Highly Selective γ -Alkoxylation, γ -Amination and γ -Alkylation of Unbiased Enals by Means of Photoredox Catalysis

Camille Banoun,^a Flavien Bourdreux,^a Guillaume Dagousset^{*a}

^a Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 78035 Versailles Cedex, France

Supporting Information

Table of contents

I.	General methods	2
II.	Synthesis of silyloxydienes	3
III.	Synthesis of radical sources	8
IV.	Optimization of the reaction conditions	9
V.	General procedures of γ -functionalization reactions	10
G	General procedure GP B: γ-alkoxylation	10
G	General procedure GP C: γ-amination	10
G	General procedure GP D: γ-alkylation	10
VI.	Stern-Volmer experiments	11
VII.	. Quantum yield measurement	13
VIII	I. Characterization of new compounds	17
IX.	References	34
X.	NMR spectra of new compounds	35

I. General methods

Each reaction was carried out under argon in a freshly distilled solvent, unless otherwise noted. All chemicals were purchased from Sigma-Aldrich, Fluorochem, TCI or Alfa Aesar and were used without further purification. Organic solvents were purchased from Sigma-Aldrich. Visible light irradiations were performed with a Flexled INSPIRE LED lamp (3.45 W/m; λ = 465 nm). Reactions were monitored by thin-layer chromatography on silica gel 60 F254. Unless otherwise noted, yields refer to materials purified by column chromatography. Flash chromatography was conducted on silica gel 60 (40-63 µm) at medium pressure (300 mbar). ¹H and ¹⁹F NMR spectra were recorded with a Bruker AC-200 spectrometer. ¹³C NMR spectra were recorded with a Bruker AC-200 spectrometer. ¹³C NMR spectra were recorded with a Bruker AC-300 spectrometer at 75 MHz using a broadband decoupled mode with the multiplicities obtained using a DEPT sequence. Unless otherwise noted, NMR experiments were carried out in CDCl₃, for which chemical shifts (δ) are reported in parts per million (ppm) with reference to CHCl₃ (¹H: 7.26; ¹³C: 77.07) and CFCl₃ (¹⁹F: 0). Coupling constants (*J*) are reported in Hertz (Hz). High-resolution electrospray mass spectra in the positive ion mode were obtained with a Xevo Q-Tof WATERS spectrometer.

N-alkoxypyridinium and aminopyridinium salts were prepared following known procedures.¹

II. Synthesis of silyloxydienes

General procedure A (GP A):

To a solution of the corresponding enal (1 equiv) in CH_2Cl_2 (0.25 M) at room temperature, was added triethylamine (1.8 equiv) and TIPSOTF (1.2 equiv). The mixture was stirred at rt for 1h, and was quenched with 5% NaHCO₃ solution. After extraction with EtOAc, the organic phases were dried over anhydrous MgSO₄ and the solvents were removed in vacuo. Purification on silica gel flash chromatography (eluent: petroleum ether/EtOAc + 0.5% of Et₃N) afforded the corresponding silylated dienol ether.

(Dodeca-1,3-dien-1-yloxy)triisopropylsilane 1a

Prepared according the GP A.

E/*Z* ratio: 43:57

¹**H** NMR (300 MHz, CDCl₃) δ : 6.62 major, 6.56 minor (d, J = 11 Hz, 1H), 6.01 - 5.91 (m, 1H), 5.86 major, 5.70 minor (t, J = 11 Hz, 1H), 5.44 minor (dt, J = 15 Hz, J = 7 Hz, 1H), 5.19 major (dt, J = 10 Hz, J = 7.5 Hz, 1H), 2.10 major, 2.03 minor (q, J = 7 Hz, 2H), 1.28 (m, 12H), 1.24 - 1.06 (m, 21H), 0.89 (t, J = 7 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ: 145.2 major & 143.4 minor, 129.4 minor & 127.4 major, 126.0 minor & 124.4 major, 113.5 minor & 109.3 major, 33.1, 32.1, 29.9, 29.8, 29.7 (2C), 29.5 (2C), 29.4, 27.9, 22.9, 17.83 (6C TIPS), 14.26, 12.11 (3C TIPS).

HRMS (**ASAP-TOF**): Calcd for C₂₁H₄₃OSi [M+H]⁺: 339.3083; Found: 339.3075.

Triisopropyl-5-phenylpenta-1,3-dien-1-yl)oxy)silane (1b)

Prepared according the GP A.

E/*Z* ratio: 40:60

¹H NMR (300 MHz, CDCl₃) δ : 7.36 (m, 2H), 7.28 (m, 3H), 6.79 major & 6.68 minor (d, J = 11 Hz, 1H), 6.18 major & 5.82 minor (t, J = 11 Hz, 1H), 6.12 – 6.01 (m, 1H), 5.68 minor (dt, J = 15 Hz, J = 7 Hz, 1H) & 5.44 major (dm, J = 10 Hz, 1H), 3.55 major & 3.47 minor (d, J = 7.0 Hz, 2H), 1.33 – 1.16 (m, 21H).

¹³C NMR (75 MHz, CDCl₃) δ: 146.3 major & 144.3 minor, 141.4 major & 141.1 minor, 128.7, 128,5 (2C), 128,4, 127.6, 127.2, 126,0, 125,9, 125,5, 125.0, 113.2 minor & 108.9 major, 39.3 minor & 34.1 major, 17.8 (6C TIPS), 12.1 (3C TIPS).

HRMS (**ASAP-TOF**): Calcd for C₂₂H₃₇OSi [M+H]⁺: 317.2301; Found: 317.2295.

Triisopropyl((6Z)-nona-1,3,6-trien-1-yl)oxy)silane (1c)

Prepared according the GP A.

E/Z ratio: 35:65

¹H NMR (200 MHz, CDCl₃) δ: 6.64 major, 6.57 minor (d, J = 11 Hz, 1H), 6.05 – 5.65 (m, 2H), 5.49 – 5.09 (m, 3H), 2.84 (m, 2H), 2.08 (m, 2H), 1.28 – 1.06 (m, 21H), 0.98 (m, 3H).
¹³C NMR (75 MHz, CDCl₃) δ: 145.7 (major) & 143.8, 132.3 & 131.9 (major), 127.4, 126.9, 126.4, 125.0, 124.7, 113.3 & 109.0 (major), 30.5 & 26.0 (major), 20.7 (major) & 20.6, 17.8 (6C TIPS), 14.4, 12.1 (3C TIPS).

HRMS (ASAP-TOF): Calcd for C₁₈H₃₅OSi [M+H]⁺: 295.2457; Found: 295.2468.

7-((triisopropylsilyl)oxy)hepta-4,6-dien-1-yl acetate (1d)

Prepared according the GP A.

E/Z ratio: 48.52

¹**H** NMR (300 MHz, CDCl₃) δ : 6.60 & 6.54 (d, J = 11 Hz, 1H), 5.89 (m, 2H), 5.66 (t, J = 10 Hz, 1H), 5.38 minor (dt, J = 15 Hz, J = 7 Hz, 1H) & 5.12 major (dm, J = 10 Hz, 1H), 4.04 (t, J = 6.6 Hz, 2H), 2.12 (m, 2H), 2.02 & 2.01 (s, 3H), 1.68 (q, J = 7 Hz, 2H), 1.18 – 1.04 (m, 21H). ¹³C NMR (75 MHz, CDCl₃) δ : 171.0, 145.6 (major) & 143.8 (minor), 127.1 (minor) & 127.0 (major), 125.6 (major) & 124.9 (minor), 113.0 (minor) & 108.8 (major), 64.0 (minor) & 63.9 (major), 29.1 (minor) & 28.5 (major), 23.9, 20.8, 17.6 (6C TIPS), 11.9 (3C TIPS). HRMS (ASAP-TOF): Calcd for C₁₈H₃₅O₃Si [M+H]⁺: 327.2355; Found: 327.2346.

2-(6-((triisopropylsilyl)oxy)hexa-3,5-dien-1-yl)isoindoline-1,3-dione (1e)

Prepared according the GP A.

E/Z ratio: 43:57

¹**H** NMR (200 MHz, CDCl₃) δ : 7.82 (m, 2H), 7.69 (m, 2H), 6.56 & 6.50 (d, J = 9 Hz, 1H), 6.01 – 5.86 (m, 1H), 5.65 (t, J = 11 Hz, 1H), 5.38 (dt, J = 15 Hz, J = 7 Hz, 1H) & 5.15 (dm, J = 10 Hz, 1H), 3.73 (m, 2H), 2.46 (m, 2H), 1.13 – 1.01 (m, 21H).

¹³C NMR (75 MHz, CDCl₃) δ: 168.3 major & 168.2 minor, 146.3, 144.4, 133.7 (2C), 132,1, 129.1, 127.5, 123,5, 123,0 (2C), 121.4, 112.9, 108.4, 37.8 minor & 37.5 major, 31.9 & 26.9, 17.6 (6C TIPS), 11.9 minor & 11.8 major (3C TIPS).

HRMS (**ASAP-TOF**): Calcd for C₂₃H₃₄NO₃Si [M+H]⁺: 400.2308; Found: 400.2319.

(((Z)-cyclooct-2-en-1-ylidene)methoxy)triisopropylsilane (1f)

Prepared according the GP A.

One diastereomer.

¹**H NMR (300 MHz, CDCl**₃) **\delta:** 6.50 (s, 1H), 5.99 (d, J = 11 Hz, 1H), 5.27 (dm, J = 11 Hz, 1H), 2.68 (t, J = 7 Hz, 2H), 2.43 (m, 2H), 1.66 – 1.52 (m, 6H), 1.22 – 1.06 (m, 21H).

¹³C NMR (**75 MHz, CDCl**₃) δ: 142.3, 132.8, 122.7, 122.3, 28.4, 27.5, 26.1, 23.9, 22.9, 17.8 (6C TiPS), 12.1 (3C TiPS).

HRMS (ASAP-TOF): Calcd for C₁₈H₃₅OSi [M+H]⁺: 295.2457; Found: 295.2450.

Triisopropyl((2-methylpenta-1,3-dien-1-yl)oxy)silane (1g)

Prepared according the GP A.

One diastereomer.

¹**H** NMR (300 MHz, CDCl₃) δ: 6.44 (s, 1H), 5.99 (d, J = 15 Hz, 1H), 5.45 (dq, J = 15 Hz, J = 7 Hz, 1H), 1.77 (d, J = 7 Hz, 3H), 1.74 (s, 3H), 1.21 – 1.03 (m, 21 H).

¹³C NMR (**75 MHz, CDCl**₃) δ: 140.0, 131.1, 119.3, 117.3, 18.3, 17.7 (6C TIPS), 11.9 (3C TIPS), 9.3.

HRMS (ASAP-TOF): Calcd for C₁₅H₃₁OSi [M+H]⁺: 255.2144; Found: 255.2140.

