Supporting Information

Homogenization of electric field distribution facilitating the Zn anode

reversibility

Han Tang,^a Huadong Liang,^a Runmin Jia,^a Yu Liu,^{b,c} Huibiao Chen,^a Hongyu Luo,^a Wei Yang,^b Jian Wang,^b

Mengjun Zhou,*b Ping Luo*a and Qinyou An*b

^a Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and

Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.

^b State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School Material

Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

^c Department of Materials Science and Engineering, National University of Singapore, Singapore,

117574 Singapore

E-mail: zhoumj@whut.edu.cn, luoping@hbut.edu.cn, anqinyou86@whut.edu.cn

Experimental section

P-Zn Fabrication.

B-Zn was treated by sandpaper (800- and 1500-mesh), using commercial Zn foil (thickness: ~200 μm, purity: 99.9 %) as the starting material. B-Zn exhibited a metallic luster after passivation-layer removal. Subsequently, the treated B-Zn was rinsed repeatedly with ethanol and deionized water. Finally, the obtained P-Zn was dried by Ar blowing and deposited in an Ar-filled glove box before being used as the anode.

SP-Zn Fabrication.

P-Zn was polished by a nylon cloth using a polishing machine. An Al_2O_3 -based polishing paste and deionized water were added during the treatment process; the polishing process continued for 180 s. The treated SP-Zn was rinsed repetitively with ethanol and deionized water, dried by Ar blowing, and deposited in an Ar-filled glove box before use as the anode.

Characterization.

A Bruker D8 Advance X-ray diffractometer with a non-monochromated $Cu-K_{\alpha}$ X-ray source was used for X-ray diffraction (XRD). The morphology and microstructure of the three types of Zn electrodes were characterized using a JEOL JSM-7100F field-emission scanning electron microscope (SEM) and a Leica DM 6000 Digital Microscope.

Electrochemical Measurements.

Three types of Zn foil were cut into disks (Φ =14 mm) for electrochemical characterization. B-Zn || B-Zn, P-Zn || P-Zn, and SP-Zn || SP-Zn symmetrical cells were assembled using a 2032-type coin cell configuration. GFD glass fibers (Φ =16 mm) and ZnSO₄ (2 M) were used as the separator and aqueous electrolyte, respectively. A multichannel battery testing system (LAND) was used for the electrochemical plating/stripping measurements of the symmetrical cells. An electrochemical analyzer (CHI 760e) was used to record the electrochemical impedance spectrum (EIS) results (using a frequency range of 100 kHz to 0.01 Hz and an AC voltage of 5 mV).

Simulation of the Electric Field Contribution

In this work, in order to better know the effect of electrode microstructure on electrical properties, a twodimensional model of 100x60µm was established by COMSOL Multiphysics to obtain the local electric field and current density distribution of different electrode microstructures. The local electric field *E* and current density *J* in the electrolyte follow Gauss'law and continuity equation:

$$\nabla \cdot J = \frac{\partial \rho}{\partial t} \,. \tag{1}$$

$$J = \sigma E . \tag{2}$$

$$E = -\nabla \varphi \,. \tag{3}$$

where ρ , σ , and ϕ represent the space charge density, the electrical conductivity and electric potential, respectively. Here, the electrical conductivity of the electrode and electrolyte were set to 1.7×10^7 S/m and 5 S/m, respectively. And the overpotential of 0.03 μ V was employed as voltage excitation between the anode side and the electrolyte side.

Fig. S1. Metallographical images of B-Zn.

Fig. S2. Metallographical images of P-Zn.

Fig. S3. Metallographical images of SP-Zn.

Fig. S4. The amplified position of electron microscope on B-Zn, P-Zn and SP-Zn in Fig. 1.

Fig. S5. EIS of B-Zn, P-Zn, SP-Zn at (a) initial, (b) 1st and (c)10th cycles.

Fig. S6. XRD pattern of α -MnO₂

Fig. S7. SEM images of α -MnO₂

Fig. S8. The CV curves of (a) α -MnO₂//B-Zn, (b) α -MnO₂//P-Zn and (c) α -MnO₂//SP-Zn at the scan rate of 1 mV s⁻¹;

Fig. S9. Discharge and charge curves of (a)α-MnO₂//B-Zn, (b)α-MnO₂//P-Zn and (c)α-MnO₂//SP-Zn at 10th, 50th and 100th cycles.

Fig. S10. The cycling performance and discharge and charge curves of (a, d) α -MnO₂//B-Zn, (b, e) α -MnO₂//P-Zn and (c, f) α -MnO₂//SP-Zn at a current density of 2 A g⁻¹.

Fig. S11. SEM images of (a) B-Zn, (b) P-Zn and (c) SP-Zn in full cells (α-MnO₂ as cathode material) after 100 cycles.

Fig. S12. The cycling performance and discharge and charge curves of (a, d) V₂O₅-PAN//B-Zn, (b, e) V₂O₅-PAN//P-Zn and (c, f) V₂O₅-PAN//SP-Zn at a current density of 1 A g⁻¹.

Fig. S13. The schematic diagram of uneven rupture of oxide film