-d][1,3]dioxol-6-yl)-5-(trifluoromethyl)benzoate (3me)


According to the general procedure (PE/EtOAc = 10/1), 3me was obtained in $60 \%$ yield ( 23 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~m}$, $2 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.8,148.3,148.2,146.0,136.2,132.3$, $131.6,130.4,130.1,129.6(d, J=33.3 \mathrm{~Hz}), 127.7(q, J=3.0 \mathrm{~Hz}), 127.0(q, J=3.0 \mathrm{~Hz}), 126.9,126.5,125.1$, 123.9 ( $q, J=272.7 \mathrm{~Hz}$ ), 104.2, 103.9, 101.3, 61.6, 13.8. ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-62.58. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{4}$ 389.1001, found 389.0993.
ethyl 2-(1,4-dimethylnaphthalen-2-yl) benzoate (3af)


According to the general procedure ( $\mathrm{PE} / E t O A c=20 / 1$ ), 3af was obtained in $40 \%$ yield ( 12 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.08(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~m}$, 1H), $7.99(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{q}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right)$ ( 168.0, 143.5, 138.3, 132.9, 132.1, 131.4, 131.4, 131.4, 131.2, 130.0, 128.9, 128.4, 127.2, 125.8, 125.2, 125.0, 124.7, 60.8, 19.4, 16.1, 13.6. HR-MS (ESI) [ $\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{2} 305.1542$, found 305.1532 .
ethyl 2-(1,4-dimethylnaphthalen-2-yl)-5-fluorobenzoate (3lf)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3If was obtained in $38 \%$ yield ( 12 mg ). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~m}, 2 \mathrm{H}), 7.78$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}$, $1 \mathrm{H}), 3.95(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $)^{2}$ 8167.0 (d, $\left.J=2.5 \mathrm{~Hz}\right), 160.0(\mathrm{~d}, \mathrm{~J}=244.4 \mathrm{~Hz}), 133.8(\mathrm{~d}, \mathrm{~J}$ $=2.5 \mathrm{~Hz}), 132.8,132.5,131.6,130.7(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 128.2,125.8$, 125.7 ( $\mathrm{d}, \mathrm{J}=3.8 \mathrm{~Hz}$ ), $125.5,125.1,124.8,119.0,118.9,61.1,19.4,16.1,13.5 .{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-112.34. HR-MS (ESI) $[M+H]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{FO}_{2}$ 323.1447, found 323.1440.
ethyl 2-(anthracen-2-yl) benzoate (3ag)


According to the general procedure ( $\mathrm{PE} / E t O A c=20 / 1$ ), 3ag was obtained in $80 \%$ yield ( 26 mg ). Light yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~m}, 3 \mathrm{H}), 7.96(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H})$, $7.47(\mathrm{~m}, 4 \mathrm{H}), 4.09(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9,142.5,138.7,132.1,131.9,131.6,131.5,131.0,130.8,130.1,128.3,128.3,127.7$, 127.5, 127.3, 126.9, 126.6, 126.2, 125.6, 125.5, 61.1, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{2}$ 327.1385, found 327.1381.
ethyl 2-(anthracen-2-yl)-4-methylbenzoate (3bg)


According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 3bg was obtained in $77 \%$ yield ( 26 mg ). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~m}, 3 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.25$ $(\mathrm{m}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7$, $142.8,142.0,139.1,132.1,131.9,131.6,130.8,130.5,128.4,128.3,128.3,128.2,127.5,126.7,126.5$, 126.1, 125.5, 125.5, 60.9, 21.6, 13.8. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{2} 341.1542$, found 341.1541.

