Highly Selective γ-Alkoxylation, γ-Amination and γ-Alkylation of Unbiased Enals by Means of Photoredox Catalysis

Camille Banoun, ${ }^{\text {a }}$ Flavien Bourdreux, ${ }^{\text {a }}$ Guillaume Dagousset*a

${ }^{a}$ Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 78035 Versailles Cedex, France

Supporting Information

Table of contents

I. General methods... 2
II. Synthesis of silyloxydienes ... 3
III. Synthesis of radical sources... 8
IV. Optimization of the reaction conditions .. 9
V. General procedures of γ-functionalization reactions ... 10

General procedure GP B: γ-alkoxylation... 10
General procedure GP C: γ-amination... 10
General procedure GP D: γ-alkylation .. 10
VI. Stern-Volmer experiments... 11
VII. Quantum yield measurement... 13
VIII. Characterization of new compounds ... 17
IX. References ... 34
X. NMR spectra of new compounds ... 35

I. General methods

Each reaction was carried out under argon in a freshly distilled solvent, unless otherwise noted. All chemicals were purchased from Sigma-Aldrich, Fluorochem, TCI or Alfa Aesar and were used without further purification. Organic solvents were purchased from Sigma-Aldrich. Visible light irradiations were performed with a Flexled INSPIRE LED lamp ($3.45 \mathrm{~W} / \mathrm{m} ; \lambda=$ 465 nm). Reactions were monitored by thin-layer chromatography on silica gel 60 F254. Unless otherwise noted, yields refer to materials purified by column chromatography. Flash chromatography was conducted on silica gel $60(40-63 \mu \mathrm{~m})$ at medium pressure (300 mbar). ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded with a Bruker AC-200 spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker AC-300 spectrometer at 75 MHz using a broadband decoupled mode with the multiplicities obtained using a DEPT sequence. Unless otherwise noted, NMR experiments were carried out in CDCl_{3}, for which chemical shifts (δ) are reported in parts per million (ppm) with reference to $\mathrm{CHCl}_{3}\left({ }^{1} \mathrm{H}: 7.26 ;{ }^{13} \mathrm{C}: 77.07\right)$ and $\mathrm{CFCl}_{3}\left({ }^{19} \mathrm{~F}: 0\right)$. Coupling constants (J) are reported in Hertz (Hz). High-resolution electrospray mass spectra in the positive ion mode were obtained with a Xevo Q-Tof WATERS spectrometer.
N-alkoxypyridinium and aminopyridinium salts were prepared following known procedures. ${ }^{1}$

II. Synthesis of silyloxydienes

General procedure A (GPA):

To a solution of the corresponding enal (1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{M})$ at room temperature, was added triethylamine (1.8 equiv) and TIPSOTf (1.2 equiv). The mixture was stirred at rt for 1 h , and was quenched with $5 \% \mathrm{NaHCO}_{3}$ solution. After extraction with EtOAc, the organic phases were dried over anhydrous MgSO_{4} and the solvents were removed in vacuo. Purification on silica gel flash chromatography (eluent: petroleum ether/EtOAc $+0.5 \%$ of $\mathrm{Et}_{3} \mathrm{~N}$) afforded the corresponding silylated dienol ether.

(Dodeca-1,3-dien-1-yloxy)triisopropylsilane 1a

Prepared according the GP A.
E/Z ratio: 43:57
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$: 6.62 major, 6.56 minor $(\mathrm{d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-5.91(\mathrm{~m}, 1 \mathrm{H})$, 5.86 major, 5.70 minor ($\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}$), 5.44 minor ($\mathrm{dt}, J=15 \mathrm{~Hz}, J=7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.19 major (dt, $J=10 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ major, 2.03 minor ($\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$), $1.28(\mathrm{~m}, 12 \mathrm{H}), 1.24$ $-1.06(\mathrm{~m}, 21 \mathrm{H}), 0.89(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l} 3$) $\boldsymbol{\delta}$: 145.2 major \& 143.4 minor, 129.4 minor \& 127.4 major, 126.0 minor \& 124.4 major, 113.5 minor \& 109.3 major, 33.1, 32.1, 29.9, 29.8, 29.7 (2C), 29.5 (2C), 29.4, 27.9, 22.9, 17.83 (6C TIPS), 14.26, 12.11 (3C TIPS).

HRMS (ASAP-TOF): Calcd for $\mathrm{C}_{21} \mathrm{H}_{43} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 339.3083$; Found: 339.3075 .

Triisopropyl-5-phenylpenta-1,3-dien-1-yl)oxy)silane (1b)

Prepared according the GP A.
E/Z ratio: 40:60
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$: $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 3 \mathrm{H}), 6.79$ major \& 6.68 minor ($\mathrm{d}, J=$ $11 \mathrm{~Hz}, 1 \mathrm{H}), 6.18$ major \& 5.82 minor $(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 6.12-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.68$ minor (dt, J $=15 \mathrm{~Hz}, J=7 \mathrm{~Hz}, 1 \mathrm{H}) \& 5.44$ major $(\mathrm{dm}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ major \& 3.47 minor $(\mathrm{d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.33-1.16(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$: 146.3 major \& 144.3 minor, 141.4 major \& 141.1 minor, 128.7, 128,5 (2C), $128,4,127.6,127.2,126,0,125,9,125,5,125.0,113.2$ minor \& 108.9 major, 39.3 minor \& 34.1 major, 17.8 (6C TIPS), 12.1 (3C TIPS).
HRMS (ASAP-TOF): Calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 317.2301$; Found: 317.2295.

Triisopropyl((6Z)-nona-1,3,6-trien-1-yl)oxy)silane (1c)

Prepared according the GP A.
E/Z ratio: 35:65
${ }^{1} \mathbf{H}$ NMR ($200 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$: 6.64 major, 6.57 minor $(\mathrm{d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 6.05-5.65$ (m, 2H), $5.49-5.09(\mathrm{~m}, 3 \mathrm{H}), 2.84(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.06(\mathrm{~m}, 21 \mathrm{H}), 0.98(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$: 145.7 (major) \& 143.8, 132.3 \& 131.9 (major), 127.4, 126.9, $126.4,125.0,124.7,113.3 \& 109.0$ (major), $30.5 \& 26.0$ (major), 20.7 (major) \& 20.6, 17.8 (6C TIPS), 14.4, 12.1 (3C TIPS).
HRMS (ASAP-TOF): Calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 295.2457$; Found: 295.2468.

7-((triisopropylsilyl)oxy)hepta-4,6-dien-1-yl acetate (1d)

Prepared according the GP A.
E/Z ratio: 48.52
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{3 0 0} \mathbf{~ M H z}\right.$, CDCl $\left._{3}\right) \boldsymbol{\delta}: 6.60 \& 6.54(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{t}, J=10$ $\mathrm{Hz}, 1 \mathrm{H}), 5.38$ minor (dt, $J=15 \mathrm{~Hz}, J=7 \mathrm{~Hz}, 1 \mathrm{H}) \& 5.12$ major $(\mathrm{dm}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, J$ $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 2.02 \& 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.18-1.04(\mathrm{~m}, 21 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 171.0,145.6$ (major) \& 143.8 (minor), 127.1 (minor) \& 127.0 (major), 125.6 (major) \& 124.9 (minor), 113.0 (minor) \& 108.8 (major), 64.0 (minor) \& 63.9 (major), 29.1 (minor) \& 28.5 (major), 23.9, 20.8, 17.6 (6C TIPS), 11.9 (3C TIPS).
HRMS (ASAP-TOF): Calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 327.2355$; Found: 327.2346.

2-(6-((triisopropylsilyl)oxy)hexa-3,5-dien-1-yl)isoindoline-1,3-dione (1e)

Prepared according the GP A.
E/Z ratio: 43:57
${ }^{1} \mathbf{H}$ NMR ($\left.200 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 7.82(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~m}, 2 \mathrm{H}), 6.56 \& 6.50(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.01-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dt}, J=15 \mathrm{~Hz}, J=7 \mathrm{~Hz}, 1 \mathrm{H}) \& 5.15(\mathrm{dm}, J$ $=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.01(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 168.3$ major \& 168.2 minor, 146.3, 144.4, 133.7 (2C), 132,1, $129.1,127.5,123,5,123,0(2 \mathrm{C}), 121.4,112.9,108.4,37.8$ minor \& 37.5 major, $31.9 \& 26.9$, 17.6 (6C TIPS), 11.9 minor \& 11.8 major (3C TIPS).

HRMS (ASAP-TOF): Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 400.2308$; Found: 400.2319.
(((Z)-cyclooct-2-en-1-ylidene)methoxy)triisopropylsilane (1f)

Prepared according the GP A.
One diastereomer.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3\right) \boldsymbol{\delta}: 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dm}, J=11 \mathrm{~Hz}$, $1 \mathrm{H}), 2.68(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 6 \mathrm{H}), 1.22-1.06(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 142.3,132.8,122.7$, 122.3, 28.4, 27.5, 26.1, 23.9, 22.9, 17.8 (6C TiPS), 12.1 (3C TiPS).
HRMS (ASAP-TOF): Calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 295.2457$; Found: 295.2450 .

Triisopropyl((2-methylpenta-1,3-dien-1-yl)oxy)silane (1g)

Prepared according the GP A.
One diastereomer.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dq}, J=15 \mathrm{~Hz}, J=$ $7 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.21-1.03(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$: 140.0, 131.1, 119.3, 117.3, 18.3, 17.7 (6C TIPS), 11.9 (3C TIPS), 9.3.
HRMS (ASAP-TOF): Calcd for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}$: 255.2144; Found: 255.2140 .
(((1R,5R)-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-ylidene)methoxy)triisopropylsilane (1h)

Prepared according the GP A.
One diastereoisomer.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=8 \mathrm{~Hz}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.17(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.06(\mathrm{~m}$, $21 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 135.0,132.6,126.5,124.0,43.7,42.6,41.3,34.1,26.4,22.8$, 17.9 (6C TIPS), 12.1 (3C TIPS).