(((1R,5R)-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-ylidene)methoxy)triisopropylsilane (1h)

Prepared according the GP A.

One diastereoisomer.

¹**H NMR (300 MHz, CDCl**₃) δ: 6.33 (s, 1H), 6.02 (dd, *J* = 8 Hz, *J* = 6 Hz, 1H), 5.88 (d, *J* = 8 Hz, 1H), 3.17 (m, 1H), 2.48 (m, 1H), 2.27 (m, 1H), 1.36 (s, 3H), 1.33 (m, 1H), 1.20 – 1.06 (m, 21H), 0.84 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ: 135.0, 132.6, 126.5, 124.0, 43.7, 42.6, 41.3, 34.1, 26.4, 22.8, 17.9 (6C TIPS), 12.1 (3C TIPS).

HRMS (ASAP-TOF): Calcd for C₁₉H₃₅OSi [M+H]⁺: 307.2457; Found: 307.2441.

triisopropyl(((1Z)-2-methylpenta-1,3-dien-1-yl)oxy)silane (1i)

Prepared according the GP A.

E/Z ratio: 40:60

¹**H NMR (300 MHz, CDCl₃) δ:** 6.63 major, 6.57 minor (d, J = 11 Hz, 1H), 5.90 - 5.80 (m, 1H), 5.97 major, 5.71 minor (t, J = 11 Hz, 1H), 5.49 minor (dt, J = 15 Hz, J = 7 Hz, 1H), 5.19 major (dt, J = 10 Hz, J = 7.5 Hz, 1H), 2.20 - 1.99 (m, 2H), 1.21 - 1.05 (m, 21H), 0.99 (t, J = 7.5 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ: 147.2 major & 145.5 minor, 130.7 minor & 128.7 major, 125.0 minor & 123.8 major, 113.3 minor & 109.0 major, 25.8 minor & 21.0 major, 17.7 (6C TIPS), 14.3 major & 13.8 minor, 12.0 (3C TIPS).

HRMS (ASAP-TOF): Calcd for C₁₅H₃₁OSi [M+H]⁺: 255.2144; Found: 255.2138.

7-((triisopropylsilyl)oxy)hepta-4,6-dienenitrile (1j)

Prepared according the GP A.

E/Z ratio: 62:38

¹**H** NMR (300 MHz, CDCl₃) δ : 6.67 minor & 6.61 major (d, J = 11 Hz, 1H), 6.00 (m, 1H), 5.86 minor & 5.67 major (t, J = 11 Hz, 1H), 5.38 major (dm, J = 15 Hz, 1H) & 5.13 minor (dm, J = 10 Hz, 1H), 2.39 (m, 2H), 1.13 – 1.03 (m, 21 H).

¹³C NMR (75 MHz, CDCl₃) δ: 147.2 minor & 145.5 major, 129.6 major & 127.9 minor, 123.2 major & 121.1 minor, 119.5, 112.4 major & 108.1 minor, 28.8, 23.8, 17.7 (6C TIPS), 12.0 (3C TIPS).

HRMS (**ASAP-TOF**): Calcd for C₁₆H₃₀NOSi [M+H]⁺: 280.2097; Found: 280.2098.

Triisopropyl-5-(oxiran-2-yl)penta-1,3-dien-1-yl)oxy)silane (1k)

Prepared according the GP A.

E/Z ratio: 54:46

¹**H** NMR (300 MHz, CDCl₃) δ : 6.66 minor & 6.59 major (d, J = 11 Hz, 1H), 6.06 – 5.96 (m, 1H), 6.01 minor & 5.70 major (t, J = 11 Hz, 1H), 5.41 major (dt, J = 15 Hz, J = 7 Hz, 1H) & 5.18 minor (dm, J = 10 Hz, 1H), 2.96 (m, 1H), 2.73 (m, 1H), 2.52 - 2.23 (m, 3H), 1.22 – 1.06 (m, 21H).

¹³C NMR (75 MHz, CDCl₃) δ: 146.6 minor & 144.8 major, 129.3 major & 127.5 minor, 122.1 major & 119.6 minor, 112.9 major & 108.7 minor, 51.8 major & 51,7 minor, 46.8, 35.8, 30.7, 17.8 (6C TIPS), 12.1 (3C TIPS).

HRMS (**ASAP-TOF**): Calcd for C₁₆H₃₁O₂Si [M+H]⁺: 283.2093; Found: 283.2102.

((9-bromonona-1,3-dien-1-yl)oxy)triisopropylsilane (11)

Prepared according the GP A.

E/*Z* ratio: 50:50

¹H NMR (300 MHz, CD₃CN) δ : 6.70 & 6.63 (d, J = 11 Hz, 1H), 5.95 & 5.64 (t, J = 11 Hz, 1H), 5.91 (m, 1H), 5.43 (dt, J = 15 Hz, J = 7 Hz, 1H) & 5.17 (dm, J = 10 Hz, 1H), 3.46 (t, J = 7 Hz, 2H), 2.08 (m, 2H), 1.83 (q, J = 7 Hz, 2H), 1.40 (m, 4H), 1.23 – 1.02 (m, 21H). ¹³C NMR (75 MHz, CD₃CN) δ : 146.6 & 144.7, 129.6 & 127.4, 127.3 & 125.6, 114.2 & 110.0, 35.3, 33.5 & 33.5, 33.3 & 29.6, 39.5 & 28.4, 28.4 & 28.1, 18.0 (6C TIPS), 12.7 (3C TIPS). HRMS (ASAP-TOF): Calcd for C₁₈H₃₆BrOSi [M+H]⁺: 375.1719; Found: 375.1722.

((2H-pyran-3(6H)-ylidene)methoxy)triisopropylsilane (1m)

Prepared according the GP A.

One diastereomer.

¹**H NMR (300 MHz, CDCl₃) δ :** 6.27 (s, 1H), 6.10 (dm, *J* = 11 Hz, 1H), 5.58 (dm, *J* = 10 Hz, 1H), 4.46 (m, 2H), 4.18 (m, 2H), 1.19 – 1.05 (m, 21H).

¹³C NMR (**75** MHz, CDCl₃) δ : 137.1, 123.4, 122.4, 115.2, 65.8, 63.0, 17.8 (6C TIPS), 12.0 (3C TIPS).

HRMS (**ASAP-TOF**): Calcd for C₁₅H₂₉O₂Si [M+H]⁺: 269.1937; Found: 269.1936.

Methyl 2-((tert-butoxycarbonyl)amino)-3-(4-((6-((triisopropylsilyl)oxy)hexa-3,5-dien-1-yl)oxy)phenyl)propanoate (1n)

Prepared according the GP A.

E/Z ratio: 60:40

¹**H** NMR (200 MHz, CDCl₃) δ : 6.99 (d, J = 8 Hz, 2H), 6.79 (d, J = 8 Hz, 2H), 6.58 (m, 1H), 6.09 – 5.93 (m, 1H), 5.99 minor (m, 1H), 5.69 major (t, J = 11 Hz, 1H), 5.46 major (dt, J = 15 Hz, J = 7 Hz, 1H), 5.20 minor (m, 1H), 5.02 (d, J = 8 Hz, 1H), 4.50 (m, 1H), 3.91 (t, J = 7 Hz, 2H), 3.67 (s, 3H), 2.99 (m, 2H), 2.52 (m, 2H), 1.39 (s, 9H), 1.22 – 1.02 (m, 21H).

¹³C NMR (75 MHz, CDCl₃) δ: 172.4, 158.0, 155.1, 146.1 minor & 144.4 major, 130.2 (2C), 128.7, 127.9 major & 127.0 minor, 123.6 major & 121.2 minor, 114.6 (2C), 113.0 major & 108.8 minor, 79.7, 67.7 major & 67.4 minor, 54.6, 52.1, 37.4, 32.8 major & 27.9 minor, 28.3 (3C), 17.7 (6C TIPS), 11.9 (3C TIPS).

HRMS (**ASAP-TOF**): Calcd for C₃₀H₅₀NO₆Si [M+H]⁺: 548.3407; Found: 548.3413.

III. Synthesis of radical sources

Figure S1. Scope of radical sources used in this study

N-alkoxypyridinium **2a-2f** and aminopyridinium salts **2g-2h** were prepared following known procedures.¹Alkyl halides **5a-5g** are commercailly available.

Synthesis of 1-(1-ethoxy-1-hydroxy-3-oxoisoindolin-2-yl)-2,4,6-trimethylpyridin-1-ium tetrafluoroborate 2i

2,4,6-Trimethylpyrylium tetrafluoroborate (3 mmol, 1 equiv.) was suspended in EtOH (10mL) then N-aminophthalimide (3 mmol, 1 equiv.) was slowly introduced. The reaction mixture was stirred at reflux overnight. Et₂O was added once the reaction mixture has cooled down and was left stirring at room temperature for 30 minutes. The precipitate was filtered and washed with Et₂O. The product was obtained as a white solid in 89% yield.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 11.21 (s, 1H), 7.95 (d, *J* = 7.1 Hz, 1H), 7.80 (d, *J* = 7.2 Hz, 1H), 7.73-7.59 (m, 2H), 7.52 (s, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 2.89 (s, 6H), 2.60 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 166.2, 165.7, 160.4, 158.3, 132.4, 132.2, 132.0, 131.4, 130.5, 127.9, 127.7, 61.9, 22.2, 19.6, 14.2.

¹⁹F NMR (188 MHz, CDCl₃) δ (ppm): -152.18, -152.23.

HRMS (TOF MS ES+) C₁₈H₂₁O₃N₂ [M+H]⁺: requires 313.1552; found 313.1545.

m. p.: 173 – 175 °C

IV. Optimization of the reaction conditions

	OTIPS	$\begin{array}{c} NC \\ BF_{4} \\ \hline \\ OMe \\ 2a \\ \hline \\ Ir(ppy)_{3} (2 \text{ mol}\%) \\ K_{2}HPO_{4} (2 \text{ equiv}) \\ MeCN, blue LEDs, RT, 18h \end{array}$	O J 3a OMe	
Entry	Photocatalyst	Additive (1 equiv)	Solvent	Yield [%] ^{a,b}
1	Ru(bpy) ₃ (PF ₆) ₂	K ₂ HPO ₄	MeCN	59
2	Eosin Y	K ₂ HPO ₄	MeCN	33
3	<i>fac</i> -Ir(ppy) ₃	K ₂ HPO ₄	MeCN	75 (71) ^c
4	<i>fac</i> -Ir(ppy) ₃	K ₂ CO ₃	MeCN	25
5	<i>fac</i> -Ir(ppy) ₃	Na ₂ HPO ₄	MeCN	41
6	<i>fac</i> -Ir(ppy) ₃	none	MeCN	31 ^d
7	<i>fac</i> -Ir(ppy) ₃	K ₂ HPO ₄	Acetone	11
8 ^[e]	fac-Ir(ppy) ₃	K ₂ HPO ₄	MeCN	0
9	none	K ₂ HPO ₄	MeCN	6

Table S1. Survey of reaction conditions for the photoredox-catalyzed γ -alkoxylation of silyloxydiene **1a**.

