Supplementary Information

A New Adsorption Energy-Barrier Relation and Its Application to $\mathbf{C O}_{2}$ Hydrogenation to Methanol over $\ln _{2} \mathrm{O}_{3}$-Supported Metal Catalysts

Deshuai Yang, ${ }^{1,2}$ Huili Lu, ${ }^{1}$ Guixiang Zeng, ${ }^{* 2}$ Zhao-Xu Chen, ${ }^{* 1}$
${ }^{1}$ Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
${ }^{2}$ Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, People's Republic of China

E-mail: zxchen@nju.edu.cn; gxzeng@nju.edu.cn

Models and Computational Methodology:

The $\ln _{2} \mathrm{O}_{3}$-supported metal catalysts were modeled with $\mathrm{M}_{4} / \ln _{2} \mathrm{O}_{3}(110)^{51}$ ($\mathrm{M}=\mathrm{Ni}, \mathrm{Ag}, \mathrm{Pt}, \mathrm{Rh}$, Ir and Pd) (Fig. S1a-f). The $\mathrm{In}_{2} \mathrm{O}_{3}$ (110) surface was modeled with a four-layer slab of $(1 \times \sqrt{2})$ surface unit cell constructed from the optimized cubic bulk $\ln _{2} \mathrm{O}_{3}$ with the lattice parameter of $10.22 \AA$, which is in agreement with the experimental result. ${ }^{S 2} \mathrm{~A}$ vacuum of $\sim 14 \AA$ was adopted and the cell has a dimension of $10.22 \AA \times 14.45 \AA \times 20.00 \AA$, consisting of 32 Indium atoms and 48 Oxygen atoms.

All DFT calculations were carried out using the Vienna Ab initio Simulation Package (VASP). ${ }^{53}$ The projector-augment wave (PAW) method ${ }^{54}$ and Generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhoff (PBE) functional ${ }^{55}$ were employed to describe the electron-ion interaction and exchange-correlation interaction, respectively. The plane-wave energy cutoff was set to 400 eV and DFT-D3 method ${ }^{56}$ implemented in VASP was adopted to evaluate the Van der Waals (vdW) interaction. The Brillouin zone was sampled using a $(2 \times 2 \times 1) k$-point grid according to the Monkhorst Pack method. ${ }^{57}$ Test calculations of CO_{2} adsorption energy on $\mathrm{Ni}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}(110)$ indicate that the error with 400 eV cutoff energy and ($2 \times 2 \times 1$) k-point is within chemical accuracy ($1 \mathrm{kcal} / \mathrm{mol}$). Spin-polarized effects were considered. Geometry optimization was stopped when the force on each relaxed atom is no more than $0.02 \mathrm{eV} / \mathrm{A}$. The transition states (TSs) were located using the climbing image nudged elastic band (CI-NEB) method. ${ }^{58}$ All the located stationary points are characterized by frequency analysis with each transition state has one and only one imaginary frequency along the reaction coordinate, and initial and final states have no imaginary frequencies.

Microkinetics modeling:

For surface reactions, the forward and backward rate constants were determined used the Eyring equation: ${ }^{\text {s9 }}$

$$
\begin{equation*}
k=\frac{k_{\mathrm{b}} \mathrm{~T}}{h} \frac{\mathrm{Q}_{\mathrm{T}}}{\mathrm{Q}} \mathrm{e}^{-\mathrm{E}_{\mathrm{a}} / \mathrm{k}_{\mathrm{b}} \mathrm{~T}} \tag{1}
\end{equation*}
$$

Where k is the reaction rate constants (in s^{-1}), k_{b} and h are the Boltzmann and Planck's constants, respectively. T and E_{a} are the reaction temperature (in K) and energy barrier, respectively. Q_{\top} and Q are the partition function of the transition state and initial or final state, respectively.

For the molecular adsorption, we assumed that the molecule loses one of its translational degrees of freedom with respect to the gas phase. The changes of the rotational degree of freedom were neglected. Then, the adsorption rate constant $k_{\text {ads }}$ was calculated as: ${ }^{s 10}$

$$
\begin{equation*}
k_{a d s}=\frac{P A^{\prime}}{\sqrt{2 \pi m k_{b} T}} S \tag{2}
\end{equation*}
$$

Where P indicates the partial pressure of the adsorbate in the gas phase, A^{\prime} refers to the surface area of the adsorption site, S and m represent the sticking coefficient and the mass of the adsorbate, respectively. The sticking coefficients for CO_{2} and H_{2} were set to 1 .

For the desorption process, we assumed that the activated complex has three rotational degree of freedom and two translation degree of freedom. According, the desorption rate constant $k_{\text {ads }}$ can be defined as: ${ }^{510}$

$$
\begin{equation*}
k_{d e s}=\frac{k_{\mathrm{b}} \mathrm{~T}^{3}}{h^{3}} \frac{A^{\prime}\left(2 \pi m k_{b}\right)}{\sigma \theta_{r o t}} \mathrm{e}^{-\mathrm{E}_{\mathrm{des}} / \mathrm{k}_{\mathrm{b}} \mathrm{~T}} \tag{3}
\end{equation*}
$$

Where σ and θ represent the symmetry number and the characteristic temperature for rotation, respectively. $\mathrm{E}_{\text {des }}$ is the desorption energy.