HRMS (ASAP-TOF): Calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 307.2457$; Found: 307.2441.
triisopropyl(((1Z)-2-methylpenta-1,3-dien-1-yl)oxy)silane (1i)

Prepared according the GP A.
E/Z ratio: 40:60
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$: 6.63 major, 6.57 minor ($\mathrm{d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}$), $5.90-5.80(\mathrm{~m}, 1 \mathrm{H})$, 5.97 major, 5.71 minor ($\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}$), 5.49 minor $(\mathrm{dt}, J=15 \mathrm{~Hz}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ major (dt, $J=10 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.05(\mathrm{~m}, 21 \mathrm{H}), 0.99(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}$) $\boldsymbol{\delta}: 147.2$ major \& 145.5 minor, 130.7 minor \& 128.7 major, 125.0 minor \& 123.8 major, 113.3 minor \& 109.0 major, 25.8 minor \& 21.0 major, 17.7 (6C TIPS), 14.3 major \& 13.8 minor, 12.0 (3C TIPS).

HRMS (ASAP-TOF): Calcd for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 255.2144$; Found: 255.2138.

7-((triisopropylsilyl)oxy)hepta-4,6-dienenitrile (1j)

Prepared according the GP A.
E/Z ratio: 62:38
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$: 6.67 minor \& 6.61 major ($\mathrm{d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}$), $6.00(\mathrm{~m}, 1 \mathrm{H})$, 5.86 minor \& 5.67 major $(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ major $(\mathrm{dm}, J=15 \mathrm{~Hz}, 1 \mathrm{H}) \& 5.13$ minor (dm, $J=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.03(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l} 3$) $\boldsymbol{\delta}: 147.2$ minor \& 145.5 major, 129.6 major \& 127.9 minor, 123.2 major \& 121.1 minor, 119.5, 112.4 major \& 108.1 minor, 28.8, 23.8, 17.7 (6C TIPS), 12.0 (3C TIPS).
HRMS (ASAP-TOF): Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]^{+}: 280.2097$; Found: 280.2098 .

Triisopropyl-5-(oxiran-2-yl)penta-1,3-dien-1-yl)oxy)silane (1k)

Prepared according the GP A.
E/Z ratio: 54:46
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\boldsymbol{\delta}$: 6.66 minor \& 6.59 major ($\mathrm{d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}$), $6.06-5.96$ (m, 1 H), 6.01 minor \& 5.70 major ($\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}$), 5.41 major (dt, $J=15 \mathrm{~Hz}, J=7 \mathrm{~Hz}, 1 \mathrm{H}$) \& 5.18 minor $(\mathrm{dm}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.23(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.06$ (m, 21H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta}: 146.6$ minor \& 144.8 major, 129.3 major \& 127.5 minor, 122.1 major \& 119.6 minor, 112.9 major \& 108.7 minor, 51.8 major \& 51,7 minor, $46.8,35.8,30.7$, 17.8 (6C TIPS), 12.1 (3C TIPS).

HRMS (ASAP-TOF): Calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 283.2093$; Found: 283.2102 .

((9-bromonona-1,3-dien-1-yl)oxy)triisopropylsilane (11)

Prepared according the GP A.
E/Z ratio: 50:50
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathrm{CN}$) $\boldsymbol{\delta}: 6.70 \& 6.63(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.95 \& 5.64(\mathrm{t}, J=11 \mathrm{~Hz}$, $1 \mathrm{H}), 5.91(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{dt}, J=15 \mathrm{~Hz}, J=7 \mathrm{~Hz}, 1 \mathrm{H}) \& 5.17(\mathrm{dm}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=$ $7 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 4 \mathrm{H}), 1.23-1.02(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta: 146.6$ \& 144.7, 129.6 \& 127.4, 127.3 \& 125.6, 114.2 \& 110.0, $35.3,33.5 \& 33.5,33.3 \& 29.6,39.5 \& 28.4,28.4 \& 28.1,18.0$ (6C TIPS), 12.7 (3C TIPS).
HRMS (ASAP-TOF): Calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{BrOSi}[\mathrm{M}+\mathrm{H}]^{+}: 375.1719$; Found: 375.1722.

((2H-pyran-3(6H)-ylidene)methoxy)triisopropylsilane (1m)

Prepared according the GP A.
One diastereomer.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{dm}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dm}, J=10 \mathrm{~Hz}$, $1 \mathrm{H}), 4.46(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.05(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 137.1,123.4,122.4,115.2,65.8,63.0,17.8$ (6C TIPS), 12.0 (3C TIPS).
HRMS (ASAP-TOF): Calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 269.1937; Found: 269.1936.

Methyl 2-((tert-butoxycarbonyl)amino)-3-(4-((6-((triisopropylsilyl)oxy)hexa-3,5-dien-1yl)oxy)phenyl)propanoate (1n)

Prepared according the GP A.
E/Z ratio: 60:40
${ }^{1} \mathbf{H}$ NMR (200 MHz, CDCl $_{3}$) $\boldsymbol{\delta :} 6.99(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~m}, 1 \mathrm{H})$, $6.09-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.99$ minor $(\mathrm{m}, 1 \mathrm{H}), 5.69$ major $(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ major (dt, $J=15$ $\mathrm{Hz}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 5.20$ minor (m, 1H), $5.02(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.22-1.02(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 172.4,158.0,155.1,146.1$ minor \& 144.4 major, 130.2 (2C), 128.7, 127.9 major \& 127.0 minor, 123.6 major \& 121.2 minor, 114.6 (2C), 113.0 major \& 108.8 minor, 79.7, 67.7 major \& 67.4 minor, $54.6,52.1,37.4,32.8$ major \& 27.9 minor, 28.3 (3C), 17.7 (6C TIPS), 11.9 (3C TIPS).
HRMS (ASAP-TOF): Calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{NO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 548.3407$; Found: 548.3413.

III. Synthesis of radical sources

2a

2b

2c

2d

2e

2f

2g

5a

2h

5b

$2 i$

5c

5d

5e

Figure S1. Scope of radical sources used in this study
N-alkoxypyridinium 2a-2f and aminopyridinium salts $\mathbf{2 g}$-2h were prepared following known procedures. ${ }^{1}$ Alkyl halides $\mathbf{5 a - 5 g}$ are commercailly available.

Synthesis of 1-(1-ethoxy-1-hydroxy-3-oxoisoindolin-2-yl)-2,4,6-trimethylpyridin-1-ium tetrafluoroborate 2 i

2,4,6-Trimethylpyrylium tetrafluoroborate ($3 \mathrm{mmol}, 1$ equiv.) was suspended in $\mathrm{EtOH}(10 \mathrm{~mL}$) then N -aminophthalimide ($3 \mathrm{mmol}, 1$ equiv.) was slowly introduced. The reaction mixture was stirred at reflux overnight. $\mathrm{Et}_{2} \mathrm{O}$ was added once the reaction mixture has cooled down and was left stirring at room temperature for 30 minutes. The precipitate was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$. The product was obtained as a white solid in 89% yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): $11.21(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 6 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$, $1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): ~ 166.2,165.7,160.4,158.3,132.4,132.2,132.0,131.4$, 130.5, 127.9, 127.7, 61.9, 22.2, 19.6, 14.2.
${ }^{19}$ F NMR ($\mathbf{1 8 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): -152.18, -152.23.
HRMS (TOF MS ES+) $\left.\mathbf{C 1 8 H}_{\mathbf{1 8}} \mathbf{O}_{\mathbf{3}} \mathbf{N}_{\mathbf{2}} \mathbf{[M + H}\right]^{+}$: requires 313.1552; found 313.1545.
m. p.: $173-175{ }^{\circ} \mathrm{C}$

IV. Optimization of the reaction conditions

Table S1. Survey of reaction conditions for the photoredox-catalyzed γ-alkoxylation of silyloxydiene 1a.

Entry	Photocatalyst	Additive (1 equiv)	Solvent	Yield [\%] ${ }^{\text {a,b }}$
1	$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	MeCN	59
2	Eosin Y	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	MeCN	33
3	$f a c-\operatorname{Ir}(\mathrm{ppy}){ }_{3}$	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	MeCN	75 (71) ${ }^{\text {c }}$
4	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	MeCN	25
5	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	MeCN	41
6	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	none	MeCN	$31^{\text {d }}$
7	$f a c-\operatorname{Ir}(\mathrm{ppy}){ }_{3}$	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	Acetone	11
$8{ }^{[\mathrm{e}]}$	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	MeCN	0
9	none	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	MeCN	6

${ }^{\text {a }}$ General conditions: 1a (0.2 mmol), 2a (0.36 mmol), photocatalyst ($2 \mathrm{~mol} \%$) and additive (2 equiv) in 2 mL of solvent irradiated with 5 W blue LEDs at RT for $18 \mathrm{~h} .{ }^{\mathrm{b}}$ Yields determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4 -dicyanobenzene as an internal standard. ${ }^{\text {c }}$ Yield into brackets refers to chromatographically pure product. ${ }^{\text {d }} 40 \%$ of (E)-2-dodecenal was formed during the reaction. $\mathrm{Bpy}=2,2$-bipyridine; $\mathrm{ppy}=2$-phenylpyridine. ${ }^{\mathrm{e}}$ In the dark.

V. General procedures of $\boldsymbol{\gamma}$-functionalization reactions

General procedure GP B: $\boldsymbol{\gamma}$-alkoxylation

A test-tube was charged with substrate $\mathbf{1}(0.20 \mathrm{mmol}), N$-alkoxypyridinium salt $2(0.36 \mathrm{mmol})$, $f a c-\operatorname{Ir}(\mathrm{ppy})_{3} \mathbf{2 a}(2 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{HPO}_{4}(0.4 \mathrm{mmol})$. $\mathrm{MeCN}(2 \mathrm{~mL})$ was added and argon was bubbled into the solution during 5 min . Then the mixture was irradiated with 5 W blue LEDs strip for 18 h . After completion, the solvent was removed in vacuo, and the crude product was purified by preparative TLC to afford the desired pure γ-alkoxylated product 3 .

