Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Supporting Information

for

Regioselective *O*-Alkylation of 2-Pyridones by TfOH-Catalyzed Carbenoid Insertion

Zhewei Yan^{a, b}, Hangli He^{a, b}, Dabiao Yuan^{a, b}, Qiongjiao Yan^a, Wei Wang^a,

Haipeng Jiang^a, Haifeng Wang^{*a, b}, Fener Chen^{*a, c, d}

^a Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China

^b School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China

^c Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China

^d Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China

Email: skytacle@139.com; rfchen@fudan.edu.cn.

Table of Contents

General Information and Materials	2
General Experimental Procedures	2
References	3
Characterization Data of Compounds	3
NMR Spectra of Compounds	13
Infrared Spectrum of 3a	48

1. General Information and Materials

All ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) and ¹⁹F NMR (376 MHz) spectra were recorded on Brucker spectrometers in CDCl₃ or DMSO- d_6 . Chemical shifts (δ) for NMR were quoted in ppm relative to the solvent peak (7.26 ppm for ¹H and 77.16 ppm for ¹³C in CDCl₃; 2.50 ppm for ¹H and 40.00 ppm for ¹³C in DMSO- d_6). Chemical shifts are reported in parts per million as follows: chemical shift, multiplicity (s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet). Coupling constants *J* are recorded in Hz. High-resolution mass spectra (HRMS) were reported from the Thermo Orbitrap Elite or Bruker Daltonics APEXII 47e FT-ICR instrument with an ESI source. Melting points (m.p.) were uncorrected. Infrared Spectrum was reported from the Bruker ALPHA II.

Unless otherwise noted, all reactions were carried out under nitrogen in a flamedried or oven-dried flask containing magnetic stir bar. All 2-pyridones (1a-k) were purchased from Bidepharm.com and were used directly without further purification. Diazo compounds 2a-y were prepared according to literature reported procedure ^[1-4]. The other materials obtained from commercial suppliers were used directly without further purification. Reactions were monitored by thin layer chromatography (TLC) using pre-coated silica gel plates (GF254). Flash column chromatography was performed on silica gel (particle size 200-300 mesh ASTM) and eluted with petroleum ether/ethylacetate. Solvents for the column chromatography were distilled before used.

2. General Experimental Procedures

2-Pyridone 1 (0.50 mmol), diazo compound 2 (0.75 mmol) and EA (1.5 mL) were

added into a 10 mL glass tube. Then a solution of CF_3SO_3H (7.5 mg, 0.05 mmol, 10 mol %) dissolved in EtOAc (1.5 mL) was introduced into the reaction mixture. The resulting mixture was continually stirred under nitrogen atmosphere at r.t. for 3-6 hours. The reaction solution was quenched with saturated aq. NH₄Cl and extracted with EA (5.0 mL×3). The combined organic phase was dried over anhydrous Na₂SO₄, filtrated and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (*n*-hexane/acetone = 5:1) to afford the pure product **3**.

2-Hydroxypyridine **1a** (0.50 mmol) and deuterium oxide (2.0 mL) and were added into a 10 mL glass tube. Stirred at room temperature under nitrogen atmosphere at r.t. for 24 h, drain The reaction solution was extracted with EA (5.0 mL×3). The combined organic phase was dried over anhydrous Na₂SO₄, filtrated and concentrated under reduced pressure to afford **d-1a** (75% D).

2-Pyridone **d-1a** (0.20 mmol), ethyl 2-diazo-2-phenylacetate **2a** (0.30 mmol) and EtOAc (0.5 mL) were added into a 5 mL glass tube. Then a solution of CF_3SO_3H (3.0 mg, 0.02 mmol, 10 mol %) dissolved in EtOAc (1.0 mL) was introduced into the reaction mixture. The resulting mixture was continually stirred under nitrogen atmosphere at r.t. for 12 h. The reaction solution was quenched with saturated aq. NH₄Cl and extracted with EtOAc (5.0 mL×3). The combined organic phase was dried over anhydrous Na₂SO₄, filtrated and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (*n*-hexane/acetone = 5:1)

to afford the pure product **d-3a** (54% D).

5-(Trifluoromethyl)pyridin-2-ol **1g** (0.50 mmol), ethyl 2-diazo-2-(4-(trifluoromethyl)phenyl)acetate **2h** (0.75 mmol) and EtOAc (1.5 mL) were added into a 10.0 mL glass tube. Then a solution of CF_3SO_3H (7.5 mg, 0.05 mmol, 10 mol %) dissolved in EtOAc (1.5 mL) was introduced into the reaction mixture. The resulting mixture was continually stirred under nitrogen atmosphere at r.t. for 12 h. The reaction solution was quenched with saturated aq. NH₄Cl and extracted with EtOAc (5.0 mL×3). The combined organic phase was dried over anhydrous Na₂SO₄, filtrated and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (*n*-hexane/acetone = 10:1) to afford ester **3hg** (119 mg, 61%) as a yellow oil.

