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1. Materials and Methods

Reagents. Silver tetrafluoroborate (AgBF,), potassium tetrachloroplatinate(Il)
(K,PtCly), copper(I) iodide (Cul), 2,6-diacetylpyridine, pivalic acid, (1R)-(—)-myrtenal
were reagent grade and used as received. Compounds 2311, 715210 and 5531 were
synthesized according to the previously reported procedures. Other reagents and

solvents were employed as purchased.

Experimental apparatus. "H NMR spectra was collected on a Bruker Ascend™
400MHz spectrometer with TMS as the internal standard. '*C NMR spectra were
recorded on a Bruker Ascend™ 400 MHz spectrometer at 100 MHz. Time-of-flight
mass spectra (TOF—MS) were obtained on matrix-assisted laser desorption ionization-
time of flight (autoflex speed TOF/TOF, Bruker). UV—Vis spectra were recorded on a
UV-1800 Shimadzu spectrometer. HPLC was performed on an Agilent system (1260
Infinity II) equipped with a DAD detector. Fluorescent spectra were recorded on a
Fluoromax-4 spectrofluorometer (Horiba Scientific). Circular dichroism (CD)
measurements were performed on a Jasco J-1500 circular dichroism spectrometer,

equipped with a PFD-425S/15 Peltier-type temperature controller.

DFT and TD-DFT calculations. All of the optimized geometries were optimized via

Gaussian 09 (revision D.01) software package.!5¥

Method for determination of self-association constant of 1 by UV-Vis measurements.
To acquire the detailed thermodynamic parameters for the temperature-dependent self-
assembly process, the obtained UV—Vis spectra data were normalized between 0 and 1
using the following Eq. S1. The normalized UV—Vis heating curve is further fitted by
the monomer—dimer mathematical model,[3*] as depicted by Eq. S2.

A(T) - A on

aa (T) e —
T Ay~ Amon  (Eq. S1)
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aagg(T) =

T-T,
1+exp

T*

(Eq. S2)

In these equations, 4ty is UV—-Vis spectra absorbance date at a given temperature.
Amony 1 the UV—Vis absorbance date at high temperature or good solvent corresponding
to the monomeric state, while 4,4 1s UV—Vis spectra absorbance date at a given low
temperature or poor solvent corresponding to the self-complexed dimeric state. Tj, is
the temperature at which the fraction of the self-complexed dimer (a,g,) is 0.5. T* value
is obtained by fitting equation (Eq. S2) to the experimental data. Depending on T, at

various concentration, the dimerization binding constant (K4;,) can be calculated.

Method for determination of the 1, dimeric self-complexion constant by 'H NMR
measurements. Depending on 'H NMR dilution experiments, the dimerization binding
constant can be calculated. In particular, it is based on the concentration-dependent

proton resonance versus concentration, according to the following equation:[S¢]

[T+ 8K, [M], + 1
[1+8K,[M], -1

6obs:6m+(6mc_6m)Xfc=6m+(8mc_6m)x

(Eq. S3)
In particular, dys, Om, and o, are the observed, monomeric (at infinite diluted state)
and dimeric (at infinite concentrated state) chemical shifts, respectively. [M], is the

monomer concentration.

Method for determination of the host/guest binding constants. The non-covalent

binding constants (K,) of host/guest complexes 1252 and 3 2 were determined via

UV—Vis titration experiments. The collected absorbance data (4) at the specific
wavelength were probed versus concentration of the titrating species (C,). A global
fitting analysis was adopted via the Matlab—based global analysis program (fitting
program) written by P. Thordarson et al. (Supramol. Chem. 2012, 24, 585; Chem. Soc.
Rev. 2011, 40, 1305). 187
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Method for determination of the “real” association constant of 152. The experimental
result provided the “apparent” binding constant for complex 152, since the non-
covalent complexation between metallotweezer 1 (A) and guest 2 (B) is governed by
three equilibria:

2A S A, (Eq.S5)

2B+A, = 2AB(Eq. S6)

A+B = AB(Eq.S7)

where A, A,, B and AB represent free 1, self-complexation 1,, free 2 and complex
152, respectively. The equilibrium constants in this system are defined in the following

equation:
Kq i 5[40/ 4 (Eq. S8)
Kq=[4 B/ 8,Ix[ B) gq, s9)
Ko=14F ( KB B (gq. S10)
where K4, Kq and K, are the dimerization constant of A, the disproportionation

constant of B with A, (the “apparent” binding constant), and the “real” association

constant of A and B, respectively. The K, value is determined according to Eq. S11:158