General procedure GP C: $\boldsymbol{\gamma}$-amination

A test-tube was charged with substrate $\mathbf{1}(0.20 \mathrm{mmol}), N$-aminopyridinium salt $\mathbf{2}(0.30 \mathrm{mmol})$, $f a c-\operatorname{Ir}(\mathrm{ppy})_{3} \mathbf{2 a}(2 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{HPO}_{4}(0.40 \mathrm{mmol})$. $\mathrm{MeCN}(3 \mathrm{~mL})$ was added and argon was bubbled into the solution during 5 min . Then the mixture was irradiated with 5 W blue LEDs strip for 18 h . After completion, the solvent was removed in vacuo, and the crude product was purified by preparative TLC to afford the desired pure γ-aminated product 4.

General procedure GP D: $\boldsymbol{\gamma}$-alkylation

A test-tube was charged with substrate $\mathbf{1}(0.20 \mathrm{mmol})$, the source of C-centered radical 5 (0.30 $\mathrm{mmol}), f a c-\mathrm{Ir}(\mathrm{ppy})_{3} \mathbf{2 a}(2 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.40 \mathrm{mmol}) . \mathrm{CDCl}_{3}(2 \mathrm{~mL})$ was added and argon was bubbled into the solution during 5 min . Then the mixture was irradiated with 5 W blue LEDs strip for 18 h . After completion, the solvent was removed in vacuo, and the crude product was purified by preparative TLC to afford the desired pure γ-alkylated product 6 .

Gram-scale experiment:

A 200 mL test-tube was charged with substrate $\mathbf{1 a}(8 \mathrm{mmol}, 2.7 \mathrm{~g})$, diethyl bromomalonate $\mathbf{5 a}$ $(4 \mathrm{mmol}, 0.96 \mathrm{~g}), f a c-\operatorname{Ir}(\mathrm{ppy})_{3} \mathbf{2 a}(0.08 \mathrm{mmol}, 52 \mathrm{mg})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8 \mathrm{mmol}, 1.11 \mathrm{~g}) . \mathrm{CHCl}_{3}$ $(40 \mathrm{~mL})$ was added and argon was bubbled into the solution during 5 min . Then the mixture was irradiated with 5 W blue LEDs strip for 18 h . After completion, the solvent was removed in vacuo, and the crude product was purified by flash chromatography (pentane/EtOAc) to afford the desired pure γ-alkylated product $\mathbf{6 a}(450 \mathrm{mg}, 53 \%$ yield).

VI. Stern-Volmer experiments

Rates of quenching (k_{q}) were determined using Stern-Volmer kinetics:

$$
\mathrm{I}_{0} / \mathrm{I}=\mathrm{k}_{\mathrm{q}} \tau_{0}[\text { quencher }]+1
$$

Where I_{0} is the luminescene intensity without the quencher, I is the intensity with the quencher, and τ_{0} is the excited state lifetime of the photocatalyst $\left(\tau_{0}=1.9 \mu \mathrm{~s}\right.$ for $\left.\operatorname{Ir}(\mathrm{ppy})_{3}\right)$.

The following stock solutions were prepared in distilled MeCN (or CHCl_{3}) and degassed by three freeze-pump-thaw cycles.

General procedure: A stock solution of $\operatorname{Ir}(\mathrm{ppy})_{3}$ was prepared by dissolving $\operatorname{Ir}(\mathrm{ppy})_{3}(25 \mu \mathrm{~mol})$ in 10 mL of MeCN (or CHCl_{3}). Of this solution, 0.1 mL were further diluted with MeCN (or CHCl_{3}) to give a total voume of 10 mL . Concentration of $[\mathbf{I r}]=2.5 \times 10^{-5} \mathrm{M}$. A stock solution of 2 (or 5) was prepared by dissolving 2 (or 5) ($30 \mu \mathrm{~mol}$) in 10 mL of MeCN (or CHCl_{3}). Concentration of [2] or $[\mathbf{5}]=3 \times 10^{-3} \mathrm{M}$. A stock solution of $\mathbf{1 a}$ was prepared by dissolving 1a $(30 \mu \mathrm{~mol})$ in 10 mL of MeCN (or CHCl_{3}). Concentration of $[\mathbf{1 a}]=3 \times 10^{-3} \mathrm{M}$. For each experiment, 6 samples were prepared in the dark. Quartz cuvettes (3.5 mL) were filled with photocatalyst stock solution (0.3 mL), reagent stock solution ($0 \mathrm{~mL}, 0.2 \mathrm{~mL}, 0.4 \mathrm{~mL}, 0.6 \mathrm{~mL}$, $0.8 \mathrm{~mL}, 1.0 \mathrm{~mL}$) and $\mathrm{MeCN}\left(\right.$ or $\left.\mathrm{CHCl}_{3}\right)(2.7 \mathrm{~mL}, 2.5 \mathrm{~mL}, 2.3 \mathrm{~mL}, 2.1 \mathrm{~mL}, 1.9 \mathrm{~mL}, 1.7 \mathrm{~mL}$) to obtain a total volume of 3 mL . The final concentrations were [$\mathbf{I r}]=2.510^{-6} \mathrm{M}$ and [quencher] $=2 \times 10^{-4} \mathrm{M}, 4 \times 10^{-4} \mathrm{M}, 6 \times 10^{-4} \mathrm{M}, 8 \times 10^{-4} \mathrm{M}, 1 \times 10^{-3} \mathrm{M}$. For each sample, emission spectra were acquired between 470 nm and 650 nm (excitation at 450 nm).

Figure S2. Stern-Volmer experiments in MeCN
For N-methoxypyridinium salt $\mathbf{2 a}, \mathrm{k}_{\mathrm{q}}=2.510^{8} \mathrm{M}^{-1} . \mathrm{s}^{-1}$ in MeCN .
For silyl dienol ether 1a, $\mathrm{k}_{\mathrm{q}}=8.410^{7} \mathrm{M}^{-1} . \mathrm{s}^{-1}$ in MeCN

Figure S3. Stern-Volmer experiments in CHCl_{3}.
For N-aminopyridinium salt $\mathbf{2 h}, \mathrm{k}_{\mathrm{q}}=2.110^{8} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}$ in CHCl_{3}.
For diethyl bromomalonate $5 \mathrm{a}, \mathrm{k}_{\mathrm{q}}=1.10^{8} \mathrm{M}^{-1} . \mathrm{s}^{-1}$ in CHCl_{3}.
For silyl dienol ether $\mathbf{1 a}, \mathrm{k}_{\mathrm{q}}=6.110^{7} \mathrm{M}^{-1} . \mathrm{s}^{-1}$ in CHCl_{3}.

VII. Quantum yield measurement

The photon flux was determined by standard ferrioxalate actinometry. ${ }^{2}$

Solutions needed:

0.05 M sulfuric acid stock solution:

In a 100 mL volumetric flask, 0.281 mL of concentrated sulfuric acid (17.8 M) was added to 90 mL deionized water. Then, water was added until the 100 mL graduation mark was reached.

Ferrioxolate solution:

A 0.15 M solution of potassium ferrioxolate was prepared in a 25 mL volumetric flask by dissolving potassium ferrioxolate $\left(\mathrm{K}_{3} \mathrm{FeC}_{2} \mathrm{O}_{4} * 3 \mathrm{H}_{2} \mathrm{O}\right)(1.842 \mathrm{~g}, 3.75 \mathrm{mmol})$ with the 0.05 M sulfuric acid solution. The solution was prepared and stored in the dark.

Developer solution:

22.5 g of sodium acetate trihydrate was dissolved in 100 mL of 0.5 M sulfuric acid. 1 g of $1,10-$ phenantroline was added to this solution. Store the solution in the dark.

Typical Experiment carried out under dark:

$200 \mu \mathrm{~L}$ of 0.15 M aqueous potassium ferrioxalate was transferred to a 5 mm thin wall NMR tube followed by the placement of the coaxial insert. Then the sample was irradiated with 445 nm LED (Prizmatix FC5-LED) at room temperature. The procedure was repeated with different irradiations times for different samples.
$100 \mu \mathrm{~L}$ aliquots of the solution were taken from each solution and added immediately to 3 mL of a developer solution of sodium acetate and 1,10 -phenanthroline and the flask was quickly wrapped in aluminum foil. Concurrently,

Figure S4 Prizmatix FC5-LED a "blank" sample was prepared by diluting $100 \mu \mathrm{~L}$ of the stock solution (kept in the dark) into 3 mL of developer solution. The solutions were left in the dark for $30 \mathrm{~min}-1 \mathrm{hr}$, becoming bright red. The solutions were transferred to a cuvette and the absorbance spectrum of the $\mathrm{Fe}(\text { phen })_{3}{ }^{2+}$ complex was obtained. The absorbance at $510 \mathrm{~nm}(\varepsilon=$ $11,100 \mathrm{M}^{-1} . \mathrm{cm}^{-1}$) was measured for every sample.

Data analysis:

To calculate photon flux from your chemical actinometry data, first determine the number of Fe^{2+} ions produced by ferrioxolate photo-degradation:

$$
\text { moles } \mathrm{Fe}^{2+}=\frac{\Delta A_{510 \mathrm{~nm}} V_{1} V_{3}}{\varepsilon_{510 \mathrm{~nm}} l V_{2}}
$$

$\Delta A=$ difference in absorbance at 510 nm between sample and 'blank'
$1=$ path length of cuvette $(0,2 \mathrm{~cm})$
$\varepsilon=$ Extinction coefficient of $\mathrm{Fe}(\text { phen })_{3}$ complex at $510 \mathrm{~nm}\left(\varepsilon=11,100 \mathrm{M}^{-1} . \mathrm{cm}^{-1}\right)$
$\mathrm{V}_{1}=$ total volume of irradiated solution ($200 \mu \mathrm{~L}$)
$\mathrm{V}_{2}=$ volume of aliquot taken from $\mathrm{V}_{1}(100 \mu \mathrm{~L})$
$\mathrm{V}_{3}=$ the volume that V_{2} is diluted into $(3 \mathrm{~mL})$

The photon flux can be determined:

$$
\text { photon flux }=\frac{\text { moles of } \mathrm{Fe}^{2+}}{\Phi_{\text {usfim }} \times t \times F}
$$

with:
$\mathrm{F}_{450 \mathrm{~nm}}=1.01$ (reported literature value) 3
$\mathrm{t}=$ time of irradiation (seconds)
$\mathrm{F}=$ mean fraction of light absorbed by the ferrioxalate solution $(\mathrm{F} \approx 1$ at 450 nm at 0.15 M ferrioxolate).