To a solution of the easter **3hg** (119 mg, 0.31 mmol) in THF/H₂O (3.0 mL/1.0 mL) at r.t. was added sodium hydroxide (80 mg, 2 mmol). The resulting solution was stirred at r.t. for 4 h. The reaction was quenched with 1M aqueous HCl and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄ and concentrated in vacuo to afford acid **4** (109.6mg, 98%). The total yield is 60%.

3. References

[1] Chen, R.; Zhao, Y.; Sun, H.; Shao, Y.; Xu, Y.; Ma, M.; Ma, L.; Wan, X. J. Org.

Chem. 2017, 82, 9291-9304.

- [2] Gutierrez, S.; Tomas-Gamasa, M.; Mascarenas, J. L. Angew. Chem. 2021, 60, 22017-22025.
- [3] Keipour, H.; Ollevier, T. Org. Lett. 2017, 19, 5736-5739.
- [4] Xu, B.; Zhu, S. F.; Zuo, X. D.; Zhang, Z. C.; Zhou, Q. L. Angew. Chem. 2014, 126, 3994-3997.

4. Characterization Data of Compounds

ethyl 2-phenyl-2-(pyridin-2-yloxy)acetate (3a)

Yellow oil, yield: 96% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.12$ (ddd, J = 5.1, 2.1, 0.9 Hz, 1H), 7.65 – 7.59 (m, 3H), 7.40 (qd, J = 6.8, 2.9 Hz, 3H), 6.95 – 6.88 (m, 2H), 6.21 (s, 1H), 4.24 – 4.13 (m, 2H), 1.19 (t, J = 7.1Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.5, 162.5, 146.7,$ 139.0, 135.4, 129.0, 128.8, 127.8, 117.7, 111.4, 75.9, 61.4, 14.1;

HRMS (ESI): *m*/*z* [M+Na]⁺ calcd for C₁₅H₁₅NNaO₃⁺: 280.0944; found: 280.0937.

ethyl 2-(2-oxopyridin-1(2H)-yl)-2-phenylacetate (3aa)

Yellow oil, yield: 21% ¹H NMR (400 MHz, DMSO- d_6) δ = 7.45 (td, J = 4.3, 1.5 Hz, 3H), 7.40 (ddd, J = 7.2, 4.9, 2.0 Hz, 3H), 7.21 (dd, J = 7.0, 2.0 Hz, 1H), 6.46 (dt, J = 9.1, 1.1 Hz, 1H), 6.41 (s, 1H), 6.20 (td, J = 6.8, 1.4 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ = 168.4, 161.3, 140.2, 136.4,

133.4, 129.4, 129.1, 129.1, 119.3, 105.6, 62.2, 61.4, 13.8; HRMS (ESI): *m*/*z* [M+Na]⁺ calcd for C₁₅H₁₅NNaO₃⁺: 280.0944; found: 280.0959.

ethyl 2-(pyridin-2-yloxy)-2-(p-tolyl)acetate (3b)

Yellow oil, yield: 82% ¹H NMR (400 MHz, CDCl₃): δ = 8.12 (ddd, *J* = 5.1, 2.0, 0.9 Hz, 1H), 7.60 (ddd, *J* = 8.4, 7.1, 2.0 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.22 (d, *J* = 7.8 Hz, 2H), 6.95 – 6.87 (m, 2H), 6.17 (s, 1H), 4.24 – 4.12 (m, 2H), 2.37 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 170.6, 162.6, 146.6, 138.9,

138.9, 132.4, 129.5, 127.8, 117.6, 111.5, 75.8, 61.3, 21.4, 14.1; HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₆H₁₈NO₃⁺: 272.1281; found: 272.1294.

ethyl 2-(pyridin-2-yloxy)-2-(o-tolyl)acetate (3c)

Yellow oil, yield: 86%

0. O

¹H NMR (400 MHz, CDCl₃): δ = 8.13 (dd, *J* = 5.4, 2.0 Hz, 1H), 7.63 – 7.56 (m, 2H), 7.28 – 7.23 (m, 3H), 6.92 – 6.87 (m, 2H), 6.51 (s, 1H), 4.25 – 4.14 (m, 2H), 2.52 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 170.7, 162.7, 146.7, 139.0, 137.2, 134.0, 130.8, 128.9, 128.0, 126.4, 117.6, 111.5, 72.8, 61.3, 19.7, 14.2; HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₆H₁₈NO₃⁺: 272.1281; found: 272.1274.

ethyl 2-(4-methoxyphenyl)-2-(pyridin-2-yloxy)acetate (3d)

Yellow oil, yield: 30% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.11$ (ddd, J = 5.0, 2.0, 0.9Hz, 1H), 7.60 (ddd, J = 8.9, 7.1, 2.0 Hz, 1H), 7.56 – 7.48 (m, 2H), 6.96 – 6.85 (m, 4H), 6.14 (s, 1H), 4.24 – 4.11 (m, 2H), 3.82 (d, J = 1.3 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.7, 162.6, 160.2, 146.7, 139.0,$

129.2, 127.5, 117.6, 114.2, 111.5, 75.5, 61.3, 55.5, 14.2; HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₆H₁₈NO₄⁺: 288.1230; found: 288.1234.

methyl 2-(4-(tert-butyl)phenyl)-2-(pyridin-2-yloxy)acetate (3e)