Ko=Ka O5KD" (Eq. S11)
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2. Synthetic routes to compounds 1 and 3

The synthetic routes toward the targeted compounds 1 and 3 are quite
straightforward (Scheme S1). The key intermediate 5 was obtained via coordination
between the chiral “pineno”-fused 2,2":6',2"-terpyridine 6 and Pt(DMSO),Cl,. It further
underwent Cul-catalyzed Pt(II)—acetylene coupling reaction with compounds 7 and 4
to provide the targeted compounds 1 and 3, respectively. The structures for 1 and 3
were validated by means of NMR and MALDI-TOF-MS experiments (Figures S7—
S11).

(DMSO),PtCl, , AgBF,

CH4CN, 85°C

Scheme S1. Synthetic routes to compounds 1 and 3.
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To a solution of compound 8 (23.0 mmol, 5.00 g) in pyridine (30 mL) was added a
solution of iodine (46.0 mmol, 11.7 g) in pyridine (30 mL). The mixture was heated at
110 °C for 3 h. Upon cooling, the dull yellow solid was filtered and washed with cold
ethanol to afford 9 as a brown solid (11.5 g, 80%), which were used for the next step
without further purification. To a solution of compound 9 (2.00 g, 3.18 mmol) in
formamide (30 mL) were added ammonium acetate (1.00 g, 13.0 mmol) and (1R)-(—)-
myrtenal (1.00 g, 6.70 mmol) under nitrogen. The reaction mixture was stirred at 80 °C
overnight under nitrogen atmosphere. After the reaction was complete, the solvent was
evaporated under reduced pressure, and the residue was purified by flash column
chromatography (alumina, CH,CIl,/PE,1 : 1, v/v as the eluent) to afford 6 as a white
solid (0.65 g, 43%).'H NMR (400 MHz, CDCl;, 298 K, Figure S1) J (ppm): 8.40 (d, J
= 8.1 Hz, 4H), 8.24 (d, ] = 0.7 Hz, 2H), 3.13 (s, 4H), 2.89 (t, J = 5.4 Hz, 2H), 2.77 —
2.70 (m, 2H), 2.35 (dt, J = 5.8, 3.0 Hz, 2H), 1.59 (s, 7H), 1.47 — 1.45 (m, 9H), 1.26 (s,
2H), 0.68 (s, 6H).3C NMR (101 MHz, CDCl3,298 K, Figure S2) 8: 161.9, 155.8, 155.1,
145.4,145.2,142.7,117.5,44.6,40.2,39.3, 35.3, 33.1,31.9,30.8, 26.1, 21.4. ESI m/z:
[M-BF,]", 478.3220 (Figure S3).
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Figure S1. 'H NMR spectrum (400MHz, CDCl3, 298K) of compound 6.
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Figure S2. 3C NMR spectrum (400MHz, CDCl;, 298K) of compound 6.
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Figure S3. ESI spectrum of compound 6.

2.2 Synthesis of compound 5
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(DMSO),PtCl, , AgBF,

CH3CN, 85 °C

Pt(DMSO0),Cl, (302 mg, 0.78 mmol) and AgBF, (152 mg, 0.86 mmol) in CH;CN
(15 mL) were placed in a round bottomed flask and refluxed for 24 hours. The mixture
was then filtered, and compound 6 (340 mg, 0.71 mmol) was added. The resulting
mixture was refluxed for another 24 hours. The solvent was evaporated under reduced
pressure and the residue was purified by flash column chromatography (alumina,
CH30H/CH,Cl,, 1:100, v/v as the eluent) afford compound 5 as a yellow solid (173mg,
66%). '"H NMR (400 MHz, CDCls, 298 K, Figure S4) J (ppm): 8.60 (s, 2H), 8.30 (s,
2H), 8.28 (s, 2H), 3.34 (s, 4H), 3.00 (t, J = 5.5 Hz, 2H), 2.82 — 2.76 (m, 2H), 2.44 —
2.39 (m, 3H), 1.59 (s, 9H), 1.46 (s, 6H), 1.26 (s, 2H), 0.70 (s, 6H). 3C NMR (101 MHz,
CDCl;, 298 K, Figure S5) d: 168.3, 156.3, 154.6, 153.1, 148.7, 146.8, 125.3, 120.7,
45.1,42.0,39.4,38.9,37.3,33.6,30.9,30.2,29.7, 27.0, 25.6, 24.9, 21.5. ESI m/z: [M-
BF4]*, 707.2458 (Figure S6).
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Figure S4. 'TH NMR spectrum (400MHz, CDCl3, 298K) of compound 5.
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Figure S5. 13C NMR spectrum (400MHz, CDCl;, 298K) of compound 5.
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Figure S6. MALDI-TOF-MS spectrum of compound 5.

