Electronic Supplementary Information

Synthesis of naphthalene-substituted aromatic esters via Rh(III)catalyzed C-H bond naphthylation and cascade directing group transformation

Yue Cui, ^a Siyu Li, ^a Hesheng Wang, ^a Jing Zeng, ^a Yichen Wang, ^a Xiubin Bu, ^{*a} Xiaobo Yang^{*a,b} and Zhen Zhao ^a

^aInstitute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P.R. China.

^bKey Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

E-mail: bxy1223@gmail.com; yangxb@synu.edu.cn; buxb@synu.edu.cn.

Table of Contents

I. General remarks	S2
II. General procedure for the synthesis of starting materials	S2
III. General procedure for the synthesis of compounds 3	S3
IV. Scale-up reaction and derivatization	S3
V. Mechanistic studies	S5
VI. Characterization data of compounds	S10
VII. References	S22
VIII. The ¹ H and ¹³ C NMR spectra of compounds	S24

I. General remarks

NMR spectra were recorded on Bruker 400 NMR, Bruker 500 NMR, Bruker 600 NMR in either CDCl₃ or DMSO- d_6 . Abbreviations for data quoted are s, singlet; brs, broad singlet; d, doublet; t, triplet; dd, doublet of doublets; m, multiplet or unresolved. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: δ H = 7.26 ppm, δ C = 77.16 ppm; DMSO- d_6 : δ H = 2.50 ppm, δ C = 39.52 ppm). High-resolution mass spectra were recorded on a Bruker solariX 7T mass spectrometer or Thermo LCQ Deca XP Max mass spectrometer. Silica gel 60 H (200-300 mesh) and preparative TLC (200 × 200 mm, 0.2-0.25 mm in thickness) manufactured by Qingdao Haiyang Chemical Group Co. (China) were used for general chromatography. All commercially available reagents and solvents were used as received unless otherwise specified.

II. General procedure for the synthesis of starting materials

1. General procedure for the synthesis of ethyl benzimidates¹⁻⁴

To a stirred solution of a nitrile (1 equiv.) and an alcohol (12 equiv.), AcCl was added (8 equiv.) dropwise at 0 °C. The Schlenk tube was stoppered tightly, and the stirring was continued at 25 °C. After the reaction was complete, the volatiles was removed under reduced pressure to isolate the benzimidate hydrochloride. Then slowly mixed benzimidate hydrochloride and saturated aqueous NaHCO₃ solution in an ice bath until gas evolution had ceased. The product was extracted into EtOAc, and the organic solution was washed with H₂O and brine and concentrated under reduced pressure to obtain the benzimidates.

To a stirred solution of substituted 1,2-dibromobenzene (7.0 mmol) in anhydrous THF (15 mL) under Ar, freshly distilled furan (15 mL) was added. Then *n*-BuLi (2.5 M in hexane, 3.4 mL, 8.4 mmol, 1.2 equiv.) was added dropwise at -78 °C. The solution was stirred at -78 °C for 2.0 h. Then, distilled water (20 mL) was added to the reaction mixture, which was left to warm up to room temperature. Et₂O was added to the reaction mixture, and the organic phase was separated. The aqueous solution was extracted with Et₂O (20 mL × 3), and the combined organic solution was dried over MgSO₄. The Et₂O was then removed in vacuo, and the resulting mixture was purified by a flash silica gel column using a mixture of PE/EtOAc as eluent to give the desired pure product. Note that freshly prepared lithium diisopropylamide (LDA) was used rather than *n*-BuLi for compound **2d**, and anhydrous toluene was used as the solvent for compound **2f**.

3. General procedure for the synthesis of ethyl benzimidate-d₅^{8,9}

A three-neck flask was charged with bromobenzene-d₅ (4.86 g, 30 mmol), CuCN (3.13 g, 35 mmol), and 4.5 mL of DMF. The mixture was heated to reflux for 22 h under argon. The reaction mixture was extracted with Et_2O . The organic layer was washed with 6 M HCl and water, dried over MgSO₄, and concentrated. Purification of the crude material by distillation and then by silica gel column chromatography (PE/EtOAc = 20/1) afforded benzonitrile-d₅ as a colorless oil (1.50 g, 46% yield).

III. General procedure for the synthesis of compounds 3

A reaction tube with a magnetic stir bar was charged with **1** (0.10 mmol), **2** (0.15 mmol), $[Cp*RhCl_2]_2$ (0.0025 mmol), AgSbF₆ (0.01 mmol) was evacuated and purged with argon gas five times. Then, TFE (2 mL) was added to the system, and the mixture was stirred at 120 °C (oil bath) for 12 h and monitored by TLC. Upon completion, the solvent was removed under reduced pressure, and the residue was purified by silica gel flash chromatography (PE/EtOAc) to afford the desired product **3**.

IV. Scale-up reaction and derivatization

A reaction tube with a magnetic stir bar was charged with **1a** (6.71 mmol, 1.0 g), **2a** (10.07 mmol), $[Cp*RhCl_2]_2$ (0.168 mmol), AgSbF₆ (0.671 mmol) was evacuated and purged with argon gas five times. Then, TFE (20 mL) was added to the system, and the mixture was stirred at 120 °C (oil bath) for 12 h and monitored by TLC. Upon completion, the solvent was removed under reduced pressure, and the residue was purified by silica gel flash chromatography (PE/EtOAc = 20/1) to afford the desired product **3aa** (1.39g, 75%).

2. Derivatization of 3aa¹⁰⁻¹⁵

A reaction tube with a magnetic stir bar was charged with **3aa** (0.10 mmol), NaOH (100 equiv.) in $(DMF/H_2O=1/1)$ (4.0 mL), and the mixture was stirred for 24 h at 100 °C. The reaction solution was then cooled to room temperature. The reaction mixture was poured into water (3 × 20 mL) and extracted with EtOAc (3 × 20 mL). The combined water layer was washed with water (2 × 20 mL), saturated HCl (2 × 20 mL), extracted with EtOAc (3 × 20 mL), brine, and dried over anhydrous MgSO₄. The solvent was removed under vacuum and got the desired product **4aa**. (17.0 mg, 69%).

A reaction tube with a magnetic stir bar was charged with **4aa** (0.10 mmol), $[IrCp*Cl_2]_2$ (3.99 mg, 0.005 mmol), Ag₂CO₃ (82.70 mg, 0.30 mmol) and purged with argon gas five times. Then, HFIP (2 mL) was added to the system, and the mixture was stirred at 120 °C (oil bath) for 12 h and monitored by TLC. Upon completion, the solvent was removed under reduced pressure, and the residue was purified by silica

gel flash chromatography to afford the desired product 5aa (22 mg, 90%).

A reaction tube with a magnetic stir bar was charged with **4aa** (0.10 mmol), methyl acrylate (21.60 mg, 0.25 mmol), [Cp*RhCl₂]₂ (0.0025 mmol), NaHCO₃ (0.05 mmol), AcOH (0.07 mmol) and purged with O₂ five times. Then, DCE (2 mL) was added to the system, and the mixture was stirred at 60 °C (oil bath) for 24 h and monitored by TLC. Upon completion, the solvent was removed under reduced pressure, and the residue was purified by silica gel flash chromatography to afford the desired product **6aa** (16 mg, 49%).