Yellow oil, yield: 88% ¹H NMR (400 MHz, CDCl₃): δ = 8.12 (ddd, J = 5.0, 2.0, 0.9 Hz, 1H), 7.61 (ddd, J = 8.3, 7.1, 2.0 Hz, 1H), 7.54 – 7.51 (m, 2H), 7.45 – 7.42 (m, 2H), 6.93 – 6.89 (m, 2H), 6.20 (s, 1H), 3.72 (s, 3H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.2, 162.6, 152.2, 146.7, 139.0, 132.2, 127.6, 125.9, 117.7,

111.5, 75.6, 52.5, 34.8, 31.4; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₂₂NO₃⁺: 300.1594; found: 300.1589.

ethyl 2-(4-nitrophenyl)-2-(pyridin-2-yloxy)acetate (3f)

Yellow oil, yield: 56% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.28 - 8.23$ (m, 2H), 8.11 (ddd, J = 5.0, 2.0, 0.9 Hz, 1H), 7.86 - 7.80 (m, 2H), 7.65 (ddd, J = 8.4, 7.1, 1.9 Hz, 1H), 7.00 - 6.92 (m, 2H), 6.35 (s, 1H), 4.25 - 4.14 (m, 2H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.3, 161.9, 148.3, 146.7,$

142.5, 139.3, 128.4, 123.9, 118.2, 111.4, 74.8, 61.9, 14.1; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₅N₂O₅⁺: 303.0975; found: 303.0977.

ethyl 2-(2-nitrophenyl)-2-(pyridin-2-yloxy)acetate (3g)

Yellow oil, yield: 44% ¹H NMR (400 MHz, CDCl₃): δ = 8.07 (ddd, *J* = 4.6, 1.9, 1.0 Hz, 1H), 8.01 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.81 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.64 - 7.59 (m, 2H), 7.52 - 7.47 (m, 1H), 7.25 (s, 1H), 6.91 (ddd, *J* = 7.2, 5.0, 0.9 Hz, 2H), 4.25 - 4.19 (m, 2H), 1.22 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.0, 161.8, 148.8, 146.8, 139.2, 133.4, 131.3, 129.4, 129.4, 125.0, 118.1, 111.2, 71.0, 62.0, 14.1; HRMS (ESI): *m/z* [M+Na]⁺ calcd for C₁₅H₁₄N₂NaO₅⁺: 325.0795; found: 325.0799.

ethyl 2-(pyridin-2-yloxy)-2-(3-(trifluoromethyl)phenyl)acetate (3h)

Yellow oil, yield: 64% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.12$ (ddd, J = 5.1, 2.0, 0.8 Hz, 1H), 7.91 (q, J = 1.4 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.65 – 7.60 (m, 2H), 7.53 (t, J = 7.8 Hz, 1H), 6.98 – 6.91 (m, 2H), 6.29 (s, 1H), 4.20 (p, J = 7.1 Hz, 2H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.8$, 162.2, 146.7, 139.2, 136.5, 131.4, 131.0, 131.0, 129.3, 125.8, 125.8, 125.7, 125.7, 124.6,

124.5, 124.5, 124.5, 122.8, 118.0, 111.4, 75.1, 61.7, 14.1; ¹⁹F NMR (376 MHz, CDCl₃): δ = -62.6; HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₆H₁₅F₃NO₃⁺: 326.0999; found: 326.0998.

ethyl 2-(4-cyanophenyl)-2-(pyridin-2-yloxy)acetate (3i)

Yellow oil, yield: 50%

¹H NMR (400 MHz, CDCl₃): δ = 8.11 (ddd, J = 5.0, 2.0, 0.9 Hz, 1H), 7.76 (d, J = 8.2 Hz, 2H), 7.71 – 7.68 (m, 2H), 7.64 (ddd, J = 8.4, 7.1, 2.0 Hz, 1H), 6.96 – 6.92 (m, 2H), 6.28 (s, 1H), 4.23 – 4.14 (m, 2H), 1.19 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.4, 162.0, 146.7, 140.6, 139.3,

132.5, 128.2, 118.6, 118.1, 112.8, 111.3, 75.0, 61.9, 14.1; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅N₂O₃⁺: 283.1077; found: 283.1084.

ethyl 2-(4-fluorophenyl)-2-(pyridin-2-yloxy)acetate (3j)

Yellow oil, yield: 72% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.19 - 8.02$ (m, 1H), 7.67 – 7.52 (m, 3H), 7.09 (t, J = 8.7 Hz, 2H), 6.97 – 6.86 (m, 2H), 6.18 (s, 1H), 4.18 (qq, J = 10.8, 7.1 Hz, 2H), 1.19 (t, J = 7.1Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.3$, 164.4, 162.4, 162.0, 146.7, 139.1, 131.3, 129.6, 129.6, 117.8, 115.9,

115.7, 111.4, 75.2, 61.5, 14.1; ¹⁹F NMR (376 MHz, CDCl₃): δ = -112.9 - -113.0 (m); HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₅H₁₅FNO₃⁺: 276.1030; found: 276.1036.

ethyl 2-(2-fluorophenyl)-2-(pyridin-2-yloxy)acetate (3k)