Different equations for all surface reaction species were constructed by using the rate constants of the elementary reaction steps. For each of the X components involved in the reaction network, a single differential equation is defined as:

$$
\begin{equation*}
r_{i}=\sum_{j=1}^{N}\left(k_{j} v_{i}^{j} \prod_{k=1}^{X} c_{k}^{v_{k}^{j}}\right) \tag{4}
\end{equation*}
$$

Where k_{j} is the elementary reaction rate constant, v_{i}^{j} is the stoichiometric coefficient of component i in elementary step k, and c_{k} refers to the concentration of component k on catalyst surface.

To identify the rate-determining step of the CO_{2} hydrogenation reaction, Campbell's degree of rate control (DRC) analysis was employed. ${ }^{\text {S11 }}$ To a specific elementary step i, the DRC coefficient ($\chi_{R C, i}$) is defined as:

$$
\begin{equation*}
\chi_{R C, i}=\frac{k_{i}}{r}\left(\frac{\partial r}{\partial k_{i}}\right)_{k_{j \neq i, K_{i}}}=\left(\frac{\partial \ln r}{\partial \ln k_{i}}\right)_{k_{j \neq i, i} K_{i}} \tag{5}
\end{equation*}
$$

Where k_{i}, K_{i} and r refer to the rate constant, equilibrium constant for step i , and the overall reaction rate, respectively. A positive value of $\chi_{R C, i}$ indicates a rate-controlling step, while a negative value indicates inhibition. Additionally, DRC coefficients obey the sum rule and the sum of all $\chi_{\mathrm{RC}, \mathrm{i}}$ values equals to unity.

Fig. S1 Optimized structures of (a) $\mathrm{Ni}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}(110)$, (b) $\mathrm{Ag}_{4} / / \mathrm{In}_{2} \mathrm{O}_{3}(110)$, (c) $\mathrm{Pt}_{4} / \mathrm{ln}_{2} \mathrm{O}_{3}(110)$, (d) $\mathrm{Rh}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}(110)$, (e) $\mathrm{Ir}_{4} / \mathrm{ln}_{2} \mathrm{O}_{3}(110)$ and (g) $\mathrm{Pd}_{4} / \mathrm{ln}_{2} \mathrm{O}_{3}(110)$. Red, O atoms; Brown, In atoms; Blue, Ni atoms; Gray, Ag atoms; Orange, Pt atoms; Green, Rh atoms; Purple, Ir atoms; Cyan, Pd atoms.

Fig. S2 Comparison of two routes of CO formation over $\mathrm{Ni}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}(110)$ for the RWGS route.

Fig. S3 Potential energy profiles of $\mathrm{H}_{2} \mathrm{COO}$ over $\mathrm{Ni}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}(110)$ for the formate route.

Fig. S4 Comparison of $\mathrm{H}_{3} \mathrm{CO}$ and $\mathrm{H}_{2} \mathrm{COH}$ routes for $\mathrm{H}_{2} \mathrm{CO}$ * hydrogenation to methanol over $\mathrm{Ni}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}(110)$ for the formic acid (HCOOH) route.

Fig. S5 Calculated (a) the degree of selectivity control (DSC) and (b) the degree of rate control (DRC) of methanol as a function of temperature based on microkinetic simulations (reaction conditions: $\mathrm{CO}_{2}: \mathrm{H}_{2}=1: 4, \mathrm{p}=50 \mathrm{bar}$).

Fig. S6 Potential energy profiles for CO_{2} hydrogenation to HCOO over $\mathrm{M}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}(110)$, where $\mathrm{M}=\mathrm{Ag}, \mathrm{Pt}, \mathrm{Pd}, \mathrm{Rh}, \mathrm{Ni}$ and Ir.

Fig. S7 Liner scaling correlation between logarithm of the HCOO formation rate constant, $\operatorname{Ln}(\mathrm{k})$, and the experimental turnover frequency (TOF) of methanol.

Fig. R8 Relationship between the co-adsorption energies ($\mathrm{E}_{\mathrm{ads}}$) of $\mathrm{CO}_{2}{ }^{*}+\mathrm{H}^{*}$ and the energy barriers (E_{a}) for CO_{2} hydrogenation to HCOO step over $\mathrm{In}_{2} \mathrm{O}_{3}$ surface.

Fig. S9 Potential energy profiles for CO_{2} hydrogenation to HCOO over $\mathrm{M}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}(110)$, where $\mathrm{M}=\mathrm{Cu}, \mathrm{Ga}, \mathrm{Al}, \mathrm{Co}, \mathrm{Fe}$ and Cr .

Table S1. Calculated forward $\left(\mathrm{E}_{\mathrm{f}}\right) /$ backward $\left(\mathrm{E}_{\mathrm{b}}\right)$ energy barriers and the corresponding pre-exponential factors (A_{f} and A_{r}) of the elementary reactions involved in CO_{2} hydrogenation to methanol over $\mathrm{Ni}_{4} / \ln _{2} \mathrm{O}_{3}(110)$. Pre-exponential factors are temperature dependent and are given here at a temperature of $300^{\circ} \mathrm{C}$.