V. Mechanistic studies

1. ¹⁸O Labeling experiment with H₂¹⁸O and TFE

1a (0.10 mmol), **2a** (0.15 mmol, 1.5 equiv.), $[Cp*RhCl_2]_2$ (0.0025 mmol, 2.5 mol %), AgSbF₆ (0.01 mmol, 10 mol %), TFE (2 mL) and H₂¹⁸O (100 equiv., 98% ¹⁸O incorporation) were charged into a reaction tube. The reaction mixture was stirred for 12 h at 120 °C under Ar. Then the mixture was immediately cooled down to room temperature. Upon completion, solvents were removed under reduced pressure, and the residue was purified by silica gel flash chromatography (PE/EtOAc = 20/1) to afford **3aa** (84%). HR-MS (ESI)[M+H]⁺ m/z calcd for C₁₉H₁₇O₂ 277.1229, found 277.1220.

Figure S1. HR-MS for the product of the reaction with $H_2^{18}O$.

2. ¹⁸O Labeling experiment with H₂¹⁸O and dry DCE

1a (0.10 mmol), **2a** (0.15 mmol, 1.5 equiv.), $[Cp*RhCl_2]_2$ (0.0025 mmol, 2.5 mol %), AgSbF₆ (0.01 mmol, 10 mol %), dry DCE (2 mL) and H₂¹⁸O (10 equiv., 98% ¹⁸O incorporation) were charged into a reaction tube. The reaction mixture was stirred for 12 h at 120 °C under Ar. Then the mixture was immediately cooled down to room temperature. Upon completion, solvents were removed under reduced pressure, and the residue was purified by silica gel flash chromatography (PE/EtOAc = 5/1) to afford naphthol. HR-MS (ESI)[M+H]⁺ m/z calcd for C₁₀H₉O 145.0647, found 145.0648.

3. Reaction with dry molecular sieves

1a (0.10 mmol), **2a** (0.15 mmol, 1.5 equiv.), $[Cp*RhCl_2]_2$ (0.0025 mmol, 2.5mol %), AgSbF₆ (0.01 mmol, 10 mol %), TFE (2 mL) and dry molecular sieves (4Å) (100 mg) were charged into a reaction tube. The

reaction mixture was stirred for 12 h at 120 °C under Ar. Then the mixture was immediately cooled down to room temperature. After the filtration, solvents were removed under reduced pressure, and the residue was purified by silica gel flash chromatography (PE/EtOAc = 20/1) to afford **3aa** (87 %).

4. Reaction of ethyl benzoate and oxa bicyclic alkene 2a

Ethyl benzoate (0.10 mmol), **2a** (0.15 mmol, 1.5 equiv.), $[Cp*RhCl_2]_2$ (0.0025 mmol, 2.5mol %), AgSbF₆ (0.01 mmol, 10 mol %), TFE (2 mL) were charged into a reaction tube. The reaction mixture was stirred for 12 h at 120 °C under Ar. No desired naphthylated product **3aa** was observed by the reaction mixture's crude ¹H NMR and thin-layer chromatography (TLC).

5. The H/D exchange experiment

1j (0.1 mmol), $[Cp*RhCl_2]_2$ (0.0025 mmol, 2.5 mol %), AgSbF₆ (0.01 mmol, 10 mol %), and TFE-d₃ (2 mL) were charged into a reaction tube. The reaction mixture was stirred for 12 h at 120 °C under Ar. Then the mixture after the filtration, solvents were removed under reduced pressure, and the residue was purified by silica gel flash chromatography (PE/EtOAc = 20/1) to afford **1j** and **D**₂-**1j**. The deuterium incorporation was calculated using the ¹H-NMR spectrum of **1j** and **D**₂-**1j**.

6. The measurement of kinetic isotope effect (KIE) value

(1) Two parallel reactions

1a (0.1 mmol) or D_5 -**1a** (0.1 mmol), **2a** (0.15 mmol, 1.5 equiv.), [Cp*RhCl₂]₂ (2.5 mol %), AgSbF₆(10 mol %), and TFE (2 mL) were added into a 25 mL Schlenk tube, and the tube was sealed. Then the reaction mixture was stirred at 120 °C under Ar for 1.5 min, 3 min, 4.5 min, or 6 min, respectively. After the corresponding reaction time, the mixture was immediately cooled down to room temperature with cold water. The corresponding yields of **3aa** or **D**₄-**3aa** were calculated as follows:

	0 min	1.5 min	3.0 min	4.5 min	6 min
The yield of 3aa (%)	0	7	15	25	36
The yield of D ₄- 3aa (%)	0	4	7	11	14

Figure S4. The kinetic investigation of the above two parallel reactions.

(2) An intermolecular competition reaction

1a (0.05 mmol), **D**₅-**1a** (0.05 mmol), **2a** (0.15 mmol, 1.5 equiv.), $[Cp*RhCl_2]_2$ (0.0025 mmol, 2.5mol %), AgSbF₆ (0.01 mmol, 10 mol %), and TFE (2 mL) were evacuated and purged with argon gas five times. The reaction mixture was stirred for 10 minutes at 120 °C under Ar. Then the mixture was immediately cooled down to room temperature with water. After the filtration, solvents were removed under reduced pressure, and the residue was purified by silica gel flash chromatography (PE/EtOAc = 20/1) to afford **3aa** and **D**₄-**3aa**. The ratio of the compounds was determined by ¹H NMR integration to give an intermolecular kinetic isotopic effect (KIE) value ($k_H/k_D = 3.00$).

Figure S5. The ¹H NMR spectrum of **3aa/D₄-3aa**.

VI. Characterization data of compounds

ethyl 2-(naphthalen-2-yl) benzoate (3aa)¹⁶

According to the general procedure (PE/EtOAc = 20/1), **3aa** was obtained in 87% yield (24 mg). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (m, 4H), 7.80 (s, 1H), 7.57 (m, 1H), 7.50 (m, 4H), 7.45 (m, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 0.90 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 142.5, 139.2, 133.3, 132.6, 131.5,

131.4, 131.1, 130.0, 128.2, 127.8, 127.5, 127.4, 127.2, 127.0, 126.3, 126.1, 61.1, 13.8. HR-MS (ESI) $[M+H]^+ m/z$ calcd for $C_{19}H_{17}O_2$ 277.1229, found 277.1224.

ethyl 4-methyl-2-(naphthalen-2-yl) benzoate (3ba)

According to the general procedure (PE/EtOAc = 20/1), **3ba** was obtained in 87% yield (25 mg). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (m, 4H), 7.79 (s, 1H), 7.50 (m, 2H), 7.45 (dd, *J* = 8.4, 1.4 Hz, 1H), 7.27 (m, 2H), 4.06 (q, *J* = 7.1 Hz, 2H), 2.46 (s, 3H), 0.90 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃)

δ 168.7, 142.8, 141.9, 139.5, 133.4, 132.5, 131.9, 130.3, 128.5, 128.1, 128.1, 127.8, 127.4, 127.3, 126.9, 126.3, 126.0, 60.9, 21.6, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₀H₁₉O₂ 291.1385, found 291.1386. ethyl 4-methoxy-2-(naphthalen-2-yl) benzoate (3ca)

According to the general procedure (PE/EtOAc = 20/1), **3ca** was obtained in 59% yield (18 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.5 Hz, 1H), 7.86 (m, 3H), 7.78 (s, 1H), 7.49 (m, 2H), 7.44 (dd, *J* = 8.4, 1.4 Hz, 2H), 6.96 (m, 2H), 4.04 (q, *J* = 7.1 Hz, 2H), 3.88 (s, 3H), 0.90 (t,

 $J = 7.1 \text{ Hz}, 3\text{H}). {}^{13}\text{C} \text{ NMR} (126 \text{ MHz}, \text{CDCl}_3) \delta 168.0, 161.9, 145.4, 139.6, 133.3, 132.6, 132.6, 128.2, 127.8, 127.3, 127.2, 126.8, 126.3, 126.0, 123.3, 116.6, 112.8, 60.7, 55.6, 13.8. \text{ HR-MS} (ESI) [M+H]^+ m/z calcd for C_{20}H_{19}O_3 307.1334, found 307.1333.$

ethyl 4-chloro-2-(naphthalen-2-yl) benzoate (3da)

