Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Late-Stage Diversification Strategy for Synthesizing Ynamides Through Copper-Catalyzed Diynylation and Azide–Alkyne Cycloaddition

Ryohei Kawakami, Suguru Usui, Norihiro Tada^{*} and Akichika Itoh^{*} Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan *E-mail: ntada@gifu-pu.ac.jp, itoha@gifu-pu.ac.jp*

Table of Contents

1.	General information	2
2.	Optimization of the reaction conditions	3
3.	Experimental procedure and characterizations	7
4.	References	30
5.	¹ H NMR and ¹³ C{ ¹ H} NMR spectra	31

1. General information

All reactants and reagents including dry solvents were obtained from commercial suppliers and used as recieved. ¹H NMR, ¹³C{¹H} NMR spectra were obtained on a JEOL ECA500 spectrometer (500 MHz for ¹H NMR and 125 MHz for ¹³C{¹H} NMR) and JEOL ECZ400 spectrometer (400 MHz for ¹H NMR and 100 MHz for ¹³C{¹H} NMR). Chemical shifts (δ) are expressed in parts per million and are internally referenced [0.00 ppm (tetramethylsilane) for ¹H NMR, and 77.0 ppm (CDCl₃) for ¹³C{¹H} NMR]. The following abbreviations were used to express the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, dd = doublet of doublets, br = broad, dt = doublet of triplets. Structural assignments were made with additional information from gNOESY experiments. High-resolution mass spectra (HRMS) were obtained on a JEOL JMS-T100TD and was reported as m/z. Analytical thin-layer chromatography (TLC) was carried out using 0.25 mm commercial silica gel plates (Merck silica gel 60 F254). Flash column chromatography was performed with Kanto silica gel 60N (Spherical, Neutral, 63–210 µm). Visualization of the developed chromatogram was performed by UV lamp (254 nm) and iodine.

2. Optimization of the reaction conditions

Table S1	Optimization of the	N-divnvlation o	f sulfonamide	derived fi	rom aniline ^a

	™ TIPS— ^N `H		O Catalys	st (0.1 equiv) d (0.1 equiv)	Ts N.		
	+		U Base	(1.5 equiv)			
5a (0.1 n	nmol) 3	a (1.3 equiv)	25 °	C, 1 h, Ar	\sim	6a	TIPS
Entry	Catalvat	Ligond	Deee	Calvent		yield (%)	þ
Enuy	Catalyst	Ligano	Base	Solvent	6a	5a	3a
1	Cul	L1	K ₂ CO ₃	EtOH	76 (70)	5	0
2	Cul	L1	K ₂ CO ₃	MeOH	34	14	0
3	Cul	L1	K ₂ CO ₃	IPA	62	29	0
4	Cul	L1	K ₂ CO ₃	MeCN	29	71	1
5	Cul	L1	K ₂ CO ₃	THF	13	77	5
6	Cul	L1	K ₂ CO ₃	toluene	36	61	8
7	Cu ₂ O	L1	K ₂ CO ₃	EtOH	36	31	0
8	CuTc	L1	K ₂ CO ₃	EtOH	55	14	0
9	(MeCN) ₄ Cu ⁺ BF ₄ ⁻	L1	K ₂ CO ₃	EtOH	49	7	0
10	Nil ₂	L1	K ₂ CO ₃	EtOH	31	50	0
11	Col ₂	L1	K ₂ CO ₃	EtOH	34	29	1
12	FeCl ₃ · H ₂ O	L1	K ₂ CO ₃	EtOH	33	23	5
13	AuCl	L1	K ₂ CO ₃	EtOH	45	33	4
14	Cul	L2	K ₂ CO ₃	EtOH	66	2	0
15	Cul	L3	K ₂ CO ₃	EtOH	62	7	0
16	Cul	L4	K ₂ CO ₃	EtOH	60	3	0
17	Cul	L5	K ₂ CO ₃	EtOH	63	32	4
18	Cul	L6	K ₂ CO ₃	EtOH	60	8	0
19	Cul	L7	K ₂ CO ₃	EtOH	58	8	0
20	Cul	L8	K ₂ CO ₃	EtOH	55	29	0
21	Cul	L9	K ₂ CO ₃	EtOH	29	27	6
22	Cul	L10	K ₂ CO ₃	EtOH	61	15	0
23	Cul	L11	K ₂ CO ₃	EtOH	65	23	0
24	Cul	L12	K ₂ CO ₃	EtOH	22	15	0
25	Cul	L13	K ₂ CO ₃	EtOH	60	14	0
26	Cul	L14	K ₂ CO ₃	EtOH	69	6	0
27	Cul	L15	K ₂ CO ₃	EtOH	49	26	0
28	Cul	L16	K ₂ CO ₃	EtOH	39	26	4
29°	Cul	L1	K ₂ CO ₃	EtOH	73	0	0
30 ^d	Cul	L1	K ₂ CO ₃	EtOH	79	0	0
31"	Cul	L1	$R_2 CO_3$	EtOH	78	6	0
32	Cul	L1		EtOH	67	32	0
33	Cul	L1		EtOH	0	100	56
35	Cul	L1	NEto	EtOH	14	21	0
act	Cul	11	K ₂ CO ₂	EtOH	94 (87)	0	0
MeO	OMe		Mo tB		tp.,	Ū	•
				\rightarrow	, БU /=	=\ /	·
	N N		v =∑		> <	-N N L4	ı=>
NC	ĊN		M	e !	Me Ph		Ph
)=					s T	\prec	=
	N N=/		<u>ا</u>		/ _	=N N L8	ı_//
					I F	10-/	он
	L9	L10		L11		L12 0	
Í	ОН		Me	ОН			`ОН
	√ ^N L13	_N_ L14		∖ŃH L15	НС) L16	

\sim	Ts TIPS		Cul (0.1 equiv) Ligand (0.1 equiv) ≷O Base (1.5 equiv)	\sim	Ts N	
			Solvent 25 °C, 1 h, Ar	*		TIPS
5v (0.1 i	mmol)	3a (1.3 equiv)	, ,		6v	\b
Entry	Ligand	Base	Solvent	6v	5v	3a
1	14	KaCOa	EtOH	33 (27)	51	0
2	1.11	K2003	EtOH	24	63	0
3	113	K2003	EtOH	24	62	0
4	114	K2003	EtOH	24	71	0
50	11	K2CO2	EtOH	28	51	0
ed	11	K2CO2	EtOH	26	69	0
7	11	Cs ₂ CO ₂	EtOH	40	60	0
8	L1	K₃PO₄	EtOH	48	51	0
9	L1	NEt ₃	EtOH	11	77	0
10	L1	DIPEA	EtOH	0	96	0
11	L1	NaH	EtOH	19	67	0
12	L1	KO ^t Bu	EtOH	21	67	0
13 ^e	L1	K ₂ CO ₃	EtOH	31	62	0
14 ^f	L1	K ₂ CO ₃	EtOH	32	66	0
15	L1	K ₂ CO ₃	MeCN:EtOH=1:1	40	59	0
16	L1	K ₂ CO ₃	MeCN:EtOH=9:1	21	73	0
17	L1	K ₂ CO ₃	MeCN:EtOH=1:9	45	57	0
18 ^e	L1	K ₂ CO ₃	MeCN:EtOH=1:9	44	55	0
19	L1	K ₂ CO ₃	MeCN:IPA=1:1	24	71	7
20	L1	K ₂ CO ₃	MeCN:IPA=9:1	13	68	11
21	L1	K ₂ CO ₃	MeCN:IPA=1:9	16	80	0
22	L1	Cs ₂ CO ₃	MeCN:EtOH=1:1	49	41	0
23	L1	Cs ₂ CO ₃	MeCN:EtOH=1:9	52 (45)	46	0
24 ^f	L1	Cs ₂ CO ₃	MeCN:EtOH=1:9	18	77	0
25 ⁹	L1	Cs ₂ CO ₃	MeCN:EtOH=1:9	40	54	0
26 ^h	L1	Cs ₂ CO ₃	MeCN:EtOH=1:9	35	51	0
27	L1	Cs_2CO_3	IPA:EtOH=1:9	47	54	0
28	L1	Cs_2CO_3	EtOAC:EtOH=1:9	45	54	0
29	L1	Cs_2CO_3	DCM:EtOH=1:9	49	52	0
30	L1	K PO	THF.ELOH=1.9	30 E0 (4E)	71	0
31'	L1	K PO	EIOH	30 (43)	39	0
32 ⁹	L1		EIOH	39	50	0
33"	L1			20	50	0
34	L1 4	K ₃ PO		40 41	49 51	0
	E1	1131 04	MeGN.LION-1.9	41	51	0
MeO					N_	OMe

 Table S2
 Optimization of the N-diynylation of sulfonamide derived from butylamine^a

^aReaction conditions: **5v** (0.1 mmol), **3a** (1.3 equiv), Cul (0.1 equiv), ligand (0.1 equiv), base (1.5 equiv), solvent (5 mL), 25 °C, 1 h, argon. ^{b1}H NMR yields. Numbers in parentheses are isolated yields. °L1 (0.05 equiv) was used. ^dCul (0.2 equiv) was used. ^eK₂CO₃ (fine powder) was used. ^fBase (2.5 equiv) was used. ^gBase (1.2 equiv) was used. ^hH₂O (0.1 mL) was added.