The linear dependence of Fe^{2+} accumulation on LED irradiation time at 445 nm is plotted:

Figure S5: linear dependence of Fe^{2+} accumulation on LED irradiation time at 445 nm

From the slope of the linear regression line, we finally find the photon flux:

$$
\text { Photon flux }=3.37 .10^{-8} \text { mol. } \mathrm{s}^{-1}
$$

Quantum yield measurement

$$
\Phi=(\text { rate of substrate conversion }) /(\text { absorbed photon flux })
$$

The rate of substrate conversion was measured by analyzing the reaction mixture as a function of time thanks to in situ NMR irradiation.

General procedure: A solution of bromomalonate 5a or N-alkoxypyridinium 2a (0.15 mmol), silyloxydiene 1a $(0.1 \mathrm{mmol})$, 2,6-lutidine $(0.2 \mathrm{mmol})$ and the photocatalyst $f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$ (2 $\mathrm{mol} \%)$ in $\mathrm{CDCl}_{3}(1 \mathrm{~mL})$ was prepared and 0.2 mL of this solution was introduced in an NMR tube and the mixture was degassed with argon.
Excitation was performed at 445 nm and substrate conversion was periodically determined (after 300 seconds) by comparison of the integration of ${ }^{1} \mathrm{H}$ NMR silylated dienol ether 1a peak and nitrobenzene peak, used as internal standard (Brucker AC-300).

The substrate conversions (as well as the product 6a formation) were then plotted against time (see Figure S6):

Figure S6: Quantity of starting material or product $\mathbf{6 a} / \mathbf{3} \boldsymbol{a}$ versus time. The plots are fitted to a 6 th order polynomial

The derivatives of the polynomials of Figure S5 are used to calculate the rate of substrate conversion.

Then the absorbed photon flux has to be calculated. Note that in the case of NMR experiments with an optical fiber, the path length of irradiated solution is very small $(0.06 \mathrm{~cm})$ and the fraction (f) of light absorbed by this solution has to be first calculated using the equation below, where A is the measured absorbance at 445 nm .

$$
f=1-10^{-\mathrm{A}}
$$

with $\mathrm{A}=\varepsilon_{445 \mathrm{~nm} .1 .[\mathrm{Ir}]}$
The molar absorptivities $\varepsilon_{445 \mathrm{~nm}}$ of $\operatorname{Ir}(\mathrm{ppy})_{3}$ in MeCN and in CHCl_{3} were measured to be 2753 $\mathrm{M}^{-1} . \mathrm{cm}^{-1}$ and $5634 \mathrm{M}^{-1} . \mathrm{cm}^{-1}$ respectively thanks to the absorbance spectra of solutions of $\operatorname{Ir}(\mathrm{ppy})_{3}$ in MeCN and in CHCl_{3} at a known concentration (see Figure S7).

Figure S7: Absorbance of a solution of $\operatorname{Ir}(\text { ppy })_{3}$ in CHCl_{3} and in $\mathrm{ACN}\left(5.10^{-5} \mathrm{M}\right)$

With this value of $\varepsilon_{445 \mathrm{~nm}}$, and the value of the concentration of $\operatorname{Ir}(\mathrm{ppy})_{3}$ photocatalyst for the irradiated sample $\left(2.10^{-3} \mathrm{M}\right)$, the fraction f of light absorbed were calculated:

$$
f_{\mathrm{MeCN}}=0.51
$$

$$
\mathrm{f}_{\mathrm{CHCl} 3}=0.79
$$

Then, absorbed photon flux in $\mathrm{MeCN}=$ photon flux $\cdot \mathrm{f}_{\mathrm{MeCN}}=\mathbf{1 . 7 2 . 1 0 ^ { - 8 }} \mathbf{m o l}^{\mathbf{s}} \mathbf{s}^{\mathbf{- 1}}$
And absorbed photon flux in $\mathrm{CHCl}_{3}=$ photon flux $\cdot \mathrm{f}_{\mathrm{CHCl} 3}=\mathbf{2 . 6 6 . 1 0} \mathbf{- 8}^{\mathbf{- 8}} \mathbf{~ m o l . s}{ }^{-1}$
Finally, the quantum yields of the reactions can be calculated. The initial values are

$\Phi_{N \text {-alkoxypyridinium 2a }}=0.45$

$\Phi_{\text {Bromomalonate 5a }}=0.14$
VIII. Characterization of new compounds

(()-4-Methoxydodec-2-enal 3a

Synthesized according to GP B. $\mathrm{m}=30.0 \mathrm{mg}, 71 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.59(\mathrm{~d}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, 15.9$ and $6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.24(\mathrm{dd}, 15.9$ and $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{q}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.21$ (m, 12H), 0.88 (t, $6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): 193.4, 157.1, 132.4, 80.6, 57.3, 34.7, 31.9, 29.5, 29.5, 29.2, 25.1, 22.7, 14.1.

EI-HRMS (positive ion) $\left.\mathbf{C}_{\mathbf{1 3}} \mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}} \mathbf{[M + H}\right]^{+}$: requires 213.1855; found 213.1845.

(E)-4-Methoxy-5-phenylpent-2-enal 3b

Synthesized according to GP B. $\mathrm{m}=27 \mathrm{mg}, 71 \%$ yield, colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 9.59 (d, $\left.7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37-7.22$ (m, 5H), 6.71 (dd, 15.9 and $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, 15.9$ and $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, 6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{dd}$, 13.8 and $6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87 (dd, 13.8 and $6.4 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 193.3, 156.0, 136.9, 132.7, 129.4, 128.5, 126.8, 81.5, 57.6, 41.3.

EI-HRMS (positive ion) $\mathbf{C}_{\mathbf{1 2}} \mathbf{H}_{\mathbf{1 5}} \mathbf{O}_{\mathbf{2}} \mathbf{[M + \mathbf { H }] ^ { + } \text { : requires 191.1072; found 191.1076. }}$
(2E,6Z)-4-Methoxynona-2,6-dienal 3c

Synthesized according to GP B. $\mathrm{m}=25 \mathrm{mg}, 74 \%$ yield, colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): $9.58(\mathrm{~d}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (dd, 15.6 and $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $6.26(\mathrm{dd}, 15.6$ and $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.27(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{q}, 6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.35(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, 7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 193.4, 156.5, 135.0, 132.6, 122.6, 80.3, 57.4, 32.3, 20.8, 14.1.

EI-HRMS (positive ion) $\mathbf{C 1 0 H}_{17} \mathbf{O}_{\mathbf{2}}[\mathbf{M + H}]^{+}$: requires 169.2435; found 169.2432.

(E)-4-Methoxy-7-oxohept-5-en-1-yl acetate 3d

Synthesized according to GP B. $\mathrm{m}=28 \mathrm{mg}, 70 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 9.59(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ (dd, 15.9 and $\left.5.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.25(\mathrm{dd}, 15.9$ and $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, 6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{q}, 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 1.76-$ 1.62 (m, 4H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l} 3$) $\boldsymbol{\delta}$ (ppm): 193.3, 171.2, 156.3, 132.7, 79.9, 64.0, 57.1, 31.1, 24.4, 21.0.

EI-HRMS (positive ion) $\mathbf{C 9 H}_{\mathbf{9}} \mathbf{O H}_{\mathbf{3}}$ [M+H-MeOH] ${ }^{+}$: requires 169.0865; found 169.0861.
(E)-6-(1,3-Dioxoisoindolin-2-yl)-4-methoxyhex-2-enal 3e

Synthesized according to GP B. $\mathrm{m}=41 \mathrm{mg}, 75 \%$ yield, white gum.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\left.\boldsymbol{\delta} \mathbf{(p p m}\right): 9.56(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.68(\mathrm{~m}$, 2H), 6.68 (dd, 15.9 and $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, 15.9$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{q}, 6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-$ 3.78 (m, 2H), 3.32 (s, 3H), 1.97 (q, $6.7 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): 193.2, 168.4, 155.5, 134.1, 132.7, 132.1, 123.3, 78.2, 57.5, 34.4, 33.3.

EI-HRMS (positive ion) $\mathbf{C}_{15} \mathbf{H}_{\mathbf{1 6}} \mathbf{N O}_{\mathbf{4}}[\mathbf{M + H}]^{+}$: requires 274.1079; found 274.1080.

3-Methoxycyclooct-1-ene-1-carbaldehyde $3 f$

Synthesized according to GP B. $\mathrm{m}=20 \mathrm{mg}, 60 \%$ yield, colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.45(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~d}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.23(\mathrm{~m}, 1 \mathrm{H})$, $3.37(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.17-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.36(\mathrm{~m}, 7 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ (ppm): 189.7, 152.3, 140.0, 75.4, 53.5, 31.8, 24.9, 22.4, 19.8, 19.0.

EI-HRMS (positive ion) $\mathbf{C 1 0 H}_{17} \mathbf{O}_{\mathbf{2}}[\mathbf{M + H}]^{+}$: requires 169.1223; found 169.1225 .

3-Methoxy-4-(prop-1-en-2-yl)cyclohex-1-ene-1-carbaldehyde 3g

Synthesized according to GP B. $\mathrm{m}=15 \mathrm{mg}, 42 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.52(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H})$, 4.06-4.02 (m, 1H), 3.45 (s, 3H), 2.40-2.27 (m, 2 H$), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.79$ $(\mathrm{s}, 3 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 193.8,148.1,146.1,142.3,111.8,78.3,56.8,46.9,26.2$, 21.6, 20.3.