2.3 Synthesis of compound 1
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2+

Compound 7 (50.0 mg, 1.17 mmol), Compound 5 (199 mg, 2.46 mmol), Cul (30.0
mg, 0.15 mmol) and NEt; (3 mL) in 20 mL of CH,Cl, were stirred at room temperature
for 48 hours under nitrogen atmosphere. The mixture was evaporated under reduced
pressure and the residue was purified by column chromatography (alumina,
CH;0H/CH,Cl,, 100 : 1 v/v as the eluent) to afford metallotweezer 1 as an orange solid
(143 mg, 63%)."H NMR (400 MHz, CDCls, 298 K, Figure S7) 6 (ppm): 8.77 (s, 3H),
8.53 (s, 4H), 8.39 (d, /= 13.2 Hz, 6H), 8.06 (d, J = 8.0 Hz, 2H), 7.91 (s, 2H), 7.71 (d,
J=28.7Hz, 2H), 7.62 (d,J=7.7 Hz, 2H), 7.48 (t,J= 7.7 Hz, 2H), 7.05 (d, J = 8.8 Hz,
2H), 4.04 (t,J= 6.5 Hz, 2H), 3.31 (s, 8H), 2.94 (t,J= 5.3 Hz, 4H), 2.75 — 2.66 (m, 4H),
2.40 —2.31 (m, 4H), 1.81 (s, 4H), 1.48 (s, 19H), 1.37 (s, 13H), 1.23 (s, 4H), 1.00 (t, J
= 7.4 Hz, 3H), 0.67 (s, 12H). 3C NMR (101 MHz, CDCls, 298 K, Figure S8) d: 167.2,
159.2, 156.3, 155.6, 153.2, 151.3, 148.9, 148.7, 148.0, 138.7, 131.5, 129.7, 1294,
127.5, 127.2, 126.1, 124.6, 124.5, 119.6, 115.8, 114.1, 103.6, 97.3, 69.5, 66.9, 43.9,
38.4, 37.9, 36.5, 32.7, 30.3, 30.1, 29.6, 24.6, 20.5, 18.24. MALDI-TOF-MS m/z:
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Figure S7. 'TH NMR spectrum (400MHz, CDCls, 298K) of compound 1.
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Figure S9. MALDI-TOF-MS spectrum of compound 1.

2.4 Synthesis of compound 3

Cul, NEt3, CH.Cly, r.t.

Compounds 4 (50.0 mg, 1.17 mmol), 5 (89.0 mg, 1.12 mmol), Cul (30.0 mg, 0.15
mmol) and NEt; (3 mL) in 20 mL of CH,Cl, were stirred at room temperature for 48
hours under nitrogen atmosphere. The mixture was evaporated under reduced pressure
and the residue was purified by column chromatography (alumina, CH;0OH/CH,Cl,,
100 : 1 v/v as the eluent) to afford 3 as an orange solid (88.0 mg, 60%)."H NMR (400
MHz, CDCl;, 298 K, Figure S10) 0 (ppm): 8.80 (s, 2H), 8.72 (s, 2H), 8.53 (s, 2H), 8.31
(t,J=1.8 Hz, 1H), 8.20 - 8.17 (m, 2H), 8.11 (d, J= 7.9 Hz, 1H), 7.91 (s, 1H), 7.86 (s,
1H), 7.71 (d, J= 8.7 Hz, 2H), 7.62 (d, J = 8.3 Hz, 1H), 7.54 — 7.42 (m, 4H), 7.05 (d, J
= 8.9 Hz, 2H), 4.05 (t, /= 6.6 Hz, 2H), 3.38 — 3.31 (m, 4H), 2.98 (t, J = 5.4 Hz, 2H),
2.79 — 2.70 (m, 3H), 2.43 — 2.36 (m, 2H), 1.86 — 1.78 (m, 3H), 1.60 (s, 9H), 1.40 (s,
6H), 1.25 (s, 7H), 1.00 (t, J = 7.4 Hz, 4H), 0.88 (t, J = 6.8 Hz, 3H), 0.70 (s, 6H). We
failed to acquire the '3C NMR spectrum of 3 due to its low solubility.
MALDI-TOF-MS m/z: [M-BF4]*, 1156.4603 (Figure S11).
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3. The dimeric self-complexation behaviors of 1

