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Experimental section

P-Zn Fabrication.

B-Zn was treated by sandpaper (800- and 1500-mesh), using commercial Zn foil (thickness: ~200 um, purity: 99.9
%) as the starting material. B-Zn exhibited a metallic luster after passivation-layer removal. Subsequently, the
treated B-Zn was rinsed repeatedly with ethanol and deionized water. Finally, the obtained P-Zn was dried by Ar
blowing and deposited in an Ar-filled glove box before being used as the anode.

SP-Zn Fabrication.

P-Zn was polished by a nylon cloth using a polishing machine. An Al,03-based polishing paste and deionized water

were added during the treatment process; the polishing process continued for 180 s. The treated SP-Zn was rinsed



repetitively with ethanol and deionized water, dried by Ar blowing, and deposited in an Ar-filled glove box before

use as the anode.

Characterization.

A Bruker D8 Advance X-ray diffractometer with a non-monochromated Cu-K, X-ray source was used for X-ray

diffraction (XRD). The morphology and microstructure of the three types of Zn electrodes were characterized using

a JEOL JSM-7100F field-emission scanning electron microscope (SEM) and a Leica DM 6000 DigitalMicroscope.

Electrochemical Measurements.

Three types of Zn foil were cut into disks (=14 mm) for electrochemical characterization. B-Zn | | B-Zn, P-Zn || P-

Zn, and SP-Zn | | SP-Zn symmetrical cells were assembled using a 2032-type coin cell configuration. GFD glass fibers

(®=16 mm) and ZnSO, (2 M) were used as the separator and aqueous electrolyte, respectively. A multichannel

battery testing system (LAND) was used for the electrochemical plating/stripping measurements of the

symmetrical cells. An electrochemical analyzer (CHI 760e) was used to record the electrochemical impedance

spectrum (EIS) results (using a frequency range of 100 kHz to 0.01 Hz and an AC voltage of 5 mV).

Simulation of the Electric Field Contribution

In this work, in order to better know the effect of electrode microstructure on electrical properties, a two-
dimensional model of 100x60um was established by COMSOL Multiphysics to obtain the local electric field and
current density distribution of different electrode microstructures. The local electric field E and current density J

in the electrolyte follow Gauss’law and continuity equation:
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J=0cF . (2)

E=-Vgp. (3)

where p, o, and ¢ represent the space charge density, the electrical conductivity and electric potential,
respectively. Here, the electrical conductivity of the electrode and electrolyte were set to 1.7x107 S/m and 5 S/m,
respectively. And the overpotential of 0.03 uV was employed as voltage excitation between the anode side and

the electrolyte side.



Fig. S2. Metallographical images of P-Zn.

Fig. S4. The amplified position of electron microscope on B-Zn, P-Zn and SP-Zn in
Fig. 1.
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Fig. SS. EIS of B-Zn, P-Zn, SP-Zn at (a) initial, (b) 1st and (¢)10th cycles.
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Fig. S6. XRD pattern of a-MnO,

Fig. S7. SEM images of a-MnO,
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Fig. S8. The CV curves of (a) a-MnO,//B-Zn, (b) a-MnO,//P-Zn and (¢) a-MnO,//SP-
Zn at the scan rate of 1 mV s7!;
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Fig. S9. Discharge and charge curves of (a)a-MnO,//B-Zn, (b)a-MnO,//P-Zn and
(c)a-MnO,//SP-Zn at 10th, 50th and 100th cycles.
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Fig. S10. The cycling performance and discharge and charge curves of (a, d) a-
MnO,//B-Zn, (b, €) a-MnO,//P-Zn and (c, f) a-MnO,//SP-Zn at a current density of 2
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Fig. S11. SEM images of (a) B-Zn, (b) P-Zn and (¢) SP-Zn in full cells (a-MnO, as
cathode material) after 100 cycles.
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Fig. S12. The cycling performance and discharge and charge curves of (a, d) V,0s-
PAN//B-Zn, (b, €) V,05-PAN//P-Zn and (c, f) V,O5-PAN//SP-Zn at a current density
of 1 A gl
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Fig. S13. The schematic diagram of uneven rupture of oxide film