According to the general procedure (PE/EtOAc = 20/1), **3da** was obtained in 78% yield (24 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (m, 4H), 7.78 (s, 1H), 7.51 (m, 2H), 7.47 (d, *J* = 2.0 Hz, 1H), 7.42 (td, *J* = 8.2, 1.8 Hz, 2H), 4.06 (q, *J* = 7.1 Hz, 2H), 0.89 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ167.9, 144.4, 137.9, 137.4, 133.2, 132.7, 131.6, 131.1, 129.7, 128.2, 127.8, 127.6, 127.5, 127.1, 126.8, 126.5, 126.4, 61.3, 13.8. HR-MS (ESI)[M+H]⁺ m/z calcd for C₁₉H₁₆ClO₂ 311.0839, found 311.0835.

ethyl 4-bromo-2-(naphthalen-2-yl) benzoate (3ea)¹⁷

According to the general procedure (PE/EtOAc = 20/1), **3ea** was obtained in 77% yield (27 mg). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (m, 3H), 7.77 (m, 2H), 7.64 (d, *J* = 1.7 Hz, 1H), 7.59 (m, 1H), 7.52 (m, 2H), 7.40 (m, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 0.89 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 168.0, 144.5, 137.8, 134.0, 133.2, 132.7, 131.7, 130.5, 130.2, 128.2, 127.8, 127.7, 127.1, 126.9, 126.5, 126.4, 125.9, 61.3, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₁₉H₁₆BrO₂ 355.0334, found 355.0329. ethyl 4-iodo-2-(naphthalen-2-yl) benzoate (3fa)

According to the general procedure (PE/EtOAc = 20/1), **3fa** was obtained in 53% yield (21 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (m, 4H), 7.80 (m, 1H), 7.77 (s, 1H), 7.61 (d, *J* = 8.2 Hz, 1H), 7.51 (m, 2H), 7.40 (dd, *J* = 8.4, 1.6 Hz, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 0.89 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126)

MHz, CDCl₃) δ 168.1, 144.3, 139.9, 137.7, 136.5, 133.2, 132.7, 131.5, 130.9, 128.2, 127.8, 127.6, 127.1, 126.9, 126.5, 126.3, 98.3, 61.3, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₁₉H₁₆lO₂ 403.0195, found 403.0186.

ethyl 4-cyano-2-(naphthalen-2-yl) benzoate (3ga)

According to the general procedure (PE/EtOAc = 10/1), **3ga** was obtained in 67% yield (20 mg). Brown solid. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 1H), 7.88 (m, 3H), 7.79 (s, 2H), 7.73 (m, 1H), 7.54 (m, 2H), 7.40 (m, 1H), 4.09 (q, *J* = 7.1 Hz, 2H), 0.90 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz,

CDCl₃) δ 167.5, 143.3, 136.7, 135.7, 134.5, 133.3, 132.9, 130.8, 130.5, 128.3, 128.1, 127.9, 127.4, 126.8, 126.8, 126.4, 118.1, 115.0, 61.8, 13.7. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₀H₁₆NO₂ 302.1181, found 302.1183.

ethyl 2-(naphthalen-2-yl)-4-(trifluoromethyl) benzoate (3ha)

According to the general procedure (PE/EtOAc = 20/1), **3ha** was obtained in 82% yield (28 mg). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.88 (m, 3H), 7.81 (m, 2H), 7.61 (m, 1H), 7.53 (m, 2H), 7.43 (dd, *J* = 8.4, 1.5 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 0.93 (t, *J* = 7.1 Hz, 3H). ¹³C NMR

(101 MHz, CDCl₃) δ 167.6, 146.0, 137.7, 133.2, 132.8, 132.2, 131.7, 129.8 (q, *J* = 33.3 Hz), 128.2, 127.9, 127.9 (q, *J* = 4.0 Hz), 127.9, 127.8, 127.2, 127.1 (q, *J* = 3.0 Hz), 126.7, 126.6, 123.9 (q, *J* = 273.7 Hz), 61.6, 13.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.90. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₀H₁₆F₃O₂ 345.1102, found

345.1101.

1-ethyl 4-methyl 2-(naphthalen-2-yl) terephthalate (3ia)

According to the general procedure (PE/EtOAc = 10/1), **3ia** was obtained in 51% yield (17 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (m, 1H), 8.10 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.91 (m, 1H), 7.87 (m, 3H), 7.82 (s, 1H), 7.51 (m, 2H), 7.45 (dd, *J* = 8.4, 1.7 Hz, 1H), 4.08 (m, 2H),

3.96 (s, 3H), 0.91 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.3, 166.4, 142.5, 138.1,135.6, 133.4, 132.8, 132.5, 132.1, 123.0, 128.3, 128.2, 127.8, 127.8, 127.3, 126.9, 126.5, 126.3, 61.5, 52.6, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₁H₁₉O₄ 335.1283, found 335.1285.

ethyl 3-(naphthalen-2-yl)-[1,1'-biphenyl]-4-carboxylate (3ja)

According to the general procedure (PE/EtOAc = 20/1), **3**ja was obtained in 63% yield (22 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.0 Hz, 1H), 7.74 (m, 4H), 7.55 (m, 4H), 7.38 (m, 3H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.26 (m, 1H), 3.96 (q, *J* = 7.1 Hz, 2H), 0.79 (t, *J* = 7.1

Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 144.2, 143.3, 140.0, 139.3, 133.4, 132.6, 130.8, 130.0, 129.9, 129.1, 128.2, 128.2, 127.8, 127.5, 127.4, 127.3, 127.1, 126.3, 126.1, 126.0, 61.0, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₅H₂₁O₂ 353.1542, found 353.1545.

ethyl 5-methyl-2-(naphthalen-2-yl) benzoate (3ka)

According to the general procedure (PE/EtOAc = 20/1), **3ka** was obtained in 80% yield (23 mg). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (m, 3H), 7.78 (s, 1H), 7.70 (s, 1H), 7.50 (m, 2H), 7.44 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.38(m, 2H), 4.07 (q, *J* = 7.1 Hz, 2H), 2.46 (s, 3H), 0.90 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101

MHz, CDCl₃) δ 169.1, 139.6, 139.1, 137.3, 133.4, 132.5, 132.1, 131.3, 131.0, 130.5, 128.1, 127.8, 127.4, 127.4, 127.0, 126.3, 125.9, 61.1, 21.1, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₀H₁₉O₂ 291.1385, found 291.1386.

ethyl 5-fluoro-2-(naphthalen-2-yl) benzoate (3la)

According to the general procedure (PE/EtOAc = 20/1), **3la** was obtained in 21% yield (6 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (m, 3H), 7.75 (s, 1H), 7.60 (dd, *J* = 9.0, 2.7 Hz, 1H), 7.50 (m, 2H), 7.43 (m, 2H), 7.27 (m, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 0.91 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃)

δ 167.5 (d, J = 2.5 Hz), 161.0 (d, J = 248.2 Hz), 138.7 (d, J = 3.8 Hz), 138.2, 133.3, 133.0 (d, J = 7.6 Hz),

132.9 (d, J = 7.6 Hz), 132.6, 128.1 127.8, 127.6, 127.2, 127.2, 126.5, 126.2, 118.4 (d, J = 21.4 Hz), 116.9 (d, J = 23.9 Hz), 61.4, 13.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -114.61. HR-MS (ESI) [M+H]⁺ m/z calcd for C₁₉H₁₆FO₂ 295.1134, found 295.1141.