Table S3 Study of the reaction conditions for CuAAC with diynamide

Ts N 6ab (1.1 equiv)	+ BnN ₃ <u>conditions</u> (9a (0.05 mmol)	Ts N N N N N N N
Entry	conditions	Yields (%) ^a
1	Cu(OAc) ₂ (0.1 equiv), Na-ascorbate (0.2 equiv) <i>t</i> -BuOH (1 mL), H ₂ O (0.5 mL), 25 °C, 18 h	65, (42) ^b
2	CuSO ₄ (0.38 equiv), Na-ascorbate (0.48 equiv) DMF (1 mL), H ₂ O (0.2 mL), 25 $^\circ\text{C}$, 2 h	67
3	Cul (0.39 equiv) MeCN (1 mL), 25 °C, 18 h	59
4	Cul (0.39 equiv) DMF (1 mL), 25 °C, 18 h	79
5	Cul (0.5 equiv), DIPEA (1.1 equiv) DCM (3 mL), 25 °C, 18 h	87, (92) ^b

^{a1}H NMR yields. Numbers in parentheses are isolated yields. ^b0.1 mmol scale.

3. Experimental procedure and characterizations

The synthesis of sulfonamides (**5a-5f**, **5h**, **5j-5n**, **5r-5u**, **5w**) had described in our previous papers.^{1,2} Sulfonamides (**5g**, 3 **5i**, 4 **5o**, 5 **5p**, 3 **5q**, 5 **5v**⁵), (4-bromo-1,3-butadiyn-1-yl)tris(1-methylethyl)-silane (**8**⁶) and 3-azido-*N*-[(1,1-dimethylethoxy)carbonyl]-D-alanine methyl ester (**9d**⁷) were prepared according to the reported procedures.

3.1 Synthesis of diynes

1,4-Bis(trimethylsilyl)-1,3-butadiyne (2b)

TMS
$$-$$
 H $-$ TMEDA, Cul, NiCl₂ TMS $-$ TMS

Following a slightly modified reported procedure,⁸ trimethylsilyl acetylene (10 mL, 72.2 mmol) was added to a stirred suspension of TMEDA (1.5 mL, 10 mmol), CuI (476 mg, 2.5 mmol), and NiCl₂ (300 mg, 2.5 mmol) in THF (30 mL). The suspension was stirred for 15 h under open air at room temperature. The suspension was filtered through a pad of Celite to remove the solid and the solution was concentrated under reduced pressure to give crude solid. The residue was purified by column chromatography on silica gel (Hexane) to afford 1,4-bis(trimethylsilyl)-1,3-butadiyne (**2b**: 5.3668 g, 27.6 mmol, 76% yield).

Rf: 0.60 (Hexane)

Physical state: colorless solid.

¹H NMR (500 MHz, CDCl₃): δ 0.19 (s, 18H).

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 87.9, 85.9, -0.53

The values of the NMR spectra are in accordance with reported literature data.9

Trimethyl[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]silane (2a)

Following a slightly modified reported procedure,^{6a} MeLi·LiBr (1.5 M in Et₂O, 19.25 mL) was added dropwise to a solution of 1,4-bis(trimethylsilyl)-1,3-butadiyne (**2b**: 5.00 g, 26.25 mmol) in dry Et₂O (75 mL) at room temperature under argon atmosphere. The solution was stirred for 18 h and TIPSCl (6.15 mL, 28.875 mmol) was added dropwise and the mixture was stirred for another 3 days at room

temperature before quenched by 50 mL of aqueous saturated NH₄Cl. The organic layer was separated and aqueous layer was extracted with diethyl ether (3x50 mL). The combined organic phase was dried over MgSO₄, filtered, and concentrated under reduced pressure to give crude oil. The residue was purified by column chromatography on silica gel (Hexane) to afford trimethyl[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]silane (**2a**: 5.1309 g, 18.44 mmol, 71%).

Rf: 0.69 (Hexane)

Physical state: pale yellow oil.

¹H NMR (500 MHz, CDCl₃): δ 1.09-1.07 (m, 21H), 0.20 (s, 9H).
 ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 89.8, 88.5, 84.5, 83.3, 18.6, 11.3, -0.34
 The values of the NMR spectra are in accordance with reported literature data.^{6a}

3.2 Synthesis of diyne-BX

1-[4-[Tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-1,2-benziodoxol-3(*1H*)-one (TIPS-diyne-BX) (3a)

Trimethylsilyl trifluoromethanesulfonate (1.51 mL, 8.4 mmol, 1.4 equiv.) was added dropwise to a stirred suspension of 2-iodosylbenzoic acid (1, 1584.0 mg, 6.0 mmol, 1.0 equiv.) in dry acetonitrile (60 mL) under argon. Then trimethyl[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]silane (**2a**, 2.79 mL, 8.4 mmol, 1.4 equiv.) was added dropwise to the mixture. After 15 min, the reaction mixture was evaporated until a solid was obtained. The solid was washed with Et₂O at room temperature. Then the solid was stirred in sat. aqueous NaHCO₃ (100 mL) and CH₂Cl₂ (100 mL) for 5 minutes. The organic layer was separated and aqueous layer was extracted with CH₂Cl₂ (3x50 mL). The combined organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford TIPS-diyne-BX (**3a**: 1.881 g, 4.16 mmol, 69%) as a colorless solid.

Rf: 0.63 (hexane : EtOAc = 1 : 2). **Physical state**: colorless solid. **m.p.**: 113.5-115.0 °C ¹**H NMR (500 MHz, CDCl**₃): δ 8 39 (dd, J = 7.32, 1.83 Hz, 1H), 8.22 (d, J)

¹**H NMR (500 MHz, CDCl₃)**: δ 8.39 (dd, *J* = 7.32, 1.83 Hz, 1H), 8.22 (d, *J* = 8.23 Hz, 1H), 7.86-7.74 (m, 2H), 1.16-1.05 (m, 21H).

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 166.6, 135.2, 132.5, 131.7, 131.0, 126.7, 116.1, 90.3, 89.8, 88.1, 41.1, 18.5, 11.2.

HRMS (ESI, positive): calcd for C₂₀H₂₅I₁Na₁O₂Si₁ [M+Na]⁺ 475.05607, Found 475.05651.
FTIR (ATR): 2944, 2891, 2866, 2061, 2043, 1621, 1622, 1585, 1561, 1463, 1440, 1342, 1292, 1239, 1072, 1037, 1017, 997, 968, 882, 833, 743, 678, 662, 596, 524.

1-[4-(Trimethylsilyl)-1,3-butadiyn-1-yl]-1,2-benziodoxol-3(1H)-one (TMS-diyne-BX)(3b)

Trimethylsilyl trifluoromethanesulfonate (1.51 mL, 8.4 mmol, 1.4 equiv.) was added dropwise to a stirred suspension of 2-iodosylbenzoic acid (1, 1584.0 mg, 6.0 mmol, 1.0 equiv.) in dry acetonitrile (60 mL) under argon. Then 1,4-bis(trimethylsilyl)-1,3-butadiyne (**2b**, 1633.0 mg, 8.4 mmol, 1.4 equiv.) was added dropwise to the mixture. After 15 min, the reaction mixture was evaporated until a solid was obtained. The solid was washed with Et₂O at room temperature. Then the solid was stirred in sat. aqueous NaHCO₃ (100 mL) and CH₂Cl₂ (100 mL) for 5 minutes. The organic layer was separated and aqueous layer was extracted with CH₂Cl₂ (3x50 mL). The combined organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford TMS-diyne-BX (**3b**: 1.291 g, 3.51 mmol, 58%) as colorless solid.