## ethyl 2-(anthracen-2-yl)-4-bromobenzoate (3eg)



According to the general procedure ( $\mathrm{PE} / E t O A c=20 / 1$ ), 3eg was obtained in $62 \%$ yield ( 25 mg ). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~m}, 3 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~m}$, $1 \mathrm{H}), 7.70(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.39(\mathrm{dd}, J=8.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $168.0,144.5,137.4,134.0,132.2,132.1,131.8,131.4,130.9,130.6,130.2,128.3,127.9,127.1,126.8$, 126.7, 126.3, 126.0, 125.7, 61.3, 13.7. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{BrO}_{2} 405.0490$, found 405.0488.

## ethyl 4-(anthracen-2-yl) thiophene-3-carboxylate (3og)



According to the general procedure ( $\mathrm{PE} / E t O A c=20 / 1$ ), 3og was obtained in $76 \%$ yield ( 25 mg ). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44$ (d, J = $4.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.30(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 163.5,150.9,132.3,132.1,131.2,131.1,130.7,130.4,129.0,128.7,128.3$, 128.3, 127.8, 127.6, 127.0, 126.2, 125.8, 125.7, 124.4, 60.7, 14.2. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~S} 333.0949$, found 333.0948 .

## 2-(naphthalen-2-yl) benzoic acid (4aa) ${ }^{17}$



According to the general procedure ( $\mathrm{PE} /(\mathrm{EtOAc} / \mathrm{EtOH} / \mathrm{AcOH}=3 / 1 / 0.08)=7 / 3$ ), 4aa was obtained in $69 \%$ yield ( 17 mg ). White solid. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta 7.94(\mathrm{~m}, 3 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dd}, \mathrm{J}=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{td}, \mathrm{J}=7.6,1.3$ Hz, 1H), 7.51 (m, 5H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta$ 169.6, 141.2, 138.7, 132.9, 132.3, 132.1, 131.1, 130.9, 129.4, 128.0, 127.5, 127.5, 127.3, 127.2, 126.7, 126.3, 126.1. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{2}$ 249.0916, found 249.0906.

## 6H-dibenzo[c, $h$ ]chromen-6-one (5aa) ${ }^{12}$



According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=20 / 1$ ), 5aa was obtained in $90 \%$ yield (22 mg). White solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~m}, 1 \mathrm{H}), 8.45(\mathrm{~m}$, 1H), 8.16 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63$ (dd, J = 6.9, 1.5 Hz, 1H), 7.61-7.55 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ( 161.3, 147.4, 135.5, 135.1, 134.4, 130.8, 128.7, 128.0, 127.8, 127.2, 124.6, 124.0, 122.4, 122.1, 121.3, 119.3, 113.1. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O}_{2}$ 247.0759, found 247.0754.
methyl 2-(4-(naphthalen-2-yl)-3-oxo-1,3-dihydroisobenzofuran-1-yl) acetate (6aa) ${ }^{15}$
According to the general procedure ( $\mathrm{PE} / \mathrm{EtOAc}=2 / 1$ ), 6aa was obtained in
 $49 \%$ yield (16 mg). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.00(\mathrm{~m}$, 1H), $7.90(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ס 169.9, 168.7, 150.1, 142.9, 134.2, 133.9, 133.2, 133.1, 131.7, 128.7, 128.4, 127.8, 127.5, 127.4, 126.5, 126.3, 122.1, 120.8, 75.7, 52.3, 39.7. HR-MS (ESI) $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{4} 333.1127$, found 333.1133.