Elementary Step	$\mathrm{Ni}_{4} / \mathrm{ln}_{2} \mathrm{O}_{3}$			
	$\mathrm{Ef}_{\mathrm{f}}(\mathrm{eV})$	$E_{b}(\mathrm{eV})$	$\mathrm{Aff}_{\mathrm{f}}\left(\mathrm{s}^{-1}\right)$	$\mathrm{A}_{\mathrm{b}}\left(\mathrm{s}^{-1}\right)$
$\mathrm{R} 1: \mathrm{CO}_{2}{ }^{+}+{ }^{*} \rightarrow \mathrm{CO}^{*}+\mathrm{O}^{*}$	1.31	0.16	$7.28 \mathrm{E}+13$	$8.50 \mathrm{E}+12$
$\mathrm{R} 2: \mathrm{CO}_{2}{ }^{*}+\mathrm{H}^{*} \rightarrow$ trans $-\mathrm{COOH}^{*}+*$	0.43	0.33	$4.16 \mathrm{E}+12$	$7.31 \mathrm{E}+12$
R3: trans- $\mathrm{COOH}^{*} \rightarrow$ cis- COOH^{*}	2.19	2.22	$3.86 \mathrm{E}+13$	$5.68 \mathrm{E}+13$
R4: cis-COOH* $+\mathrm{H}^{*} \rightarrow \mathrm{CO}^{*}+\mathrm{H}_{2} \mathrm{O}^{*}$	1.65	1.29	$1.13 \mathrm{E}+13$	$1.00 \mathrm{E}+14$
$\mathrm{R} 5: \mathrm{CO}_{2}{ }^{+} \mathrm{H}^{*} \rightarrow \mathrm{HCOO}^{*}+$	0.92	1.49	$5.07 \mathrm{E}+13$	$1.59 \mathrm{E}+14$
R6: $\mathrm{HCOO}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{H}_{2} \mathrm{COO}^{*}+{ }^{*}$	2.02	1.01	$4.80 \mathrm{E}+12$	$6.77 \mathrm{E}+12$
$\mathrm{R} 7: \mathrm{HCOO}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCOOH}^{*}+*$	0.76	-0.02	$1.68 \mathrm{E}+13$	$4.95 \mathrm{E}+12$
$\mathrm{R8}: \mathrm{HCOOH}^{*}+* \rightarrow \mathrm{HCO}^{*}+\mathrm{OH}^{*}$	0.77	0.71	$1.65 \mathrm{E}+12$	$1.40 \mathrm{E}+12$
$\mathrm{R9}$: $\mathrm{HCO}^{*}+\mathrm{OH}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCO}^{*}+{ }^{*}+\mathrm{H}_{2} \mathrm{O}^{*}$	0.59	0.56	$4.63 \mathrm{E}+12$	$3.96 \mathrm{E}+12$
R10: $\mathrm{HCO}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{H}_{2} \mathrm{CO}^{*}+*$	0.44	0.58	$1.00 \mathrm{E}+13$	$6.31 \mathrm{E}+12$
R11: $\mathrm{H}_{2} \mathrm{CO}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{H}_{3} \mathrm{CO}^{*}+*$	0.45	0.65	$7.26 \mathrm{E}+12$	$1.24 \mathrm{E}+12$
$\mathrm{R12:} \mathrm{H}_{3} \mathrm{CO}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{H}_{3} \mathrm{COH}^{*}+{ }^{*}$	0.88	-0.02	$9.38 \mathrm{E}+11$	$2.83 \mathrm{E}+12$
R13: $\mathrm{H}_{2} \mathrm{CO}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{H}_{2} \mathrm{COH}^{*}+*$	0.98	0.01	$4.47 \mathrm{E}+12$	$2.71 \mathrm{E}+12$
$\mathrm{R} 14: \mathrm{H}_{2} \mathrm{COH}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{H}_{3} \mathrm{COH}^{*}+*$	1.85	1.83	$2.00 \mathrm{E}+13$	$2.97 \mathrm{E}+12$

Table S2. Experimental turnover frequencies (TOFs) of methanol and relevant information for the six reported $\mathrm{In}_{2} \mathrm{O}_{3}$-supported metal catalysts for CO_{2} hydrogenation to methanol.

Species	Metal loading (wt\%)	Relative atomic mass ($\mathrm{g} / \mathrm{mol}$)	Space Time Yield of methanol 	TOF (s^{-1})	Ref
Ag	0.33	107.87	0.4530	$1.29 \mathrm{E}-01$	S12
Pd	0.97	106.42	0.8900	8.48E-02	S13
Rh	1.07	102.91	0.5448	4.55E-02	S14
Ir	10.00	192.22	0.7650	$1.28 \mathrm{E}-02$	S15
Ni	10.00	58.69	0.5500	2.80E-03	S16
Pt	1.07	195.08	0.5420	$8.58 \mathrm{E}-02$	S17

Table S3. Calculated forward energy barriers $\left(\mathrm{E}_{\mathrm{f}}\right)$, pre-exponential factor (A_{f}) and reaction rate constant k_{r} for $\mathrm{CO}_{2}{ }^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCOO}^{*}+{ }^{*}$ step over $\mathrm{M}_{4} / \ln _{2} \mathrm{O}_{3}(110)$, where $\mathrm{M}=\mathrm{Ag}, \mathrm{Pt}, \mathrm{Rh}$, Ni and Ir respectively. Pre-exponential factors and reaction rates are temperature dependent and are given here at a temperature of $300^{\circ} \mathrm{C}$.