Rf: 0.45 (hexane : EtOAc = 1 : 2).

Physical state: colorless solid.

m.p.: 101.5−103.5 °C

¹**H NMR (500 MHz, CDCl₃)**: δ 8.39 (dd, *J* = 6.86, 2.29 Hz, 1H), 8.23 (dd, *J* = 8.23, 1.37 Hz, 1H), 7.84-7.73 (m, 2H), 0.32-0.23 (m, 9H).

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 166.9, 135.1, 132.4, 131.6, 131.1, 126.7, 116.2, 91.7, 89.7, 86.4, 42.0, -0.74.

HRMS (ESI, positive): calcd for C₁₄H₁₄I₁O₂Si₁ [M+H]⁺ 368.98077, Found 368.97946. **FTIR** (ATR): 2962, 2066, 1623, 1564, 1440, 1349, 1250, 841, 738, 695, 637, 532, 519

3.3 Diynylation of sulfonamide.

4-Methyl-*N*-phenyl-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (6a) (General procedure A)

4-Methyl-*N*-phenyl-benzenesulfonamide (**5**a: 24.7 mg, 0.1 mmol, 1.0 equiv.), 1-[(triisopropylsilyl)ethynyl]-1,2-benziodoxol-3(*1H*)-one (**3a**: 58.8 mg, 0.13 mmol, 1.3 equiv.), CuI (2.0 mg, 0.01mmol, 0.1 equiv.), 4,4'-dimethoxy-2,2'-bipyridyl (L1: 2.15 mg, 0.01 mmol, 0.1 equiv.) and K₂CO₃ (fine powder: 20.85 mg, 0.15 mmol, 1.5 equiv.) were stirred in dry ethanol (5 mL) under argon at 25 °C. After stirred for 1 h at 25 °C, the solution was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) afford 4-methyl-N-phenyl-N-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]to benzenesulfonamide (6a: 39.1 mg, 87%) as a yellow solid.

Ts TIPS

Rf: 0.58 (Hexane : AcOEt = 4 : 1) **Physical state**: Yellow solid **m.p.:**109.9-110.6 °C

¹H NMR (400 MHz, CDCl₃): δ 7.62-7.58 (m, 2H), 7.34-7.28 (m, 5H), 7.24-7.18 (m, 2H), 2.45 (s, 3H), 1.09-1.06 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.4, 137.8, 132.9, 129.7, 129.3, 128.8, 128.2, 126.5, 88.9, 87.6, 68.4, 58.6, 21.7, 18.5, 11.2

HRMS (DART, positive) calcd for C₂₆H₃₄N₁O₂S₁Si₁ [M + H]⁺ 452. 20740, Found 452.20595 **FTIR** (ATR): 3068, 2944, 2892, 2866, 2727, 2220, 2107, 1918, 1797, 1732, 1595, 1490, 1462, 1380, 1328, 1311, 1241, 1212, 1189, 1176, 1120, 1090, 1075, 1028, 1018, 997, 919, 883, 836, 813, 799, 757, 704, 680, 656

1.0 mmol scale reaction

4-Methyl-*N*-phenyl-benzenesulfonamide (**5a**: 247.0 mg, 1.0 mmol, 1.0 equiv.), 1-[(triisopropylsilyl)ethynyl]-1,2-benziodoxol-3(*1H*)-one (**3a**: 588.0 mg, 1.3 mmol, 1.3 equiv.), CuI (20.0 mg, 0.1 mmol, 0.1 equiv.), 4,4'-dimethoxy-2,2'-bipyridyl (L1: 21.5 mg, 0.1 mmol, 0.1 equiv.) and K_2CO_3 (fine powder: 208.5 mg, 1.5 mmol, 1.5 equiv.) were stirred in dry ethanol (50 mL) under argon at 25 °C. After stirred for 1 h at 25 °C, the solution was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-phenyl-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (**6a**: 397.9 mg, 87%) as a yellow solid.

4-Nitro-*N*-phenyl-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (6b)

Following the **General Procedure A**, 4-nitro-*N*-phenyl benzenesulfonamide (**5b**:27.8 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-nitro-*N*-phenyl-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (**6b**: 36.6 mg, 76%).

Rf: 0.48 (Hexane : AcOEt = 4 : 1)

Physical state: Colorless solid

m.p.: 140.8.5-141.5 ℃

¹**H NMR (500 MHz, CDCl₃):** δ 8.42-8.33 (m, 2H), 7.95-7.87 (m, 2H), 7.43-7.35 (m, 3H), 7.24-7.17 (m, 2H), 1.12-1.05 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 151.0, 141.2, 137.3, 129.7, 129.6, 129.5, 126.5, 124.4, 88.9, 88.3, 67.1, 59.4, 18.6, 11.3

HRMS (DART, positive) calcd for C₂₅H₃₁N₂O₄S₁Si₁ [M + H]⁺ 483.17683, Found 483.17547

4-Methyl-*N*-phenyl-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-mathanesulfonamide (6c)

Following the **General Procedure A**, 4-methyl-*N*-phenyl mathanesulfonamide (**5c**: 17.1 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-phenyl-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-mathanesulfonamide (**6c**: 28.4 mg, 76%).

Rf: 0.38 (Hexane : AcOEt = 4 : 1)

Physical state: Brown solid

m.p.: 60.5-61.2 °C

¹H NMR (500 MHz, CDCl₃): δ 7.52-7.37 (m, 5H), 3.18-3.14 (m, 3H), 1.10-1.05 (m, 21H) ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 137.6, 129.7, 128.9, 125.9, 88.5, 88.2, 67.2, 59.2, 37.8, 18.5, 11.2 **HRMS (DART, positive)** calcd for $C_{20}H_{30}N_1O_2S_1Si_1 [M + H]^+ 376.17610$, Found 376.17583

4-Methyl-*N*-(4-methoxyphenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6g)

Following the **General Procedure A**, 4-methyl-*N*-(4-methoxyphenyl) benzenesulfonamide (**5g**: 27.7 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-(4-methoxyphenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (**6g**: 20.8 mg, 43%).

Rf: 0.50 (Hexane : AcOEt = 4 : 1)

Physical state: Brown solid

m.p.: 65.0-65.8 ℃

¹**H NMR (400 MHz, CDCl₃):** δ 7.62-7.58 (m, 2H), 7.33-7.28 (m, 2H), 7.11-7.06 (m, 2H), 6.84-6.80 (m, 2H) 3.80 (s, 3H) 2.46 (s, 3H), 1.09-1.06 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.8, 145.3, 133.0, 130.3, 129.7, 128.2, 114.4, 89.0, 87.4, 68.7, 58.1, 55.5, 21.7, 18.5, 11.3

HRMS (DART, positive) calcd for C₂₇H₃₆N₁O₃S₁Si₁ [M + H]⁺ 482. 21797, Found 482.21565

4-Methyl-*N*-(4-methylphenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6h)

Following the **General Procedure A**, 4-methyl-*N*-(4-methylphenyl) benzenesulfonamide (**5h**: 26.1 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-(4-methylphenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (**6h**: 36.6 mg, 77%).

Rf: 0.35 (Hexane : AcOEt = 4 : 1)

Physical state: Yellow solid

m.p.: 86.0-86.5 ℃

¹**H NMR (400 MHz, CDCl₃):** δ 7.63-7.58 (m, 2H), 7.33-7.28 (m, 2H), 7.14-7.10 (m, 2H), 7.09-7.04 (m, 2H), 2.45 (s, 3H), 2.34 (s, 3H), 1.10-1.05 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.2, 139.0, 135.2, 133.1, 129.9, 129.7, 128.2, 126.5, 89.0, 87.4, 68.6, 58.3, 21.7, 21.1, 18.5, 11.3

HRMS (DART, positive) calcd for $C_{27}H_{36}N_1O_2S_1Si_1$ [M + H]⁺466. 22305, Found 466.22360

4-Methyl-*N*-[4-(1,1-dimethylethyl)phenyl]-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6i)

Following the **General Procedure A**, 4-methyl-N-[4-(1,1-dimethylethyl)phenyl] benzenesulfonamide (**5i**: 30.3 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-N-[4-(1,1-dimethylethyl)phenyl]-N-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (**6i**: 37.4 mg, 74%).