9?4 ' 9i2 Y 9?0 ' SiB ' 816 ' 814 ‘ 8?2 ' 8j0 ' 4
Figure S12. '"H NMR spectra (400 MHz, CDCl;, 298 K) of metallotweezer 1 at
different monomer concentrations: a) 20.00 mM, b) 10.00 mM, ¢) 5.00 mM, d) 3.00
mM, e) 1.00 mM, f) 0.60 mM, g) 0.40 mM, h) 0.20 mM. Obvious chemical shift
changes of H, and H3 were observed for 1 upon varying its concentrations. It
facilitates the acquirement of the dimeric Kg;, value (see Figure S13).

MM
8 7.6 7

A4 7.2 7.0 6.8

1 (mM) H2 (ppm) H3 (ppm)
20 8.5308 8.4102
10 8.5301 8.4055
5 8.5185 8.3971
3 8.4958 8.3853
1 8.4224 8.3507
06 8.3991 83415
o 0.4 8.3759 8.3313
- 02 8.3521 8.3219

'0.00 001 002
Concentration (mol/L)
Figure S13. Changes of chemical shifts (J) of protons H, and H; on 1 upon varying
its concentrations (in CDClj at 298 K). The dimeric Ky, value for 1 was determined
tobe 5.34 x 102 M1 (£ 34%), by fitting the collected J data of protons of H, and
H; on 1 in '"H NMR titration experiments. The data values were fitted by Matlab—
based global analysis program.
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Figure S14. Graphic representation of quadruple n-stacks and self-complementary
type complexation structures for molecular tweezers. It commonly contains two
modes for self-aggregation of molecular tweezers, namely quadruple n-stacks, and
self-complementary dimers complexation structures. For the latter complexation
modes, the spacer on molecular tweezer should be planar and electrically
complementary to the pincer units, as exemplified by the bis-methyl amide
functionalized pyridine and terpyridine unit reported in the previous literatures.[S]
In the current molecular tweezer 1, the diphenylpyridine spacer is non-planar
(possessing a 17.5° deviation from coplanar geometry as reported in a structurally
similar tweezer),[31% and thereby fails to be encapsulated into the cavity of
molecular tweezer. Accordingly, it excludes the possibilities of the latter
complexation mode.

Head-to-head binding model Head-to-tail binding model
-7971.865426 a.u. -7971.863874 a.u.

Figure S15. Four complexation modes of 1, via DFT computation: a) head-to-head
binding model; b) head-to-tail binding model. For the optimized geometries, the head-
to-head binding mode features lower Gibbs free energy than that of the head-to-tail
one (AE = 0.974 kcal/mol).
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CDCl;, 298 K) of 1,. Strong correlations existed between protons Hy and Hs/Hg in
'H-'H ROESY, which were absent in 'TH-'H COSY spectrum.
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Figure S17. a) Absorption and b) emission spectra of 1 in CH;CN and CHCl; at
298K [¢=1.00 x 10-* M].
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Figure 18. "HNMR spectra (400 MHz, 298K) of molecular tweezers 1 at different

concentrations: a) 0.20 mM, and b) 5.00 mM in CDCls; ¢) 0.20 mM, and d) 5.00 mM,

in CD3CN.Such phenomenon indicate the strong binding affinity for (1), and the
binding constants could not be calculated by 'H NMR concentration dependent
experiments. In CD;CN, the aromatic resonances became broadened compared to
those in CDCl;, while some of the peaks were merged into baseline. It suggests that
the self-complexation structure (1), existed even in the dilute solution. Hence, the
binding constant in CD;CN cannot be acquired by concentration-dependent 'H NMR
experiments.
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Figure S19. DLS measurements for 1 in CH;CN and CHCI; (¢ = 1.00 x 104 M).
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Figure S20. Temperature-dependent UV—Vis absorption spectra of 1 at different
monomer concentrations: a) 0.2 Mm; b) 0.1 mM; c) 0.05 mM; d) 0.025 mM in
CH;CN. Inset: Fraction of a4, 0of 1 monitored at 500 nm versus temperatures at
different concentrations. The shoulder absorption band declined upon increasing the
temperature to 353 K, and restored upon cooling to room temperature.
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Figure S21. CD spectra of 1 and 3 at 298 K (¢ = 1.00 x 10 M in CH;CN).
Depending on circular dichroism (CD) experiments, a weak Cotton effect below 419
nm existed for the control compound 3 with the mono-nuclear Pt(IT)(N*N”N) unit,