Species	$\mathbf{E}_{\mathbf{f}}(\mathbf{e V})$	$\mathbf{A}_{\mathbf{f}}\left(\mathbf{s}^{-\mathbf{1}}\right)$	$\mathbf{k}_{\mathbf{r}}\left(\mathbf{s}^{\mathbf{- 1}}\right)$
$\mathbf{A g}$	0.40	$1.78 \mathrm{E}+13$	$5.07 \mathrm{E}+09$
$\mathbf{P t}$	0.54	$1.75 \mathrm{E}+13$	$2.84 \mathrm{E}+08$
$\mathbf{R h}$	0.87	$3.48 \mathrm{E}+14$	$7.55 \mathrm{E}+06$
$\mathbf{N i}$	0.92	$5.07 \mathrm{E}+13$	$4.33 \mathrm{E}+05$
$\mathbf{I r}$	1.05	$1.04 \mathrm{E}+15$	$5.83 \mathrm{E}+05$

Table S4. Calculated Bader charges (in unit |e|) and CO_{2} adsorption energies ($\mathrm{E}_{\mathrm{ads}}$).

System	$\mathbf{C O}_{\mathbf{2}}$	$\mathbf{O}_{\mathbf{1}}$	$\mathbf{O}_{\mathbf{2}}$	\mathbf{C}	$\mathbf{M}_{\mathbf{t}}$	$\mathbf{M} \mathbf{1}$	$\mathbf{M} \mathbf{2}$	$\mathbf{M} 3$	$\mathbf{M} 4$	$\mathbf{I n}$	$\mathbf{E}_{\text {ads }}$
Ag	-0.03	-1.06	-1.10	2.12	0.71	0.24	0.24	0.01	0.22	1.54	-0.24
Pt	-0.58	-0.97	-1.06	1.45	0.54	0.20	0.09	0.14	0.11	1.62	-0.73
Pd	-0.55	-1.00	-1.07	1.52	0.64	0.23	0.09	0.19	0.14	1.62	-0.79
Rh	-0.64	-1.02	-1.08	1.46	0.90	0.28	0.18	0.22	0.21	1.62	-0.96
Ni	-0.70	-1.04	-1.07	1.41	1.11	0.34	0.27	0.27	0.24	1.62	-1.08
Ir	-0.53	-0.97	-1.11	1.55	0.71	0.23	0.13	0.18	0.18	1.60	-1.31
Cr	-0.96	-1.06	-1.08	1.18	2.18	0.59	0.53	0.50	0.56	1.61	-1.47
Co	-0.73	-1.06	-1.08	1.39	1.34	0.39	0.36	0.28	0.31	1.62	-1.35
Fe	-0.85	-1.08	-1.08	1.31	1.67	0.44	0.47	0.37	0.39	1.62	-1.36
Cu	-0.06	-1.05	-1.09	2.14	0.85	0.27	0.31	-0.01	0.28	1.54	-0.24
Ga	-1.02	-1.14	-1.09	1.21	2.10	0.60	0.52	0.51	0.46	1.59	-0.52
Al	-1.51	-1.29	-1.10	0.87	3.93	1.16	0.93	0.88	0.96	1.59	-1.15

*: The atomic number is shown in Figure R2. Mt denotes the sum of charges on the four metal atoms.

ADBS relation for monomolecular reactions

Here we show that for a monomolecular reaction, ADBS relation is equivalent to TSS relation. The barrier E_{a} is

$$
\begin{align*}
E_{a} & =E_{A / s l a b}^{T S}-E_{A / s l a b}^{I S} \tag{S1}\\
E_{A / s l a b}^{T S} & =E_{A}^{0}+D_{A}^{T S}+E_{\text {slab }}^{0}+D_{\text {slab }}^{T S}+E_{A-\text { slab }}^{T S} \tag{S2}\\
E_{A / s l a b}^{I S} & =E_{A}^{0}+D_{A}^{I S}+E_{\text {slab }}^{0}+D_{\text {slab }}^{I S}+E_{A-\text { slab }}^{I S} \tag{S3}
\end{align*}
$$

For the meaning of all the symbols appearing in this section, please refer to the definitions in "ADBS relation for bimolecular reactions". The adsorption energies of A in the $I S$ and TS, $E_{\text {ads }}^{\text {Is }}$ and $\mathrm{E}_{\text {ads }}^{\text {Ts }}$, are

$$
\begin{gather*}
E_{\text {ads }}^{\text {IS }}=\left(E_{A-\text { slab }}^{\text {IS }}+E_{A}^{0}+D_{A}^{I S}+E_{\text {slab }}^{0}+D_{\text {slab }}^{I S}\right)-\left(E_{A}^{0}+E_{\text {slab }}^{0}\right)=E_{A-\text { slab }}^{I S}+D_{A}^{I S}+D_{\text {slab }}^{I S} \tag{S4}\\
E_{\text {ads }}^{T S}=\left(E_{A-\text { slab }}^{T S}+E_{A}^{0}+D_{A}^{T S}+E_{\text {slab }}^{0}+D_{\text {slab }}^{T S}\right)-\left(E_{A}^{0}+E_{\text {slab }}^{0}\right)=E_{A-\text { slab }}^{T S}+D_{A}^{T S}+D_{\text {slab }}^{T S} \tag{S5}
\end{gather*}
$$