Rf: 0.44 (Hexane : AcOEt = 4 : 1)

Physical state: Brown solid

m.p.: 160.7-161.4 °C

¹**H NMR (500 MHz, CDCl3)**: δ 7.65-7.61 (m, 2H), 7.36-7.30 (m, 4H), 7.13-7.09 (m, 2H), 2.46 (s, 3H), 1.30 (s, 9H), 1.12-1.06 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl3): δ 152.1, 145.2, 135.1, 133.2, 129.7, 128.2, 126.3, 126.2, 89.0, 87.4, 68.6, 58.4, 34.7, 31.2, 21.7, 18.5, 11.3

HRMS (DART, positive) calcd for $C_{30}H_{42}N_1O_2S_1Si_1$ [M + H]⁺ 508. 27000, Found 508.27098

4-Methyl-*N*-(3,5-dimethylphenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6j)

Following the **General Procedure A**, 4-methyl-*N*-(3,5-dimethylphenyl) benzenesulfonamide (**5**): 27.5 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-(3,5-dimethylphenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (**6**): 33.0 mg, 68%).

Rf: 0.38 (Hexane : AcOEt = 4 : 1)

Physical state: Yellow solid

т.р.: 128.0-128.8 °С

¹**H NMR (400 MHz, CDCl₃):** δ 7.65-7.62 (m, 2H), 7.32 (d, *J* = 8.02 Hz, 2H), 6.96 (s, 1H), 6.80 (s, 2H), 2.46 (s, 3H), 2.26 (s, 6H), 1.09-1.06 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.2, 139.1, 137.5, 133.2, 130.6, 129.6, 128.2, 124.2, 89.0, 87.4, 68.6, 58.4, 21.7, 21.1, 18.5, 11.2

HRMS (DART, positive) calcd for C₂₈H₃₈N₁O₂S₁Si₁ [M + H]⁺ 480.23870, Found 480.23776

4-Methyl-*N*-(2-bromophenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6k)

Following the **General Procedure A**, 4-methyl-*N*-(2-bromophenyl) benzenesulfonamide (**5**k: 32.4 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-(2-bromophenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (**6**k: 41.9 mg, 79%).

Rf: 0.46 (Hexane : AcOEt = 4 : 1)

Physical state: Brown solid

m.p.: 156.6-157.5 ℃

¹**H NMR (500 MHz, CDCl₃):** δ 7.77-7.73 (m, 2H), 7.62 (dd, *J* = 7.78, 1.37 Hz, 1H), 7.37 (d, *J* = 8.23 Hz, 2H), 7.32 (dt, *J* = 7.78, 1.83 Hz, 1H), 7.28-7.23 (m, 1H), 7.21 (dd, *J* = 7.78, 1.83 Hz, 1H), 2.48 (s, 3H), 1.10-1.05 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.6, 136.3, 134.2, 134.1, 131.0, 130.4, 129.9, 128.5, 128.3, 123.6, 88.9, 88.1, 67.1, 59.4, 21.8, 18.5, 11.3

HRMS (DART, positive) calcd for $C_{26}H_{32}Br_1N_1O_2S_1Si_1$ [M + H]⁺ 530.11792, Found 530.11792

4-Methyl-*N*-(3-bromophenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6l)

Τs M TIPS

Following the **General Procedure A**, 4-methyl-*N*-(3-bromophenyl) benzenesulfonamide (**5I**: 32.4 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-(3-bromophenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (**6I**: 37.1 mg, 71%).

Rf: 0.56 (Hexane : AcOEt = 4 : 1)

Physical state: Yellow solid

m.p.: 71.5-72.0 ℃

¹H NMR (500 MHz, CDCl₃): δ 7.65-7.58 (m, 2H), 7.49-7.43 (m, 1H), 7.38-7.36 (m, 1H), 7.33 (d, *J* = 8.02 Hz, 2H), 7.23-7.18 (m, 2H) 2.46 (s, 3H), 1.13-1.05 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.7, 139.0, 132.6, 131.8, 130.4, 129.9, 129.2, 128.2, 125.0, 122.4, 88.6, 88.3 67.6, 59.4, 21.8, 18.5, 11.2

HRMS (DART, positive) calcd for $C_{26}H_{32}Br_1N_1O_2S_1Si_1$ [M + H]⁺ 530.11792, Found 530.11539

4-Methyl-*N*-(4-bromophenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6m)

Following the **General Procedure A**, 4-methyl-*N*-(4-bromophenyl) benzenesulfonamide (**5m**: 32.4 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-(4-bromophenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (**6m**: 42.8 mg, 81%).

Rf: 0.58 (Hexane : AcOEt = 4 : 1)

Physical state: Yellow solid

т.р.: 120.5-121.0 °С

¹**H NMR (500 MHz, CDCl₃):** δ 7.62-7.58 (m, 2H), 7.47-7.44 (m, 2H), 7.34-7.30 (m, 2H), 7.12-7.09 (m, 2H), 2.46 (s, 3H), 1.11-1.05 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.6, 137.0, 132.6, 132.4, 129.8, 128.2, 127.9, 122.7, 88.6, 88.1, 67.8, 59.1, 21.7, 18.5, 11.2

HRMS (DART, positive) calcd for C₂₆H₃₂Br₁N₁O₂S₁Si₁ [M + H]⁺ 530.11792, Found 530.11554

4-Methyl-*N*-(4-iodophenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6n)

Τs TIPS

Following the **General Procedure A**, 4-methyl-*N*-(4-iodophenyl) benzenesulfonamide (**5n**: 37.3 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 :

1) to afford 4-methyl-*N*-(4-iodophenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (**6n**: 45.7 mg, 79%).

Rf: 0.63 (Hexane : AcOEt = 4 : 1)

Physical state: Yellow solid

m.p.: 106.5-107.2 ℃

¹**H NMR (500 MHz, CDCl₃):** δ 7.67-7.63 (m, 2H), 7.61-7.58 (m, 2H), 7.34-7.30 (m, 2H), 6.99-6.95 (m, 2H), 2.46 (s, 3H), 1.11-1.05 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.6, 138.4, 137.7, 132.6, 129.8, 128.2, 128.1, 94.2, 88.6, 88.1, 67.7, 59.1, 21.8, 18.5, 11.2

HRMS (DART, positive) calcd for $C_{26}H_{32}I_1N_1O_2S_1Si_1$ [M + H]⁺ 578.10405, Found 578.10123

4-[[(4-Methylphenyl)sulfonyl][[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-

yl]]amino]ethylbenzoate (60)

Following the **General Procedure A**, ethyl 4-[[(4-methylphenyl)sulfonyl]amino]benzoate (**50**: 31.9 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-[[(4-methylphenyl)sulfonyl][[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]]amino]ethylbenzoate (**60**: 27.9 mg, 53%).

Rf: 0.56 (Hexane : AcOEt = 4 : 1)

Physical state: Yellow solid

m.p.: 92.2-93.0 ℃

¹H NMR (500 MHz, CDCl₃): δ 8.03-7.98 (m, 2H), 7.62-7.57 (m, 2H), 7.38-7.32 (m, 2H), 7.32-7.28 (m, 2H), 4.38 (q, J = 6.86 Hz, 2H), 2.45 (s, 3H), 1.39 (t, J = 6.86 Hz, 3H), 1.10-1.05 (m, 21H) ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 165.5, 145.7, 141.7, 132.7, 130.6, 129.9, 128.1, 125.5, 88.6, 88.3, 67.4, 61.3, 59.8, 21.7, 18.5, 14.3, 11.2

HRMS (DART, positive) calcd for C₂₉H₃₈N₁O₄S₁Si₁ [M + H]⁺ 524.22853, Found 524.23071

4-Methyl-*N*-naphthyl-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (6p)

Following the **General Procedure A**, 4-methyl-*N*-naphthyl benzenesulfonamide (**5p**: 29.7 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-naphthyl-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (**6p**: 30.1 mg, 60%).