ethyl 3-fluoro-2-(naphthalen-2-yl) benzoate (3la')

According to the general procedure (PE/EtOAc = 20/1), **3la'** was obtained in 62% yield (18 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (m, 2H), 7.86 (m, 1H), 7.79 (s, 1H), 7.71 (d, J = 7.7 Hz, 1H), 7.52 (m, 2H), 7.44 (m, 2H), 7.33 (t, J = 8.7 Hz, 1H), 4.01 (q, J = 7.1 Hz, 2H), 0.82 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ167.5 (d, J = 3.8 Hz), 160.0 (d, J = 246.9 Hz), 134.1 (d, J = 2.5 Hz), 133.2, 132.8, 131.8, 129.9 (d, J = 18.9 Hz), 129.0, 128.9, 128.4, 128.2, 127.8, 127.9, 127.5, 126.3, 125.5 (d, J = 3.8 Hz), 118.9 (d, J = 23.9 Hz), 61.2, 13.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -114.20. HR-MS (ESI) [M+H]⁺ m/z calcd for C₁₉H₁₆FO₂ 295.1134, found 295.1131.

ethyl 2-(naphthalen-2-yl)-5-(trifluoromethyl) benzoate (3ma)

According to the general procedure (PE/EtOAc = 20/1), 3ma was obtained in 79% yield (27 mg). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.1 Hz, 1H), 7.89 (m, 3H), 7.82 (m, 1H), 7.76 (s, 1H), 7.71 (m, 1H), 7.53 (m, 2H), 7.45 (dd, J = 8.4, 1.8 Hz, 1H), 4.09 (q, J = 7.1 Hz, 2H), 0.91 (t, J =

7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.6, 146.0, 137.8, 133.3, 132.9, 132.2, 131.7, 129.8 (q, J = 32.8 Hz), 128.3, 127.9, 127.9, 127.9 (q, J = 3.8 Hz), 127.9, 127.3, 127.1 (q, J = 3.8 Hz), 126.7, 126.6, 123.9 (q, J = 272.2 Hz), 61.6, 13.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.55. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₀H₁₆F₃O₂ 345.1102, found 345.1097.

ethyl 2-fluoro-6-(naphthalen-2-yl) benzoate (3na)

According to the general procedure (PE/EtOAc = 20/1), 3na was obtained in 58% yield (17 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (m, 4H), 7.51 (m, 3H), 7.47 (m, 1H), 7.30 (d, J = 7.7 Hz, 1H), 7.16 (t, J = 8.8 Hz, 1H), 4.13 (q, J = 7.1 Hz, 2H), 0.97 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 159.9 (d, J =

252.0 Hz), 142.6 (d, J = 2.5 Hz), 137.0, 133.1, 132.9, 131.3, 131.2, 128.3, 128.2, 127.8, 127.5, 126.6, 126.5 (d, J = 3.8Hz), 125.9 (d, J = 2.5 Hz), 122.2 (d, J = 16.4 Hz), 114.9 (d, J = 21.4 Hz), 61.7, 13.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -115.38. HR-MS (ESI) [M+H]⁺ m/z calcd for C₁₉H₁₆FO₂ 295.1134, found 295.1127.

ethyl 4-(naphthalen-2-yl) thiophene-3-carboxylate (3oa)

According to the general procedure (PE/EtOAc = 20/1), **30a** was obtained in 64% yield (18 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (s, 1H), 7.87 (m, 3H), 7.63 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.59 (d, *J* = 5.4 Hz, 1H), 7.52 (m, 2H), 7.29 (d, *J* = 5.4 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz,

CDCl₃) δ 163.5, 150.8, 133.2, 133.0, 131.1, 130.3, 128.9, 128.6, 128.3, 128.1, 127.8, 127.4, 126.7, 126.5, 124.3, 60.6, 14.2. HR-MS (ESI) [M+H]⁺ m/z calcd for C₁₇H₁₅O₂S 283.0793, found 283.0787.

ethyl [2,2'-binaphthalene]-3-carboxylate (3pa)

According to the general procedure (PE/EtOAc = 20/1), **3pa** was obtained in 74% yield (24 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.46 (s, 1H), 7.98 (d, *J* = 8.2 Hz, 1H), 7.93 (s, 1H), 7.90 (m, 5H), 7.60 (m, 2H), 7.53 (m, 3H), 4.13 (q, *J* = 7.1 Hz, 2H), 0.95 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz,

CDCl₃) δ 168.8, 139.4, 138.9, 134.5, 133.5, 132.6, 131.8, 131.2, 130.2, 129.7, 128.8, 128.4, 128.2, 130.0, 127.8, 127.5, 127.5, 127.1, 126.9, 126.4, 126.0, 61.2, 13.9. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₃H₁₉O₂ 327.1385, found 327.1386.

methyl 2-(naphthalen-2-yl) benzoate (3qa)

According to the general procedure (PE/EtOAc = 20/1), **3qa** was obtained in 73% yield (19 mg). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (m, 4H), 7.82 (s, 1H), 7.58 (m, 1H), 7.49 (m, 5H), 3.62 (d, *J* = 2.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 142.6, 139.1, 133.4, 132.6, 131.5, 131.2, 131.1, 130.1, 128.2, 127.8,

127.5, 127.4, 127.1, 127.0, 126.3, 126.1, 52.1. HR-MS (ESI) [M+Na]⁺ m/z calcd for C₁₈H₁₄NaO₂ 285.0892, found 285.0890.

isopropyl 2-(naphthalen-2-yl) benzoate (3ra)

According to the general procedure (PE/EtOAc = 20/1), **3ra** was obtained in 52% yield (15 mg). Light yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.86 (m, 4H), 7.78 (s, 1H), 7.55 (m, 1H), 7.50 (m, 2H), 7.45 (m, 3H), 4.96 (p, *J* = 6.2 Hz, 1H), 0.93 (d, *J* = 6.3 Hz, 6H).¹³C NMR (151 MHz, CDCl₃) δ 168.5, 142.3, 139.2, 133.3, 132.6, 132.1,

131.2, 131.0, 129.8, 128.1, 127.8, 127.6, 127.4, 127.3, 127.2, 126.3, 126.0, 68.7, 21.5. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₀H₁₉O₂ 291.1385, found 291.1386.

butyl 2-(naphthalen-2-yl) benzoate (3sa)

According to the general procedure (PE/EtOAc = 20/1), **3sa** was obtained in 60% yield (18 mg). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (m, 4H), 7.79 (s, 1H), 7.57 (m, 1H), 7.47 (m, 5H), 4.01 (m, 2H), 1.21 (m, 2H), 0.88 (m, 2H), 0.57 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 142.5, 139.3, 133.4,

132.7, 131.7, 131.3, 131.1, 130.0, 128.2, 127.8, 127.6, 127.4, 127.2, 127.0, 126.3, 126.1, 65.1, 30.4, 19.0,
13.5. HR-MS (ESI) [M+Na]⁺ m/z calcd for C₂₁H₂₀NaO₂ 327.1361, found 327.1358.