Substitution of S2 and S3 into S1, one gets

$$
\begin{equation*}
\mathrm{E}_{\mathrm{a}}=\mathrm{E}_{\mathrm{A} / \mathrm{slab}}^{T \mathrm{~S}}-\mathrm{E}_{\mathrm{A} / \text { slab }}^{\mathrm{IS}}=\left(\mathrm{E}_{\mathrm{A}-\mathrm{slab}}^{\mathrm{TS}}+\mathrm{D}_{\mathrm{A}}^{\mathrm{TS}}+\mathrm{D}_{\text {slab }}^{T S}\right)-\left(\mathrm{E}_{\mathrm{A} \text {-slab }}^{\mathrm{IS}}+\mathrm{D}_{\mathrm{A}}^{\mathrm{IS}}+\mathrm{D}_{\text {slab }}^{\mathrm{IS}}\right)=\mathrm{E}_{\mathrm{A}-\mathrm{slab}}^{\mathrm{TS}}-\mathrm{E}_{\mathrm{A}-\mathrm{slab}}^{\mathrm{IS}} \tag{S6}
\end{equation*}
$$

If $A D B S$ relation holds true for the reaction, then

$$
\begin{equation*}
E_{a}=a E_{a d s}^{I S}+\beta \tag{S7}
\end{equation*}
$$

From S6 and S7, we have

$$
\begin{align*}
E_{a d s}^{T S}-E_{a d s}^{I S} & =a E_{a d s}^{I S}+\beta \tag{S8}\\
E_{a d s}^{T S} & =(a+1) E_{a d s}^{I S}+\beta=a^{\prime} E_{a d s}^{I S}+\beta \tag{S9}
\end{align*}
$$

Equation (S9) is TSS relation.

ADBS relation for bimolecular reactions

Here we show that we show that when certain conditions are satisfied, the ADBS relation for a bimolecular reaction is equivalent to the TSS relation.
The barrier E_{a} for a bimolecular surface reaction with reactants A and B is the difference between the total energy of the transition state ($T S, E_{A+B / \text { slab }}^{T S}$) and initial state (IS, $E_{A+B / s l a b}^{I S}$):

$$
\begin{equation*}
E_{a}=E_{A+B / s l a b}^{T S}-E_{A+B / s l a b}^{I S} \tag{S10}
\end{equation*}
$$

The total energy of IS and TS can be expressed as (S11) and (S12) respectively:

$$
\begin{align*}
& E_{A+B / s l a b}^{I S}=E_{A}^{0}+D_{A}^{I S}+E_{B}^{0}+D_{B}^{I S}+E_{\text {slab }}^{0}+D_{s l a b}^{I S}+E_{A-s l a b}^{I S}+E_{B-s l a b}^{I S}+E_{A-B}^{I S} \tag{S11}\\
& E_{A+B / s l a b}^{T S}=E_{A}^{0}+D_{A}^{T S}+E_{B}^{0}+D_{B}^{T S}+E_{s l a b}^{0}+D_{\text {slab }}^{T S}+E_{A-s l a b}^{T S}+E_{B-s l a b}^{T S}+E_{A-B}^{T S} \tag{S12}
\end{align*}
$$

Here E_{A}^{0}, E_{B}^{0} and $E_{\text {slab }}^{0}$ are the total energies of the isolated A and B and clean slab. $D_{A}^{I S} / D_{A}^{T S}, D_{B}^{I S} / D_{B}^{\text {TS }}$ and $D_{\text {slab }}^{I S} / D_{\text {slab }}^{\text {TS }}$ are the deformation energies of A, B and slab in the IS and TS structures with respect to the isolated A and B and clean slab. $E_{A-s l a b}^{I S} / E_{A-s l a b}^{T S}, E_{B-s l a b}^{I S} / E_{B-\text { slab }}^{T S}$ and $E_{A-B}^{I S} / E_{A-B}^{T S}$ refer to the interaction energy between A
or B and slab and between A and B in the IS/TS structures. Fig. S10 illustrates the deformation energy and interaction energy. Substitution of (S14) and (S12) into (S10) yields equation (S13)

$$
\begin{equation*}
E_{a}=\left(D_{A}^{T S}-D_{A}^{1 S}\right)+\left(D_{B}^{T S}-D_{B}^{I S}\right)+\left(D_{\text {slab }}^{T S}-D_{\text {slab }}^{I S}\right)+\left(E_{A-s l a b}^{T S}-E_{A-s l a b}^{I S}\right)+\left(E_{B-\text { slab }}^{T S}-E_{B-s l a b}^{I S}\right)+\left(E_{A-B}^{T S}-E_{A-B}^{I S}\right) \tag{S13}
\end{equation*}
$$

In our case, the two reactants are CO_{2} and H atom. Let B represent H atom, we have $D_{B}^{I S}=D_{B}^{\text {TS }}=0$. Rearranging (6), we obtain equation (S14):

$$
\begin{align*}
& E_{a}=\left(E_{A-B}^{T S}+E_{A-\text { slab }}^{T S}+D_{A}^{T S}\right)-\left(E_{A-B}^{I S}+E_{A-\text { slab }}^{I S}+D_{A}^{I S}\right)+\left(E_{B-\text { slab }}^{T S}+D_{\text {slab }}^{T S}\right)-\left(E_{B-\text { slab }}^{\text {IS }}+D_{\text {slab }}^{I S}\right) \tag{S14}\\
& =\left(E_{A-B}^{T S}+E_{A-\text { slab }}^{T S}+D_{A}^{T S}\right)-\left(E_{A-B}^{I S}+E_{A-\text { slab }}^{I S}+D_{A}^{I S}\right)+\left(E_{\text {slab }}^{0}+E_{B}^{0}+E_{B-\text { slab }}^{T S}+D_{\text {slab }}^{T S}\right) \\
& -\left(E_{\text {slab }}^{0}+E_{B}^{0}+E_{B-\text { slab }}^{\text {IS }}+D_{\text {slab }}^{\text {Is }}\right) \tag{S14'}
\end{align*}
$$

