Supporting information

Spectroscopic evidence of a Xe-Xe bond in the linear Xe₂Au⁺Xe ion

Piero Ferrari^{1,2,*}, Joost M. Bakker² and Ewald Janssens¹

¹Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium ²Institute for Molecules and Materials, FELIX Laboratory, Radboud University, 6525 ED Nijmegen,

Netherlands

Content

- i) Infrared spectra of additional isomers
- ii) Comparison of the infrared spectra calculated with different functionals
- iii) Extracting Xe binding energy from temperature-dependent mass spectra
- iv) Energy decomposition analysis
- v) Potential energy surfaces
- vi) Comparison of properties of Xe₂⁺, Xe₂Au⁺Xe, FXe₂H and Xe₂
- vii) XYZ coordinates

i) Infrared spectra of additional isomers

Figure S1. Vibrational spectra of four isomers of AuXe₃⁺. Isomers 1 and 2 are discussed in the main article. The relative energy, with respect to isomer 1, is calculated with DFT using the PBE functional and the Def2-TZVPP basis set plus the D3 dispersion correction.

ii) Comparison of the infrared spectra calculated with different functionals

Figure S2. Comparison of the infrared spectrum of isomer 2 calculated using different exchange-correlation functionals. The plots are constructed by Gaussian functions centred around each vibrational mode, with an artificial width of 10 cm⁻¹.

iii) Extracting Xe binding energy from temperature-dependent mass spectra

In this procedure, it is assumed that the intensities in mass spectra recorded at a certain temperature T reflect the relative amount of each complex in equilibrium conditions. Under this assumption, the equilibrium constant K^0 at a standard pressure p^0 is given by Eq. (S1) [1].

$$K^{0} = \frac{I(AuXe_{3}^{+}, T)}{I(AuXe_{2}^{+}, T) \cdot p(Xe)/p^{0}}$$
(S1)

Here, I(X, T) is the intensity of the complex X in a mass spectrum recorded at temperature T, and p(Xe) the partial pressure of Xe in the formation chamber of the source. The ratio $p(Xe)/p^0$ cannot be measured and its precise value is therefore unknown. The equilibrium constant K^0 can be related to the standard enthalpy change ΔH^0 and the standard entropy change ΔS^0 , via Eq. (S2):

$$\ln(K^{0}) = \frac{-\Delta H^{0}}{R} \frac{1}{T} + \frac{\Delta S^{0}}{R}$$
(S2)

Given the uncertainty in $p(Xe)/p^0$, determination of ΔS^0 is not possible. However, from the slope of a plot of $\ln(K^0)$ versus 1/T (Figure 2a in main article), ΔH^0 can be determined. This quantity equals the Xe binding energy in AuXe₂⁺-Xe.

[1] E. Janssens, P. Gruene, G. Meijer, L. Wöste, P. Lievens, and A. Fielicke, Phys. Rev. Lett. 99, 063401, 2007.

iv) Energy decomposition analysis

Table S1. Absolute values of the different components of the binding energy (in eV) of $AuXe_2^+$ -Xe and Xe-Xe, obtained via the energy decomposition analysis (EDA).

Energy component	Au ⁺ Xe ₂ -Xe	Xe-Xe
Eorb	0.060	0.003
E _{pauli}	-0.041	-0.005
$E_{ m elec}$	0.017	0.004
Edis	0.014	0.008

v) Potential energy surfaces

Figure S3. DFT calculated (PBE/Def2-TZVPP+D3) potential energy surface of Xe-XeAuXe⁺ (blue), Xe-XeAgXe⁺ (green), Xe-XeCuXe⁺ (purple) and Xe-Xe (red), with *r* the Xe-Xe distance.

vi) Comparison of properties of Xe₂⁺, Xe₂Au⁺Xe, FXe₂H and Xe₂

Table S2. Values of Xe-Xe bond lengths, Xe-Xe binding energies, Xe-Xe Wiberg bond indexes, partial charge on the Xe atom pair and ELF values at the critical points for Xe_2^+ , Xe_2Au^+Xe , FXe_2H and Xe_2 . Calculations performed at the CCSD(T)/Def2-TZVPP level.

	Xe-Xe bond length	Eь	Wiberg bond index	Partial charge Xe	ELF
				pair	
Xe ₂ ⁺	3.114 Å	1.136 eV	0.5	+0.500/0.500 e	0.20
Xe ₂ Au ⁺ Xe	4.097 Å	0.057 eV	0.1	+0.339/0.036 e	0.04
FXe ₂ H	3.224 Å	1.232 eV	0.6	+0.312/0.381e	0.32
Xe ₂	4.742 Å	0.009 eV	0.0	0.000/0.000 e	0.01

vii) XYZ coordinates

Isomer 1

Xe

Au	-2.1583604602	0.4065837772	-0.0000097685		
Xe	-2.1555404196	3.1845736111	-0.0000885175		
Xe	0.3473386036	-0.7885678529	-0.0004539190		
Xe	-4.4832877238	-1.0667255355	0.0005522050		
Ison	ner 2				
Au	-4.2509785212	0.8675128972	-0.0000006156		
Xe	-6.8719901753	0.8785433548	0.0000012350		
Xe	-1.6366395371	0.8539510521	-0.0000024675		
Xe	2.3084781748	0.7857875519	0.0000018480		
Ison	ner 3				
Au	-2.3165677407	0.1817121162	-0.0002431799		
Xe	-0.4636253345	2.0196335251	0.0003000728		
Xe	3.3048157629	0.1567951660	-0.0008318439		
Xe	2.0910060446	4.5611039544	0.0007749509		
Isomer 4					
Au	-1.9028113062	0.000000265	-0.000000082		
Xe	0.7063703226	-0.000000207	0.000000141		
Xe	4.4371049033	-0.0000000491	-0.000000145		

8.7593360804 0.000000432

0.000000086