^a General conditions: **1a** (0.2 mmol), **2a** (0.36 mmol), photocatalyst (2 mol%) and additive (2 equiv) in 2 mL of solvent irradiated with 5W blue LEDs at RT for 18 h. ^b Yields determined by ¹H NMR spectroscopy using 1,4-dicyanobenzene as an internal standard. ^c Yield into brackets refers to chromatographically pure product. ^d 40% of (*E*)-2-dodecenal was formed during the reaction. Bpy = 2,2-bipyridine; ppy = 2-phenylpyridine. ^e In the dark.

V. General procedures of *γ*-functionalization reactions

General procedure GP B: γ -alkoxylation

A test-tube was charged with substrate 1 (0.20 mmol), *N*-alkoxypyridinium salt 2 (0.36 mmol), *fac*-Ir(ppy)₃ **2a** (2 mol%) and K₂HPO₄ (0.4 mmol). MeCN (2 mL) was added and argon was bubbled into the solution during 5 min. Then the mixture was irradiated with 5W blue LEDs strip for 18 h. After completion, the solvent was removed *in vacuo*, and the crude product was purified by preparative TLC to afford the desired pure γ -alkoxylated product **3**.

General procedure GP C: γ-amination

A test-tube was charged with substrate 1 (0.20 mmol), *N*-aminopyridinium salt 2 (0.30 mmol), *fac*-Ir(ppy)₃ 2a (2 mol%) and K₂HPO₄ (0.40 mmol). MeCN (3 mL) was added and argon was bubbled into the solution during 5 min. Then the mixture was irradiated with 5W blue LEDs strip for 18 h. After completion, the solvent was removed *in vacuo*, and the crude product was purified by preparative TLC to afford the desired pure γ -aminated product 4.

General procedure GP D: γ-alkylation

A test-tube was charged with substrate **1** (0.20 mmol), the source of C-centered radical **5** (0.30 mmol), *fac*-Ir(ppy)₃ **2a** (2 mol%) and K₂CO₃ (0.40 mmol). CDCl₃ (2 mL) was added and argon was bubbled into the solution during 5 min. Then the mixture was irradiated with 5W blue LEDs strip for 18 h. After completion, the solvent was removed *in vacuo*, and the crude product was purified by preparative TLC to afford the desired pure γ -alkylated product **6**.

Gram-scale experiment:

A 200 mL test-tube was charged with substrate **1a** (8 mmol, 2.7 g), diethyl bromomalonate **5a** (4 mmol, 0.96 g), *fac*-Ir(ppy)₃ **2a** (0.08 mmol, 52 mg) and K₂CO₃ (8 mmol, 1.11 g). CHCl₃ (40 mL) was added and argon was bubbled into the solution during 5 min. Then the mixture was irradiated with 5W blue LEDs strip for 18 h. After completion, the solvent was removed *in vacuo*, and the crude product was purified by flash chromatography (pentane/EtOAc) to afford the desired pure γ -alkylated product **6a** (450 mg, 53% yield).

VI. Stern-Volmer experiments

Rates of quenching (k_q) were determined using Stern-Volmer kinetics:

I_0/I	$= k_{\alpha}$	τofaue	ncher]	+1
±0/ ±		1999	nener	

Where I₀ is the luminescene intensity without the quencher, I is the intensity with the quencher, and τ_0 is the excited state lifetime of the photocatalyst ($\tau_0 = 1.9 \ \mu s$ for Ir(ppy)₃).

The following stock solutions were prepared in distilled MeCN (or CHCl₃) and degassed by three freeze-pump-thaw cycles.

General procedure: A stock solution of Ir(ppy)₃ was prepared by dissolving Ir(ppy)₃ (25 µmol) in 10 mL of MeCN (or CHCl₃). Of this solution, 0.1 mL were further diluted with MeCN (or CHCl₃) to give a total voume of 10 mL. Concentration of [**Ir**] = 2.5 x 10⁻⁵ M. A stock solution of **2** (or **5**) was prepared by dissolving **2** (or **5**) (30 µmol) in 10 mL of MeCN (or CHCl₃). Concentration of [**2**] or [**5**] = 3 x 10⁻³ M. A stock solution of **1a** was prepared by dissolving **1a** (30 µmol) in 10 mL of MeCN (or CHCl₃). Concentration of [**1a**] = 3 x 10⁻³ M. For each experiment, 6 samples were prepared in the dark. Quartz cuvettes (3.5 mL) were filled with photocatalyst stock solution (0.3 mL), reagent stock solution (0 mL, 0.2 mL, 0.4mL, 0.6 mL, 0.8 mL, 1.0 mL) and MeCN (or CHCl₃) (2.7 mL, 2.5 mL, 2.3 mL, 2.1 mL, 1.9 mL, 1.7 mL) to obtain a total volume of 3 mL. The final concentrations were [**Ir**] = 2.5 10⁻⁶ M and [quencher] = 2 x 10⁻⁴ M, 4 x 10⁻⁴ M, 6 x 10⁻⁴ M, 8 x 10⁻⁴ M, 1 x 10⁻³ M. For each sample, emission spectra were acquired between 470 nm and 650 nm (excitation at 450 nm).

Figure S2. Stern-Volmer experiments in MeCN

For *N*-methoxypyridinium salt **2a**, $k_q = 2.5 \ 10^8 \ M^{-1}.s^{-1}$ in MeCN. For silvl dienol ether **1a**, $k_q = 8.4 \ 10^7 \ M^{-1}.s^{-1}$ in MeCN

Figure S3. Stern-Volmer experiments in CHCl₃.

For *N*-aminopyridinium salt **2h**, $k_q = 2.1 \ 10^8 \ M^{-1}.s^{-1}$ in CHCl₃. For diethyl bromomalonate **5a**, $k_q = 1.1 \ 10^8 \ M^{-1}.s^{-1}$ in CHCl₃. For silyl dienol ether **1a**, $k_q = 6.1 \ 10^7 \ M^{-1}.s^{-1}$ in CHCl₃.

VII. Quantum yield measurement

The photon flux was determined by standard ferrioxalate actinometry.²

Solutions needed:

0.05 *M* sulfuric acid stock solution:

In a 100 mL volumetric flask, 0.281 mL of concentrated sulfuric acid (17.8 M) was added to 90 mL deionized water. Then, water was added until the 100 mL graduation mark was reached.

Ferrioxolate solution:

A 0.15 M solution of potassium ferrioxolate was prepared in a 25 mL volumetric flask by dissolving potassium ferrioxolate ($K_3FeC_2O_4*3H_2O$) (1.842 g, 3.75 mmol) with the 0.05 M sulfuric acid solution. The solution was prepared and stored in the dark.

Developer solution:

22.5 g of sodium acetate trihydrate was dissolved in 100 mL of 0.5 M sulfuric acid. 1 g of 1,10-phenantroline was added to this solution. Store the solution in the dark.

Typical Experiment carried out under dark:

200 μ L of 0.15 M aqueous potassium ferrioxalate was transferred to a 5 mm thin wall NMR tube followed by the placement of the coaxial insert. Then the sample was irradiated with 445 nm LED (Prizmatix FC5-LED) at room temperature. The procedure was repeated with different irradiations times for different samples.

100 μ L aliquots of the solution were taken from each solution and added immediately to 3 mL of a developer solution of sodium acetate and 1,10-phenanthroline and the flask was quickly wrapped in aluminum foil. Concurrently, a "blank" sample was prepared by diluting 100 μ L of the

Figure S4 Prizmatix FC5-LED

stock solution (kept in the dark) into 3 mL of developer solution. The solutions were left in the dark for 30 min - 1 hr, becoming bright red. The solutions were transferred to a cuvette and the absorbance spectrum of the Fe(phen)₃²⁺ complex was obtained. The absorbance at 510 nm ($\epsilon = 11,100 \text{ M}^{-1}.\text{cm}^{-1}$) was measured for every sample.

Data analysis:

To calculate photon flux from your chemical actinometry data, first determine the number of Fe^{2+} ions produced by ferrioxolate photo-degradation:

moles
$$Fe^{2+} = \frac{\Delta A_{510 nm} V_1 V_3}{\varepsilon_{510 nm} l V_2}$$

 ΔA = difference in absorbance at 510 nm between sample and 'blank'

l = path length of cuvette (0,2 cm)

 ε = Extinction coefficient of Fe(phen)₃ complex at 510 nm (ε = 11,100 M⁻¹.cm⁻¹)

 V_1 = total volume of irradiated solution (200 µL) V_2 = volume of aliquot taken from V_1 (100 µL) V_3 = the volume that V_2 is diluted into (3 mL)

The photon flux can be determined:

$$photon flux = \frac{moles of Fe^{2+}}{\Phi_{_{448mm}} \times t \times F}$$

with:

 $F_{450nm} = 1.01$ (reported literature value)³

t = time of irradiation (seconds)

F = mean fraction of light absorbed by the ferrioxalate solution (F \approx 1 at 450 nm at 0.15 M ferrioxolate).

The linear dependence of Fe²⁺ accumulation on LED irradiation time at 445 nm is plotted:

Figure S5: linear dependence of Fe^{2+} accumulation on LED irradiation time at 445 nm

From the slope of the linear regression line, we finally find the photon flux:

```
Photon flux = 3.37.10<sup>-8</sup> mol.s<sup>-1</sup>
```

Quantum yield measurement

 $\Phi = (\text{rate of substrate conversion})/(\text{absorbed photon flux})$

The rate of substrate conversion was measured by analyzing the reaction mixture as a function of time thanks to *in situ* NMR irradiation.

General procedure: A solution of bromomalonate **5a** or *N*-alkoxypyridinium **2a** (0.15 mmol), silyloxydiene **1a** (0.1 mmol), 2,6-lutidine (0.2 mmol) and the photocatalyst *fac*-Ir(ppy)₃ (2 mol%) in CDCl₃ (1 mL) was prepared and 0.2 mL of this solution was introduced in an NMR tube and the mixture was degassed with argon.

Excitation was performed at 445 nm and substrate conversion was periodically determined (after 300 seconds) by comparison of the integration of ¹H NMR silylated dienol ether **1a** peak and nitrobenzene peak, used as internal standard (Brucker AC-300).

The substrate conversions (as well as the product **6a** formation) were then plotted against time (see Figure S6):

Figure S6: Quantity of starting material or product **6a/3a** versus time. The plots are fitted to a 6th order polynomial

The derivatives of the polynomials of Figure S5 are used to calculate the rate of substrate conversion.

Then the absorbed photon flux has to be calculated. Note that in the case of NMR experiments with an optical fiber, the path length of irradiated solution is very small (0.06 cm) and the fraction (f) of light absorbed by this solution has to be first calculated using the equation below, where A is the measured absorbance at 445 nm.