Note ($\left.E_{\text {slab }}^{0}+E_{B}^{0}+E_{B-\text { slab }}^{\text {TS }}+D_{\text {slab }}^{T S}\right)$ and $\left(E_{\text {slab }}^{0}+E_{B}^{0}+E_{B-\text { slab }}^{\text {IS }}+D_{\text {slab }}^{\text {S }}\right)$ denote the total energies of the slab with species B on it in the TS and IS respectively. When they are equal, equation (S14') is reduced to (S15):

$$
\begin{equation*}
E_{a}^{\prime}=\left(E_{A-B}^{T S}+E_{A-\text { slab }}^{T S}+D_{A}^{T S}\right)-\left(E_{A-B}^{I S}+E_{A-s l a b}^{I S}+D_{A}^{I S}\right) \tag{S15}
\end{equation*}
$$

$\mathrm{E}_{\mathrm{a}}{ }^{\prime}$ indicates the barrier under the condition that $\left(\mathrm{E}_{\text {slab }}^{0}+\mathrm{E}_{\mathrm{B}}^{0}+\mathrm{E}_{\mathrm{B}-\mathrm{slab}}^{\mathrm{TS}}+\mathrm{D}_{\text {slab }}^{\mathrm{TS}}\right)$ equals to $\left(E_{\text {slab }}^{0}+E_{B}^{0}+E_{B-\text { slab }}^{I S}+D_{\text {slab }}^{\text {IS }}\right)$. It can be shown that equation ($S 15$) is the difference of adsorption energy of reactant $\mathrm{A}, \mathrm{E}_{\mathrm{ads}(\mathrm{A})}$, on the slab with B adsorbed on it in the $T S$ and IS structures. Take $E_{\text {ads }(A)}$ for the IS as an example:

$$
\begin{align*}
& E_{\text {ads }(A)}^{I S}=\left(E_{A-\text { slab }}^{I S}+E_{B-\text { slab }}^{I S}+E_{A-B}^{I S}+E_{A}^{0}+D_{A}^{I S}+E_{B}^{0}+D_{B}^{I S}+E_{\text {slab }}^{0}+D_{\text {slab }}^{I S}\right)-\left(E_{B-\text { slab }}^{I S}+E_{A}^{0}+E_{B}^{0}+D_{B}^{I S}+\right. \\
& \left.E_{\text {slab }}^{0}+D_{\text {slab }}^{I S}\right)=E_{A-B}^{I S}+E_{A-\text { slab }}^{I S}+D_{A}^{I S} \tag{S16}
\end{align*}
$$

With equation (S16), (S15) can be expressed as (S17)

$$
\begin{equation*}
\mathrm{E}_{\mathrm{a}}{ }^{\prime}=\mathrm{E}_{\mathrm{ads}(\mathrm{~A})}^{\mathrm{TS}}-\mathrm{E}_{\mathrm{ads}(\mathrm{~A})}^{\mathrm{IS}} \tag{S17}
\end{equation*}
$$

Equation (S17) shows that for bimolecular reactions, as long as one of the reactants has no deformation energy and ($\left.E_{\text {slab }}^{0}+E_{B}^{0}+E_{B-\text { slab }}^{T S}+D_{\text {slab }}^{T S}\right)$ and ($\left.E_{\text {slab }}^{0}+E_{B}^{0}+E_{B-\text { slab }}^{I S}+D_{\text {slab }}^{\text {S }}\right)$ are equal, the barrier is apparently related to the other reactant only. In our case, deformation energy of H is strictly zero. The assumption that ($\left.E_{\text {slab }}^{0}+E_{B}^{0}+E_{B-\text { slab }}^{\text {TS }}+D_{\text {slab }}^{\text {TS }}\right)$ equals to ($\left.E_{\text {slab }}^{0}+E_{B}^{0}+E_{B \text {-slab }}^{\text {IS }}+D_{\text {slab }}^{\text {IS }}\right)$ is a strong condition.

$$
\begin{equation*}
\text { Let } \Delta E=\left[\left(E_{\text {slab }}^{0}+E_{B}^{0}+E_{B-\text { slab }}^{T S}+D_{\text {slab }}^{T S}\right)-\left(E_{\text {slab }}^{0}+E_{B}^{0}+E_{B-\text { slab }}^{\text {SS }}+D_{\text {slab }}^{\text {IS }}\right)\right] \tag{S18}
\end{equation*}
$$

$\Delta \mathrm{E}$ in S18 is in fact the energy difference of the slab with B on it in the TS and the IS. For the twelve systems studied in the present paper the average absolute value of $\Delta \mathrm{E}$ is 0.28 eV which is close to the DFT accuracy. The small $\Delta \mathrm{E}$ explains the existence of ADBS relation for the systems. Generally, $\Delta \mathrm{E}$ is not zero. From (S14'),(S17) and (S18), the general expression for barrier E_{a} is

$$
\begin{equation*}
\mathrm{E}_{\mathrm{a}}=\mathrm{E}_{\mathrm{ads}(\mathrm{~A})}^{\mathrm{TS}}-\mathrm{E}_{\mathrm{ads}(\mathrm{~A})}^{\mathrm{IS}}+\Delta \mathrm{E}=\mathrm{E}_{\mathrm{a}}^{\prime}+\Delta \mathrm{E} \tag{S19}
\end{equation*}
$$