(2-(naphthalen-2-yl)phenyl)(phenyl)methanone (3ta)

According to the general procedure (PE/EtOAc = 20/1), **3ta** was obtained in 72% yield (22 mg). Brown solid. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (m, 3H), 7.68 (m, 3H), 7.60 (m, 3H), 7.51 (m, 1H), 7.43 (m, 3H), 7.34 (m, 1H), 7.22 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 198.9, 141.2, 139.3, 137.8, 137.5, 133.2, 132.9, 132.4, 130.5,

129.9, 130.0, 128.3, 128.2, 128.2, 128.1, 127.6, 127.2, 127.1, 126.3, 126.1. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₃H₁₇O 309.1279, found 309.1271.

ethyl 2-(6,7-dimethylnaphthalen-2-yl) benzoate (3ab)

According to the general procedure (PE/EtOAc = 20/1), **3ab** was obtained in 86% yield (26 mg). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.7 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.69 (s, 1H), 7.61 (d, *J* = 7.9 Hz, 2H), 7.56 (m, 1H), 7.45 (m, 2H), 7.36 (dd, *J* = 8.4, 1.5 Hz, 1H), 4.06 (q, *J* = 7.1 Hz, 2H),

2.45 (d, J = 2.5 Hz, 6H), 0.88 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 142.7, 138.2, 136.0, 135.8, 132.3, 131.6, 131.5, 131.2, 131.0, 129.9, 127.6, 127.3, 127.2, 126.5, 126.3, 126.1, 61.1, 20.4, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₁H₂₁O₂ 305.1542, found 305.1528.

ethyl 2-(6,7-dimethylnaphthalen-2-yl)-4-methylbenzoate (3bb)

According to the general procedure (PE/EtOAc = 20/1), **3bb** was obtained in 85% yield (27 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 7.9 Hz, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.65 (s, 1H), 7.59 (d, J = 9.9 Hz, 2H), 7.33 (dd, J = 8.4, 1.6 Hz, 1H), 7.25 (d, J = 5.1 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H),

4.03 (q, *J* = 7.1 Hz, 2H), 2.44 (s, 3H), 2.43 (s, 3H), 2.43 (s, 3H), 0.87 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.0, 143.0, 141.7, 138.6, 135.9, 135.7, 132.3, 131.9, 131.5, 130.2, 128.7, 127.9, 127.7, 127.3, 126.5, 126.4, 126.0, 60.8, 21.6, 20.3, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₂H₂₃O₂ 319.1698, found 319.1699.

ethyl 4-chloro-2-(6,7-dimethylnaphthalen-2-yl) benzoate (3db)

According to the general procedure (PE/EtOAc = 20/1), **3db** was obtained in 77% yield (26 mg). White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 8.3 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.65 (s, 1H), 7.61 (d, *J* = 10.9 Hz, 2H), 7.47 (d, *J* = 2.0 Hz, 1H), 7.40 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.31

(dd, J = 8.4, 1.5 Hz, 1H), 4.05 (q, J = 7.1 Hz, 2H), 2.45 (s, 3H), 2.44 (s, 3H), 0.88 (t, J = 7.1 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 168.1, 144.7, 137.3, 137.0, 136.2, 136.2, 132.2, 131.7, 131.5, 131.1, 130.0, 127.7, 127.3, 126.7, 126.2, 126.0, 61.2, 20.3, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₁H₂₀ClO₂ 339.1152, found 339.1158.

ethyl 4-bromo-2-(6,7-dimethylnaphthalen-2-yl) benzoate (3eb)

According to the general procedure (PE/EtOAc = 20/1), **3eb** was obtained in 76% yield (29 mg). Light yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.73 (dd, *J* = 8.3, 1.7 Hz, 2H), 7.63 (m, 4H), 7.56 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.30 (dd, *J* = 8.4, 1.7 Hz, 1H), 4.04 (q, *J* = 7.1 Hz, 2H), 2.45 (s, 3H),

2.44 (s, 3H), 0.87 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.3, 144.7, 136.9, 136.3, 136.2, 134.0, 132.2, 131.7, 131.5, 130.4, 130.3, 127.7, 127.3, 126.7, 126.2, 126.0, 125.7, 61.3, 20.4, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₁H₂₀BrO₂ 383.0647, found 383.0641.

ethyl 2-(6,7-dimethylnaphthalen-2-yl)-4-(trifluoromethyl) benzoate (3hb)

According to the general procedure (PE/EtOAc = 20/1), **3hb** was obtained in 62% yield (23 mg). Light yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.76 (m, 2H), 7.68 (m, 2H), 7.62 (d, *J* = 7.8 Hz, 2H), 7.34 (dd, *J* = 8.4, 1.6 Hz, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 2.46

(s, 3H), 2.45 (s, 3H), 0.89 (t, J = 7.1 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 168.1, 143.1, 136.5, 136.3, 136.2, 135.0, 132.8 (d, J = 32.8 Hz), 132.1, 131.7, 130.1, 127.7 (q, J = 3.8 Hz), 127.6, 127.2, 126.8, 126.2, 125.7, 123.8 (q, J = 3.8 Hz), 123.7 (q, J = 273.4 Hz), 61.4, 20.2, 20.2, 13.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.92. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₂H₂₀F₃O₂ 373.1415, found 373.1426.

ethyl 2-(6,7-dimethoxynaphthalen-2-yl) benzoate (3ac)

According to the general procedure (PE/EtOAc = 5/1), **3ac** was obtained in 81% yield (27 mg). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (m, 1H), 7.70 (d, *J* = 8.3 Hz, 1H), 7.64 (m, 1H), 7.54 (td, *J* = 7.6, 1.3 Hz, 1H), 7.44 (m, 2H), 7.30 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.14 (d, *J* = 9.0 Hz, 2H), 4.07 (m, 2H), 4.02 (s, 3H), 4.00 (s, 3H), 0.89 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 149.9, 149.7, 142.6, 137.5, 131.7, 131.2, 130.9, 129.8, 129.1, 128.3, 127.1, 126.0, 125.7, 125.4, 106.5, 106.2, 61.0, 56.0, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₁H₂₁O₄ 337.1440, found 337.1439.

ethyl 2-(6,7-dimethoxynaphthalen-2-yl)-4-methylbenzoate (3bc)

According to the general procedure (PE/EtOAc = 5/1), **3bc** was obtained in 78% yield (27 mg). White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, J = 7.9 Hz, 1H), 7.68 (d, J = 8.3 Hz, 1H), 7.63 (s, 1H), 7.29 (dd, J = 8.3, 1.7 Hz, 1H), 7.23 (d, J = 7.9 Hz, 1H), 7.15 (s, 1H), 7.13 (s, 1H),

4.05 (m, 2H), 4.01 (s, 3H), 4.00 (s, 3H), 2.43 (s, 3H), 0.89 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.0, 149.9, 149.7, 142.9, 141.6, 137.8, 131.8, 130.1, 129.1, 128.6, 128.3, 127.8, 125.8, 125.6, 125.6, 106.6, 106.3, 60.8, 56.0, 56.0, 21.6, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₂H₂₃O₄ 351.1596, found 351.1599.

ethyl 4-bromo-2-(6,7-dimethoxynaphthalen-2-yl) benzoate (3ec)

According to the general procedure (PE/EtOAc = 5/1), 3ec was obtained in 76% yield (32 mg). White solid. ¹H NMR (400 MHz, CDCl₃)
δ 7.72 (m, 2H), 7.64 (s, 2H), 7.56 (d, J = 8.2 Hz, 1H), 7.27 (d, J = 7.5
Hz, 1H), 7.15 (d, J = 7.2 Hz, 2H), 4.08 (m, 2H), 4.03 (s, 3H), 4.02 (s,

3H), 0.90 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.3, 150.0, 149.9, 144.7, 136.1, 133.9, 131.5, 130.4, 130.2, 129.0, 128.6, 126.1, 125.7, 125.7, 125.1, 106.6, 106.2, 61.2, 56.0, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₁H₂₀BrO₄ 415.0545, found 415.0549.