Yellow oil, yield: 87% ¹H NMR (400 MHz, CDCl₃): δ = 8.13 (ddd, *J* = 5.0, 2.0, 0.9 Hz, 1H), 7.66 – 7.58 (m, 2H), 7.39 – 7.33 (m, 1H), 7.19 (td, *J* = 7.6, 1.2 Hz, 1H), 7.12 (ddd, *J* = 9.7, 8.3, 1.2 Hz, 1H), 6.93 – 6.88 (m, 2H), 6.63 (s, 1H), 4.27 – 4.16 (m, 2H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.9, 162.4, 161.9, 159.4,

146.7, 139.0, 130.9, 130.8, 129.7, 129.6, 124.6, 124.5, 123.2, 123.0, 117.8, 116.0, 115.8, 111.3, 69.1, 69.1, 61.6, 14.1; ¹⁹F NMR (376 MHz, CDCl₃): δ = -117.1 (dt, *J* =

10.2, 6.2 Hz); HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₅FNO₃⁺: 276.1030; found: 276.1041.

ethyl 2-(3-chlorophenyl)-2-(pyridin-2-yloxy)acetate (3l)

Yellow oil, yield: 85% ¹H NMR (400 MHz, CDCl₃): δ = 8.11 (ddd, *J* = 5.1, 2.0, 0.8 Hz, 1H), 7.69 – 7.57 (m, 2H), 7.50 (ddd, *J* = 7.6, 5.4, 3.3 Hz, 1H), 7.34 (dd, *J* = 4.8, 2.0 Hz, 2H), 6.97 – 6.88 (m, 2H), 6.19 (s, 1H), 4.24 – 4.14 (m, 2H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.9, 162.2, 146.7, 139.1, 137.4, 134.7, 130.0, 129.1, 127.8, 125.8, 117.9, 111.4, 75.1, 61.6, 14.1; HRMS

(ESI): m/z [M+Na]⁺ calcd for C₁₅H₁₄ClNNaO₃⁺: 314.0554; found: 314.0580.

ethyl 2-(2-chlorophenyl)-2-(pyridin-2-yloxy)acetate (3m)

Yellow oil, yield: 90% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.14$ (ddd, J = 5.0, 2.0, 0.9 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.61 (ddd, J = 8.3, 7.1, 2.0 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.33 – 7.29 (m, 2H), 6.93 – 6.88 (m, 2H), 6.77 (s, 1H), 4.22 (ddt, J = 15.0, 7.8, 3.6 Hz, 2H), 1.22 (t, J = 7.1Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.0, 162.4, 146.7$,

139.0, 134.4, 133.6, 130.2, 130.0, 129.6, 127.3, 117.8, 111.3, 72.3, 61.6, 14.2; HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₅H₁₅ClNO₃⁺: 292.0735; found: 292.0742.

ethyl 2-(2,4-dichlorophenyl)-2-(pyridin-2-yloxy)acetate (3n)

Yellow oil, yield: 99% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.12$ (ddd, J = 5.0, 2.0, 0.9Hz, 1H), 7.63 – 7.56 (m, 2H), 7.45 (d, J = 2.1 Hz, 1H), 7.30 (dd, J = 8.4, 2.1 Hz, 1H), 6.93 – 6.87 (m, 2H), 6.71 (s, 1H), 4.26 – 4.16 (m, 2H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.6, 162.2, 146.7, 139.1, 135.5, 135.0,$

132.4, 130.5, 129.8, 127.7, 117.9, 111.3, 71.7, 61.8, 14.1; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₄Cl₂NO₃⁺: 326.0345; found: 326.0351.

ethyl 2-(4-bromophenyl)-2-(pyridin-2-yloxy)acetate (30)

Yellow oil, yield: 86% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.13 - 8.06$ (m, 1H), 7.65 -7.58 (m, 1H), 7.54 - 7.47 (m, 4H), 6.93 - 6.89 (m, 2H), 6.17 (s, 1H), 4.17 (ddp, J = 14.1, 7.2, 3.6 Hz, 2H), 1.19 (t, J = 7.1Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 170.0$, 162.3, 146.7, 139.1, 134.5, 131.9, 129.4, 123.1, 117.9, 111.4, 75.1,

61.6, 14.1; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₅BrNO₃⁺: 336.0230; found: 336.0235.

ethyl 2-(2-iodophenyl)-2-(pyridin-2-yloxy)acetate (3p)

Yellow oil, yield: 65%

¹H NMR (400 MHz, CDCl₃): δ = 8.16 – 8.13 (m, 1H), 7.91 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.62 – 7.58 (m, 2H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.08 – 7.04 (m, 1H), 6.92 – 6.87 (m, 2H), 6.58 (s, 1H), 4.22 (ddt, *J* = 14.3, 7.2, 3.5 Hz, 2H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 170.1, 162.4, 146.8, 140.0, 139.0, 138.7,

130.6, 129.2, 128.7, 117.8, 111.2, 100.2, 79.1, 61.6, 14.2; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₅H₁₄INNaO₃⁺: 405.9911; found: 405.9903.