$f=1-10^{\!-\!A}$

with $A = \varepsilon_{445nm}$.l.[Ir]

The molar absorptivities ϵ_{445nm} of Ir(ppy)₃ in MeCN and in CHCl₃ were measured to be 2753 M⁻¹.cm⁻¹ and 5634 M⁻¹.cm⁻¹ respectively thanks to the absorbance spectra of solutions of Ir(ppy)₃ in MeCN and in CHCl₃ at a known concentration (see Figure S7).

Figure S7: Absorbance of a solution of $Ir(ppy)_3$ in CHCl₃ and in ACN (5.10⁻⁵ M)

With this value of ϵ_{445nm} , and the value of the concentration of Ir(ppy)₃ photocatalyst for the irradiated sample (2.10⁻³ M), the fraction f of light absorbed were calculated:

f MeCN	=	0.51
fснсıз	=	0.79

Then, absorbed photon flux in MeCN = photon flux • $f_{MeCN} = 1.72.10^{-8}$ mol.s⁻¹

And absorbed photon flux in CHCl₃ = photon flux • $f_{CHCl_3} = 2.66.10^{-8}$ mol.s⁻¹

Finally, the quantum yields of the reactions can be calculated. The initial values are

 $\Phi_{N-\text{alkoxypyridinium }2a} = 0.45$ $\Phi_{\text{Bromomalonate }5a} = 0.14$

VIII. Characterization of new compounds

(*E*)-4-Methoxydodec-2-enal 3a

Synthesized according to GP B. m = 30.0 mg, 71% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.59 (d, 7.9 Hz, 1H), 6.68 (dd, 15.9 and 6.1 Hz, 1H), 6.24 (dd, 15.9 and 7.9 Hz, 1H), 3.85 (q, 6.4 Hz, 1H), 3.33 (s, 3H), 1.64-1.54 (m, 2H), 1.34-1.21 (m, 12H), 0.88 (t, 6.4 Hz, 3H).

¹³C NMR (**75 MHz, CDCl**₃) δ (ppm): 193.4, 157.1, 132.4, 80.6, 57.3, 34.7, 31.9, 29.5, 29.5, 29.2, 25.1, 22.7, 14.1.

EI-HRMS (positive ion) C₁₃H₂₅O₂ [M+H]⁺: requires 213.1855; found 213.1845.

(E)-4-Methoxy-5-phenylpent-2-enal 3b

Synthesized according to GP B. m = 27 mg, 71% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.59 (d, 7.7 Hz, 1H), 7.37-7.22 (m, 5H), 6.71 (dd, 15.9 and 5.9 Hz, 1H), 6.23 (dd, 15.9 and 7.9 Hz, 1H), 4.14 (q, 6.3 Hz, 1H), 3.37 (s, 3H), 3.05 (dd, 13.8 and 6.7 Hz, 1H), 2.87 (dd, 13.8 and 6.4 Hz, 1H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 193.3, 156.0, 136.9, 132.7, 129.4, 128.5, 126.8, 81.5, 57.6, 41.3.

EI-HRMS (positive ion) C₁₂H₁₅O₂ [M+H]⁺: requires 191.1072; found 191.1076.

(2E,6Z)-4-Methoxynona-2,6-dienal 3c

Synthesized according to GP B. m = 25 mg, 74% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.58 (d, 7.9 Hz, 1H), 6.69 (dd, 15.6 and 5.9 Hz, 1H), 6.26 (dd, 15.6 and 7.9 Hz, 1H), 5.57-5.46 (m, 1H), 5.37-5.27 (m, 1H), 3.90 (q, 6.1 Hz, 1H), 3.35 (s, 3H), 2.47-2.31 (m, 2H), 2.07-1.97 (m, 2H), 0.95 (t, 7.4 Hz, 3H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 193.4, 156.5, 135.0, 132.6, 122.6, 80.3, 57.4, 32.3, 20.8, 14.1.

EI-HRMS (positive ion) C₁₀H₁₇O₂ [M+H]⁺: requires 169.2435; found 169.2432.

(E)-4-Methoxy-7-oxohept-5-en-1-yl acetate 3d

Synthesized according to GP B. m = 28 mg, 70% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.59 (d, 7.7 Hz, 1H), 6.67 (dd, 15.9 and 5.9 Hz, 1H), 6.25 (dd, 15.9 and 7.9 Hz, 1H), 4.12 (t, 6.1 Hz, 2H), 3.89 (q, 5.7 Hz, 1H), 3.33 (s, 3H), 1.76-1.62 (m, 4H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 193.3, 171.2, 156.3, 132.7, 79.9, 64.0, 57.1, 31.1, 24.4, 21.0.

EI-HRMS (positive ion) C₉H₁₃O₃ [M+H-MeOH]⁺: requires 169.0865; found 169.0861.

(E)-6-(1,3-Dioxoisoindolin-2-yl)-4-methoxyhex-2-enal 3e

Synthesized according to GP B. m = 41 mg, 75% yield, white gum.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.56 (d, 7.7 Hz, 1H), 7.89-7.80 (m, 2H), 7.77-7.68 (m, 2H), 6.68 (dd, 15.9 and 5.9 Hz, 1H), 6.27 (dd, 15.9 and 7.7 Hz, 1H), 3.93 (q, 6.3 Hz, 1H), 3.88-3.78 (m, 2H), 3.32 (s, 3H), 1.97 (q, 6.7 Hz, 2H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 193.2, 168.4, 155.5, 134.1, 132.7, 132.1, 123.3, 78.2, 57.5, 34.4, 33.3.

EI-HRMS (positive ion) C₁₅H₁₆NO₄ [M+H]⁺: requires 274.1079; found 274.1080.

3-Methoxycyclooct-1-ene-1-carbaldehyde 3f

Synthesized according to GP B. m = 20 mg, 60% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.45 (s, 1H), 6.55 (d, 7.2 Hz, 1H), 4.37-4.23 (m, 1H), 3.37 (s, 3H), 2.82-2.69 (m, 1H), 2.17-1.96 (m, 2H), 1.77-1.36 (m, 7H).

¹³C NMR (**75 MHz, CDCl**₃) δ (ppm): 189.7, 152.3, 140.0, 75.4, 53.5, 31.8, 24.9, 22.4, 19.8, 19.0.

EI-HRMS (positive ion) C₁₀H₁₇O₂ [M+H]⁺: requires 169.1223; found 169.1225.

3-Methoxy-4-(prop-1-en-2-yl)cyclohex-1-ene-1-carbaldehyde 3g

Synthesized according to GP B. m = 15 mg, 42% yield, colourless oil.

¹H NMR (**300** MHz, CDCl₃) δ (ppm): 9.52 (s, 1H), 6.78 (s, 1H), 4.88 (s, 1H), 4.81 (s, 1H), 4.06-4.02 (m, 1H), 3.45 (s, 3H), 2.40-2.27 (m, 2H), 2.22-2.12 (m, 1H), 1.88-1.80 (m, 1H), 1.79 (s, 3H), 1.69-1.61 (m, 1H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 193.8, 148.1, 146.1, 142.3, 111.8, 78.3, 56.8, 46.9, 26.2, 21.6, 20.3.

EI-HRMS (positive ion) C₁₁H₁₇O₂ [M+H]⁺: requires 181.1229; found 181.1224.

(E)-4-(2-Phenoxyethoxy)dodec-2-enal 3h

Synthesized according to GP B. m = 34 mg, 71% yield, colourless oil.

¹**H NMR** (**300 MHz**, **CDCl**₃) δ (ppm): 9.54 (d, 7.9 Hz, 1H), 7.91 (d, 7.4 Hz, 2H), 7.67 (t, 7.4 Hz, 1H), 7.61-7.55 (m, 2H), 6.63 (dd, 15.9 and 6.1 Hz, 1H), 6.14 (dd, 15.9 and 7.9 Hz, 1H), 3.89 (q, 6.1 Hz, 1H), 3.56-3.47 (m, 1H), 3.44-3.36 (m, 1H), 3.25-3.17 (m, 2H), 2.04-1.94 (m, 2H), 1.60-1.47 (m, 2H), 1.33-1.19 (m, 12H), 0.88 (t, 6.5 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 193.5, 158.7, 157.3, 132.2, 129.5, 121.0, 114.6, 79.6, 68.2, 67.4, 34.8, 31.9, 29.5, 29.5, 29.3, 25.2, 22.7, 14.2.

EI-HRMS (positive ion) C₂₀H₃₁O₃ [M+H]⁺: requires 319.2273; found 319.2288.

(E)-4-(3-((λ1-oxidanyl)(oxo)(phenyl)-l5-sulfanyl)propoxy)dodec-2-enal 3i

Synthesized according to GP B. m = 36.5 mg, 48% yield, white solid.

¹**H** NMR (300 MHz, CDCl₃) δ (ppm): 9.54 (d, 7.9 Hz, 1H), 7.91 (d, 7.4 Hz, 2H), 7.67 (t, 7.4 Hz, 1H), 7.61-7.55 (m, 2H), 6.63 (dd, 15.9 and 6.1 Hz, 1H), 6.14 (dd, 15.9 and 7.9 Hz, 1H), 3.89 (q, 6.1 Hz, 1H), 3.56-3.47 (m, 1H), 3.44-3.36 (m, 1H), 3.25-3.17 (m, 2H), 2.04-1.94 (m, 2H), 1.60-1.47 (m, 2H), 1.33-1.19 (m, 12H), 0.88 (t, 6.5 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 193.3, 156.9, 139.1, 133.8, 132.2, 129.4, 128.1, 79.2, 67.0, 53.4, 34.6, 31.9, 29.5, 29.5, 29.3, 25.1, 23.5, 22.7, 14.2.

EI-HRMS (positive ion) C₂₁H₃₃SO₄ [M+H]⁺: requires 381.2100; found 381.2101.

m.p. (°**C**) 102-104

(E)-4-(3-Chloropropoxy)dodec-2-enal 3j

Synthesized according to GP B. m = 32 mg, 58% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.58 (d, 7.9 Hz, 1H), 6.70 (dd, 15.9 and 5.9 Hz, 1H), 6.24 (dd, 15.9 and 7.9 Hz, 1H), 3.96 (q, 6.1 Hz, 1H), 3.66 (t, 6.4 Hz, 2H), 3.63-3.57 (m, 1H), 3.53-3.46 (m, 1H), 2.06-1.99 (m, 2H), 1.65-1.55 (m, 2H), 1.37-1.19 (m, 12H), 0.88 (t, 6.5 Hz, 3H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 193.4, 157.4, 132.1, 79.2, 65.8, 41.8, 34.7, 32.9, 31.9, 29.5, 29.5, 29.2, 25.1, 22.7, 14.1.

EI-HRMS (positive ion) C₁₅H₂₈ClO₂ [M+H]⁺: requires 275.1778; found 275.1781.