Rf: 0.58 (Hexane : AcOEt = 4 : 1)

Physical state: Brown solid

т.р.: 124.0-124.8 °С

¹H NMR (500 MHz, CDCl₃): δ 7.85-7.80 (m, 1H), 7.80-7.76 (m, 2H), 7.71 (s, 1H), 7.63-7.58 (m, 2H), 7.54-7.49 (m, 2H), 7.32-7.25 (m, 3H), 2.44 (s, 3H), 1.12-1.05 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.4, 135.2, 133.1, 133.0, 132.8, 129.7, 129.3, 128.2, 127.7, 127.1, 126.8, 125.4, 124.0, 88.9, 87.7, 68.4, 58.9, 21.7, 18.5, 11.2

HRMS (DART, positive) calcd for $C_{30}H_{36}N_1O_2S_1Si_1$ [M + H]⁺ 502.22305, Found 502.22384

4-Methyl-*N*-phenylmethyl-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6q)

,^N TIPS

Following the **General Procedure A**, 4-methyl-*N*-phenylmethyl benzenesulfonamide (**5q**: 26.1 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-Methyl-*N*-phenylmethyl-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (**6q**: 28.8 mg, 67%).

Rf: 0.62 (Hexane : AcOEt = 4 : 1)

Physical state: Brown solid

т.р.: 66.0-66.5 °С

¹H NMR (500 MHz, CDCl₃): δ 7.74-7.70 (m, 2H), 7.32-7.28 (m, 5H), 7.28-7.25 (m, 2H), 4.53 (s, 2H), 2.44 (s, 3H), 1.09-1.04 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.0, 134.6, 134.0, 129.8, 128.6, 128.4, 127.7, 88.9, 87.4, 68.5, 59.8, 55.6, 21.7, 18.5, 11.2

HRMS (DART, positive) calcd for $C_{27}H_{36}N_1O_2S_1Si_1$ [M + H]⁺ 466.22305, Found 466.22467

4-Methyl-*N*-[(3-chlorophenyl)methyl]-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6r)

Following the **General Procedure A**, 4-methyl-*N*-[(3-Chlorophenyl)methyl]-benzenesulfonamide (**5r**: 29.5 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-[(3-chlorophenyl)methyl]-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (**6r**: 38.8 mg, 78%).

Rf: 0.38 (Hexane : AcOEt = 4 : 1)

Physical state: Brown solid

m.p.: 59.6-60.5 ℃

¹**H NMR (500 MHz, CDCl₃):** δ 7.74-7.70 (m, 2H), 7.34-7.30 (m, 2H), 7.27-7.21 (m, 2H), 7.17-7.13 (m, 2H), 4.49 (s, 2H), 2.45 (s, 3H), 1.10-1.03 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.3, 135.9, 134.4, 129.92, 129.89, 128.6, 128.5, 127.6, 126.6, 88.7, 87.8, 68.2, 60.0, 55.0, 21.7, 18.5, 11.2

HRMS (DART, positive) calcd for C₂₇H₃₅Cl₁N₁O₂S₁Si₁ [M + H]⁺ 500.18408, Found 500.18299

4-Methyl-*N*-[(4-methoxyphenyl)methyl]-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6s)

MeO TIPS

Following the **General Procedure A**, 4-methyl-*N*-[(4-methoxyphenyl)methyl]-benzenesulfonamide (**5s**: 29.1 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-[(4-methoxyphenyl)methyl]-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (**6s**: 38.3 mg, 77%).

Rf: 0.38 (Hexane : AcOEt = 4 : 1)

Physical state: Brown solid

m.p.: 65.0-65.5 ℃

¹H NMR (500 MHz, CDCl₃): δ 7.74-7.70 (m, 2H), 7.33-7.29 (m, 2H), 7.22-7.17 (m, 2H), 6.85-6.80 (m, 2H), 4.47 (s, 2H), 3.80 (s, 3H), 2.44 (s, 3H), 1.09-1.04 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.7, 144.9, 134.7, 130.2, 129.8, 127.7, 126.0, 113.9, 89.0, 68.6, 60.0, 55.3, 21.7, 18.5, 11.2

HRMS (DART, positive) calcd for C₂₈H₃₈N₁O₃S₁Si₁ [M + H]⁺ 496.23362, Found 496.23455

4-Methyl-*N*-(2-furanylmethyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6t)

Following the **General Procedure A**, 4-methyl-*N*-(2-furanylmethyl)-benzenesulfonamide (**5t**: 25.1 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-(2-furanylmethyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (**6t**: 34.1 mg, 75%).

Rf: 0.32 (Hexane : AcOEt = 4 : 1)

Physical state: Brown solid

т.р.: 74.9-75.7 °С

¹**H NMR (500 MHz, CDCl₃):** δ 7.75-7.70 (m, 2H), 7.29 (d, *J* = 8.6 Hz, 2H), 7.28 (d, *J* = 1.7 Hz, 1H), 6.31-6.27 (m, 2H), 4.60 (s, 2H), 2.44 (s, 3H), 1.09-1.06 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 147.3, 145.0, 143.2, 134.4, 129.7, 127.7, 110.7, 110.5, 88.9, 87.5, 67.9, 59.9, 48.2, 21.7, 18.5, 11.2

HRMS (DART, positive) calcd for C₂₅H₃₄N₁O₃S₁Si₁ [M + H]⁺ 456.20232, Found 456.20269

4-Methyl-*N*-(2-propen-1-yl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6u)

Following the **General Procedure A**, 4-methyl-*N*-(2-propen-1-yl)-benzenesulfonamide (**5u**: 21.1 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-(2-propen-1-yl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (**6u**: 16.9 mg, 42%).

Rf: 0.59 (Hexane : AcOEt = 4 : 1)

Physical state: Brown oil

¹**H NMR (400 MHz, CDCl₃):** δ 7.82-7.78 (m, 2H), 7.36 (d, *J* = 8.23 Hz, 2H), 5.76-5.64 (m, 1H), 5.29-5.20 (m, 2H), 4.00-3.96 (m, 2H), 2.46 (s, 3H), 1.09-1.00 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.1, 134.6, 130.3, 129.9, 127.7, 120.5, 88.9, 87.2, 68.1, 59.4, 54.2, 21.7, 18.5, 11.3 HRMS (DART, positive) calcd for C₂₃H₃₄N₁O₂S₁Si₁ [M + H]⁺ 416.20740, Found 416.20686

4-Methyl-*N*-(1-buthyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (6v)

(General procedure B)

4-Methyl-*N*-(1-buthyl)-benzenesulfonamide (**5v**: 22.7 mg, 0.1 mmol), 1-[(triisopropylsilyl)ethynyl]-1,2-benziodoxol-3(*1H*)-one (**3a**: 58.8 mg, 0.13 mmol, 1.3 equiv.), CuI (2.0 mg, 0.01mmol, 0.1 equiv.), 4,4'-dimethoxy-2,2'-bipyridyl (**L1**: 2.15 mg, 0.01 mmol, 0.1 equiv.) and K₃PO₄ (52.5 mg, 0.25 mmol, 2.5 equiv.) were stirred in dry ethanol (5 mL) under argon at 25 °C. After stirred for 1 h at 25 °C, the solution was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-(1-buthyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl] benzenesulfonamide (**6v**: 19.7 mg, 45%) as brown oil.