allyl 2-phenyl-2-(pyridin-2-yloxy)acetate (3q)

Yellow oil, yield: 87% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.12$ (ddd, J = 5.0, 2.0, 0.9Hz, 1H), 7.69 – 7.56 (m, 3H), 7.44 – 7.34 (m, 3H), 6.98 – 6.87 (m, 2H), 6.25 (s, 1H), 5.82 (ddt, J = 17.2, 10.7, 5.5 Hz, 1H), 5.26 – 5.12 (m, 2H), 4.63 (qdt, J = 13.5, 5.5, 1.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.2, 162.5, 146.7, 139.0,$

135.3, 131.8, 129.1, 128.8, 127.8, 118.1, 117.7, 111.4, 75.8, 65.7; HRMS (ESI): *m/z* [M+Na]⁺ calcd for C₁₆H₁₅NNaO₃⁺: 292.0944; found: 292.0948.

isobutyl 2-phenyl-2-(pyridin-2-yloxy)acetate (3r)

Yellow oil, yield: 89% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.11$ (dd, J = 5.2, 1.9 Hz, 1H), 7.62 (ddt, J = 10.4, 7.1, 1.9 Hz, 3H), 7.45 – 7.35 (m, 3H), 7.00 – 6.81 (m, 2H), 6.22 (s, 1H), 3.96 – 3.86 (m, 2H), 1.87 (dp, J = 13.4, 6.7 Hz, 1H), 0.80 (dd, J = 6.7, 4.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.5$, 162.6, 146.7, 139.0,

135.5, 129.0, 128.8, 127.8, 117.7, 111.4, 76.0, 71.3, 27.9, 18.9, 18.9; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₂₀NO₃⁺: 286.1438; found: 286.1447.

isopentyl 2-phenyl-2-(pyridin-2-yloxy)acetate (3s)

Yellow oil, yield: 98% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.11$ (ddd, J = 5.0, 2.0, 0.9Hz, 1H), 7.61 (ddt, J = 7.1, 6.2, 1.8 Hz, 3H), 7.43 – 7.36 (m, 3H), 6.94 – 6.88 (m, 2H), 6.20 (s, 1H), 4.31 – 4.01 (m, 2H), 1.56 – 1.49 (m, 1H), 1.44 (dq, J = 13.5, 6.6 Hz, 2H), 0.82 (dd, J = 12.2, 6.5 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ

= 170.6, 162.6, 146.7, 139.0, 135.4, 129.0, 128.8, 127.8, 117.7, 111.5, 75.9, 64.0, 37.3, 25.0, 22.5, 22.4; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₂₂NO₃⁺: 300.1594; found: 300.1606.

benzyl 2-phenyl-2-(pyridin-2-yloxy)acetate (3t)

Yellow oil, yield: 96% ¹H NMR (400 MHz, CDCl₃): δ = 8.05 (dd, *J* = 5.3, 1.9 Hz, 1H), 7.67 – 7.57 (m, 3H), 7.42 – 7.37 (m, 3H), 7.31 – 7.26 (m, 3H), 7.20 (dd, J = 6.8, 3.0 Hz, 2H), 6.96 – 6.87 (m, 2H), 6.25 (s, 1H), 5.24 – 5.10 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.4$, 162.5, 146.7, 139.0, 135.8, 135.2, 129.1, 128.8, 128.5, 128.2, 128.0, 127.9, 117.7, 111.4, 76.0, 66.8; HRMS (ESI): m/z [M+NH₄]⁺ calcd for C₂₀H₂₁N₂O₃⁺: 337.1547; found: 337.1573.

ethyl 2-(naphthalen-2-yl)-2-(pyridin-2-yloxy)acetate (3u)

Yellow solid, m.p.: 67-68 °C, yield: 85% ¹H NMR (400 MHz, CDCl₃): δ = 8.15 (ddd, J = 5.1, 2.0, 0.9 Hz, 1H), 8.10 (d, J = 1.7 Hz, 1H), 7.87 (td, J = 9.2, 2.9 Hz, 3H), 7.73 (dd, J = 8.5, 1.8 Hz, 1H), 7.63 (ddd, J = 8.4, 7.1, 2.0 Hz, 1H), 7.53 – 7.47 (m, 2H), 6.98 (dt, J = 8.3, 0.9 Hz, 1H), 6.92 (ddd, J = 7.1, 5.1, 0.9 Hz, 1H), 6.38 (s, 1H), 4.26

- 4.14 (m, 2H), 1.19 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.5$, 162.6, 146.7, 139.0, 133.6, 133.4, 132.8, 128.6, 128.4, 127.9, 127.3, 126.6, 126.5, 125.2, 117.7, 111.5, 76.0, 61.5, 14.2; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₈NO₃⁺: 308.1281; found: 308.1288.