(E)-3-((1-Oxododec-2-en-4-yl)oxy)propyl benzoate 3k

Synthesized according to GP B. m = 21 mg, 45% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.54 (d, 7.7 Hz, 1H), 8.03 (d, 7.4 Hz, 2H), 7.56 (t, 7.4 Hz, 1H), 7.44 (t, 7.4 Hz, 2H), 6.69 (dd, 15.9 and 5.9 Hz, 1H), 6.23 (dd, 15.9 and 7.9 Hz, 1H), 4.44 (t, 6.4 Hz, 2H), 3.96 (q, 6.1 Hz, 1H), 3.66-3.59 (m, 1H), 3.54-3.47 (m, 1H), 2.5 (quint, 6.1 Hz, 2H), 1.65-1.53 (m, 2H), 1.37-1.20 (m, 12H), 0.87 (t, 6.5 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 193.4, 166.5, 157.4, 133.0, 132.2, 130.3, 129.6, 128.4, 79.2, 66.0, 62.0, 34.8, 31.9, 29.5, 29.5, 29.3, 29.3, 25.1, 22.7, 14.1.

EI-HRMS (positive ion) C₂₂H₃₂NaO₄ [M+Na]⁺: requires 383.2198; found 383.2190.

(E)-4-((1,3-Difluoropropan-2-yl)oxy)dodec-2-enal 3l

Synthesized according to GP B. m = 36 mg, 65% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.59 (d, 7.9 Hz, 1H), 6.70 (dd, 15.9 and 6.1 Hz, 1H), 6.26 (dd, 15.9 and 7.7 Hz, 1H), 4.62-4.52 (m, 2H), 4.45-4.35 (m, 2H), 4.23 (q, 6.2 Hz, 1H), 3.82 (tquint, 17.4 and 4.9 Hz, 1H), 1.71-1.52 (m, 2H), 1.46-1.22 (m, 12H), 0.88 (t, 6.5 Hz, 3H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 193.2, 156.3, 132.4, 81.9 (d, 172.9 Hz), 81.8 (d, 172.9 Hz), 79.0, 75.4 (t, 19.8 Hz), 35.1, 31.8, 29.5, 29.5, 29.2, 25.1, 22.7, 14.1.

¹⁹**F NMR (188 MHz, CDCl₃) δ (ppm):** -230.65 (td, 47.4 and 17.4 Hz, 1F), -231.00 (td, 47.4 and 17.4 Hz, 1F).

EI-HRMS (positive ion) C₁₅H₂₇O₂F₂ [M+H]⁺: requires 277.1979; found 277.1967.

(E)-4-Methyl-N-(1-oxododec-2-en-4-yl)benzenesulfonamide 4a

Synthesized according to GP C. m = 38 mg, 54% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.36 (d, 7.4 Hz, 1H), 7.72 (d, 8.2 Hz, 2H), 7.29 (d, 8.2 Hz, 2H), 6.49 (dd, 15.6 and 6.4 Hz, 1H), 6.01 (dd, 15.6 and 7.7 Hz, 1H), 5.00 (d, 7.9 Hz, 1H), 3.98 (quint, 6.9 Hz, 1H), 2.41 (s, 3H), 1.52 (q, 6.3 Hz, 2H), 1.29-1.12 (m, 12H), 0.87 (t, 6.8 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 192.9, 155.6, 144.0, 137.4, 132.1, 129.8, 127.2, 54.8, 34.8, 31.8, 29.3, 29.2, 29.1, 25.2, 22.7, 21.6, 14.1.

EI-HRMS (negative ion) C₁₉H₂₈NSO₃ [M-H]⁻: requires 350.1790; found 350.1788.

(E)-4-((4-Methylphenyl)sulfonamido)-7-oxohept-5-en-1-yl acetate 4b

Synthesized according to GP C. m = 30 mg, 44% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.36 (d, 7.4 Hz, 1H), 7.72 (d, 7.9 Hz, 2H), 7.29 (d, 7.9 Hz, 2H), 6.45 (dd, 15.6 and 6.1 Hz, 1H), 5.97 (dd, 15.6 and 7.7 Hz, 1H), 4.92 (d, 8.2 Hz, 1H), 4.11-3.96 (m, 3H), 2.41 (s, 3H), 2.03 (s, 3H), 1.71-1.60 (m, 4H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 192.6, 171.1, 154.4, 141.1, 137.3, 132.3, 129.9, 127.2, 63.4, 54.5, 31.4, 24.7, 21.6, 20.9.

EI-HRMS (positive ion) C₁₆H₂₀NSO₄ [M+H-H₂O]⁺: requires 322.1113; found 322.1113.

$(E) \hbox{-} 4 \hbox{-} Methyl \hbox{-} N \hbox{-} (4 \hbox{-} methyl \hbox{-} 5 \hbox{-} oxopent \hbox{-} 3 \hbox{-} en \hbox{-} 2 \hbox{-} yl) benzene sulfon a mide 4c$

Synthesized according to GP C. m = 23 mg, 43% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.14 (s, 1H), 7.70 (d, 7.7 Hz, 2H), 7.27 (d, 7.7 Hz, 2H), 6.01 (d, 9.0 Hz, 1H), 4.81 (d, 6.1 Hz, 1H), 4.36 (sext, 7.2 Hz, 1H), 2.41 (s, 3H), 1.65 (s, 3H), 1.26 (d, 6.7 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 194.4, 152.3, 144.0, 138.5, 137.4, 129.7, 127.3, 47.8, 21.6, 20.9, 9.2.

EI-HRMS (positive ion) C13H18NSO3 [M+H]⁺: requires 268.1007; found 268.0997.

N-(4-Formyl-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-yl)-4-methylbenzenesulfonamide 4d

Synthesized according to GP C. m = 38 mg, 60% yield, dr = 4.5:1, colourless oil.

Major diastereomer:

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.40 (s, 1H), 7.79 (d, 7.9 Hz, 2H), 7.33 (d, 7.9 Hz, 2H), 6.31 (d, 1.0 Hz, 1H), 5.15 (d, 9.2 Hz, 1H), 4.16 (dt, 9.0 and 2.5 Hz, 1H), 2.82 (t, 5.6 Hz, 1H), 2.45 (s, 3H), 2.40-2.32 (m, 1H), 2.10-2.03 (m, 1H), 1.30 (s, 3H), 1.02 (d, 9.7 Hz, 1H), 0.72 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 191.1, 151.4, 144.0, 143.5, 137.5, 129.7, 127.1, 56.2, 47.2, 44.4, 38.0, 35.1, 25.8, 22.7, 20.5.

Minor diastereomer:

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.43 (s, 1H), 7.79 (d, 7.9 Hz, 2H), 7.30 (d, 7.9 Hz, 2H), 6.40 (d, 1.3 Hz, 1H), 5.11 (d, 9.2 Hz, 1H), 4.31 (dt, 8.7 and 2.5 Hz, 1H), 2.79 (t, 5.6 Hz, 1H), 2.55-2.48 (m, 1H), 2.45 (s, 3H), 2.20-2.15 (m, 1H), 1.31 (s, 3H), 1.20 (d, 9.7 Hz, 1H), 0.85 (s, 3H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 191.1, 152.1, 143.9, 142.8, 137.9, 130.0, 127.0, 53.8, 46.2, 44.4, 38.1, 28.5, 25.8, 21.6, 20.5.

EI-HRMS (positive ion) C₁₇H₂₂NSO₃ [M+H]⁺: requires 320.1320; found 320.1320.

(E)-*Tert*-butyl methyl(1-oxododec-2-en-4-yl)carbamate 4e

Synthesized according to GP C. m = 10 mg, 41% NMR yield, 21% isolated yield, light yellow oil.

¹**H** NMR (300 MHz, CDCl₃) δ (ppm): 9.56 (d, *J* = 7.7 Hz, 1H), 6.72 (dd, *J* = 15.8, 4.0 Hz, 1H), 6.09 (dd, *J* = 15.8, 7.7 Hz, 1H), 5.03-4.64 (m, 1H), 2.69 (s, 3H), 1.74-1.54 (m, 2H), 1.46 (s, 9H), 1.38-1.15 (m, 12H), 0.87 (t, *J* = 6.0 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm): (some signals are missing due to signal broadening) 193.6, 156.5, 132.1, 80.2, 31.9, 29.5, 29.2, 29.2, 28.4, 26.0, 22.7, 14.1.

EI-HRMS (positive ion) C₁₈H₃₃NO₃Na [M+Na]⁺: requires 334.2350, found 334.2358.

(E)-4-(1-Ethoxy-1-hydroxy-3-oxoisoindolin-2-yl)dodec-2-enal 4f

Synthesized according to GP C. m = 16 mg, 42% NMR yield, 29% isolated yield, light yellow oil.

¹**H NMR (300 MHz, CDCl₃) \delta (ppm):** 9.61 (d, *J* = 7.7 Hz, 1H), 7.90 (d, *J* = 7.5 Hz, 1H), 7.59-7.45 (m, 3H), 6.88 (dd, *J* = 15.8, 4.6 Hz, 1H), 6.32 (dd, *J* = 15.8, 7.7 Hz, 1H), 6.09 (d, *J* = 8.0 Hz, 1H), 4.98-4.85 (m, 1H), 4.35 (q, *J* = 7.0 Hz, 2H), 1.83-1.59 (m, 2H), 1.51-1.19 (m, 15H), 0.89 (t, *J* = 5.7 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 193.4, 168.9, 166.6, 156.8, 137.7, 131.9, 131.5, 130.2, 129.9, 129.6, 127.8, 61.7, 50.8, 34.1, 31.8, 29.4, 29.4, 29.2, 25.8, 22.7, 14.2, 14.1.

Ethyl (*E*)-3-(5-((tert-butoxycarbonyl)(methyl)amino)-5,6-dihydro-2H-pyran-3yl)acrylate 4g'

Synthesized according to GP C. At the end of the reaction, carbethoxymethylene)triphenylphosphorane (5 equiv.) was added and the mixture was stirred at room temperature overnight. 45% NMR yield of the aldehyde, 17% isolated overall yield as the ester (m = 8 mg), light yellow oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 7.22 (d, *J* = 16.2 Hz, 1H), 6.09 (broad s, 1H), 5.73 (d, *J* = 16.2 Hz, 1H), 4.88-4.57 (m, 1H), 4.40-4.11 (m, 4H), 3.90-3.65 (m, 2H), 2.79 (s, 3H), 1.46 (s, 9H), 1.30 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm): (some signals are missing due to signal broadening) 166.6, 142.1, 137.6, 132.9, 117.6, 80.1, 68.2, 67.3, 64.5, 60.6, 50.2, 48.6, 30.9, 28.4, 17.7, 14.3.

EI-HRMS (positive ion) C₁₆H₂₆NO₅ [M+H]⁺: requires 312.1811; found 312.1811.