ethyl 2-(6,7-dimethoxynaphthalen-2-yl)-5-methylbenzoate (3kc)

According to the general procedure (PE/EtOAc = 5/1), **3kc** was obtained in 78% yield (27 mg). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.64 (d, *J* = 11.7 Hz, 2H), 7.35 (s, 2H), 7.29 (d, *J* = 8.3 Hz, 1H), 7.13 (d, *J* = 8.8 Hz, 2H), 4.07 (m, 2H), 4.01 (s, 3H), 4.00 (s, 3H),

2.44 (s, 3H), 0.89 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 149.8, 149.6, 139.8, 137.4, 137.0, 131.9, 131.4, 130.8, 130.3, 129.1, 128.2, 125.9, 125.9, 125.6, 125.5, 106.5, 106.2, 61.0, 56.0, 21.0, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₂H₂₃O₄ 351.1596, found 351.1603.

ethyl 2-(5,8-dimethoxynaphthalen-2-yl) benzoate (3ad)

According to the general procedure (PE/EtOAc = 10/1), **3ad** was obtained in 75% yield (25 mg). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (m, 1H), 8.18 (m, 1H), 7.87 (dd, *J* = 7.7, 1.1 Hz, 1H), 7.55 (m, 1H), 7.49 (m, 2H), 7.44 (m, 1H), 6.72 (s, 2H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.98 (s, 3H), 3.94 (s, 3H), 0.92 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 149.8, 149.6, 142.8, 139.1, 131.5, 131.3,

131.2, 129.9, 127.3, 127.0, 126.3, 125.4, 121.5, 121.3, 103.6, 103.4, 61.1, 55.9, 55.8, 13.8. HR-MS (ESI) $[M+H]^+ m/z$ calcd for C₂₁H₂₁O₄ 337.1440, found 337.1427.

ethyl 4-chloro-2-(5,8-dimethoxynaphthalen-2-yl) benzoate (3dd)

According to the general procedure (PE/EtOAc = 10/1), **3dd** was obtained in 63% yield (23 mg). Light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, *J* = 8.6, 0.6 Hz, 1H), 8.16 (dd, *J* = 1.9, 0.6 Hz, 1H), 7.83 (d, *J* = 8.3 Hz, 1H), 7.49 (d, *J* = 2.0 Hz, 1H), 7.41 (m, 2H), 6.73 (s, 2H), 4.05 (q, *J* = 7.1 Hz, 2H), 3.98 (s, 3H), 3.95 (s, 3H), 0.91 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 168.0, 149.8, 149.5, 144.7, 137.8, 137.3, 131.5, 131.2, 129.8, 127.4, 126.7, 126.2, 125.6, 121.7, 121.3,103.8, 103.7, 61.3, 55.9, 55.8, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₁H₂₀ClO₄ 371.1050, found 371.1049.

ethyl 4-(5,8-dimethoxynaphthalen-2-yl) thiophene-3-carboxylate (3od)

According to the general procedure (PE/EtOAc = 10/1), **3od** was obtained in 71% yield (24 mg). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.37-8.30 (m, 1H), 8.21 (m, 1H), 7.62 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.56 (d, *J* = 5.4 Hz, 1H), 7.27 (d, *J* = 5.3 Hz, 1H), 6.73 (d, *J* = 1.3 Hz, 2H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.97 (s, 3H), 3.95 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.7, 151.1, 149.8,

149.6, 131.1, 130.2, 128.7, 127.9, 126.0, 125.9, 124.3, 123.1, 121.5, 104.2, 103.8, 60.7, 55.9, 55.8, 14.1. HR-MS (ESI) $[M+H]^+ m/z$ calcd for $C_{19}H_{19}O_4S$ 343.1004, found 343.1002.

ethyl 2-(naphtho[2,3-d][1,3]dioxol-6-yl)benzoate (3ae)

According to the general procedure (PE/EtOAc = 10/1), **3ae** was obtained in 82% yield (26 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 7.6 Hz, 1H), 7.67 (d, J = 8.3 Hz, 1H), 7.61 (s, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.43 (m, 2H), 7.29 (dd, J = 8.3, 1.6 Hz, 1H), 7.13 (d, J = 11.3 Hz, 2H), 6.04 (s,

2H), 4.07 (q, J = 7.1 Hz, 2H), 0.92 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.1, 148.0, 147.9,

142.5, 137.7, 131.7, 131.2, 131.0, 130.4, 129.9, 129.7, 127.2, 126.7, 126.4, 125.6, 104.2, 103.9, 101.2, 61.1, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₀H₁₇O₄ 321.1127, found 321.1121.

ethyl 4-methyl-2-(naphtho[2,3-d][1,3]dioxol-6-yl)benzoate (3be)

According to the general procedure (PE/EtOAc = 10/1), **3be** was obtained in 78% yield (26 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 7.9 Hz, 1H), 7.65 (d, *J* = 8.3 Hz, 1H), 7.59 (s, 1H), 7.29 (m, 1H), 7.24 (m, 2H), 7.13 (d, *J* = 10.7 Hz, 2H), 6.04 (s, 2H), 4.06 (q, *J* = 7.1

Hz, 2H), 2.44 (s, 3H), 0.92 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.9, 148.0, 147.8, 142.8, 141.7, 138.0, 131.8, 130.4, 130.2, 129.6, 128.6, 127.9, 126.5, 126.3, 125.7, 104.1, 103.9, 101.1, 60.8, 21.6, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₁H₁₉O₄ 335.1283, found 335.1277.

ethyl 4-chloro-2-(naphtho[2,3-d][1,3]dioxol-6-yl)benzoate (3de)

According to the general procedure (PE/EtOAc = 10/1), **3de** was obtained in 63% yield (22 mg). White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 8.3 Hz, 1H), 7.66 (d, *J* = 8.4 Hz, 1H), 7.58 (d, *J* = 1.7 Hz, 1H), 7.45 (d, *J* = 2.1 Hz, 1H), 7.39 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.25 (dd, *J* =

8.4, 1.9 Hz, 1H), 7.13 (d, J = 11.6 Hz, 2H), 6.05 (s, 2H), 4.06 (q, J = 7.1 Hz, 2H), 0.92 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.0, 148.2, 148.1, 144.4, 137.3, 136.5, 131.5, 131.0, 130.4, 129.9, 129.9, 127.3, 126.8, 126.4, 125.3, 104.2, 103.9, 101.3, 61.2, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₀H₁₆ClO₄ 355.0737, found 355.0731.

ethyl 5-methyl-2-(naphtho[2,3-d][1,3]dioxol-6-yl)benzoate (3ke)

According to the general procedure (PE/EtOAc = 10/1), **3ke** was obtained in 69% yield (23 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.66-7.63 (m, 2H), 7.59 (s, 1H), 7.34 (s, 2H), 7.27 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.12 (d, *J* = 11.2 Hz, 2H), 6.04 (s, 2H), 4.06 (q, *J* = 7.1 Hz, 2H), 2.44

(s, 3H), 0.91 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.3, 148.0, 147.8, 139.7, 137.7, 137.1, 132.0, 131.4, 130.9, 130.4, 130.4, 129.6, 126.6, 126.4, 125.8, 104.1, 103.9, 101.2, 61.0, 21.1, 13.9. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₁H₁₉O₄ 335.1283, found 335.1281.

ethyl 2-(naphtho[2,3-d][1,3]dioxol-6-yl)-5-(trifluoromethyl)benzoate (3me)

According to the general procedure (PE/EtOAc = 10/1), **3me** was obtained in 60% yield (23 mg). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.79 (m, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.59 (m, 2H), 7.27 (m, 1H), 7.14 (d, *J* = 10.0 Hz, 2H), 6.06 (s, 2H), 4.11 (q, *J* =