Table S5 lists the values for $E_{a d s(A)}^{T S}$, $E_{a d s(A)}^{I S}, \Delta E$ and E_{a}^{\prime}. The averaged absolute $E_{a d s(A)}^{I S}$ is more than three time as large as $E_{a d s(A)}^{T S}$ and there is a linear relation between $E_{a d s}^{\prime S}(A)$ and $E_{a}{ }^{\prime}$, as shown by equation (20) and Figure S9:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{a}}^{\prime}=-0.919 \times \mathrm{E}_{\mathrm{ads}(\mathrm{~A})}^{\mathrm{IS}}+0.230 \quad \mathrm{R}^{2}=0.87 \tag{S2O}
\end{equation*}
$$

The deviation of $\mathrm{Co}_{4} / \ln _{2} \mathrm{O}_{3}$ system from the fitted line in Figure S 9 is due to large value of ΔE (see Table S5).

$\uparrow{ }_{\text {Energy }}^{(\mathrm{b})}$

Fig. S10 Illustration of (a) the deformation energy and (b) the interaction energy.

Table S5. Adsorption energies $E_{\text {ads }}$ of $A\left(\mathrm{CO}_{2}\right)$ with slab plus $B(H)$ in the initial state (IS) and transition state (TS), the energy difference $E_{a}{ }^{\prime}$ between $E_{\text {ads }(A)}^{\text {Ts }}$ and $E_{\text {ads }(A)}^{\text {IS }}, \Delta E$, and the calculated barrier E_{a}.

Systems	$E_{\text {ads }(A)}^{\text {IS }}$	$E_{\text {ads }(A)}^{\text {Ts }}$	$E_{a}{ }^{\prime}$	ΔE	$E_{a}{ }^{\prime}+\Delta E$	E_{a}
$\mathrm{Ag}_{4} / \ln _{2} \mathrm{O}_{3}$	-0.23	-0.07	0.16	0.24	0.40	0.40
$\mathrm{Pt}_{4} / \ln _{2} \mathrm{O}_{3}$	-0.98	-0.33	0.65	-0.11	0.54	0.55
$\mathrm{Pd}_{4} / \ln _{2} \mathrm{O}_{3}$	-0.94	-0.38	0.56	0.28	0.84	0.84
$\mathrm{Rh}_{4} / \ln _{2} \mathrm{O}_{3}$	-1.61	-0.06	1.55	-0.68	0.87	0.87
$\mathrm{Ir}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}$	-1.21	-0.07	1.14	-0.10	1.04	1.05
			12			

$\mathrm{Ni}_{4} / \mathrm{ln}_{2} \mathrm{O}_{3}$	-0.71	-0.09	0.62	0.30	0.92	0.92
$\mathrm{Cr}_{4} / \mathrm{ln}_{2} \mathrm{O}_{3}$	-1.53	-0.40	1.13	0.11	1.24	1.24
$\mathrm{Fe}_{4} / \mathrm{ln}_{2} \mathrm{O}_{3}$	-1.36	0.01	1.37	-0.25	1.12	1.12
$\mathrm{Co}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}$	-1.42	-1.38	0.04	0.98	1.02	1.02
$\mathrm{Al}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}$	-1.00	-0.33	0.67	0.16	0.83	0.84
$\mathrm{Ga}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}$	-0.78	-0.41	0.37	0.01	0.38	0.38
$\mathrm{Cu}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}$	-0.25	-0.04	0.21	0.21	0.42	0.42

Fig. S11 Liner scaling correlation between the adsorption energy of $A\left(\mathrm{CO}_{2}\right)$ on the slab with H adsorbed on it and energy barrier E_{a} for CO_{2} hydrogenation to HCOO step.

Fig. S12 (a) Correlation between the Bader charges $\Delta \mathrm{q}$ of the $\mathrm{CO}_{2}{ }^{*}$ species and the CO_{2} adsorption energies ($E_{\text {ads }}$), and (b) liner scaling correlation between the Bader charges Δq of the $\mathrm{CO}_{2}{ }^{*}$ species and the Bader charges $\Delta \mathrm{q}$ of the M 3 atom (see Fig.S13 for M3). The positive/negative value of Δq indicates electron elimination/accumulation, where $\mathrm{M}=\mathrm{Ag}, \mathrm{Pt}$, $\mathrm{Pd}, \mathrm{Rh}, \mathrm{Ni}, \mathrm{Ir}, \mathrm{Cr}, \mathrm{Co}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Ga}$ and Al .

R3: trans $-\mathrm{COOH}^{*} \rightarrow$ cis $-\mathrm{COOH}^{*}$

R4: cis $-\mathrm{COOH}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{CO}^{*}+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$\mathrm{R} 5: \mathrm{CO}_{2}{ }^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCOO}^{*}+{ }^{*}$

R6: $\mathrm{HCOO}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{H}_{2} \mathrm{COO}^{*}+{ }^{*}$

R7: $\mathrm{HCOO}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCOOH}^{*}+{ }^{*}$

$\mathrm{R} 8: \mathrm{HCOOH}^{*}+{ }^{*} \rightarrow \mathrm{HCO}^{*}+\mathrm{OH}^{*}$

R9: $\mathrm{HCO}^{*}+\mathrm{OH}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCO}^{*}+\mathrm{H}_{2} \mathrm{O}^{*}+{ }^{*}$