supporting the origin of molecular chirality from the (1R)-pinene units.
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Figure S22. Partial 'H NMR titration spectra (400 MHz, CD;CN) at a) 353 K and b)
298 K. Upon increasing the temperature from 298 K to 353 K, the 'H NMR

resonances of H, 3 exhibited a downfield shift from the self-complexed to the
monomeric states of 1.

a
Hy' Hy'
Y YY)
b Hyl H

9.0 8.4 7.8 7.2 6.6
Figure S23. 'H NMR titration spectra (400 MHz, CD;CN, 298 K) for a) compound 3
and b) metallotweezer 1. The terpyridine protons H,_3 on 1 shifted upfield than the
corresponding protons Hy 3 of 3. It is ascribed to the formation of self-complexation
structure with the de-shielding effect.
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Figure S24. CD spectra of 1 in CH3CN and CHCl; (¢ = 1.00 x 10* M at 298 K).
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4. Non-covalent metallotweezer/guest complexation behaviors
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Figure S25. a) Absorption and b) emission spectra of 1 and complex 152 in CH;CN
at 0.05 mM. Inset: images of 1 and complex 152.
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Figure S26. a) Absorption and b) emission spectra of 1 and complex 152 in CH;CN
at 0.05 mM. Inset: images of 1 and complex 152.
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0.0163934 0.0900704  0.0680434  0.05655
0.0243902 0.103899 0.0839202  0.07389
0.0322581 0.116835 0.0981173  0.0893

0.04 0.127922 0.109761 0.10125
0.047619 0.136684 0.118635 0.1104

0.0551181 0.142063 0.123568 0.11524
0.0625 0.14652 0.12786 0.1192

0.0769231 0.152125 0.132717 0.1236

0.0909091 0.155361 0.135063 0.12563
0.111111 0.159322 0.138181 0.12792
0.130435 0.161994 0.139834 0.12913

Wavelength (nm)

Figure S27. a) Changes of UV—Vis absorbance at 510 nm, 525 nm, and 540 nm
upon addition of 2 (1.00 mM in CH3CN) into 1 (0.05 mM in CH3CN) at 298 K; b)
Data values from the UV—Vis titration experiments (see Figure S26b) of 152 in
CH;CN at 298 K. Depending on the molar ratio plot, the binding stoichiometry
between the tweezer receptor 1 and the guest 2 was 1 : 1. The solid lines are obtained
via the Matlab—based global analysis program (fitting program). The Ky value of
152 is determined to be 3.75 x 10> M~! (£ 27%) in CH3CN at 298 K. Accordingly,
the K, value of 152 is determined to be 6.96 x 10* M~! (+ 13%) in CH;CN.
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0.01652 0.062092329 0.051055117 0.063853161
0.0328 0.114101307 0.133885668 0.136148011
0.0488 0.172209805 0.184320273 0.208301811
0.0646 0.233176186 0.246421723 0.2780983
0.08 0.264134457 0.261311792 0.321698069
0.0952 0.284093587 0.312069795 0.344802821
0.1102 0.32340768 0.360902559 0.376795138
0.125 0.321497976 0.352792265 0.372924965
0.1538 0.330787624 0.364202859 0.398419573
0.222 0.324358028 0.362102984 0.384034246
0.26 0.327912164 0.362100797 0.389232241

Figure S28. Emission spectra changes of 1 (0.1 mM) via the gradual titration of 2
(1.00 mM at 298 K) in CH;CN. The solid lines are obtained via the Matlab—based
global analysis program (fitting program). Accordingly, the K4 value of 152 is
determined to be 2.21 x 10 M! (= 89%) in CH3CN at 298 K. Accordingly, the K,
value of 122 is determined to be 1.69 x 10° (£ 37%) in CH;CN.