EI-HRMS (positive ion) $\mathbf{C 1 1 H}_{\mathbf{1 7}} \mathbf{O}_{\mathbf{2}}[\mathbf{M + H}]^{+}$: requires 181.1229; found 181.1224.

(E)-4-(2-Phenoxyethoxy)dodec-2-enal 3h

Synthesized according to GP B. $\mathrm{m}=34 \mathrm{mg}, 71 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 9.54(\mathrm{~d}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, 7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 6.63$ (dd, 15.9 and $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ (dd, 15.9 and $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.89(\mathrm{q}, 6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.94(\mathrm{~m}$, 2H), 1.60-1.47 (m, 2H), 1.33-1.19 (m, 12H), $0.88(t, 6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 193.5,158.7,157.3,132.2,129.5,121.0,114.6,79.6$, 68.2, 67.4, 34.8, 31.9, 29.5, 29.5, 29.3, 25.2, 22.7, 14.2.

EI-HRMS (positive ion) $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{3 1}} \mathbf{O}_{\mathbf{3}}[\mathbf{M +} \mathbf{H}]^{+}$: requires 319.2273; found 319.2288 .
(E)-4-(3-((ג1-oxidanyl)(oxo)(phenyl)-15-sulfanyl)propoxy)dodec-2-enal 3i

Synthesized according to GP B. $\mathrm{m}=36.5 \mathrm{mg}, 48 \%$ yield, white solid.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}(\mathbf{p p m}): 9.54(\mathrm{~d}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, 7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 6.63$ (dd, 15.9 and $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ (dd, 15.9 and $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.89(\mathrm{q}, 6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.94(\mathrm{~m}$, $2 \mathrm{H})$, 1.60-1.47 (m, 2H), 1.33-1.19 (m, 12H), $0.88(\mathrm{t}, 6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 193.3, $156.9,139.1,133.8,132.2,129.4,128.1,79.2$, 67.0, 53.4, 34.6, 31.9, 29.5, 29.5, 29.3, 25.1, 23.5, 22.7, 14.2.

EI-HRMS (positive ion) $\mathbf{C}_{\mathbf{2 1}} \mathbf{H}_{\mathbf{3 3}} \mathbf{S O}_{\mathbf{4}}[\mathbf{M + H}]^{+}$: requires 381.2100; found 381.2101.
m.p. $\left({ }^{\circ} \mathbf{C}\right)$ 102-104
(E)-4-(3-Chloropropoxy)dodec-2-enal 3j

Synthesized according to GP B. m $=32 \mathrm{mg}, 58 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): $9.58(\mathrm{~d}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, 15.9$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.24 (dd, 15.9 and $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (q, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, 6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.63-3.57(\mathrm{~m}, 1 \mathrm{H})$, 3.53-3.46 (m, 1H), 2.06-1.99 (m, 2H), 1.65-1.55 (m, 2H), 1.37-1.19 (m, 12H), 0.88 (t, 6.5 Hz , 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 193.4, 157.4, 132.1, 79.2, 65.8, 41.8, 34.7, 32.9, 31.9, 29.5, 29.5, 29.2, 25.1, 22.7, 14.1.

EI-HRMS (positive ion) $\mathbf{C}_{\mathbf{1 5}} \mathbf{H}_{\mathbf{2 8}} \mathbf{C l O}_{\mathbf{2}}[\mathbf{M + H}]^{+}$: requires 275.1778; found 275.1781.

(E)-3-((1-Oxododec-2-en-4-yl)oxy)propyl benzoate 3k

Synthesized according to GP B. $\mathrm{m}=21 \mathrm{mg}, 45 \%$ yield, colourless oil.
$\left.{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} \mathbf{(p p m}\right): 9.54(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, 7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{dd}, 15.9$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, 15.9$ and $7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.44(\mathrm{t}, 6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{q}, 6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.5$ (quint, 6.1 $\mathrm{Hz}, 2 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{t}, 6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ (ppm): 193.4, 166.5, 157.4, 133.0, 132.2, 130.3, 129.6, 128.4, 79.2, 66.0, 62.0, 34.8, 31.9, 29.5, 29.5, 29.3, 29.3, 25.1, 22.7, 14.1.

EI-HRMS (positive ion) $\mathbf{C}_{22} \mathbf{H}_{32} \mathbf{N a O}_{4}[\mathbf{M + N a}]^{+}$: requires 383.2198; found 383.2190.

(E)-4-((1,3-Difluoropropan-2-yl)oxy)dodec-2-enal 31

Synthesized according to GP B. $\mathrm{m}=36 \mathrm{mg}, 65 \%$ yield, colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.59(\mathrm{~d}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, 15.9$ and $6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.26(\mathrm{dd}, 15.9$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.52(\mathrm{~m}, 2 \mathrm{H}), 4.45-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{q}, 6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.82 (tquint, 17.4 and $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.22(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{t}, 6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): $193.2,156.3,132.4,81.9(\mathrm{~d}, 172.9 \mathrm{~Hz}), 81.8$ (d, 172.9 $\mathrm{Hz}), 79.0,75.4(\mathrm{t}, 19.8 \mathrm{~Hz}), 35.1,31.8,29.5,29.5,29.2,25.1,22.7,14.1$.
${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{1 8 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): -230.65 (td, 47.4 and $17.4 \mathrm{~Hz}, 1 \mathrm{~F}$), -231.00 (td, 47.4 and $17.4 \mathrm{~Hz}, 1 \mathrm{~F})$.
EI-HRMS (positive ion) $\mathbf{C}_{15} \mathbf{H}_{\mathbf{2 7}} \mathbf{O}_{\mathbf{2}} \mathbf{F}_{\mathbf{2}}[\mathbf{M + H}]^{+}$: requires 277.1979; found 277.1967.

(\boldsymbol{E})-4-Methyl- N-(1-oxododec-2-en-4-yl)benzenesulfonamide 4a

Synthesized according to GP C. $\mathrm{m}=38 \mathrm{mg}, 54 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}(\mathbf{p p m}): 9.36(\mathrm{~d}, 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, 8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, 8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.49(\mathrm{dd}, 15.6$ and $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dd}, 15.6$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, 7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.98 (quint, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.41(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{q}, 6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.29-1.12(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{t}, 6.8 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathbf{C}$ NMR (75 MHz, CDCl3) $\boldsymbol{\delta}$ (ppm): 192.9, 155.6, 144.0, 137.4, 132.1, 129.8, 127.2, 54.8, 34.8, 31.8, 29.3, 29.2, 29.1, 25.2, 22.7, 21.6, 14.1.

EI-HRMS (negative ion) $\mathbf{C}_{19} \mathbf{H}_{28} \mathbf{N S O}_{3}$ [M-H]: requires 350.1790; found 350.1788.
(E)-4-((4-Methylphenyl)sulfonamido)-7-oxohept-5-en-1-yl acetate 4b

Synthesized according to GP C. $\mathrm{m}=30 \mathrm{mg}, 44 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}(\mathbf{p p m}): 9.36(\mathrm{~d}, 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, 7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, 7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.45(\mathrm{dd}, 15.6$ and $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (dd, 15.6 and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, 8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.11-3.96 (m, 3H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 192.6,171.1,154.4,141.1,137.3,132.3,129.9,127.2$, 63.4, 54.5, 31.4, 24.7, 21.6, 20.9.

EI-HRMS (positive ion) $\mathbf{C 1 6 H}_{\mathbf{2 0}} \mathbf{N S O}_{4}\left[\mathbf{M}+\mathbf{H}-\mathbf{H}_{\mathbf{2}} \mathrm{O}\right]^{+}$: requires 322.1113; found 322.1113.

(\boldsymbol{E})-4-Methyl- N-(4-methyl-5-oxopent-3-en-2-yl)benzenesulfonamide 4c

Synthesized according to GP C. $\mathrm{m}=23 \mathrm{mg}, 43 \%$ yield, colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): $9.14(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, 7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, 7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.01(\mathrm{~d}, 9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, 6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ (sext, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{~d}, 6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 194.4,152.3,144.0,138.5,137.4,129.7,127.3,47.8$, 21.6, 20.9, 9.2.

EI-HRMS (positive ion) $\mathbf{C 1 3}_{\mathbf{1 3}} \mathbf{H}_{\mathbf{1 8}} \mathbf{N S O}_{\mathbf{3}}[\mathbf{M + H}]^{+}$: requires 268.1007; found 268.0997.
N-(4-Formyl-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-yl)-4-methylbenzenesulfonamide 4d

Synthesized according to GP C. $\mathrm{m}=38 \mathrm{mg}, 60 \%$ yield, $\mathrm{dr}=4.5: 1$, colourless oil.
Major diastereomer:
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\left.\boldsymbol{\delta} \mathbf{(p p m}\right): 9.40(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, 7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, 7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.31(\mathrm{~d}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, 9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dt}, 9.0$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{t}, 5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, 9.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.72(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 191.1,151.4,144.0,143.5,137.5,129.7,127.1,56.2$, 47.2, 44.4, 38.0, 35.1, 25.8, 22.7, 20.5.

Minor diastereomer:

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): $9.43(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, 7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, 7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.40(\mathrm{~d}, 1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, 9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (dt, 8.7 and $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{t}, 5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.55-2.48 (m, 1H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, 9.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 191.1,152.1,143.9,142.8,137.9,130.0,127.0,53.8$, 46.2, 44.4, 38.1, 28.5, 25.8, 21.6, 20.5.

EI-HRMS (positive ion) $\mathbf{C 1 7 H}_{\mathbf{1} 2} \mathbf{N S O}_{3}[\mathbf{M + H}]^{+}$: requires 320.1320; found 320.1320.

(E)-Tert-butyl methyl(1-oxododec-2-en-4-yl)carbamate 4e

Synthesized according to GP C. $\mathrm{m}=10 \mathrm{mg}, 41 \%$ NMR yield, 21% isolated yield, light yellow oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\left.\boldsymbol{\delta} \mathbf{(p p m}\right): 9.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=15.8,4.0 \mathrm{~Hz}$, 1 H), 6.09 (dd, $J=15.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.03-4.64(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.46$ ($\mathrm{s}, 9 \mathrm{H}$), 1.38-1.15 (m, 12H), $0.87(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}):$ (some signals are missing due to signal broadening) 193.6, 156.5, 132.1, 80.2, 31.9, 29.5, 29.2, 29.2, 28.4, 26.0, 22.7, 14.1.