1,2-diphenyl-2-(pyridin-2-yloxy)ethan-1-one (3v)

Yellow solid, m.p.: 122-124 °C, yield: 82% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.09 - 8.03$ (m, 2H), 8.00 (dd, J = 5.1, 1.9 Hz, 1H), 7.65 - 7.55 (m, 3H), 7.52 (t, J = 7.4 Hz, 1H), 7.45 - 7.33 (m, 5H), 7.19 (s, 1H), 6.95 (d, J = 8.3 Hz, 1H), 6.85 (dd, J = 7.1, 5.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.2, 162.5, 146.6, 138.9, 135.7, 135.0, 133.1, 129.1, 129.0,$

129.0, 128.8, 128.6, 117.5, 111.4, 78.6; HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₉H₁₆NO₂⁺: 290.1176; found: 290.1183.

cinnamyl 2-(pyridin-2-yloxy)acetate (3w)

Yellow oil, yield: 53% ¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.18 - 8.05$ (m, 1H), 7.74 (ddd, J = 8.6, 7.0, 2.0 Hz, 1H), 7.50 – 7.39 (m, 2H), 7.34 (dd, J = 8.3, 6.6 Hz, 2H), 7.30 –

7.21 (m, 1H), 7.01 (ddd, J = 7.2, 5.0, 1.0 Hz, 1H), 6.93 (d, J = 8.3 Hz, 1H), 6.64 (dd, J = 16.0, 1.7 Hz, 1H), 6.33 (dt, J = 16.0, 6.0 Hz, 1H), 4.98 (s, 2H), 4.79 (dd, J = 6.0, 1.4 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 168.7$, 161.9, 146.5, 139.5, 135.9, 133.0, 128.6, 128.0, 126.4, 123.3, 117.7, 110.7, 64.6, 61.9; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₆H₁₅NNaO₃⁺: 292.0944; found: 292.0954.

1-phenyl-2-(pyridin-2-yloxy)ethan-1-one (3x)

Yellow solid, m.p.: 57-59 °C, yield: 35% ¹H NMR (400 MHz, CDCl₃) $\delta = 8.07 - 8.03$ (m, 1H), 8.03 -7.97 (m, 2H), 7.64 - 7.57 (m, 2H), 7.49 (t, J = 7.6 Hz, 2H), 6.94 (d, J = 8.3 Hz, 1H), 6.88 (dd, J = 7.1, 5.0 Hz, 1H), 5.63 (s,

2H); ¹³C NMR (100 MHz, CDCl₃): δ = 194.6, 162.7, 146.7, 139.0, 135.0, 133.7,

128.9, 128.1, 117.6, 111.4, 67.6; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₂NO₂⁺: 214.0863; found: 214.0868.

ethyl 2-(pyridin-2-yloxy)acetate (3y)

Yellow oil, yield: 57% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.15 - 8.00$ (m, 1H), 7.57 (ddd, J = 8.7, 7.1, 2.0 Hz, 1H), 6.94 - 6.77 (m, 2H), 4.87 (s, 2H), 4.21 (q, J = 7.1 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C

NMR (100 MHz, CDCl₃): δ = 169.5, 162.5, 146.6, 138.9, 117.6, 111.2, 62.5, 61.1, 14.2; HRMS (ESI): m/z [M+H]⁺ calcd for C₉H₁₂NO₃⁺: 182.0812; found: 182.0813.

ethyl 2-((3-fluoropyridin-2-yl)oxy)-2-phenylacetate (3ab)

Yellow oil, yield: 73% ¹H NMR (400 MHz, CDCl₃): δ = 7.89 (dd, *J* = 5.0, 1.5 Hz, 1H), 7.67 – 7.63 (m, 2H), 7.44 – 7.35 (m, 4H), 6.90 (ddd, *J* = 8.0, 5.0, 3.2 Hz, 1H), 6.22 (s, 1H), 4.19 (ddp, *J* = 14.2, 7.1, 3.6 Hz, 2H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.9, 152.0, 151.9, 148.7, 146.2, 141.2, 141.1, 134.8, 129.1, 128.8,

127.7, 123.8, 123.7, 118.0, 118.0, 76.2, 61.5, 14.1; ¹⁹F NMR (376 MHz, CDCl₃): δ = -138.3 (dd, *J* = 10.1, 3.2 Hz); HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₅H₁₅FNO₃⁺: 276.1030; found: 276.1031.

ethyl 2-((5-fluoropyridin-2-yl)oxy)-2-phenylacetate (3ac)

Yellow oil, yield: 61% ¹H NMR (400 MHz, CDCl₃): δ = 7.95 (d, J = 3.1 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.43 – 7.35 (m, 4H), 6.91 (ddd, J = 9.0, 3.5, 0.6 Hz, 1H), 6.13 (s, 1H), 4.24 – 4.12 (m, 2H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 170.3, 158.7, 157.2, 154.8, 135.2, 133.2, 132.9, 129.1, 128.8, 127.8, 127.1,

126.9, 112.1, 112.1, 76.4, 61.5, 14.2; ¹⁹F NMR (376 MHz, CDCl₃): δ = -138.2 (dd, *J* = 7.6, 3.5 Hz); HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₅H₁₅FNO₃⁺: 276.1030; found: 276.1019.

ethyl 2-((5-chloropyridin-2-yl)oxy)-2-phenylacetate (3ad)