S22



1 (mM) 2 (mM) Abs. (510nm) Abs. (525nm) Abs. (540nm)
1.0 0008
o 0 0.00745984  0.00253015  0.00140204
8 0.00826446  0.0133308  0.00770728  0.00597404
8 3002 0.0163934 00182251 00120248  0.00973531
c o 0.0243902 0.023056 0.016526 0.0135343
g f] b 0.0322581 0.0279319  0.0209353  0.017726
5 05 S 0.04 0.0321551 0.0243483  0.0205135
2 008505 70 15 20 25 0.05  0.047619 0.0358824  0.0277137  0.0234459
< 0.0551181 00395477 00308573  0.026115
0.0625 0.0429084  0.0337674 _ 0.0287696
0.0769231 0.0491226  0.0388166 _ 0.0331566
ool . 0.0909091 0.0546102  0.0437219 _ 0.0371371
Y0 500 600 0111111 0.0619157  0.049688 0.0423657
Wavelength (nm) 0.130435 0.0689838  0.0556343  0.0472103

Figure S29. a) Changes of UV—Vis absorbance at 510 nm, 525 nm, and 540 nm upon
addition of 2 (1.00 mM in CHCI;) into 1 (0.05 mM in CHCls) at 298 K; b) Data
values from the UV—Vis titration experiments (see Figure S28b) of 152 in CHCI; at
298 K. The solid lines are obtained via the Matlab—based global analysis program
(fitting program). The K value of 152 is determined to be 6.45 x 10° M™! (£ 6.5%) in
CHCl;. Accordingly, the K, value of 152 is determined to be 1.85 x 103 M (=
3.2%).
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Figure S30. '"H NMR spectra (400 MHz, CD;CN, 298K) of complex 152 with
different molar ratio of 2: a) 0 eq.; b) 0.24 eq.; ¢) 0.48 eq.; d) 0.72 eq.; €) 0.96 eq.; 1)
1.2 eq.; g) 1.68 eq.; h) 2.4 eq. Obvious chemical shift changes of H, and H; are
observed for 1 upon addition of 2, which is able to get the K, value (Figure S29).

S23



Q
o)
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Figure S31. a) Changes of chemical shifts (0) of protons H,, and H; on 1 upon
addition of 2 into 1 (2 mM in CD;CN) at 298 K; b) Data values from the 'H NMR
titration experiments (see Figure S30b) of 152 in CD;CN at 298 K. The solid lines
are obtained via a Matlab-based global analysis program (fitting program). The Ky

value of 152 is determined to be 6.74 x 103 M! (+ 63.4%) in CD;CN. Accordingly,
the K, value of 152 is determined to be 9.32 x 103 (£ 28%) in CD;CN.
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Figure S32. '"H NMR spectra (400 MHz, CDCl;, 298K) of complex 152 with
different molar ratio: a) 0 eq.; b) 0.19 eq.; ¢) 0.37 eq.; d) 0.54 eq.; ) 0.69 eq.; f) 0.83
eq.; ) 0.97 eq.; h) 1.1 eq.;1) 1.21 eq.; j) 1.43 eq.; k) 1.62 eq.; 1) 1.88 eq.; m) 2.10 eq.
Obvious chemical shift changes of H;, H, and H, are observed for 1 upon addition of

2, which is able to get the K, value (see Figure S32).
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1 (mM) 2 (mM)

6 of H1{ppm) & of H2(ppm) & of H4(ppm)

0.0 05 10 15 20
Wavelength (nm)

0 8.7687 8.6253 8.4367
0.384615 8.6927 8.5098 8.4832
0.740741 8.612 8.3751 8.5452
1.071429 8.5442 8.2646 8.598
1.37931 8.4869 8.1723 8.6446
1.666667 8.4396 8.0938 8.6812

2.00 1935484 8.4057 8.0418 8.7087.
2.1875 8.3788 7.9992 8.7307
2.424242 8.3584 7.9542 8.7468
2.857143 8.3304 7.9568 8.7704
3.243243 8.3125 7.9587 8.7845
3.75 8.2956 7.9603 8.7973
4.186047 8.2855 7.961 8.8053

Figure S33. a) Changes of chemical shifts (J) of protons H;, H,, and H; on 1 upon
addition of 2 (10.00 mM in CDCls) into 1 (2 mM in CDCl;) at 298 K; b) Data values
from the 'H NMR titration experiments (see Figure S32b) of 122 in CDCl; at 298 K.