EI-HRMS (positive ion) $\mathbf{C}_{\mathbf{1 8}} \mathbf{H 3}_{\mathbf{3}} \mathbf{N O}_{\mathbf{3}} \mathbf{N a}$ [M+Na] ${ }^{+}$: requires 334.2350, found 334.2358.
(E)-4-(1-Ethoxy-1-hydroxy-3-oxoisoindolin-2-yl)dodec-2-enal 4f

Synthesized according to GP C. $\mathrm{m}=16 \mathrm{mg}, 42 \%$ NMR yield, 29% isolated yield, light yellow oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-$ $7.45(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{dd}, J=15.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=15.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.98-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.19(\mathrm{~m}, 15 \mathrm{H})$, $0.89(\mathrm{t}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 193.4, 168.9, 166.6, 156.8, 137.7, 131.9, 131.5, 130.2, $129.9,129.6,127.8,61.7,50.8,34.1,31.8,29.4,29.4,29.2,25.8,22.7,14.2,14.1$.

Ethyl $\quad($ E $)$-3-(5-((tert-butoxycarbonyl)(methyl)amino)-5,6-dihydro-2H-pyran-3-
yl)acrylate 4g,

Synthesized according to GP C. At the end of the reaction, carbethoxymethylene)triphenylphosphorane (5 equiv.) was added and the mixture was stirred at room temperature overnight. 45% NMR yield of the aldehyde, 17% isolated overall yield as the ester ($\mathrm{m}=8 \mathrm{mg}$), light yellow oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 7.22(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~d}$, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.11(\mathrm{~m}, 4 \mathrm{H}), 3.90-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 1.46$ ($\mathrm{s}, 9 \mathrm{H}$), $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): (some signals are missing due to signal broadening) $166.6,142.1,137.6,132.9,117.6,80.1,68.2,67.3,64.5,60.6,50.2,48.6,30.9,28.4,17.7,14.3$.

EI-HRMS (positive ion) $\mathbf{C}_{16} \mathbf{H}_{\mathbf{2 6}} \mathbf{N O} \mathbf{O}_{\mathbf{5}}[\mathbf{M + H}]^{+}$: requires 312.1811; found 312.1811.

Diethyl (\boldsymbol{E})-2-(1-oxododec-2-en-4-yl)malonate 6a

Synthesized according to GP D. $\mathrm{m}=51 \mathrm{mg}, 75 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 9.51 (d, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.80 (dd, 15.6 and $9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.12 (dd, 15.6 and $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.11-2.99 (m, 1H), 1.59-1.43 (m, 2H), 1.30-1.19 (m, 18H), $0.86(t, 6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ (ppm): 193.7, 167.8, 167.6, 157.2, 134.4, 61.8, 61.6, 55.8, 42.5, $31.9,31.8,29.4,29.3,29.2,27.1,22.7,14.1$.

EI-HRMS (positive ion) $\mathbf{C}_{\mathbf{2 9}} \mathbf{H}_{\mathbf{3 3}} \mathbf{O}_{\mathbf{5}}[\mathbf{M + H}]^{+}$: requires 341.2328; found 341.2323.

Diethyl (E)-2-(6-oxohex-4-en-3-yl)malonate 6b

Synthesized according to GP D. $\mathrm{m}=35 \mathrm{mg}, 68 \%$ yield, colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): $9.51(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, 15.6$ and $9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.13(\mathrm{dd}, 15.6$ and $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.03-2.93 (m, 1H), 1.70-1.61 (m, 1H), 1.55-1.45 (m, 1H), $1.26(\mathrm{t}, 7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, 7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.91$ (t, $7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): $193.6,167.8,167.6,156.8,134.5,61.8,61.6,55.5,44.0$, 25.0, 14.1, 11.6.

EI-HRMS (positive ion) $\mathbf{C}_{13} \mathbf{H}_{\mathbf{2 0}} \mathbf{O}_{5} \mathbf{N a}[\mathbf{M + N a}]^{+}$: requires 279.1208; found 279.1201.

Diethyl (E)-2-(5-oxo-1-phenylpent-3-en-2-yl)malonate 6c

Synthesized according to GP D. $\mathrm{m}=53 \mathrm{mg}, 84 \%$ yield, colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.44(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, 7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.88$ (dd, 15.9 and $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.97 (dd, 15.9 and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, 7.2 \mathrm{~Hz}, 4 \mathrm{H})$, 3.52 (d, $6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.36 (quint, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (dd, 13.6 and $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (dd, 13.6 and $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, 7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): ~ 193.5,167.8,167.6,156.1,137.7,134.2,129.2,128.7$, 126.9, 61.9, 61.7, 54.6, 44.0, 38.1, 14.1.

EI-HRMS (positive ion) $\mathbf{C 1 8 H}_{18} \mathbf{H}_{\mathbf{3}} \mathrm{O}_{5}[\mathbf{M + H}]^{+}$: requires 319.1545; found 319.1551.

Diethyl (\boldsymbol{E})-2-(7-acetoxy-1-oxohept-2-en-4-yl)malonate 6d

Synthesized according to GP D. $\mathrm{m}=54 \mathrm{mg}, 82 \%$ yield, colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): $9.51(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, 15.9 and $9.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.13(\mathrm{dd}, 15.9$ and $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{t}, 5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.48(\mathrm{~d}, 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{t}, 6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.23(\mathrm{t}, 6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 193.4, 171.0, 167.5, 167.4, 156.0, 134.7, 63.7, 61.9, 61.7, 55.7, 42.1, 28.3, 26.3, 20.9, 14.1.

EI-HRMS (positive ion) $\mathbf{C}_{16} \mathbf{H}_{24} \mathbf{O}_{7} \mathbf{N a}[\mathbf{M + N a}]^{+}$: requires 351.1420; found 351.1425 .

Diethyl (E)-2-(1-(1,3-dioxoisoindolin-2-yl)-6-oxohex-4-en-3-yl)malonate 6e

Synthesized according to GP D. $\mathrm{m}=41 \mathrm{mg}, 51 \%$ yield, white solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): ~ 9.51(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.72(\mathrm{~m}$, 2H), 6.88 (dd, 15.9 and $9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.27 (dd, 15.9 and $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.22 (q, 7.2 Hz, 2H), 4.19 (q, $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.73 (t, $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.59 (d, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.21-3.11 (m, 1H), 2.10-1.93 (m, 2H), 1.27 (t, $7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.26 (t, $7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 193.3, 168.2, 167.3, 167.3, 155.1, 134.9, 134.1, 132.0, 123.4, 62.0, 61.8, 55.5, 40.0, 35.7, 30.6, 14.1.

EI-HRMS (positive ion) $\mathbf{C}_{21} \mathbf{H}_{24} \mathbf{N O}_{7}[\mathbf{M + H}]^{+}$: requires 402.1553; found 402.1547 .
m.p. $\left({ }^{\circ} \mathbf{C}\right)$ 72-74

Diethyl (E)-2-(1-cyano-6-oxohex-4-en-3-yl)malonate 6 f

Synthesized according to GP D. $\mathrm{m}=24 \mathrm{mg}, 43 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.55(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, 15.9$ and $9.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.22 (dd, 15.9 and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (q, $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~d}, 6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.23-3.12 (m, 1H), 2.46-2.24 (m, 2H), 2.11-2.00 (m, 1H), 1.95-1.83 (m, 1H), 1.28 (t, 7.2 Hz, 3 H), 1.26 (t, $7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ (ppm): 192.8, 167.1, 153.1, 135.7, 118.3, 62.2, 62.1, 55.3, 41.4, 27.4, 15.4, 14.1.

EI-HRMS (positive ion) $\mathbf{C 1 4 H}_{14} \mathbf{H}_{\mathbf{1 9}} \mathbf{O} \mathbf{5} \mathbf{N a}$ [M+Na] ${ }^{+}$: requires 304.1161; found 304.1158 .

Diethyl 2-(2E,6Z)-1-oxonona-2,6-dien-4-yl)malonate 6g

Synthesized according to GP D. $\mathrm{m}=48 \mathrm{mg}, 81 \%$ yield, colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 9.48 (d, $\left.7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.86$ (dd, 15.6 and $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.10(\mathrm{dd}, 15.6$ and $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.28-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.17(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~d}, 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.99$ (quint, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, 6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, 6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, 7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 193.6,167.9,167.6,156.6,135.3,134.1,124.0,61.8$, 61.6, 54.8, 42.5, 29.5, 20.7, 14.1.

EI-HRMS (positive ion) $\mathbf{C}_{16} \mathbf{H}_{25} \mathbf{O} \mathbf{O} \mathbf{N a}[\mathbf{M + N a}]^{+}$: requires 319.1521; found 319.1509.

Diethyl 2-((E)-1-(oxiran-2-yl)-5-oxopent-3-en-2-yl)malonate 6h

Synthesized according to GP D. $\mathrm{m}=45 \mathrm{mg}, 80 \%$ yield, $\mathrm{dr}=1.1: 1$, colourless oil.

Major diastereomer:

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.53(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, 15.9$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.20(\mathrm{dd}, 15.9$ and $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~d}, 7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.38-3.25 (m, 1H), 2.94-2.87(m, 1H), 2.79-2.72 (m, 1H), 2.49-2.42(m, 1H), 1.98-1.88 (m, 1H), 1.76-1.64 (m, 1H), $1.26(\mathrm{t}, 6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, 6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): $193.5,167.4,167.4,155.8,134.1,62.0,61.9,55.1,50.1$, 46.7, 40.5, 35.0, 14.1.