Yellow oil, yield: 65% ¹H NMR (400 MHz, CDCl₃): δ = 8.07 (dd, J = 2.6, 0.7 Hz, 1H), 7.64 – 7.54 (m, 3H), 7.45 – 7.34 (m, 3H), 6.89 (dd, J = 8.8, 0.7 Hz, 1H), 6.14 (s, 1H), 4.27 – 4.10 (m, 2H), 1.20 (t, J= 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 170.1, 161.0, 145.0, 139.0, 135.0, 129.1, 128.8, 127.8, 125.2, 112.5,

76.3, 61.5, 14.2; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₅ClNO₃⁺: 292.0735; found: 292.0739.

ethyl 2-((5-bromopyridin-2-yl)oxy)-2-phenylacetate (3ae)

White solid, m.p.: 64-66 °C, yield: 64% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.17$ (d, J = 2.5 Hz, 1H), 7.70 (dd, J = 8.8, 2.5 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.44 – 7.37 (m, 3H), 6.85 (d, J = 8.7 Hz, 1H), 6.13 (s, 1H), 4.25 – 4.12 (m, 2H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, $CDC1_3$): $\delta = 170.0, 161.4, 147.3, 141.6, 135.0, 129.1, 128.8,$

127.8, 113.1, 112.8, 76.3, 61.5, 14.2; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₅BrNO₃⁺: 336.0230; found: 336.0235.

ethyl 2-((5-acetylpyridin-2-yl)oxy)-2-phenylacetate (3af)

Yellow oil, yield: 70% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.74$ (dd, J = 2.4, 0.8 Hz, 1H), 8.19 (dd, J = 8.7, 2.4 Hz, 1H), 7.64 – 7.55 (m, 2H), 7.46 - 7.37 (m, 3H), 6.98 (dd, J = 8.6, 0.8 Hz, 1H), 6.26 (s, 1H), 4.26 - 4.12 (m, 2H), 2.56 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 195.7, 169.8, 165.2, 149.0, 138.8, 134.7, 129.2, 128.9, 127.9, 127.8, 111.6, 76.6,

61.6, 26.5, 14.1; HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₇H₁₈NO₄⁺: 300.1230; found: 300.1248.

ethyl 2-phenyl-2-((5-(trifluoromethyl)pyridin-2-yl)oxy)acetate (3ag)

White solid, m.p.: 60-62 °C, yield: 56% ¹H NMR (400 MHz, CDCl₃): $\delta = 8.42$ (dt, J = 2.8, 1.0 Hz, 1H), 7.83 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.45 - 7.39 (m, 3H), 7.02 (d, J = 8.7 Hz, 1H), 6.23 (s, 1H), 4.26 - 4.13 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3): \delta = 169.8, 164.6, 144.8, 144.7, 136.3,$

136.2, 134.7, 129.3, 128.9, 127.8, 125.4, 121.3, 120.9, 111.7, 76.5, 61.7, 14.2; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -61.6$; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅F₃NO₃⁺: 326.0999; found: 326.0997.

ethyl 2-((5-nitropyridin-2-yl)oxy)-2-phenylacetate (3ah)

Yellow solid, m.p.: 69-71 °C, yield: 44% ¹H NMR (400 MHz, CDCl₃): δ = 9.05 (d, J = 2.8 Hz, 1H), 8.42 (dd, *J* = 9.1, 2.8 Hz, 1H), 7.59 (dd, *J* = 7.5, 2.3 Hz, 2H), 7.43 (dd, *J* = 5.0, 2.3 Hz, 3H), 7.03 (d, *J* = 9.1 Hz, 1H), 6.27 (s, 1H), 4.26 - 4.13 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.2, 165.8, 144.5,

140.3, 134.5, 134.2, 129.5, 129.0, 127.9, 111.8, 77.3, 61.9, 14.2; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₅H₁₄N₂NaO₅⁺: 325.0795; found: 325.0799.

ethyl 2-((4-cyanopyridin-2-yl)oxy)-2-phenylacetate (3ai)

¹H NMR (400 MHz, CDCl₃): δ = 8.28 (dd, *J* = 5.2, 0.9 Hz, 1H), 7.61 – 7.56 (m, 2H), 7.44 – 7.39 (m, 3H), 7.18 (t, *J* = 1.1 Hz, 1H), 7.13 (dd, *J* = 5.2, 1.3 Hz, 1H), 6.19 (s, 1H), 4.23 – 4.13 (m, 2H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.6, 162.8, 148.2, 134.5, 129.4, 128.9, 127.8, 123.0, 118.8, 116.4, 114.6, 76.6, 61.7, 14.1; HRMS (ESI): *m/z* [M+K]⁺ calcd for C₁₆H₁₄KN₂O₃⁺: 321.0636; found: 321.0650.

ethyl 2-phenyl-2-(quinolin-2-yloxy)acetate (3aj)

Yellow oil, yield: 97% ¹H NMR (400 MHz, CDCl₃): δ = 8.39 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 5.9 Hz, 1H), 7.78 – 7.69 (m, 3H), 7.66 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.55 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.47 – 7.38 (m, 3H), 7.25 (d, J = 2.6 Hz, 1H), 6.38 (s, 1H), 4.25 – 4.13 (m, 2H), 1.18 (t, J = 7.1 Hz, 3H); ¹³C NMR