Diethyl (E)-2-(1-oxododec-2-en-4-yl)malonate 6a

Synthesized according to GP D. m = 51 mg, 75% yield, colourless oil.

¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.51 (d, 7.9 Hz, 1H), 6.80 (dd, 15.6 and 9.2 Hz, 1H), 6.12 (dd, 15.6 and 7.9 Hz, 1H), 4.20 (q, 7.2 Hz, 2H), 4.17 (q, 7.2 Hz, 2H), 3.48 (d, 7.7 Hz, 1H), 3.11-2.99 (m, 1H), 1.59-1.43 (m, 2H), 1.30-1.19 (m, 18H), 0.86 (t, 6.5 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 193.7, 167.8, 167.6, 157.2, 134.4, 61.8, 61.6, 55.8, 42.5, 31.9, 31.8, 29.4, 29.3, 29.2, 27.1, 22.7, 14.1.

EI-HRMS (positive ion) C₂₉H₃₃O₅ [M+H]⁺: requires 341.2328; found 341.2323.

Diethyl (E)-2-(6-oxohex-4-en-3-yl)malonate 6b

Synthesized according to GP D. m = 35 mg, 68% yield, colourless oil.

¹**H NMR** (**300 MHz**, **CDCl**₃) δ (ppm): 9.51 (d, 7.7 Hz, 1H), 6.80 (dd, 15.6 and 9.2 Hz, 1H), 6.13 (dd, 15.6 and 7.9 Hz, 1H), 4.20 (q, 7.2 Hz, 2H), 4.17 (q, 7.2 Hz, 2H), 3.50 (d, 7.7 Hz, 1H), 3.03-2.93 (m, 1H), 1.70-1.61 (m, 1H), 1.55-1.45 (m, 1H), 1.26 (t, 7.2 Hz, 3H), 1.23 (t, 7.2 Hz, 3H), 0.91 (t, 7.4 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 193.6, 167.8, 167.6, 156.8, 134.5, 61.8, 61.6, 55.5, 44.0, 25.0, 14.1, 11.6.

EI-HRMS (positive ion) C₁₃H₂₀O₅Na [M+Na]⁺: requires 279.1208; found 279.1201.

Diethyl (E)-2-(5-oxo-1-phenylpent-3-en-2-yl)malonate 6c

Synthesized according to GP D. m =53 mg, 84% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.44 (d, 7.7 Hz, 1H), 7.32-7.20 (m, 3H), 7.14 (d, 7.4 Hz, 2H), 6.88 (dd, 15.9 and 8.7 Hz, 1H), 5.97 (dd, 15.9 and 7.7 Hz, 1H), 4.20 (q, 7.2 Hz, 4H), 3.52 (d, 6.7 Hz, 1H), 3.36 (quint, 7.5 Hz, 1H), 2.97 (dd, 13.6 and 6.1 Hz, 1H), 2.79 (dd, 13.6 and 8.2 Hz, 1H), 1.26 (t, 7.2 Hz, 6H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 193.5, 167.8, 167.6, 156.1, 137.7, 134.2, 129.2, 128.7, 126.9, 61.9, 61.7, 54.6, 44.0, 38.1, 14.1.

EI-HRMS (positive ion) C₁₈H₂₃O₅ [M+H]⁺: requires 319.1545; found 319.1551.

Diethyl (E)-2-(7-acetoxy-1-oxohept-2-en-4-yl)malonate 6d

Synthesized according to GP D. m = 54 mg, 82% yield, colourless oil.

¹**H NMR** (**300 MHz**, **CDCl**₃) δ (ppm): 9.51 (d, 7.7 Hz, 1H), 6.79 (dd, 15.9 and 9.2 Hz, 1H), 6.13 (dd, 15.9 and 7.9 Hz, 1H), 4.20 (q, 7.2 Hz, 2H), 4.16 (q, 7.2 Hz, 2H), 4.03 (t, 5.1 Hz, 1H), 3.48 (d, 7.4 Hz, 1H), 3.11-3.01 (m, 1H), 2.02 (s, 3H), 1.68-1.52 (m, 4H), 1.25 (t, 6.9 Hz, 3H), 1.23 (t, 6.9 Hz, 3H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 193.4, 171.0, 167.5, 167.4, 156.0, 134.7, 63.7, 61.9, 61.7, 55.7, 42.1, 28.3, 26.3, 20.9, 14.1.

EI-HRMS (positive ion) C₁₆H₂₄O₇Na [M+Na]⁺: requires 351.1420; found 351.1425.

Diethyl (E)-2-(1-(1,3-dioxoisoindolin-2-yl)-6-oxohex-4-en-3-yl)malonate 6e

Synthesized according to GP D. m = 41 mg, 51% yield, white solid.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.51 (d, 7.7 Hz, 1H), 7.91-7.83 (m, 2H), 7.79-7.72 (m, 2H), 6.88 (dd, 15.9 and 9.2 Hz, 1H), 6.27 (dd, 15.9 and 7.7 Hz, 1H), 4.22 (q, 7.2 Hz, 2H), 4.19 (q, 7.2 Hz, 2H), 3.73 (t, 6.9 Hz, 2H), 3.59 (d, 7.2 Hz, 1H), 3.21-3.11 (m, 1H), 2.10-1.93 (m, 2H), 1.27 (t, 7.2 Hz, 3H), 1.26 (t, 7.2 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 193.3, 168.2, 167.3, 167.3, 155.1, 134.9, 134.1, 132.0, 123.4, 62.0, 61.8, 55.5, 40.0, 35.7, 30.6, 14.1.

EI-HRMS (positive ion) C₂₁H₂₄NO₇ [M+H]⁺: requires 402.1553; found 402.1547.

m.p. (°C) 72-74

Diethyl (E)-2-(1-cyano-6-oxohex-4-en-3-yl)malonate 6f

Synthesized according to GP D. m = 24 mg, 43% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.55 (d, 7.7 Hz, 1H), 6.78 (dd, 15.9 and 9.5 Hz, 1H), 6.22 (dd, 15.9 and 7.7 Hz, 1H), 4.23 (q, 7.2 Hz, 2H), 4.20 (q, 7.2 Hz, 2H), 3.52 (d, 6.9 Hz, 1H), 3.23-3.12 (m, 1H), 2.46-2.24 (m, 2H), 2.11-2.00 (m, 1H), 1.95-1.83 (m, 1H), 1.28 (t, 7.2 Hz, 3H), 1.26 (t, 7.2 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 192.8, 167.1, 153.1, 135.7, 118.3, 62.2, 62.1, 55.3, 41.4, 27.4, 15.4, 14.1.

EI-HRMS (positive ion) C14H19O5Na [M+Na]+: requires 304.1161; found 304.1158.

Diethyl 2-(2E,6Z)-1-oxonona-2,6-dien-4-yl)malonate 6g

Synthesized according to GP D. m = 48 mg, 81% yield, colourless oil.

¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.48 (d, 7.9 Hz, 1H), 6.86 (dd, 15.6 and 8.7 Hz, 1H), 6.10 (dd, 15.6 and 7.9 Hz, 1H), 5.55-5.45 (m, 1H), 5.28-5.17 (m, 1H), 4.20 (q, 7.2 Hz, 2H), 4.17 (q, 7.2 Hz, 2H), 3.55 (d, 7.4 Hz, 1H), 3.16-3.06 (m, 1H), 2.43-2.22 (m, 2H), 1.99 (quint, 7.4 Hz, 1H), 1.26 (t, 6.9 Hz, 3H), 1.23 (t, 6.9 Hz, 3H), 0.93 (t, 7.4 Hz, 3H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 193.6, 167.9, 167.6, 156.6, 135.3, 134.1, 124.0, 61.8, 61.6, 54.8, 42.5, 29.5, 20.7, 14.1.

EI-HRMS (positive ion) C₁₆H₂₅O₄Na [M+Na]⁺: requires 319.1521; found 319.1509.

Diethyl 2-((*E*)-1-(oxiran-2-yl)-5-oxopent-3-en-2-yl)malonate 6h

Synthesized according to GP D. m = 45 mg, 80% yield, dr = 1.1:1, colourless oil.

Major diastereomer:

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.53 (d, 7.7 Hz, 1H), 6.94 (dd, 15.9 and 7.7 Hz, 1H), 6.20 (dd, 15.9 and 7.9 Hz, 1H), 4.20 (q, 7.2 Hz, 2H), 4.17 (q, 7.2 Hz, 2H), 3.59 (d, 7.2 Hz, 1H), 3.38-3.25 (m, 1H), 2.94-2.87 (m, 1H), 2.79-2.72 (m, 1H), 2.49-2.42 (m, 1H), 1.98-1.88 (m, 1H), 1.76-1.64 (m, 1H), 1.26 (t, 6.9 Hz, 3H), 1.24 (t, 6.9 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 193.5, 167.4, 167.4, 155.8, 134.1, 62.0, 61.9, 55.1, 50.1, 46.7, 40.5, 35.0, 14.1.

Major diastereomer:

¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.53 (d, 7.7 Hz, 1H), 6.92 (dd, 15.9 and 7.2 Hz, 1H), 6.17 (dd, 15.9 and 7.9 Hz, 1H), 4.20 (q, 7.2 Hz, 2H), 4.17 (q, 7.2 Hz, 2H), 3.62 (d, 6.4 Hz, 1H), 3.38-3.25 (m, 1H), 2.94-2.87 (m, 1H), 2.79-2.72 (m, 1H), 2.49-2.42 (m, 1H), 1.98-1.88 (m, 1H), 1.76-1.64 (m, 1H), 1.26 (t, 6.9 Hz, 3H), 1.24 (t, 6.9 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 193.5, 167.5, 167.4, 155.6, 134.5, 62.0, 61.8, 55.3, 49.9, 47.3, 40.3, 35.0, 14.1.

EI-HRMS (positive ion) C₁₄H₂₀O₆Na [M+Na]⁺: requires 307.1158; found 307.1172.

Diethyl (E)-2-(9-bromo-1-oxonon-2-en-4-yl)malonate 6i

Synthesized according to GP D. m = 43 mg, 55% yield, colourless oil.

¹**H NMR** (**300 MHz**, **CDCl**₃) δ (ppm): 9.52 (d, 7.9 Hz, 1H), 6.79 (dd, 15.9 and 9.5 Hz, 1H), 6.13 (dd, 15.9 and 7.9 Hz, 1H), 4.21 (q, 7.2 Hz, 2H), 4.17 (q, 7.2 Hz, 2H), 3.48 (d, 7.4 Hz, 1H), 3.38 (d, 6.7 Hz, 2H), 3.11-3.01 (m, 1H), 1.83 (quint, 7.2 Hz, 2H), 1.56-1.38 (m, 6H), 1.25 (t, 6.9 Hz, 3H), 1.22 (t, 6.9 Hz, 3H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 193.6, 167.9, 167.6, 156.6, 135.3, 134.1, 124.0, 61.8, 61.6, 54.8, 42.5, 29.5, 20.7, 14.1.