Major diastereomer:
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.53(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, 15.9$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.17 (dd, 15.9 and $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.20(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~d}, 6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.38-3.25 (m, 1H), 2.94-2.87 (m, 1H), 2.79-2.72 (m, 1H), 2.49-2.42 (m, 1H), 1.98-1.88 (m, 1H), 1.76-1.64 (m, 1H), $1.26(\mathrm{t}, 6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, 6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 193.5, 167.5, 167.4, 155.6, 134.5, 62.0, 61.8, 55.3, 49.9, 47.3, 40.3, 35.0, 14.1.

EI-HRMS (positive ion) $\mathbf{C 1 4}_{\mathbf{1 4}}^{\mathbf{2 0}} \mathbf{0} \mathbf{O} \mathbf{6} \mathbf{N a}$ [M+Na] ${ }^{+}$: requires 307.1158; found 307.1172.

Diethyl (\boldsymbol{E})-2-(9-bromo-1-oxonon-2-en-4-yl)malonate 6i

Synthesized according to GP D. $\mathrm{m}=43 \mathrm{mg}, 55 \%$ yield, colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ ($\mathbf{p p m}$): $9.52(\mathrm{~d}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, 15.9 and $9.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.13(\mathrm{dd}, 15.9$ and $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~d}, 7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.38(\mathrm{~d}, 6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.01(\mathrm{~m}, 1 \mathrm{H}), 1.83$ (quint, $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.25(\mathrm{t}$, $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, 6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): ~ 193.6,167.9,167.6,156.6,135.3,134.1,124.0,61.8$, 61.6, 54.8, 42.5, 29.5, 20.7, 14.1.

EI-HRMS (positive ion) $\mathbf{C 1 6}_{\mathbf{1 6}} \mathbf{H}_{\mathbf{2 6}} \mathbf{O} \mathbf{5} \mathbf{B r}[\mathbf{M + H}]^{+}$: requires 377.0964; found 377.0952.

Diethyl (E)-2-(4-methyl-5-oxopent-3-en-2-yl)malonate 6j

Synthesized according to GP D. $\mathrm{m}=21.5 \mathrm{mg}, 42 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.39(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~d}, 10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, 7.2 \mathrm{~Hz}$, 2H), 4.15 (q, $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.53-3.42 (m, 1H), 3.39 (d, $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.28$ (t, 6.9 Hz , $3 \mathrm{H}), 1.22$ (t, $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.17$ (d, $6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 195.2,167.8,154.0,139.5,61.7,61.6,57.0,33.5,17.7$, 14.1, 14.1, 9.3.

EI-HRMS (positive ion) $\mathbf{C}_{13} \mathbf{H}_{\mathbf{2 0}} \mathbf{O} \mathbf{5} \mathbf{5} \mathbf{N a}[\mathbf{M + N a}]^{+}$: requires 279.1208; found 279.1198 .

Diethyl 2-(5-formyl-3,6-dihydro-2H-pyran-3-yl)malonate 6k

Synthesized according to GP D. $\mathrm{m}=21.5 \mathrm{mg}, 40 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.43(\mathrm{~s}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.30(\mathrm{~m}, 2 \mathrm{H})$, $4.24(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{dd}, 11.8$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, 11.8$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, 6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 191.7, 167.6, 146.4, 141.3, 66.4, 63.7, 62.0, 61.9, 53.3, 31.5, 14.1.

EI-HRMS (positive ion) $\mathbf{C 1 3}_{\mathbf{1 3}} \mathbf{H}_{\mathbf{1 9}} \mathbf{O}_{\mathbf{6}}[\mathbf{M + H}]^{+}$: requires 271.1182; found 271.1193.

Diethyl (\boldsymbol{E})-2-(3-formylcyclooct-2-en-1-yl)malonate 61

Synthesized according to GP D. $\mathrm{m}=32 \mathrm{mg}, 54 \%$ yield, colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.35(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~m}, 8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.13(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{dt}, 9.7$ and $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{td}, 13.2$ and 2.8 $\mathrm{Hz}, 1 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}$, $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, 7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 191.7,167.6,146.4,141.3,66.4,63.7,62.0,61.9,53.3$, 31.5, 14.1 .

EI-HRMS (positive ion) $\mathbf{C}_{\mathbf{1 3}} \mathbf{H}_{\mathbf{1 9}} \mathbf{O}_{\mathbf{6}}[\mathbf{M + H}]^{+}$: requires 271.1182; found 271.1193.

Diethyl 2-(3-formyl-6-(prop-1-en-2-yl)cyclohex-2-en-1-yl)malonate 6m

Synthesized according to GP D. $\mathrm{m}=29.5 \mathrm{mg}, 48 \%$ yield, colourless oil. dr $>95: 5$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.46(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H})$, 4.24 (qd, 7.2 and $2.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.17 (q, $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.72 (d, $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.15-3.04 (m, 1H), 2.51-2.40 (m, 1H), $2.24(\mathrm{td}, 11.4$ and $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.71$ ($\mathrm{s}, 3 \mathrm{H}$), 2.24 (td, 12.4 and $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, 7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, 7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 194.1, 169.8, 167.8, 150.5, 145.7, 141.2, 113.4, 61.9, 61.4, 52.2, 45.2, 39.9, 27.4, 21.4, 19.0, 14.2, 14.1.

EI-HRMS (positive ion) $\mathbf{C 1 7}_{17} \mathbf{H}_{\mathbf{2 5}} \mathbf{O} \mathbf{5}[\mathbf{M + H}]^{+}$: requires 309.1702; found 309.1705.

Diethyl 2-(4-formyl-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-yl)malonate $6 n$

Synthesized according to GP D. $\mathrm{m}=36 \mathrm{mg}, 58 \%$ yield, colourless oil. dr > 95:5.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}(\mathbf{p p m}): 9.44(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.21$ (q, 7.2 Hz, 2H), 3.43-3.32 (m, 2H), $2.88(\mathrm{t}, 5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dt}, 10.0$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{t}$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, 7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, 7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, 9.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.79$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 191.3,168.0,167.8,152.4,146.3,61.8,61.8,54.3,44.1$, 41.1, 40.8, 38.5, 27.9, 25.9, 20.6, 14.1.

EI-HRMS (positive ion) $\mathbf{C 1 7}_{\mathbf{1 7}} \mathbf{H}_{\mathbf{2 5}} \mathbf{O}_{\mathbf{5}}[\mathbf{M + H}]^{+}$: requires 309.1702; found 309.1696.

2-((E)-1-(4-((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenoxy)-6-oxohex-4-en-3-yl)malonate 60

Synthesized according to GP D. $\mathrm{m}=67 \mathrm{mg}, 61 \%$ yield, white gum.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.52(\mathrm{~d}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, 8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}$, 15.9 and $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (d, $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.14$ (dd, 15.9 and $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (d, 7.7 Hz , $1 \mathrm{H}), 4.59-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.13(\mathrm{~m}, 5 \mathrm{H}), 4.02-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, 6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.42-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H})$, 1.26 (t, $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, 7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ (ppm): 193.5, 172.4, 167.6, 167.6, 157.5, 156.0, 155.1, 134.5, $130.4,128.4,114.5,80.0,64.9,61.9,61.8,55.4,54.6,52.2,39.6,37.5,31.4,28.3,14.1,13.9$.

EI-HRMS (positive ion) $\mathbf{C}_{28} \mathbf{H}_{39} \mathbf{N O} \mathbf{1 0 N}_{\mathbf{N a}}$ [M+Na] ${ }^{+}$: requires 572.2472; found 572.2484.

Methyl (E)-2,2-dichloro-3-(3-oxoprop-1-en-1-yl)undecanoate 6p

Synthesized according to GP D. $\mathrm{m}=34 \mathrm{mg}, 53 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): $9.58(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ (dd, 15.6 and $9.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.22(\mathrm{dd}, 15.6$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{td}, 10.0$ and $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.55(\mathrm{~m}, 2 \mathrm{H})$, 1.34-1.19 (m, 12H), 0.87 (t, $6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ (ppm): 193.1, 165.7, 152.1, 137.0, 86.5, 54.7, 54.6, 31.8, 30.0, 29.3, 29.2, 29.2, 27.0, 22.7, 14.1 .

EI-HRMS (positive ion) $\mathbf{C}_{15} \mathbf{H}_{\mathbf{2 3}} \mathbf{O}_{\mathbf{3}} \mathbf{C l}_{\mathbf{2}}$ [M- $\mathbf{H}_{\mathbf{2}} \mathbf{+} \mathbf{H}^{+}$: requires 321.1024; found 321.1018.

(\boldsymbol{E})-3-(3-Oxoprop-1-en-1-yl)undecanenitrile 6q

Synthesized according to GP D. $\mathrm{m}=36 \mathrm{mg}, 81 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{d 6 - A c e t o n e) ~} \boldsymbol{\delta}$ (ppm): $9.59(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (dd, 15.6 and 7.9 Hz , $1 \mathrm{H}), 6.21(\mathrm{dd}, 15.6$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.70(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 2 \mathrm{H})$, $1.40-1.25(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{t}, 6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{d 6}$-Acetone) $\boldsymbol{\delta}$ (ppm): 194.1, 158.4, 134.5, 118.9, 39.8, 34.0, 32.6, 29.9, 29.9, 29.8, 27.5, 23.3, 22.1, 14.3.

EI-HRMS (positive ion) $\mathbf{C 1 4}_{\mathbf{1 4}}^{\mathbf{2 4}} \mathbf{} \mathbf{O N}[\mathbf{M + H}]^{+}$: requires 222.1858; found 222.1855.

(\boldsymbol{E})-4-(2,2,2-Trifluoroethyl)dodec-2-enal $6 \mathbf{r}$

Synthesized according to GP D. $\mathrm{m}=37.5 \mathrm{mg}, 71 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}(\mathbf{p p m}): 9.59(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (dd, 15.6 and $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $6.21(\mathrm{dd}, 15.6$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.70(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.40-$ $1.25(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{t}, 6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): ~ 193.6,158.5,133.4,126.3(\mathrm{q}, 277 \mathrm{~Hz}), 38.4(\mathrm{q}, 28 \mathrm{~Hz})$, 37.1 (br. s), 34.2, 31.8, 29.4, 29.4, 29.2, 26.7, 22.7, 14.1.