Rf: 0.63 (Hexane : AcOEt = 4 : 1)

Physical state: Brown oil

¹**H** NMR (400 MHz, CDCl₃): δ 7.83-7.78 (m, 2H), 7.37 (d, J = 8.7 Hz, 2H), 3.32 (t, J = 7.32 Hz, 2H), 2.46 (s, 3H), 1.67-1.60 (m, 2H), 1.37-1.28 (m, 2H), 1.11-1.03 (m, 21H), 0.91 (t, J = 7.32 Hz, 3H) ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.1, 134.7, 130.0, 127.7, 89.2, 87.1, 68.4, 59.4, 51.4, 30.0, 21.8, 19.5, 18.7, 13.6, 11.4

HRMS (DART, positive) calcd for $C_{24}H_{38}N_1O_2S_1Si_1$ [M + H]⁺ 432.23870, Found 432.23924

4-Methyl-*N*-(1-methylethyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl] benzenesulfonamide (6w)

Following the **General Procedure A**, 4-methyl-*N*-(1-methylethyl)-benzenesulfonamide (**5w**: 21.3 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 4-methyl-*N*-(1-methylethyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl] benzenesulfonamide (**6w**: 11.0 mg, 26%). **Rf:** 0.73 (Hexane : AcOEt = 4 : 1)

Physical state: Brown oil

¹**H NMR (500 MHz, CDCl₃):** δ 7.83-7.79 (m, 2H), 7.35 (d, *J* = 8.59 Hz, 2H), 4.14-4.06 (m, 1H), 2.46 (s, 3H), 1.13 (d, *J* = 7.45 Hz, 6H), 1.10-1.05 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 144.8, 135.7, 129.9, 127.5, 89.3, 86.7, 65.5, 61.4, 53.2, 21.7, 20.9, 18.6, 11.3

HRMS (DART, positive) calcd for $C_{23}H_{36}N_1O_2S_1Si_1$ [M + H]⁺ 418.22305, Found 418.22481

1-[4-[Tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-1*H*-indole-3-carboxylic acid methyl ester (6x)

Following the **General Procedure A**, methyl indole-3-carboxylate (**5x**: 17.5 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : AcOEt = 20 : 1) to afford 1-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-*1H*-indole-3-carboxylic acid methyl ester (**6x**: 11.1 mg, 29%). **Rf:** 0.50 (Hexane : AcOEt = 20 : 1)

Physical state: Brown oil

¹H NMR (500 MHz, CDCl₃): δ 8.18-8.14 (m, 1H), 7.90 (s, 1H), 7.66-7.63 (m, 1 H), 7.43-7.39 (m, 1 H), 7.39-7.35z (m, 1 H), 3.93 (s, 3H), 1.15-1.12 (m, 21H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 164.0, 138.7, 134.8, 125.2, 124.9, 124.2, 122.1, 111.9, 111.8, 89.6, 87.9, 64.5, 59.7, 51.5, 18.6, 11.3

HRMS (DART, positive) calcd for C₂₃H₃₀N₁O₂Si₁ [M + H]⁺ 380.20403, Found 380.20487

3-[4-[Tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-2-oxazolidinone (6y)

Following the **General Procedure A**, 2-oxazolidinone (**5**y: 8.7 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Hexane : AcOEt = 4 : 1) to afford 3-[4-[tris(1methylethyl)silyl]-1,3-butadiyn-1-yl]-2-oxazolidinone (**6**y: 13.1 mg, 45%). **Rf:** 0.20 (Hexane : AcOEt = 4 : 1) **Physical state**: Colorless solid **m.p.:** 98.3-100.0 °C ¹**H NMR (500 MHz, CDCl₃):** δ 4.50-4.45 (m, 2H), 4.00-3.95 (m, 2H), 1.09-1.06 (m, 21H) ¹³C{¹H} **NMR (125 MHz, CDCl₃):** δ 155.8, 88.3, 87.9, 64.5, 63.3, 59.5, 46.5, 18.5, 11.2 **HRMS (DART, positive)** calcd for C₁₆H₂₆N₁O₂Si₁ [M + H]⁺ 292.17273, Found 292.17389

3.4 Derivatization of diynamides.

Deprotection of TIPS

4-Methyl-N-phenyl-N-[4-(1,3-butadiyn-1-yl)]-benzenesulfonamide (6ab)

Following a slightly modified reported procedure,¹⁰ to a solution of TIPS protected ynamide (**6a**: 406.0 mg, 0.9 mmol, 1.00 eq.) in THF (11.6 mL) was added a mixture of tetra-*n*-butylammonium fluoride in THF (1.8 mL, 1.6 mmol, 2.00 equiv.) and AcOH (153.0 μ L, 2.4 mmol, 3.00 equiv.) dropwise at 0 °C. The reaction mixture was stirred at 0 °C for 10 minutes. Then, water (10 mL) was added to the reaction mixture and extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to give crude product. The resulting crude product was purified by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) affording 4-methyl-*N*-phenyl-*N*-[4-(1,3-butadiyn-1-yl)]-benzenesulfonamide (**6ab**: 237.6 mg, 0.804 mmol, 89%) as a brown solid.

Rf: 0.30 (Hexane : AcOEt = 4 : 1) Physical state: Brown solid m.p.: 115.5-116.0 °C ¹H NMR (500 MHz, CDCl₃): δ 7.61-7.57 (m, 2H), 7.36-7.32 (m, 3H), 7.32-7.29 (m, 2 H), 7.23-7.18 (m, 2H), 2.46 (s, 3H), 2.44 (s, 1H) ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.5, 137.6, 132.8, 129.8, 129.3, 128.8, 128.1, 126.4, 71.5, 68.1, 67.6, 57.5, 21.7 HRMS (DART, positive) calcd for C₁₇H₁₄N₁O₂S₁ [M + H]⁺ 296.07398, Found 296.07282 FTIR (ATR): 3272, 3068, 2926, 2239, 2072, 1595, 1488, 1455, 1377, 1320, 1309, 1189, 1176, 1159,

1121, 1088, 1075, 1026, 924, 885, 838, 809, 750, 702, 692, 672, 653

1,1'-(1,3,5,7-Octatetrayne-1,8-diyl)bis[1,1,1-tris(1-methylethyl)silane] (7)

Following the **General Procedure A**, **5a** was not used. Purification by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) to afford 1,1'-(1,3,5,7-octatetrayne-1,8-diyl)bis[1,1,1-tris(1-methylethyl)silane] (7: 17.5 mg, 66%).

Rf: 0.86 (Hexane : AcOEt = 4 : 1) Physical state: Brown solid m.p.: 74.0-76.0 °C ¹H NMR (500 MHz, CDCl₃): δ 1.16-1.04 (m, 42 H) ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 89.6, 85.6, 62.2, 61.3, 18.5, 11.2 HRMS (DART, positive) calcd for C₂₆H₄₂Si₂ [M + H]⁺ 411.28788, Found 418.28978

3.5 Copper-catalysed azide-alkyne cycloaddition

4-Methyl-*N*-phenyl-*N*-[[1-(phenylmethyl)-1*H*-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (10a)

(General procedure C)

Following a slightly modified reported procedure,¹¹ 4-methyl-*N*-phenyl-*N*-[4-(1,3-butadiyn-1-yl)]benzenesulfonamide (**6ab**: 0.11 mmol, 1.1 equiv., 33.0 mg), CuI (0.05 mmol, 0.5 equiv., 10.0 mg) and *N*,*N*-diisopropylethylamine (0.11 mmol, 1.1 equiv., 14.0 μ L) was dissolved in dichloromethane (6.0 mL). Benzyl azide (**9a**: 0.1 mmol, 1.0 equiv., 13.0 μ L) was then added and the resulting cloudy mixture was stirred for 18 h at 25 °C. After 18 h, the reaction mixture was evaporated until a solid was obtained. Then, NaHCO₃ (10 mL) was added to the residue and extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to give crude product. The resulting crude product was purified by column chromatography on silica gel (Hexane : Chloroform = 1 : 1) affording 4-methyl-*N*-phenyl-*N*-[[1-(phenylmethyl)-1*H*-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (**10a**: 39.3 mg, 0.092 mmol, 92%) as a colorless solid.

Rf: 0.16 (Hexane : Chloroform = 1 : 1) **Physical state**: Colorless solid **m.p.:** 115.0-116.0 °C ¹**H NMR (500 MHz, CDCl₃):** δ 7.61-7.58 (m, 2 H), 7.57 (s, 1 H), 7.40-7.35 (m, 3 H), 7.32-7.24 (m, 9 H), 5.51 (s, 2 H), 2.42 (s, 3 H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.2, 138.3, 134.0, 132.9, 130.6, 129.7, 129.2, 129.1, 129.0, 128.5, 128.2, 128.1, 126.9, 126.4, 85.7, 59.8, 54.3, 21.7

HRMS (DART, positive) calcd for C₂₄H₂₁N₄O₂S₁ [M + H]⁺ 429.13797, Found 429.13818 **FTIR** (ATR): 3067, 2251, 1594, 1490, 1456, 1373, 1245, 1220, 1188, 1173, 1089, 1045, 1002, 923, 894, 814, 762, 729, 711, 691, 661, 574, 549, 525

4-Methyl-*N*-phenyl-*N*-[[1-(pyrenemethyl)-1*H*-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (10b)

Following the **General Procedure C**, 1-(azidomethyl)pyrene (**9b**: 25.8 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Chloroform) to afford 4-methyl-*N*-phenyl-*N*-[[1-(pyrenemethyl)-1H-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (**10b**: 40.1 mg, 72%).