EI-HRMS (positive ion) C₁₆H₂₆O₅Br [M+H]⁺: requires 377.0964; found 377.0952.

Diethyl (E)-2-(4-methyl-5-oxopent-3-en-2-yl)malonate 6j

Synthesized according to GP D. m = 21.5 mg, 42% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.39 (s, 1H), 6.39 (d, 10.0 Hz, 1H), 4.22 (q, 7.2 Hz, 2H), 4.15 (q, 7.2 Hz, 2H), 3.53-3.42 (m, 1H), 3.39 (d, 8.7 Hz, 1H), 1.80 (s, 3H), 1.28 (t, 6.9 Hz, 3H), 1.22 (t, 6.9 Hz, 3H), 1.17 (d, 6.4 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 195.2, 167.8, 154.0, 139.5, 61.7, 61.6, 57.0, 33.5, 17.7, 14.1, 14.1, 9.3.

EI-HRMS (positive ion) C₁₃H₂₀O₅Na [M+Na]⁺: requires 279.1208; found 279.1198.

Diethyl 2-(5-formyl-3,6-dihydro-2H-pyran-3-yl)malonate 6k

Synthesized according to GP D. m = 21.5 mg, 40% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.43 (s, 1H), 6.92-6.88 (m, 1H), 4.34-4.30 (m, 2H), 4.24 (q, 7.2 Hz, 2H), 4.23 (q, 7.2 Hz, 2H), 3.82 (dd, 11.8 and 4.4 Hz, 1H), 3.72 (dd, 11.8 and 4.4 Hz, 1H), 3.54 (d, 8.4 Hz, 1H), 3.24-3.15 (m, 1H), 1.28 (t, 6.9 Hz, 6H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 191.7, 167.6, 146.4, 141.3, 66.4, 63.7, 62.0, 61.9, 53.3, 31.5, 14.1.

EI-HRMS (positive ion) C13H19O6 [M+H]⁺: requires 271.1182; found 271.1193.

Diethyl (E)-2-(3-formylcyclooct-2-en-1-yl)malonate 6l

Synthesized according to GP D. m = 32 mg, 54% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.35 (s, 1H), 6.47 (m, 8.2 Hz, 1H), 4.16 (q, 7.2 Hz, 2H), 4.13 (q, 7.2 Hz, 2H), 3.48-3.38 (m, 2H), 2.71 (dt, 9.7 and 4.1 Hz, 1H), 2.05 (td, 13.2 and 2.8 Hz, 1H), 1.79-1.67 (m, 2H), 1.79-1.67 (m, 2H), 1.62-1.53 (m, 2H), 1.43-1.29 (m, 2H), 1.21 (t, 7.2 Hz, 3H), 1.18 (t, 7.2 Hz, 3H).

¹³C NMR (**75 MHz, CDCl**₃) δ (ppm): 191.7, 167.6, 146.4, 141.3, 66.4, 63.7, 62.0, 61.9, 53.3, 31.5, 14.1.

EI-HRMS (positive ion) C13H19O6 [M+H]⁺: requires 271.1182; found 271.1193.

Diethyl 2-(3-formyl-6-(prop-1-en-2-yl)cyclohex-2-en-1-yl)malonate 6m

Synthesized according to GP D. m = 29.5 mg, 48% yield, colourless oil. dr > 95:5.

¹**H** NMR (300 MHz, CDCl₃) δ (ppm): 9.46 (s, 1H), 6.89 (s, 1H), 4.91 (s, 1H), 4.83 (s, 1H), 4.24 (qd, 7.2 and 2.8 Hz, 2H), 4.17 (q, 7.2 Hz, 2H), 3.72 (d, 3.6 Hz, 1H), 3.15-3.04 (m, 1H), 2.51-2.40 (m, 1H), 2.24 (td, 11.4 and 2.6 Hz, 1H), 2.14-2.00 (m, 1H), 1.90-1.81 (m, 1H), 1.71 (s, 3H), 2.24 (td, 12.4 and 5.1 Hz, 1H), 1.29 (t, 7.2 Hz, 3H), 1.23 (t, 7.2 Hz, 3H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 194.1, 169.8, 167.8, 150.5, 145.7, 141.2, 113.4, 61.9, 61.4, 52.2, 45.2, 39.9, 27.4, 21.4, 19.0, 14.2, 14.1.

EI-HRMS (positive ion) C₁₇H₂₅O₅ [M+H]⁺: requires 309.1702; found 309.1705.

Diethyl 2-(4-formyl-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-yl)malonate 6n

Synthesized according to GP D. m = 36 mg, 58% yield, colourless oil. dr > 95:5.

¹**H** NMR (300 MHz, CDCl₃) δ (ppm): 9.44 (s, 1H), 6.62 (s, 1H), 4.25 (q, 7.2 Hz, 2H), 4.21 (q, 7.2 Hz, 2H), 3.43-3.32 (m, 2H), 2.88 (t, 5.4 Hz, 1H), 2.39 (dt, 10.0 and 5.6 Hz, 1H), 2.02 (t, 5.6 Hz, 1H), 1.35 (s, 3H), 1.29 (t, 7.2 Hz, 3H), 1.27 (t, 7.2 Hz, 3H), 1.01 (d, 9.7 Hz, 1H), 0.79 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 191.3, 168.0, 167.8, 152.4, 146.3, 61.8, 61.8, 54.3, 44.1, 41.1, 40.8, 38.5, 27.9, 25.9, 20.6, 14.1.

EI-HRMS (positive ion) C₁₇H₂₅O₅ [M+H]⁺: requires 309.1702; found 309.1696.

Diethyl 2-((*E*)-1-(4-((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3oxopropyl)phenoxy)-6-oxohex-4-en-3-yl)malonate 60

Synthesized according to GP D. m = 67 mg, 61% yield, white gum.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.52 (d, 7.9 Hz, 1H), 7.01 (d, 8.2 Hz, 1H), 6.92 (dd, 15.9 and 9.2 Hz, 1H), 6.77 (d, 8.2 Hz, 2H), 6.14 (dd, 15.9 and 7.9 Hz, 1H), 4.96 (d, 7.7 Hz, 1H), 4.59-4.45 (m, 1H), 4.34-4.13 (m, 5H), 4.02-3.86 (m, 2H), 3.70 (s, 3H), 3.62 (d, 6.9 Hz, 1H), 3.42-3.32 (m, 1H), 3.07-2.94 (m, 2H), 2.20-2.07 (m, 1H), 2.06-1.94 (m, 1H), 1.41 (s, 9H), 1.26 (t, 7.2 Hz, 3H), 1.25 (t, 7.2 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 193.5, 172.4, 167.6, 167.6, 157.5, 156.0, 155.1, 134.5, 130.4, 128.4, 114.5, 80.0, 64.9, 61.9, 61.8, 55.4, 54.6, 52.2, 39.6, 37.5, 31.4, 28.3, 14.1, 13.9.

EI-HRMS (positive ion) C₂₈H₃₉NO₁₀Na [M+Na]⁺: requires 572.2472; found 572.2484.

Methyl (E)-2,2-dichloro-3-(3-oxoprop-1-en-1-yl)undecanoate 6p

Synthesized according to GP D. m = 34 mg, 53% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.58 (d, 7.7 Hz, 1H), 6.68 (dd, 15.6 and 9.5 Hz, 1H), 6.22 (dd, 15.6 and 7.7 Hz, 1H), 3.89 (s, 3H), 3.29 (td, 10.0 and 2.6 Hz, 1H), 1.80-1.55 (m, 2H), 1.34-1.19 (m, 12H), 0.87 (t, 6.4 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 193.1, 165.7, 152.1, 137.0, 86.5, 54.7, 54.6, 31.8, 30.0, 29.3, 29.2, 29.2, 27.0, 22.7, 14.1.

EI-HRMS (positive ion) C₁₅H₂₃O₃Cl₂ [M-H₂+H]⁺: requires 321.1024; found 321.1018.

(E)-3-(3-Oxoprop-1-en-1-yl)undecanenitrile 6q

Synthesized according to GP D. m = 36 mg, 81% yield, colourless oil.

¹**H NMR (300 MHz, d6-Acetone) δ (ppm):** 9.59 (d, 7.7 Hz, 1H), 6.88 (dd, 15.6 and 7.9 Hz, 1H), 6.21 (dd, 15.6 and 7.7 Hz, 1H), 2.85-2.78 (m, 1H), 2.77-2.70 (m, 2H), 1.70-1.55 (m, 2H), 1.40-1.25 (m, 12H), 0.87 (t, 6.4 Hz, 3H).

¹³C NMR (**75** MHz, d6-Acetone) δ (ppm): 194.1, 158.4, 134.5, 118.9, 39.8, 34.0, 32.6, 29.9, 29.9, 29.8, 27.5, 23.3, 22.1, 14.3.

EI-HRMS (positive ion) C₁₄H₂₄ON [M+H]⁺: requires 222.1858; found 222.1855.

(E)-4-(2,2,2-Trifluoroethyl)dodec-2-enal 6r

Synthesized according to GP D. m = 37.5 mg, 71% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.59 (d, 7.7 Hz, 1H), 6.88 (dd, 15.6 and 7.9 Hz, 1H), 6.21 (dd, 15.6 and 7.7 Hz, 1H), 2.85-2.78 (m, 1H), 2.77-2.70 (m, 2H), 1.70-1.55 (m, 2H), 1.40-1.25 (m, 12H), 0.87 (t, 6.4 Hz, 3H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 193.6, 158.5, 133.4, 126.3 (q, 277 Hz), 38.4 (q, 28 Hz), 37.1 (br. s), 34.2, 31.8, 29.4, 29.4, 29.2, 26.7, 22.7, 14.1.

EI-HRMS (negative ion) C₁₄H₂₂OF₃ [M-H]⁻: requires 263.1623; found 263.1629.

(E)-4-(2-nitropropan-2-yl)dodec-2-enal 6s

Synthesized according to GP D. m = mg, 53% yield, colourless oil.

¹**H** NMR (300 MHz, CDCl₃) δ (ppm): 9.55 (d, J = 7.6 Hz, 1H), 6.54 (dd, J = 15.6, 9.9 Hz, 1H), 6.17 (dd, J = 15.6, 7.6 Hz, 1H), 2.90 (td, J = 9.9, 3.1 Hz, 1H), 1.58 (s, 3H), 1.55 (s, 3H) 1.28-1.17 (m, 14H), 0.86 (t, J = 6.4 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 192.9, 153.7, 136.6, 90.5, 51.6, 31.8, 29.3, 29.2, 29.2, 28.8, 27.6, 24.6, 23.1, 22.6, 14.1.

EI-HRMS (positive ion) C₁₅H₂₈NO₃ [M+H]⁺: requires 270.2076; found 270.2069.