7.1 Hz, 2H), 0.95 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 148.3, 148.2, 146.0, 136.2, 132.3, 131.6, 130.4, 130.1, 129.6 (d, J = 33.3 Hz), 127.7 (q, J = 3.0 Hz), 127.0 (q, J = 3.0 Hz), 126.9, 126.5, 125.1, 123.9 (q, J = 272.7 Hz), 104.2, 103.9, 101.3, 61.6, 13.8.¹⁹F NMR (471 MHz, CDCl₃) δ -62.58. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₁H₁₆F₃O₄ 389.1001, found 389.0993.

ethyl 2-(1,4-dimethylnaphthalen-2-yl) benzoate (3af)

According to the general procedure (PE/EtOAc = 20/1), **3af** was obtained in 40% yield (12 mg). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.08 (m, 1H), 8.04 (m, 1H), 7.99 (m, 1H), 7.55 (m, 3H), 7.46 (m, 1H), 7.30 (m, 1H), 7.13 (s, 1H), 3.98 (q, *J* = 7.1 Hz, 2H), 2.68 (s, 3H), 2.40 (s, 3H), 0.78 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.0, 143.5, 138.3, 132.9, 132.1, 131.4, 131.4, 131.4, 131.2, 130.0, 128.9,

128.4, 127.2, 125.8, 125.2, 125.0, 124.7, 60.8, 19.4, 16.1, 13.6. HR-MS (ESI) $[M+H]^+$ m/z calcd for $C_{21}H_{21}O_2$ 305.1542, found 305.1532.

ethyl 2-(1,4-dimethylnaphthalen-2-yl)-5-fluorobenzoate (3lf)

According to the general procedure (PE/EtOAc = 20/1), **3lf** was obtained in 38% yield (12 mg). Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (m, 2H), 7.78 (d, J = 7.7 Hz, 1H), 7.58-7.53 (m, 2H), 7.45 (m, 1H), 7.32 (t, J = 8.5 Hz, 1H), 7.09 (s, 1H), 3.95 (q, J = 7.0 Hz, 2H), 2.67 (s, 3H), 2.43 (s, 3H), 0.74 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.0 (d, J = 2.5 Hz), 160.0 (d, J = 244.4 Hz), 133.8 (d, J

= 2.5 Hz), 132.8, 132.5, 131.6, 130.7 (d, *J* = 3.8 Hz), 130.5 (d, *J* = 8.8 Hz), 128.9 (d, *J* = 8.8 Hz), 128.2, 125.8, 125.7 (d, *J* = 3.8 Hz), 125.5, 125.1, 124.8, 119.0, 118.9, 61.1, 19.4, 16.1, 13.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.34. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₁H₂₀FO₂ 323.1447, found 323.1440.

ethyl 2-(anthracen-2-yl) benzoate (3ag)

According to the general procedure (PE/EtOAc = 20/1), **3ag** was obtained in 80% yield (26 mg). Light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 7.1 Hz, 2H), 8.03 (m, 3H), 7.96 (m, 2H), 7.59 (m, 1H), 7.54 (m, 1H), 7.47 (m, 4H), 4.09 (q, *J* = 7.1 Hz, 2H), 0.88 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 142.5, 138.7, 132.1, 131.9, 131.6, 131.5, 131.0, 130.8, 130.1, 128.3, 128.3, 127.7, 127.5, 127.3, 126.9, 126.6, 126.2, 125.6, 125.5, 61.1, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₃H₁₉O₂ 327.1385, found 327.1381.

ethyl 2-(anthracen-2-yl)-4-methylbenzoate (3bg)

According to the general procedure (PE/EtOAc = 20/1), **3bg** was obtained in 77% yield (26 mg). Light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 6.7 Hz, 2H), 7.98 (m, 3H), 7.91 (s, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.45 (m, 2H), 7.40 (dd, *J* = 8.7, 1.5 Hz, 1H), 7.30 (s, 1H), 7.25

(m, 1H), 4.03 (q, J = 7.1 Hz, 2H), 2.44 (s, 3H), 0.84 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 142.8, 142.0, 139.1, 132.1, 131.9, 131.6, 130.8, 130.5, 128.4, 128.3, 128.3, 128.2, 127.5, 126.7, 126.5, 126.1, 125.5, 125.5, 60.9, 21.6, 13.8. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₄H₂₁O₂ 341.1542, found 341.1541.

ethyl 2-(anthracen-2-yl)-4-bromobenzoate (3eg)

According to the general procedure (PE/EtOAc = 20/1), **3eg** was obtained in 62% yield (25 mg). Light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 6.5 Hz, 2H), 8.02 (m, 3H), 7.93 (s, 1H), 7.80 (m, 1H), 7.70 (d, *J* = 1.9 Hz, 1H), 7.61 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.49 (m, 2H),

7.39 (dd, *J* = 8.7, 1.6 Hz, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 0.86 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.0, 144.5, 137.4, 134.0, 132.2, 132.1, 131.8, 131.4, 130.9, 130.6, 130.2, 128.3, 127.9, 127.1, 126.8, 126.7, 126.3, 126.0, 125.7, 61.3, 13.7. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₃H₁₈BrO₂ 405.0490, found 405.0488.

ethyl 4-(anthracen-2-yl) thiophene-3-carboxylate (3og)

According to the general procedure (PE/EtOAc = 20/1), **3og** was obtained in 76% yield (25 mg). Light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 4.0 Hz, 2H), 8.13 (s, 1H), 8.01 (m, 3H), 7.60 (m, 2H), 7.49 (m, 2H), 7.30 (d, *J* = 5.4 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹³C

NMR (101 MHz, CDCl₃) δ 163.5, 150.9, 132.3, 132.1, 131.2, 131.1, 130.7, 130.4, 129.0, 128.7, 128.3, 128.3, 127.8, 127.6, 127.0, 126.2, 125.8, 125.7, 124.4, 60.7, 14.2. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₁H₁₇O₂S 333.0949, found 333.0948.

2-(naphthalen-2-yl) benzoic acid (4aa)¹⁷

According to the general procedure (PE/(EtOAc/EtOH/AcOH=3/1/0.08) = 7/3), **4aa** was obtained in 69% yield (17 mg). White solid. ¹H NMR (400 MHz, DMSO d_6) δ 7.94 (m, 3H), 7.87 (s, 1H), 7.80 (dd, J = 7.9, 1.2 Hz, 1H), 7.62 (td, J = 7.6, 1.3 Hz, 1H), 7.51 (m, 5H). ¹³C NMR (101 MHz, DMSO) δ 169.6, 141.2, 138.7, 132.9,

132.3, 132.1, 131.1, 130.9, 129.4, 128.0, 127.5, 127.5, 127.3, 127.2, 126.7, 126.3, 126.1. HR-MS (ESI) $[M+H]^+ m/z$ calcd for $C_{17}H_{13}O_2$ 249.0916, found 249.0906.