Rf: 0.07 (Chloroform)

Physical state: Colorless solid

т.р.: 191.2-191.9 °С

¹**H NMR (500 MHz, CDCl₃):** δ 8.24 (t, J = 7.45 Hz, 2H), 8.19 (d, *J* = 7.45 Hz, 1H), 8.16 (d, *J* = 2.29 Hz, 2H), 8.13 (d, *J* = 8.59 Hz, 1 H), 8.09-8.03 (m, 2H), 7.95 (d, *J* = 8.02 Hz, 1H), 7.52 (d, *J* = 8.02 Hz, 2H), 7.38 (s, 1H), 7.26-7.18 (m, 7H), 6.23 (s, 2H), 2.36 (s, 3H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 145.1, 138.3, 132.8, 132.3, 131.1, 130.5, 130.47, 129.6, 129.3, 129.1, 128.44, 128.4, 128.1, 127.7, 127.2, 126.9, 126.5, 126.4, 126.1, 125.9, 125.0, 124.9, 124.4, 121.7, 85.6, 59.8, 52.6, 21.6

HRMS (DART, positive) calcd for C₃₄H₂₅N₄O₂S₁ [M + H]⁺ 553.16927, Found 553.17091 **FTIR** (ATR): 3067, 2241, 1594, 1490, 1455, 1378, 1249, 1189, 1174, 1089, 1045, 1006, 926, 888, 848, 835, 815, 753, 708, 692, 659, 577, 547, 521

4-[[(4-Phenyl)](4-methylphenyl)sulfonyl]amino]ethynyl]-1H-1,2,3-triazole-1-acetic acid ethyl ester (10c)

Following the **General Procedure C**, ethyl azidoacetate (**9c**: 12.9 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Chloroform : EtOAc = 5 : 1) to afford 4-[[(4-phenyl)](4-methylphenyl)sulfonyl]amino]ethynyl]-1H-1,2,3-Triazole-1-acetic acid ethyl ester (**10c**: 38.4 mg, 90%).

Rf: 0.57 (Chloroform : EtOAc = 5 : 1) **Physical state**: Brown solid

т.р.: 129.3-129.9 °С

¹**H NMR (500 MHz, CDCl₃):** δ 7.81 (s, 1H), 7.62 (d, *J* = 8.59 Hz, 2H), 7.35-7.28 (m, 7H), 5.16 (s, 2H), 4.29 (q, *J* = 6.87 Hz, 2H), 2.45 (s, 3H), 1.31 (t, *J* = 6.87 Hz, 3H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 165.8, 145.2, 138.3, 132.8, 130.7, 129.7, 129.1, 128.5, 128.2, 128.1, 126.4, 85.8, 62.6, 59.6, 50.9, 21.7, 14.0

HRMS (DART, positive) calcd for C₂₁H₂₁N₄O₄S₁ [M + H]⁺ 425.12780, Found 425.12697 **FTIR** (ATR): 1750, 1594, 1489, 1464, 1398, 1372, 1251, 1215, 1188, 1172, 1089, 1046, 1022, 1002, 924, 891, 814, 757, 719, 704, 690, 659, 575, 549, 521

Figure S1. NOESY spectra of 10c.

4-Methyl-*N*-phenyl-*N*-[[*N*-(*tert*-butoxycarbonyl)-D-alanine methyl ester]-1*H*-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (10d)

Following the **General Procedure C**, 3-azido-N-[(1,1-dimethylethoxy)carbonyl]-D-alanine methyl ester (**9d**: 24.4 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Chloroform : EtOAc = 10 : 1) to afford 4-methyl-N-phenyl-N-[[N-(*tert*-butoxycarbonyl)-D-alanine

methyl ester]-1H-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (10d: 24.2 mg, 45%).

Rf: 0.38 (Chloroform : EtOAc = 10 : 1)

Physical state: Brown oil

¹H NMR (500 MHz, CDCl₃): δ 7.63 (s, 1H), 7.63-7.60 (m, 2H), 7.35-7.28 (m, 7H), 5.32 (d, *J* = 6.87 Hz, 1H), 4.89-4.75 (m, 2H), 4.73-4.67 (m, 1H), 3.80 (s, 3H), 2.44 (s, 3H), 1.45 (s, 9H) ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 169.2, 155.1, 145.3, 138.4, 132.9, 130.4, 129.7, 129.2, 128.5, 128.2, 128.0, 126.5, 85.9, 81.0, 59.6, 53.7, 53.2, 51.1, 28.2, 21.7 HRMS (DART, positive) calcd for C₂₆H₂₉N₅O₆S₁ [M + H]⁺ 540.19073, Found 540.19113 FTIR (ATR): 3383, 3146, 2980, 2932, 2251, 1745, 1710, 1595, 1492, 1455, 1438, 1368, 1287, 1249, 1221, 1188, 1170, 1090, 1047, 1028, 1000, 925, 893, 855, 814, 756, 704, 691, 659

4-Methyl-*N*-phenyl-*N*-[[1-(thymidine)-1*H*-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (10e)

Following the **General Procedure C**, Azidothymidine (**9e**: 25.8 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Chloroform : EtOAc = 1 : 5) to afford 4-methyl-*N*-phenyl-*N*-[[1-(thymidine)-1H-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (**10e**: 37.8 mg, 67%).

Rf: 0.35 (Chloroform : EtOAc = 1 : 5)

Physical state: Colorless solid

т.р.: 111.5-112.5 °С

¹H NMR (500 MHz, CDCl₃): δ 9.15 (s, 1H), 7.86 (s, 1H), 7.60 (d, J = 7.5 Hz, 2H), 7.43 (s, 1H), 7.35-7.26 (m, 7H), 6.21 (t, J = 6.87 Hz, 1H), 5.50-5.44 (m, 1H), 4.44-4.40 (m, 1H), 4.02 (d, J = 12.60 Hz, 1H), 3.84-3.75 (m, 1H), 3.53-3.46 (m, 1H), 3.03-2.91 (m, 2H), 2.43 (s, 3H), 1.91 (s, 3H) ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 164.1, 150.6, 145.4, 138.1, 137.8, 132.7, 130.4, 129.7, 129.2, 128.6, 128.1, 127.2, 126.3, 111.2, 88.0, 86.0, 85.0, 61.3, 59.6, 59.5, 37.5, 29.7, 21.7, 12.4 HRMS (DART, positive) calcd for C₂₇H₂₇N₆O₆S₁ [M + H]⁺ 563.16679, Found 563.17073

FTIR (ATR): 3020, 2251, 1679, 1594, 1472, 1455, 1370, 1273, 1254, 1220, 1188, 1172, 1090, 1042,

955, 924, 890, 813, 753, 713, 691, 660, 576, 549, 521

4-Methyl-*N*-phenyl-*N*-[[[1-{3-(acetylamino)-2,6-anhydro-1,3-dideoxy-4,5,7-triacetate}-D-glycero-D-ido-heptitol]-1*H*-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (10f)

Following the **General Procedure C**, 2-Acetamido-3,4,6-tri-*O*-acetyl-2-deoxy-beta-D-glucopyranosyl azide (**9f**: 37.2 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Chloroform : EtOAc = 1 : 1) to afford 4-methyl-*N*-phenyl-*N*-[[[1-{3-(acetylamino)-2,6-anhydro-1,3-dideoxy-4,5,7-triacetate}-D-glycero-D-ido-heptitol]-*1H*-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (**10f**: 60.1 mg, 93%).