## VII. References

1. A. Thomas, An efficient, stereocontrolled and versatile synthetic route to bicyclic partially saturated privileged scaffolds. Chem. Commun., 2020, 56, 6818-6821.
2. B. Jiang, S. Wu, J. Zeng and X. Yang, Controllable Rh (III)-Catalyzed C-H Arylation and Dealcoholization: Access to Biphenyl-2-carbonitriles and Biphenyl-2-carbimidates. Org. Lett ., 2018, 20, 6573-6577.
3. E. A. Wappes, K. M. Nakafuku and D. A. Nagib, Directed $\beta$ C-H amination of alcohols via radical relay chaperones. J. Am. Chem. Soc., 2017, 139, 10204-10207.
4. P. Gandeepan, P. Rajamalli, C. H. Cheng, Diastereoselective [3+2] Annulation of Aromatic/Vinylic Amides with Bicyclic Alkenes through Cobalt-Catalyzed C-H Activation and Intramolecular Nucleophilic Addition. Angew. Chem. Int. Ed., 2016, 128, 4380-4383.
5. S. Qiu, S. Zhai, H. Wang, X. Chen and H. Zhai, One-pot synthesis of benzo [b] fluorenones via a cobaltcatalyzed MHP-directed [3+2] annulation/ring-opening/ dehydration sequence. Chem. Commun., 2019, 55, 4206-4209.
6. M. Lautens, K. Fagnou and D. Yang, Rhodium-catalyzed asymmetric ring opening reactions of oxabicyclic alkenes: Application of halide effects in the development of a general process. J. Am. Chem. Soc., 2003, 125, 14884-14892.
7. Z. Jin, Y. C. Teo, N. G. Zulaybar, M. D. Smith and Y. Xia, Streamlined synthesis of polycyclic conjugated hydrocarbons containing cyclobutadienoids via C-H activated annulation and aromatization. J. Am. Chem. Soc., 2017, 139, 1806-1809.
8. Y. Koseki, K. Kitazawa, M. Miyake, T. Kochi and F. Kakiuchi, Ruthenium-catalyzed ortho C-H arylation of aromatic nitriles with arylboronates and observation of partial para arylation. J. Org. Chem., 2017, 82, 6503-6510.
9. H. Wang, M. M. Lorion and L. Ackermann, Domino C-H/N-H allylations of imidates by cobalt catalysis. ACS Catal., 2017, 7, 3430-3433.
10. H. Gu, B. Yu, P. F. Zhang, and W. M. Xu, Organic Preparations and Procedures International: The New Journal for Organic Synthesis. Org. Prep. Proced. Int., 2009, 41, 162-164.
11. J. M. Khurana, A. Sehgal , An Efficient and Convenient Procedure for Ester Hydrolysis. Org. Prep. Proced. Int., 1994, 26, 580-583.
12. G. Tan, Q. You, J. Lan and J. You, Iridium-Catalyzed Annulation Reactions of Thiophenes with Carboxylic Acids: Direct Evidence for a Heck-type Pathway. Angew. Chem. Int. Ed. 2018, 57, 6309-6313.
13. N. P. Ramirez, I. Bosque and J. C. Gonzalez-Gomez, Photocatalytic dehydrogenative lactonization of 2-arylbenzoic acids. Org. Lett., 2015, 17, 4550-4553.
14. M. Chao, F. Wang, L. Xu, Y. Ju, Z. Chen, B. Wang, P. Gong, J. You, M. Jin and D. Shen, Cerium Ammonium Nitrate-Mediated Access to Biaryl Lactones: Substrate Scopes and Mechanism Studies. J. Org. Chem., 2021, 86, 13371-13380.
15. Q. Jiang, C. Zhu, H. Zhao and W. Su, Rh(III)-Catalyzed C-H Olefination of Benzoic Acids under Mild Conditions using Oxygen as the Sole Oxidant. Chem-Asian J., 2016, 11, 356-359.
16. C. Wang, S. Rakshit and F. Glorius, Palladium-catalyzed intermolecular decarboxylative coupling of 2-phenylbenzoic acids with alkynes via C-H and C- C bond activation. J. Am. Chem. Soc., 2010, 132, 14006-14008.
17. M. Kawamura, Y. Mizuki, H. Ito, T. Hayama, T. Haketa, Anthracene derivative, organic electroluminescent (EL) element having it and electric device having it. WO2015033559A1, 2015.