EI-HRMS (negative ion) $\mathbf{C}_{14} \mathbf{H}_{\mathbf{2}} \mathbf{O F}_{3}[\mathbf{M - H}]:$: requires 263.1623; found 263.1629 .

(E)-4-(2-nitropropan-2-yl)dodec-2-enal 6s

Synthesized according to GP D. $\mathrm{m}=\mathrm{mg}, 53 \%$ yield, colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 9.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=15.6,9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.17$ (dd, $J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{td}, J=9.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$ 1.28-1.17 (m, 14H), $0.86(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ (ppm): 192.9, 153.7, 136.6, 90.5, 51.6, 31.8, 29.3, 29.2, 29.2, 28.8, 27.6, 24.6, 23.1, 22.6, 14.1.

EI-HRMS (positive ion) $\mathbf{C}_{15} \mathbf{H}_{28} \mathbf{N O}_{3}[\mathbf{M + H}]^{+}$: requires 270.2076; found 270.2069.

(E)-4-(2-Oxo-2-phenylethyl)dodec-2-enal 6t

Synthesized according to GP D. $\mathrm{m}=40 \mathrm{mg}, 67 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}(\mathbf{p p m}): 9.49(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, 7.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.47 (t, $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.80 (dd, 15.6 and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11$ (dd, 15.6 and $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19-3.05 (m, 3H), 1.62-1.48 (m, 2H), 1.33-1.17 (m, 12H), $0.87(\mathrm{t}, 6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 197.9, 194.1, 161.2, 136.8, 133.4, 132.6, 128.8, 128.1, $42.8,38.0,34.0,31.9,29.6,29.5,29.3,27.2,22.7,14.1$.

(E)-4-(2-(4-Chlorophenyl)-2-oxoethyl)dodec-2-enal 6u

Synthesized according to GP D. $\mathrm{m}=40.0 \mathrm{mg}, 60 \%$ yield, colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\boldsymbol{\delta}$ (ppm): $9.48(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, 7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ (d, 7.7 $\mathrm{Hz}, 2 \mathrm{H}$), 6.78 (dd, 15.6 and $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.10 (dd, 15.6 and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.01$ (m, 3H), $1.60-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{t}, 6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 196.7, 194.0, 160.8, 139.9, 135.1, 132.6, 129.5, 129.1, $42.8,37.9,34.0,31.9,29.6,29.5,29.3,27.2,22.7,14.1$.

EI-HRMS (positive ion) $\left.\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{2 8}} \mathbf{C l O}_{\mathbf{2}} \mathbf{[M + H}\right]^{+}$: requires 335.1778; found 335.1765 .

(E)-4-(2-Oxo-2-(4-(trifluoromethyl)phenyl)ethyl)dodec-2-enal 6v

Synthesized according to GP D. $\mathrm{m}=44.0 \mathrm{mg}, 60 \%$ yield, colourless oil.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}(\mathbf{p p m}): 9.49(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, 7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.74$ (d, 7.9 $\mathrm{Hz}, 2 \mathrm{H}$), 6.78 (dd, 15.6 and $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.11 (dd, 15.6 and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.06(\mathrm{~m}, 3 \mathrm{H})$, 1.62-1.49 (m, 2H), 1.36-1.20 (m, 12H), 0.87 (t, $6.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): 196.9, 193.8, $160.5,139.4,134.7$ (q, 32.8 Hz), 132.8, $128.3,125.8$ (q, 3.8 Hz), 123.5 (q, 272.3 Hz), 43.1, 37.8, 34.0, 31.9, 29.5, 29.4, 29.3, 27.2, 22.7, 14.1.
${ }^{19}$ F NMR ($\mathbf{1 8 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$ (ppm): -63.65

(E)-4-(2-(3-methoxyphenyl)-2-oxoethyl)dodec-2-enal 6w

Synthesized according to GP D. $\mathrm{m}=42.0 \mathrm{mg}, 64 \%$ yield, colourless oil.
$\left.{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} \mathbf{(p p m}\right): 9.48(\mathrm{~d}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H})$, $7.37(\mathrm{t}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, 15.6$ and $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, 15.6$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.16-3.05(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.18(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{t}$, $6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}(\mathbf{p p m}): 197.8,194.1,161.2,159.9,138.1,132.6,129.7,120.6$, $119.8,112.3,55.5,42.9,38.1,34.0,31.9,29.6,29.5,29.3,27.2,22.7,14.2$.
EI-HRMS (positive ion) $\mathbf{C}_{\mathbf{2 1}} \mathbf{H}_{\mathbf{3 1}} \mathbf{O}_{\mathbf{3}}[\mathbf{M + H}]^{+}$: requires 331.2273; found 331.2260 .

IX. References

1. (a) Miyazawa, K.; Koike, T.; Akita, M. Chem. Eur. J. 2015, 21, 11677; (b) Greulich, T. W.; Daniliuc, C. G.; Studer, A. Org. Lett. 2015, 17, 254; (c) Barthelemy, A.; Tuccio, B.; Magnier, E.; Dagousset, G. Angew. Chem. Int. Ed. 2018, 57, 13790.
2. (a) H. G. Yayla, F. Peng, I. K. Mangion, M. McLaughlin, L.-C. Campeau, I. W. Davies, D. A. DiRocco, R. R. Knowles, Chem. Sci. 2016, 7, 2066; (b) Y. Ji, D. A. DiRocco, C. M. Hong, M. K. Wismer, M. Reibarkh, Org. Lett. 2018, 20, 2156.
3. C. G. Hatchard, C. A. Parker, Proc. R. Soc. London, Ser. A 1956, 235, 518.

X. NMR spectra of new compounds

1-(1-Ethoxy-1-hydroxy-3-oxoisoindolin-2-yl)-2,4,6-trimethylpyridin-1-ium tetrafluoroborate 2 i

(E)-4-methoxydodec-2-enal 3a

(E)-4-methoxy-5-phenylpent-2-enal 3b

(2E,6Z)-4-Methoxynona-2,6-dienal 3c

() -4-Methoxy-7-oxohept-5-en-1-yl acetate 3d

(E)-6-(1,3-Dioxoisoindolin-2-yl)-4-methoxyhex-2-enal 3e

(\boldsymbol{E})-3-Methoxycyclooct-1-ene-1-carbaldehyde $3 f$

3-Methoxy-4-(prop-1-en-2-yl)cyclohex-1-ene-1-carbaldehyde 3g

(E)-4-(2-Phenoxyethoxy)dodec-2-enal 3h

(E)-4-(3-(($\lambda 1$-oxidanyl)(oxo)(phenyl)-15-sulfanyl)propoxy)dodec-2-enal 3i

(E)-4-(3-Chloropropoxy)dodec-2-enal 3j

(E)-3-((1-Oxododec-2-en-4-yl)oxy)propyl benzoate 3k

() -4-((1,3-Difluoropropan-2-yl)oxy)dodec-2-enal 31

(E)-4-Methyl- N-(1-oxododec-2-en-4-yl)benzenesulfonamide 4a

(E)-4-((4-Methylphenyl)sulfonamido)-7-oxohept-5-en-1-yl acetate 4b

(\boldsymbol{E})-4-Methyl- N-(4-methyl-5-oxopent-3-en-2-yl)benzenesulfonamide 4c

N-(4-formyl-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-yl)-4-methylbenzenesulfonamide 4d

(E)-tert-butyl methyl(1-oxododec-2-en-4-yl)carbamate 4e

(E)-4-(1-ethoxy-1-hydroxy-3-oxoisoindolin-2-yl)dodec-2-enal $4 f$

Ethyl
(E)-3-(5-((tert-butoxycarbonyl)(methyl)amino)-5,6-dihydro-2H-pyran-3-
yl)acrylate 4g,

Diethyl (E)-2-(1-oxododec-2-en-4-yl)malonate 6a

Diethyl (E)-2-(6-oxohex-4-en-3-yl)malonate 6b

Diethyl (E)-2-(5-oxo-1-phenylpent-3-en-2-yl)malonate 6c

Diethyl (E)-2-(7-acetoxy-1-oxohept-2-en-4-yl)malonate 6d

Diethyl (E)-2-(1-(1,3-dioxoisoindolin-2-yl)-6-oxohex-4-en-3-yl)malonate 6e

Diethyl (E)-2-(1-cyano-6-oxohex-4-en-3-yl)malonate $6 f$

Diethyl 2-(2E,6Z)-1-oxonona-2,6-dien-4-yl)malonate $6 f$

Diethyl 2-((E)-1-(oxiran-2-yl)-5-oxopent-3-en-2-yl)malonate 6h

Diethyl (E)-2-(9-bromo-1-oxonon-2-en-4-yl)malonate $6 \mathbf{i}$

Diethyl (E)-2-(4-methyl-5-oxopent-3-en-2-yl)malonate 6j

Diethyl 2-(5-formyl-3,6-dihydro-2H-pyran-3-yl)malonate 6k

Diethyl (E)-2-(3-formylcyclooct-2-en-1-yl)malonate 61

Diethyl 2-(3-formyl-6-(prop-1-en-2-yl)cyclohex-2-en-1-yl)malonate 6m

Diethyl 2-(4-formyl-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-yl)malonate 6 n

Diethyl
2-((E)-1-(4-((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenoxy)-6-oxohex-4-en-3-yl)malonate 60

Methyl (E)-2,2-dichloro-3-(3-oxoprop-1-en-1-yl)undecanoate 6p

(E)-3-(3-Oxoprop-1-en-1-yl)undecanenitrile 6q

(E)-4-(2,2,2-Trifluoroethyl)dodec-2-enal 6r

(E)-4-(2-nitropropan-2-yl)dodec-2-enal 6s

(E)-4-(2-Oxo-2-phenylethyl)dodec-2-enal 6t

(E)-4-(2-(4-Chlorophenyl)-2-oxoethyl)dodec-2-enal 6u

(E)-4-(2-Oxo-2-(4-(trifluoromethyl)phenyl)ethyl)dodec-2-enal 6v

(E)-4-(2-(3-methoxyphenyl)-2-oxoethyl)dodec-2-enal 6w