Rf: 0.31 (Chloroform : EtOAc = 1 : 1)

Physical state: Brown solid

m.p.: 96.3-97.0 °C

¹**H NMR (500 MHz, CDCl₃):** δ 8.00 (s, 1H), 7.64-7.59 (m, 2H), 7.36-7.28 (m, 7H), 6.42 (d, *J* = 8.7 Hz, 1H), 6.16 (d, *J* = 10.1 Hz, 1H), 5.59 (t, *J* = 10.1 Hz, 1H), 5.25 (t, J = 9.6 Hz, 1H), 4.49 (q, *J* = 9.61 Hz, 1H), 4.30 (dd, *J* = 12.35, 4.57 Hz, 1H), 4.14 (dd, *J* = 12.35, 1.83 Hz, 1H), 4.10-4.04 (m, 1H), 2.44 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 1.81 (s, 3H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 170.9, 170.6, 169.3, 145.3, 138.2, 132.9, 130.7, 129.7, 129.2, 128.6, 128.2, 126.5, 126.1, 86.3, 85.6, 74.9, 71.9, 67.9, 61.6, 59.4, 53.8, 22.9, 21.7, 20.7, 20.6, 20.58 HRMS (DART, positive) calcd for C₃₁H₃₄N₅O₁₀S₁ [M + H]⁺ 668.20209, Found 668.20209 FTIR (ATR): 3281, 2252, 1747, 1667, 1594, 1544, 1490, 1454, 1371, 1295, 1226, 1188, 1174, 1090, 1038, 924, 897, 815, 756, 715, 692, 661, 598, 577, 550

4-Methyl-*N*-phenyl-*N*-[[[1-{3-(acetylamino)-2,6-anhydro-1,3-dideoxy-4,5,7-tris-*O*-(phenylmethyl)}-D-glycero-D-ido-heptitol]-1*H*-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (10g)

Following the General Procedure C, 2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-β-D-glucopyranosyl

azide (**9g**: 51.6 mg, 0.1 mmol) was used. Purification by column chromatography on silica gel (Chloroform : MeOH = 10 : 1) to afford 4-methyl-*N*-phenyl-*N*-[[[1-{3-(acetylamino)-2,6-anhydro-1,3-dideoxy-4,5,7-tris-O-(phenylmethyl)}-D-glycero-D-ido-heptitol]-*1H*-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (**10g**: 57.1 mg, 70%).

Rf: 0.71 (Chloroform : MeOH = 10 : 1)

Physical state: Brown solid

т.р.: 144.2-144.8 °С

¹**H NMR (500 MHz, CDCl₃):** δ 7.95 (s, 1H), 7.62-7.57 (m, 2H), 7.35-7.23 (m, 20H), 7.21-7.17 (m, 2H), 6.35-6.29 (m, 1H), 6.04 (d, *J* = 9.7 Hz, 1H), 4.86 (d, *J* = 11.5 Hz, 1H), 4.82 (d, *J* = 10.9 Hz, 1H), 4.73 (d, *J* = 11.5 Hz, 1H), 4.59 (d, *J* = 10.9 Hz, 1H), 4.54 (d, *J* = 12.0 Hz, 1H), 4.47 (d, *J* = 12.0 Hz, 1H), 4.26-4.19 (m, 1H), 4.17-4.12 (m, 1H), 3.85-3.67 (m, 4H), 2.40 (s, 3H), 1.66 (s, 3H)

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 171.0, 145.4, 138.4, 138.2, 137.9, 133.0, 130.4, 129.9, 129.3, 128.68, 128.65, 128.58, 128.56, 128.5, 128.29, 128.25, 128.2, 128.09, 128.06, 128.03, 127.99, 127.93, 127.91, 127.85, 127.81, 126.6, 126.4, 86.1, 85.9, 81.2, 78.14, 78.11, 75.4, 75.2, 73.6, 68.5, 59.6, 55.7, 23.2, 21.8

HRMS (DART, positive) calcd for C₄₆H₄₆N₅O₇S₁ [M + H]⁺ 812.31125, Found 812.31125 **FTIR** (ATR): 1658, 1547, 1495, 1454, 1371, 1307, 1264, 1216, 1188, 1174, 1156, 1089, 1028, 1003, 924, 890, 814, 751, 715, 693, 660, 639, 619, 576, 550

4. References

- 1. M. Yudasaka, D. Shimbo, T. Maruyama, N. Tada and A. Itoh, Org. Lett., 2019, 21, 1098–1102.
- D. Shimbo, A. Shibata, M. Yudasaka, T. Maruyama, N. Tada, B. Uno and A. Itoh, *Org. Lett.*, 2019, 21, 9769–9773.
- 3. T. W. Liwosz and S. R. Chemler, Chem. Eur. J., 2013, 19, 12771-12777.
- 4. F. Buckingham, S. Calderwood, B. Checa, T. Keller, M. Tredwell, T. L. Collier, I. M. Newington,
- R. Bhalla, M. Glaser and V. Gouverneur, J. Fluorine. Chem., 2015, 180, 33-39.
- 5. G. Sun, Y. Wang and Q. Kang, Synthesis, 2015, 47, 2931–2936.
- 6. (a) B. Pigulski, N. Gulia and S. Szafert, *Chem. Eur. J.*, 2015, **21**, 17769–17778. (b) A. S. Dillon and B. L. Flynn, *Org. Lett.*, 2020, **22**, 8, 2987–2990.
- 7. D. Shetty, J. M. Jeong, C. H. Ju, Y. J. Kim, J. Lee, Y. Lee, D. S. Lee, J. Chung and M. C. Lee, *Bioorg. Med. Chem.*, 2010, **18**, 7338–7347.
- 8. W. Yin, C. He, M. Chen, H. Zhang and A. Lei, Org. Lett., 2009, 11, 709-712.
- 9. T. N. Hoheisel and H. Frauenrath, Org. Lett., 2008, 10, 3, 4525–528.
- 10. R. Frei and J. Waser, J. Am. Chem. Soc., 2013, 135, 9620-9623.
- 11. B. C. Doak, M. J. Scanlon and J. S. Simpson, Org. lett., 2011, 13, 537-539.

5. ¹H NMR and ¹³C{¹H} NMR spectra 1,4-Bis(trimethylsilyl)-1,3-butadiyne (2b)

Trimethyl[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]silane (2a)

1-[4-[Tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-1,2-benziodoxol-3(*1H*)-one (TIPS-diyne-BX) (3a)

1-[4-(Trimethylsilyl)-1,3-butadiyn-1-yl]-1,2-benziodoxol-3(1H)-one (TMS-diyne-BX) (3b)

4-Methyl-*N*-phenyl-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (6a)

4-Nitro-N-phenyl-N-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (6b)

4-Methyl-*N*-phenyl-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-mathanesulfonamide (6c)

4-Methyl-*N*-(4-methoxyphenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6g)

4-Methyl-*N*-(4-methylphenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6h)

4-Methyl-*N*-[4-(1,1-dimethylethyl)phenyl]-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (6i)

4-Methyl-*N*-(3,5-dimethylphenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6j)

4-Methyl-*N*-(2-bromophenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6k)

4-Methyl-*N*-(3-bromophenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6l)

4-Methyl-*N*-(4-bromophenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6m)

4-Methyl-*N*-(4-iodophenyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6n)

4-[[(4-Methylphenyl)sulfonyl][[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-

yl]]amino]ethylbenzoate (60)

4-Methyl-*N*-phenylmethyl-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6q)

4-Methyl-*N*-[(3-chlorophenyl)methyl]-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6r)

4-Methyl-*N*-(2-furanylmethyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6t)

4-Methyl-*N*-(2-propen-1-yl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]benzenesulfonamide (6u)

4-Methyl-*N*-(1-buthyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-benzenesulfonamide (6v)

4-Methyl-*N*-(1-methylethyl)-*N*-[4-[tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl] benzenesulfonamide (6w)

1-[4-[Tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-1*H*-indole-3-carboxylic acid methyl ester (6x)

3-[4-[Tris(1-methylethyl)silyl]-1,3-butadiyn-1-yl]-2-oxazolidinone (6y)

4-Methyl-*N*-phenyl-*N*-[4-(1,3-butadiyn-1-yl)]-benzenesulfonamide (6ab)

1,1'-(1,3,5,7-Octatetrayne-1,8-diyl)bis[1,1,1-tris(1-methylethyl)silane] (7)

4-Methyl-*N*-phenyl-*N*-[[1-(phenylmethyl)-1*H*-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (10a)

4-Methyl-*N*-phenyl-*N*-[[*N*-(*tert*-butoxycarbonyl)-D-alanine methyl ester]-1*H*-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (10d)

4-Methyl-*N*-phenyl-*N*-[[1-(thymidine)-1*H*-1,2,3-triazol-4-yl]ethynyl]-benzenesulfonamide (10e)