## VIII. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds

${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{aa}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\bigcirc \circ \circ \circ$
$\underbrace{}_{-\dot{\prime} \dot{+} \dot{+}}$
$50^{\infty}$
$\bigcirc$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a a}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

 $\stackrel{\circ}{\circ}$
$\stackrel{0}{i}$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b a}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{b a}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\circ$
0
0
0
1
$\stackrel{\bar{\sim}}{\stackrel{\infty}{\infty}} \stackrel{\stackrel{\infty}{j}}{\stackrel{c}{1}}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c a}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{ca}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$



$\stackrel{\infty}{\infty}$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 d a}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of 3 da, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\stackrel{n}{N}}{\stackrel{\sim}{1}}$



[^0]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e a}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$


${ }^{13} \mathrm{C}$ NMR spectrum of 3 ea, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{8}{4}$
$\stackrel{1}{i}$
$\stackrel{\circ}{\stackrel{\circ}{\circ}}$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f a}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 f a}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 g a}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 g a}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$


+
$\stackrel{+}{\infty}$
$\stackrel{+}{i}$
$\stackrel{N}{\stackrel{N}{\sim}}$

${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{ha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{m}{\square} \mp \circ \circ$


 1 $\bigcirc$



${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 h a}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$
 $-13.79$



[^1]${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3} \mathbf{h a}, 471 \mathrm{MHz}, \mathrm{CDCl}_{3}$


## 

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 i a}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 i a}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$




$\left.\begin{array}{llllllllllllllllllllllll}90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 j a}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 j a}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

 $\pm$
$\stackrel{\rightharpoonup}{i}$
$\stackrel{1}{2}$
$i$
$\stackrel{\bar{\infty}}{\stackrel{\sim}{j}}$


$\left.\begin{array}{llllllllllllllllllllllll}90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 k a}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$\underbrace{\infty} \underbrace{\infty}$


$\underbrace{\text { SOD }}_{\mid}$


${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k} \mathbf{k}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\dot{\circ}}$
$\stackrel{1}{1}$



${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 1 a}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 l a}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$



$\begin{array}{llllllllllllllllllllllllllllllllllllll}90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -\end{array}$
${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 l a}, 471 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$\stackrel{-}{+}$
$\stackrel{+}{i}$
$i$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 1 a}$, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of 3la', $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$$
\begin{aligned}
& \text { へ }
\end{aligned}
$$


$\stackrel{\oplus}{\Gamma}$



${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 1 a}$ ', $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 m a}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{ma}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

| $\bigcirc$ |  |
| :---: | :---: |
| $\stackrel{\text { ® }}{ }$ | ¢ ¢ M M M |
| , |  |




${ }^{19} \mathrm{~F}$ NMR spectrum of $3 \mathrm{ma}, 471 \mathrm{MHz}, \mathrm{CDCl}_{3}$


${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{na}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$$
\stackrel{\infty}{\infty} \hat{o}_{\circ}^{\circ}
$$




${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 n a}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$\stackrel{N}{i}$
$\stackrel{\llcorner }{\stackrel{\circ}{\infty}}$

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 n a}, 471 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$\qquad$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 o a}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 o a}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$


| 0 |
| :--- |
| 0 |
| 0 |

$\stackrel{0}{\stackrel{-}{J}}$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 p a}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$




${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{p a}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

##  



$\begin{array}{llllllllllllllllllll}90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ f 1(\mathrm{ppm})\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $3 q a, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 q a}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{ra}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{ra}, 151 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{array}{llllllllllllllllllllllllll}90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of 3 sa, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$





${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ sa, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$$
\begin{aligned}
& \stackrel{\text { ® }}{-}
\end{aligned}
$$

$\stackrel{8}{6}$
$\stackrel{1}{6}$
1



$\begin{array}{lllllllllllllllllllllllllllll}90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 t a}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathbf{t a}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$



$\begin{array}{llllllllllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & - \\ f 1\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a b}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a b}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b b}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{b b}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$





| 90 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 d b}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d b}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$