6H-dibenzo[c,h]chromen-6-one (5aa)¹²

According to the general procedure (PE/EtOAc = 20/1), **5aa** was obtained in 90% yield (22 mg). White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (m, 1H), 8.45 (m, 1H), 8.16 (d, *J* = 8.1 Hz, 1H), 8.03 (d, *J* = 8.8 Hz, 1H), 7.85 (m, 2H), 7.74 (d, *J* = 8.8 Hz, 1H), 7.63 (dd, *J* = 6.9, 1.5 Hz, 1H), 7.61-7.55 (m, 2H). ¹³C NMR (101 MHz,

CDCl₃) δ 161.3, 147.4, 135.5, 135.1, 134.4, 130.8, 128.7, 128.0, 127.8, 127.2, 124.6, 124.0, 122.4, 122.1, 121.3, 119.3, 113.1. HR-MS (ESI) [M+H]⁺ m/z calcd for C₁₇H₁₁O₂ 247.0759, found 247.0754.

methyl 2-(4-(naphthalen-2-yl)-3-oxo-1,3-dihydroisobenzofuran-1-yl) acetate (6aa)¹⁵

According to the general procedure (PE/EtOAc = 2/1), **6aa** was obtained in 49% yield (16 mg). Light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (m, 1H), 7.90 (m, 3H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.67 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.51 (m, 2H), 7.48 (d, *J* = 7.6 Hz, 1H), 5.91 (t, *J* = 6.6 Hz, 1H), 3.79 (s, 3H), 2.96 (d, *J* = 6.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.9,

168.7, 150.1, 142.9, 134.2, 133.9, 133.2, 133.1, 131.7, 128.7, 128.4, 127.8, 127.5, 127.4, 126.5, 126.3, 122.1, 120.8, 75.7, 52.3, 39.7. HR-MS (ESI) [M+H]⁺ m/z calcd for C₂₁H₁₇O₄ 333.1127, found 333.1133.

VII. References

1. A. Thomas, An efficient, stereocontrolled and versatile synthetic route to bicyclic partially saturated privileged scaffolds. *Chem. Commun.*, 2020, **56**, 6818-6821.

2. B. Jiang, S. Wu, J. Zeng and X. Yang, Controllable Rh (III)-Catalyzed C–H Arylation and Dealcoholization: Access to Biphenyl-2-carbonitriles and Biphenyl-2-carbimidates. *Org. Lett.*, 2018, **20**, 6573-6577.

3. E. A. Wappes, K. M. Nakafuku and D. A. Nagib, Directed β C–H amination of alcohols via radical relay chaperones. *J. Am. Chem. Soc.*, 2017, **139**, 10204-10207.

4. P. Gandeepan, P. Rajamalli, C. H. Cheng, Diastereoselective [3+2] Annulation of Aromatic/Vinylic Amides with Bicyclic Alkenes through Cobalt-Catalyzed C-H Activation and Intramolecular Nucleophilic Addition. *Angew. Chem. Int. Ed.*, 2016, **128**, 4380-4383.

5. S. Qiu, S. Zhai, H. Wang, X. Chen and H. Zhai, One-pot synthesis of benzo [*b*] fluorenones via a cobaltcatalyzed MHP-directed [3+2] annulation/ring-opening/ dehydration sequence. *Chem. Commun.*, 2019, **55**, 4206-4209.

6. M. Lautens, K. Fagnou and D. Yang, Rhodium-catalyzed asymmetric ring opening reactions of oxabicyclic alkenes: Application of halide effects in the development of a general process. *J. Am. Chem. Soc.*, 2003, **125**, 14884-14892.

7. Z. Jin, Y. C. Teo, N. G. Zulaybar, M. D. Smith and Y. Xia, Streamlined synthesis of polycyclic conjugated hydrocarbons containing cyclobutadienoids via C–H activated annulation and aromatization. *J. Am. Chem. Soc.*, 2017, **139**, 1806-1809.

8. Y. Koseki, K. Kitazawa, M. Miyake, T. Kochi and F. Kakiuchi, Ruthenium-catalyzed ortho C–H arylation of aromatic nitriles with arylboronates and observation of partial para arylation. *J. Org. Chem.*, 2017, **82**, 6503-6510.

9. H. Wang, M. M. Lorion and L. Ackermann, Domino C–H/N–H allylations of imidates by cobalt catalysis. *ACS Catal.*, 2017, **7**, 3430-3433.

10. H. Gu, B. Yu, P. F. Zhang, and W. M. Xu, Organic Preparations and Procedures International: The New Journal for Organic Synthesis. *Org. Prep. Proced. Int.*, 2009, **41**, 162-164.

11. J. M. Khurana, A. Sehgal , An Efficient and Convenient Procedure for Ester Hydrolysis. *Org. Prep. Proced. Int.,* 1994, **26**, 580-583.

 G. Tan, Q. You, J. Lan and J. You, Iridium-Catalyzed Annulation Reactions of Thiophenes with Carboxylic Acids: Direct Evidence for a Heck-type Pathway. *Angew. Chem. Int. Ed.* 2018, **57**, 6309-6313.
 N. P. Ramirez, I. Bosque and J. C. Gonzalez-Gomez, Photocatalytic dehydrogenative lactonization of 2-arylbenzoic acids. *Org. Lett.*, 2015, **17**, 4550-4553.

14. M. Chao, F. Wang, L. Xu, Y. Ju, Z. Chen, B. Wang, P. Gong, J. You, M. Jin and D. Shen, Cerium Ammonium Nitrate-Mediated Access to Biaryl Lactones: Substrate Scopes and Mechanism Studies. *J. Org. Chem.*, 2021, **86**, 13371-13380.

15. Q. Jiang, C. Zhu, H. Zhao and W. Su, Rh(III)-Catalyzed C-H Olefination of Benzoic Acids under Mild Conditions using Oxygen as the Sole Oxidant. *Chem-Asian J.*, 2016, **11**, 356-359.

16. C. Wang, S. Rakshit and F. Glorius, Palladium-catalyzed intermolecular decarboxylative coupling of 2-phenylbenzoic acids with alkynes via C– H and C– C bond activation. *J. Am. Chem. Soc.*, 2010, **132**, 14006-14008.

17. M. Kawamura, Y. Mizuki, H. Ito, T. Hayama, T. Haketa, Anthracene derivative, organic electroluminescent (EL) element having it and electric device having it. WO2015033559A1, 2015.

VIII. The ¹H and ¹³C NMR spectra of compounds

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR spectrum of **3ga**, 500 MHz, CDCl₃

S32

S35

 $^{19}\mathrm{F}$ NMR spectrum of $\mathbf{3Ia},471~\mathrm{MHz},\mathrm{CDCI}_3$

S37

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

S40

¹⁹F NMR spectrum of **3na**, 471 MHz, CDCl₃

S51

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm) ¹H NMR spectrum of **3ac**, 400 MHz, CDCl₃

¹³C NMR spectrum of **3ac**, 101 MHz, CDCl₃

- 13.80

¹H NMR spectrum of **3bc**, 500 MHz, CDCl₃

¹H NMR spectrum of **3ec**, 400 MHz, CDCl₃

¹³C NMR spectrum of **3ec**, 126 MHz, CDCl₃

¹H NMR spectrum of **3kc**, 400 MHz, CDCl₃

 ^1H NMR spectrum of **3ae**, 500 MHz, CDCl_3

 ^{13}C NMR spectrum of **3ae**, 126 MHz, CDCl_3

169.07	148.02 147.85 142.50 137.74 131.65 131.65 130.96 130.98 130.98 130.96 126.66 10	61.05	13.84
1			1

¹H NMR spectrum of **3de**, 500 MHz, CDCl₃

¹³C NMR spectrum of **3de**, 126 MHz, CDCl₃

¹H NMR spectrum of **3ke**, 500 MHz, CDCl₃

¹H NMR spectrum of **3me**, 400 MHz, CDCl₃

¹⁹F NMR spectrum of **3me**, 471 MHz, CDCl₃

¹H NMR spectrum of **3af**, 500 MHz, CDCl₃

 ^{19}F NMR spectrum of **3If**, 471 MHz, CDCl_3

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) ¹H NMR spectrum of **4aa**, 400 MHz, DMSO-*d*₆

S73

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)