(E)-4-(2-Oxo-2-phenylethyl)dodec-2-enal 6t

Synthesized according to GP D. m = 40 mg, 67% yield, colourless oil.

¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.49 (d, 7.7 Hz, 1H), 7.93 (d, 7.4 Hz, 2H), 7.58 (t, 7.4 Hz, 1H), 7.47 (t, 7.4 Hz, 2H), 6.80 (dd, 15.6 and 7.2 Hz, 1H), 6.11 (dd, 15.6 and 7.7 Hz, 1H), 3.19-3.05 (m, 3H), 1.62-1.48 (m, 2H), 1.33-1.17 (m, 12H), 0.87 (t, 6.5 Hz, 3H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 197.9, 194.1, 161.2, 136.8, 133.4, 132.6, 128.8, 128.1, 42.8, 38.0, 34.0, 31.9, 29.6, 29.5, 29.3, 27.2, 22.7, 14.1.

EI-HRMS (positive ion) C₂₀H₂₉O₂ [M+H]⁺: requires 301.2168; found 301.2170.

(E)-4-(2-(4-Chlorophenyl)-2-oxoethyl)dodec-2-enal 6u

Synthesized according to GP D. m = 40.0 mg, 60% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.48 (d, 7.7 Hz, 1H), 7.86 (d, 7.7 Hz, 2H), 7.44 (d, 7.7 Hz, 2H), 6.78 (dd, 15.6 and 6.1 Hz, 1H), 6.10 (dd, 15.6 and 7.7 Hz, 1H), 3.15-3.01 (m, 3H), 1.60-1.45 (m, 2H), 1.33-1.19 (m, 12H), 0.87 (t, 6.2 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 196.7, 194.0, 160.8, 139.9, 135.1, 132.6, 129.5, 129.1, 42.8, 37.9, 34.0, 31.9, 29.6, 29.5, 29.3, 27.2, 22.7, 14.1.

EI-HRMS (positive ion) C₂₀H₂₈ClO₂ [M+H]⁺: requires 335.1778; found 335.1765.

(E)-4-(2-Oxo-2-(4-(trifluoromethyl)phenyl)ethyl)dodec-2-enal 6v

Synthesized according to GP D. m = 44.0 mg, 60% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.49 (d, 7.7 Hz, 1H), 8.03 (d, 7.9 Hz, 2H), 7.74 (d, 7.9 Hz, 2H), 6.78 (dd, 15.6 and 6.9 Hz, 1H), 6.11 (dd, 15.6 and 7.7 Hz, 1H), 3.20-3.06 (m, 3H), 1.62-1.49 (m, 2H), 1.36-1.20 (m, 12H), 0.87 (t, 6.1 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 196.9, 193.8, 160.5, 139.4, 134.7 (q, 32.8 Hz), 132.8, 128.3, 125.8 (q, 3.8 Hz), 123.5 (q, 272.3 Hz), 43.1, 37.8, 34.0, 31.9, 29.5, 29.4, 29.3, 27.2, 22.7, 14.1.

¹⁹F NMR (188 MHz, CDCl₃) δ (ppm): -63.65

EI-HRMS (positive ion) C₂₁H₂₈F₃O₂ [M+H]⁺: requires 369.4477; found 369.4470.

(E)-4-(2-(3-methoxyphenyl)-2-oxoethyl)dodec-2-enal 6w

Synthesized according to GP D. m = 42.0 mg, 64% yield, colourless oil.

¹**H NMR (300 MHz, CDCl₃) δ (ppm):** 9.48 (d, 7.9 Hz, 1H), 7.50 (d, 7.7 Hz, 1H), 7.45 (s, 1H), 7.37 (t, 7.7 Hz, 1H), 7.12 (d, 7.7 Hz, 1H), 6.78 (dd, 15.6 and 6.4 Hz, 1H), 6.11 (dd, 15.6 and 7.7 Hz, 1H), 3.85 (s, 3H), 3.16-3.05 (m, 3H), 1.60-1.44 (m, 2H), 1.36-1.18 (m, 12H), 0.87 (t, 6.2 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ (ppm): 197.8, 194.1, 161.2, 159.9, 138.1, 132.6, 129.7, 120.6, 119.8, 112.3, 55.5, 42.9, 38.1, 34.0, 31.9, 29.6, 29.5, 29.3, 27.2, 22.7, 14.2.

EI-HRMS (positive ion) C₂₁H₃₁O₃ [M+H]⁺: requires 331.2273; found 331.2260.

IX. References

1. (a) Miyazawa, K.; Koike, T.; Akita, M. *Chem. Eur. J.* 2015, **21**, 11677; (b) Greulich, T. W.; Daniliuc, C. G.; Studer, A. *Org. Lett.* 2015, **17**, 254; (c) Barthelemy, A.; Tuccio, B.; Magnier, E.; Dagousset, G. *Angew. Chem. Int. Ed.* 2018, **57**, 13790.

2. (a) H. G. Yayla, F. Peng, I. K. Mangion, M. McLaughlin, L.-C. Campeau, I. W. Davies, D. A. DiRocco, R. R. *Knowles, Chem. Sci.* 2016, **7**, 2066; (b) Y. Ji, D. A. DiRocco, C. M. Hong, M. K. Wismer, M. Reibarkh, *Org. Lett.* 2018, **20**, 2156.

3. C. G. Hatchard, C. A. Parker, Proc. R. Soc. London, Ser. A 1956, 235, 518.

X. NMR spectra of new compounds

1-(1-Ethoxy-1-hydroxy-3-oxoisoindolin-2-yl)-2,4,6-trimethylpyridin-1-ium tetrafluoroborate 2i

(E)-4-methoxydodec-2-enal 3a

(E)-4-methoxy-5-phenylpent-2-enal 3b

(2E,6Z)-4-Methoxynona-2,6-dienal 3c

(E)-6-(1,3-Dioxoisoindolin-2-yl)-4-methoxyhex-2-enal 3e

$(E) \hbox{-} 3 \hbox{-} Methoxy cyclooct \hbox{-} 1 \hbox{-} ene \hbox{-} 1 \hbox{-} carbaldehyde 3 f$

3-Methoxy-4-(prop-1-en-2-yl)cyclohex-1-ene-1-carbaldehyde 3g

(E)-4-(2-Phenoxyethoxy)dodec-2-enal 3h

(E)-4-(3-Chloropropoxy)dodec-2-enal 3j

(E)-3-((1-Oxododec-2-en-4-yl)oxy)propyl benzoate 3k

(E)-4-((1,3-Difluoropropan-2-yl)oxy)dodec-2-enal 3l

(E)-4-Methyl-N-(1-oxododec-2-en-4-yl)benzenesulfonamide 4a

(E)-4-((4-Methylphenyl)sulfonamido)-7-oxohept-5-en-1-yl acetate 4b

 $(E) \hbox{-} 4 \hbox{-} Methyl \hbox{-} N \hbox{-} (4 \hbox{-} methyl \hbox{-} 5 \hbox{-} oxopent \hbox{-} 3 \hbox{-} en \hbox{-} 2 \hbox{-} yl) benzene sulfon a mide 4c$

 $\it N-(4-formy l-6, 6-dimethyl bicyclo [3.1.1] hept-3-en-2-yl)-4-methyl benzenesul fon a mide 4d$

(E)-tert-butyl methyl(1-oxododec-2-en-4-yl)carbamate 4e

(E)-4-(1-ethoxy-1-hydroxy-3-oxoisoindolin-2-yl)dodec-2-enal 4f

1.461.301.261.26 \sim 7.18 $^{7.18}$ ∑ 5.77 ∑ 5.77 - 5000 - 4500 Boc - 4000 { } ; ; / / - 3500 - 3000 ĊO₂Et - 2500 - 2000 -1500 - 1000 - 500 - 0 1.00<u>-1</u> 1.44 1.11 4.07 2.14 2.89.I 8.974 3.294 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm) 12.5 11.5 10.5 ~ 142.08 - 137.56 ~ 132.91 68.20
63.26
64.53
60.64 ~ 50.21 ~ 48.58 -- 30.90 -- 28.43 ---- 80.08 -1E+05 -1E+05 Boc -1E+05 -1E+05 - 90000 - 80000 ĊO₂Et - 70000 - 60000 - 50000 - 40000 - 30000 - 20000 10000 - 0 -10000 150 140 130 120 110 100 90 80 f1 (ppm) 70 220 210 200 190 180 170 160 60 . 50 40 . 30 20 10 0

Ethyl (E)-3-(5-((tert-butoxycarbonyl)(methyl)amino)-5,6-dihydro-2H-pyran-3yl)acrylate 4g'

Diethyl (E)-2-(1-oxododec-2-en-4-yl)malonate 6a

Diethyl (E)-2-(6-oxohex-4-en-3-yl)malonate 6b

Diethyl (E)-2-(5-oxo-1-phenylpent-3-en-2-yl)malonate 6c

Diethyl (E)-2-(7-acetoxy-1-oxohept-2-en-4-yl)malonate 6d

Diethyl (E)-2-(1-(1,3-dioxoisoindolin-2-yl)-6-oxohex-4-en-3-yl)malonate 6e

Diethyl (*E*)-2-(1-cyano-6-oxohex-4-en-3-yl)malonate 6f

Diethyl 2-(2E,6Z)-1-oxonona-2,6-dien-4-yl)malonate 6f

Diethyl 2-((*E*)-1-(oxiran-2-yl)-5-oxopent-3-en-2-yl)malonate 6h

Diethyl (E)-2-(9-bromo-1-oxonon-2-en-4-yl)malonate 6i

| | |

° ppm

Diethyl (E)-2-(4-methyl-5-oxopent-3-en-2-yl)malonate 6j

Diethyl 2-(5-formyl-3,6-dihydro-2H-pyran-3-yl)malonate 6k

Diethyl (E)-2-(3-formylcyclooct-2-en-1-yl)malonate 6l

Diethyl 2-(3-formyl-6-(prop-1-en-2-yl)cyclohex-2-en-1-yl)malonate 6m

Diethyl 2-(4-formyl-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-yl)malonate 6n

Diethyl 2-((*E*)-1-(4-((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3oxopropyl)phenoxy)-6-oxohex-4-en-3-yl)malonate 60

Methyl (E)-2,2-dichloro-3-(3-oxoprop-1-en-1-yl)undecanoate 6p

(E)-3-(3-Oxoprop-1-en-1-yl)undecanenitrile 6q

(E)-4-(2,2,2-Trifluoroethyl)dodec-2-enal 6r

(E)-4-(2-nitropropan-2-yl)dodec-2-enal 6s

(E)-4-(2-(4-Chlorophenyl)-2-oxoethyl)dodec-2-enal 6u

(E)-4-(2-Oxo-2-(4-(trifluoromethyl)phenyl)ethyl)dodec-2-enal 6v

(E)-4-(2-(3-methoxyphenyl)-2-oxoethyl)dodec-2-enal 6w