${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e b}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$\underbrace{\circ}$
$\underbrace{}_{\substack{2 \\ \text { ig } \\ \text { in }}}$
$\xrightarrow{\infty}$




${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e b}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

| $\stackrel{\sim}{\sim}$ |  |
| :---: | :---: |
| $\stackrel{\infty}{\bullet}$ |  |
| I |  |


$\begin{array}{llllllllllllllllllllll}90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} 80$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 h b}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 h b}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3} \mathbf{h b}, 471 \mathrm{MHz}, \mathrm{CDCl}_{3}$
N
ن
$\vdots$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a c}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a c}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b c}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$\underbrace{\bar{\circ}}$


${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b c}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$




${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e c}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e c}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$\stackrel{\circ}{\stackrel{\circ}{+}}$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 k c}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k c}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

| $\stackrel{\circ}{0}$ |  |  | $\stackrel{0}{\stackrel{N}{ \pm}}$ |
| :---: | :---: | :---: | :---: |
| $\stackrel{8}{\square}$ |  | -i |  |
|  |  | $\bigcirc$ |  |




${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a d}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$


[^2]

${ }^{13} \mathrm{C}$ NMR spectrum of 3ad, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$\stackrel{9}{\stackrel{9}{9}}$


$\begin{array}{llllllllllllllllllllllllllllllllllll}90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & - \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{dd}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d d}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 o d}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$


${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 o d}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a e}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a e}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\Perp$
$\stackrel{\circ}{\circ}$
$\stackrel{1}{1}$
$\stackrel{+}{\infty}$


| 90 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b e}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$



## © <br> $\underbrace{\dot{\circ} \dot{+}}$




${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{b e}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$


N
0
0
$i$




${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{de}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{de}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$$
\begin{aligned}
& \text { す }
\end{aligned}
$$

$\stackrel{\stackrel{1}{0}}{\stackrel{0}{i}}$
$\stackrel{\infty}{\infty}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 k e}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k e}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$
 $\stackrel{\stackrel{8}{\dot{O}}}{\stackrel{1}{\circ}}$


${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{me}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$$
\hat{S}_{0}^{\circ} \mathrm{O}_{0}^{0}{ }_{0}^{\circ}
$$




${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathrm{me}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$


${ }^{19} \mathrm{~F}$ NMR spectrum of $3 \mathrm{me}, 471 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a f}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{13} \mathrm{C}$ NMR spectrum of 3af, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{0}{0}$
0
0
$i$
웅
$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\circ}{\circ} \stackrel{\circ}{\sim}}$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 I f}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 l f}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\left.\begin{array}{llllllllllllllllllllllll}90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$
${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 I f}, 471 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{ag}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a g}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$\dot{\vdots}$
$\stackrel{\rightharpoonup}{i}$
$\stackrel{\infty}{\stackrel{\infty}{\sim}}$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b g}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b g}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$
©
$\stackrel{\text { ®in }}{\sim}$

|  | $\bar{\sigma}$ | $\bar{\square}$ |
| :---: | :---: | :---: |
|  | 8 | $\stackrel{\text { - }}{ }$ |


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e g}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e g}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$
 © $\ddagger$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 o g}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 o g}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

n
0
0
$i$
$i$
$\stackrel{\stackrel{\circ}{\dot{~}}}{\stackrel{-}{+}}$



## ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a a}, 400 \mathrm{MHz}$, DMSO- $d_{6}$






${ }^{13} \mathrm{C}$ NMR spectrum of $4 \mathbf{a a}, 101 \mathrm{MHz}$, DMSO- $d_{6}$



${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a a}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$





${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathbf{a a}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$




${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 a a}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$




[^0]:    $\begin{array}{lllllllllllllllllllllll}90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -\end{array}$

[^1]:    $\left.\begin{array}{lllllllllllllllllllllll}90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

[^2]:    MNO . 0 I