(100 MHz, CDCl₃): δ = 170.3, 159.3, 139.4, 138.3, 135.5, 130.8, 129.0, 128.8, 127.8, 126.9, 126.2, 124.5, 119.6, 115.9, 76.3, 61.4, 14.2; HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉H₁₈NO₃⁺: 308.1281; found: 308.1291.

ethyl 2-(isoquinolin-1-yloxy)-2-phenylacetate (3ak)

Yellow oil, yield: 92%

¹H NMR (400 MHz, CDCl₃): $\delta = 8.05$ (d, J = 8.8 Hz, 1H), 7.81 (dd, J = 8.4, 1.1 Hz, 1H), 7.74 (dd, J = 8.1, 1.5 Hz, 1H), 7.71 – 7.66 (m, 2H), 7.62 (ddd, J = 8.4, 7.0, 1.5 Hz, 1H), 7.45 – 7.38 (m, 4H), 7.09 (d, J = 8.8 Hz, 1H), 6.39 (s, 1H), 4.29 – 4.13 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.4$, 160.8, 146.2, 139.3, 135.3, 129.7, 129.1, 128.8, 127.9, 127.6,

127.5, 125.6, 124.5, 112.9, 76.2, 61.4, 14.3; HRMS (ESI): m/z [M+H]⁺ calcd for $C_{19}H_{18}NO_3^+$: 308.1281; found: 308.1269.

ethyl 2-(3-(trifluoromethyl)phenyl)-2-((5-(trifluoromethyl)pyridin-2yl)oxy)acetate (3hg)

Yellow oil, yield: 61% ¹H NMR (400 MHz, DMSO- d_6) $\delta = 8.63 - 8.57$ (m, 1H), 8.16 (dd, J = 8.8, 2.5 Hz, 1H), 7.98 - 7.89 (m, 2H), 7.82 (d, J = 8.1 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 8.7Hz, 1H), 6.45 (s, 1H), 4.13 (td, J = 7.1, 5.5 Hz, 2H), 1.09 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 168.6$, 164.0, 144.6, 144.5, 144.5, 137.1, 137.1, 135.7, 131.7,

130.1, 129.7, 129.6, 129.4, 126.0, 126.0, 125.9, 125.3, 125.3, 124.2, 124.2, 124.1, 122.6, 120.1, 119.8, 111.7, 75.0, 61.3, 13.7; ¹⁹F NMR (376 MHz, DMSO- d_6) $\delta = -60.1$, -61.3; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₇H₁₃F₆NNaO₃⁺: 416.0692; found: 416.0699.

2-(3-(trifluoromethyl)phenyl)-2-((5-(trifluoromethyl)pyridin-2-yl)oxy)acetic acid

¹H NMR (400 MHz, DMSO- d_6) δ = 8.61 (dd, J = 2.4, 1.2 Hz, 1H), 8.14 (dd, J = 8.8, 2.6 Hz, 1H), 7.99 – 7.89 (m, 2H), 7.80 (d, J = 7.8 Hz, 1H), 7.71 (t, J = 7.8 Hz, 1H), 7.23 (d, J = 8.7 Hz, 1H), 6.38 (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ = 169.9, 164.2, 144.6, 144.6, 136.9, 136.9, 136.8, 136.4, 131.7, 129.9, 129.6, 129.3, 125.7, 125.7, 125.6, 125.3, 125.3, 124.1, 124.1, 124.1, 124.0, 122.6, 119.9, 119.6, 111.7, 75.0; ¹⁹F NMR (376 MHz, DMSO- d_6) δ = -60.1, -61.2; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₀F₆NO₃⁺: 366.0559; found: 366.0561.

5. NMR Spectra of Compounds

¹³C NMR Spectrum of Compound **3a** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3aa** (100 MHz, DMSO- d_6).

¹³C NMR Spectrum of Compound **3b** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3c** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3d** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3e** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3f** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3g** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3i** (100 MHz, CDCl₃).

¹⁹F NMR Spectrum of Compound **3j** (376 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **3k** (100 MHz, CDCl₃).

¹⁹F NMR Spectrum of Compound **3k** (376 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **3l** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3m** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3n** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **30** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3q** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3r** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3s** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3t** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3u** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3w** (100 MHz, DMSO- d_6).

¹³C NMR Spectrum of Compound **3y** (100 MHz, CDCl₃).

¹⁹F NMR Spectrum of Compound **3ab** (376 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3ac** (400 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3ac** (100 MHz, CDCl₃).

¹⁹F NMR Spectrum of Compound **3ac** (376 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **3ad** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3ae** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3af** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3ah** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3ai** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3aj** (100 MHz, CDCl₃).

¹³C NMR Spectrum of Compound **3ak** (100 MHz, CDCl₃).

¹⁹F NMR Spectrum of Compound **3hg** (376 MHz, DMSO- d_6)

¹⁹F NMR Spectrum of Compound 4 (376 MHz, DMSO- d_6)

¹H NMR Spectrum of Compound **d-3a** (400 MHz, CDCl₃).

6. Infrared Spectrum of 3a

Infrared Spectrum of Compound 3a