R10: $\mathrm{HCO}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{H}_{2} \mathrm{CO}^{*}+{ }^{*}$

$\mathrm{R} 11: \mathrm{H}_{2} \mathrm{CO}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{H}_{3} \mathrm{CO}^{*}+{ }^{*}$

$\mathrm{R} 12: \mathrm{H}_{3} \mathrm{CO}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{H}_{3} \mathrm{COH}^{*}+{ }^{*}$

R13: $\mathrm{H}_{2} \mathrm{CO}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{H}_{2} \mathrm{COH}^{*}+{ }^{*}$

$\mathrm{R} 14: \mathrm{H}_{2} \mathrm{COH}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{H}_{3} \mathrm{COH}^{*}+{ }^{*}$

Fig. S14 Illustration of the initial state (left panels), transition state (middle panels) and final state (right panels) for each of elementary steps over $\mathrm{Ni}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}(110)$. Red, O atoms; black, C atoms; white, H atoms; Brown, In atoms; Blue, Ni atoms.

$\mathrm{Rh}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}: \mathrm{CO}_{2}{ }^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCOO}{ }^{*}+{ }^{*}$

$\mathrm{Ir}_{4} / \ln _{2} \mathrm{O}_{3}: \mathrm{CO}_{2}{ }^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCOO}^{*}+*$

$\mathrm{Cu}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}: \mathrm{CO}_{2}{ }^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCOO}^{*}+{ }^{*}$

$\mathrm{Ga}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}: \mathrm{CO}_{2}{ }^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCOO}^{*}+{ }^{*}$

$\mathrm{Al}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}: \mathrm{CO}_{2}{ }^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCOO}^{*}+{ }^{*}$

$\mathrm{Co}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}: \mathrm{CO}_{2}{ }^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCOO}^{*}+{ }^{*}$

$\mathrm{Fe}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}: \mathrm{CO}_{2}{ }^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCOO}^{*}+{ }^{*}$

$\mathrm{Cr}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}: \mathrm{CO}_{2}{ }^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCOO}^{*}+{ }^{*}$

Fig. S15 Illustration of the initial state (left panels), transition state (middle panels) and final
state (right panels) for $\mathrm{CO}_{2}{ }^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCOO}^{*}+{ }^{*}$ step over $\mathrm{M}_{4} / \mathrm{In}_{2} \mathrm{O}_{3}(110)$, where $\mathrm{M}=\mathrm{Ag}, \mathrm{Pt}$, $\mathrm{Pd}, \mathrm{Rh}, \mathrm{Ir}, \mathrm{Cu}, \mathrm{Ga}, \mathrm{Al}, \mathrm{Co}, \mathrm{Fe}$ and Cr , respectively.

Reference:

[S1] (a) J. Ye, C. Liu, D. Mei and Q. Ge, J. Catal., 2014, 317, 44-53; (b) N. Rui, K. Sun, C. Shen and C. Liu, J. CO 2 Util., 2020, 42, 101313; (c) K. Sun, N. Rui, C. Shen and C. Liu, J. Phys. Chem. C, 2021, 125, 10926-10936; (d) X. Wang, J. Pan, H. Wei, W. Li, J. Zhao and Z. Hu, Phys. Chem. Chem. Phys., 2021, 23, 11557-11567; (e) C. Shen, Q. Bao, W. Xue, K. Sun, Z. Zhang, X. Jia, D. Mei and C. Liu, J. Energy Chem., 2022, 65, 623-629.
[S2] M. Marezio, Acta Cryst., 1966, 20, 723-728.
[S3] (a) G. Kresse, J. Hafner, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, 47, 558-561; (b) G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 11169-11186; (c) G. Kresse and J. Furthmuller, Comput. Mater. Sci., 1996, 6, 15-50.
[S4] (a) G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59, 1758-1775; (b) P. E. Blöchl, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, 50, 17953-17979.
[S5] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
[S6] (a) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465; (b) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, No. 154104.
[S7] (a) H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13, 5188-5192; (b) G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys., 2000, 113, 9901-9904.
[S8] G. Henkelman and H. Jonsson, J. Chem. Phys., 2000, 113, 9978-9985.
[S9] P. Hänggi, P. Talkner and M. Borkovec, Reviews of modern physics, 1990, 62,251-341.
[S10] A. P. J. Jansen, An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions; Springer: Berlin, Heidelberg, 2012.
[S11] C. A. Wolcott, A. J. Medford, F. Studt, C. T. Campbell, J. Catal. 2015, 330, 197-207.
[S12] K. Sun, Z. Zhang, C. Shen, N. Rui and C. Liu, Green Energy Environ., 2021, 7, 807-817.
[S13] N. Rui, Z. Wang, K. Sun, J. Ye, Q. Ge and C. Liu, Appl. Catal. B, 2017, 218, 488-497.
[S14] J. Wang, K. Sun, X. Jia and C. Liu, Catal. Today, 2020, 365, 341-347.
[S15] C. Shen, K. Sun, Z. Zhang, N. Rui, X. Jia, D. Mei and C. Liu, ACS Catal., 2021, 11, 4036-4046.
[S16] X. Jia, K. Sun, J. Wang, C. Shen and C. Liu, J. Energy Chem., 2020, 50, 409-415.
[S17] K. Sun, N. Rui, Z. Zhang, Z. Sun, Q. Ge and C. Liu, Green Chem., 2020, 22, 5059-5066.