The solid lines are obtained via the Matlab—based global analysis program (fitting
program). The K4 value of 122 is determined to be 1.21 x 10*M™" (+ 53%) in CDCl;.

Accordingly, the K, value of 152 is determined to be 2.54 x 103 M (+ 24%).
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Figure 34. "H NMR spectra (400 MHz, CDCl3, 298K) of complex 352 with different
molar ratio of 2: a) 0 eq.; b) 0.24 eq.; ¢) 0.48 eq.; d) 0.72 eq.; €) 0.96 eq.; ) 1.2 eq.; g)
1.68 eq.; h) 2.4 eq. Obvious chemical shift changes of H;-, H,- and H;- are observed
for 3 upon addition of 2, which is able to get the K, value (Figure S34).
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Figure S35. a) Changes of chemical shifts (8) of protons H;-, Hy: and H3- on 3 upon
addition of 2 into 3 (2 mM in CDCl;) at 298 K; b) Data values from the '"H NMR

titration experiments (see Figure S35b) of 352 in CDCl; at 298 K. The solid lines are

obtained via a Matlab-based global analysis program (fitting program). Accordingly,
the K, value of 302 is determined to be 15.9 M"! (+ 167.3%) in CDCls.
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Figure S36. a) Changes of UV—Vis absorbance at 510 nm, 525 nm, and 540 nm upon
addition of 2 (1.00 mM in CH;CN) into 1 (0.05 mM in CH3CN) at 313 K; b) Data
values from the UV—Vis titration experiments (see Figure S35b) of 152 in CH3;CN at
313 K. The solid lines are obtained via the Matlab—based global analysis program
(fitting program). Accordingly, the K  value of 152 is determined to be 1.73 x 10° M~
' (£19%) in CH3CN at 313 K.

012
[
1.0 2
[}
2 0.08|
m 2
2 < pmm
m q & 540 nm
2 i 0‘080 05 10 15 20 25
05 7 TEqofz 7
(7] .
o
<

0.0

400

500
Wavelength (nm)

600

b

3 (mM) 2 (mM) & of H1'(ppm) & of H2'(ppm) & of H3'(ppm)
0 0 0 0
0.48 0.0135 0.0034 0.0091
0.96 0.0262 0.0222 0.028
200 1.44 0.0392 0.0379 0.0449
1.92 0.0504 0.0522 0.0598
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Figure S37. a) Changes of UV—Vis absorbance at 510 nm, 525 nm, and 540 nm upon
addition of 2 (1.00 mM in CH;CN) into 1 (0.05 mM in CH3CN) at 328 K; b) Data
values from the UV—Vis titration experiments (see Figure S36b) of 152 in CH3;CN at
328 K. The solid lines are obtained via the Matlab—based global analysis program
(fitting program). Accordingly, the K  value of 152 is determined to be 7.11 x 10* M~
(£ 8.4%) in CH5CN at 328 K.
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@ L 0 05 10 15 20 25 0.05 0.047619 0.0707794 00544606  0.0472997
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Figure S38. a) Changes of UV—Vis absorbance at 510 nm, 525 nm, and 540 nm upon
addition of 2 (1.00 mM in CH;CN) into 1 (0.05 mM in CH3CN) at 353 K; b) Data
values from the UV—Vis titration experiments (see Figure S37b) of 152 in CH3;CN at
353 K. The solid lines are obtained via the Matlab—based global analysis program
(fitting program). Accordingly, the K, value of 152 is determined to be 3.21 x 10* M~
' (£ 5.9%) in CH;CN.
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Figure S39. CD spectra changes of 1 upon progressive addition of 2 at 298 K (¢ =
1.00 x 10 M in CH;CN).
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Figure S40. a) CD spectra of 2 and complex 352 (0.10 mM in CH;CN, 298 K); b)
CD spectra of complex 3052 (black line) and 353 K (red line) (0.10 mM in CH;CN).
For the complex 352, supramolecular chirogenic signals at 470 nm disappeared
totally at 353 K.
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Figure S41. CD spectra of complex 152 (0.10 mM in CH3;CN) at 298 K (black line)
and 353 K (red line). The induced CD signals of 152 maintain at elevated
temperatures, despite of the decreased CD intensities than that at ambient temperature.
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