Supporting Information

Organic Photoredox Catalyzed Dealkylation/Acylation of Tertiary Amines to Access Amides

Chen Liu, ${ }^{\text {a }}$ Han-Nan Chen, ${ }^{\text {a }}{ }^{\dagger}$ Teng-Fei Xiao, ${ }^{\text {a }}$ Xiu-Qin Hu, ${ }^{\mathrm{a}^{*}}$ Peng-Fei Xu, ${ }^{\text {a,b }}$ Guo-Qiang Xu ${ }^{\text {a* }}$
${ }^{[a]}$ State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China, E-mail: gqxu@lzu.edu.cn;
${ }^{[b]}$ State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000 (P.R. China).

This PDF file includes

Materials and Methods
Figures S1 to S12
Tables S1 to S2
NMR Spectra
References

Table of Contents

General Information 3
Experimental Procedures 3

1. Synthesis of photocatalyst 3
2. Optimization of reaction conditions 8
3. General procedure and characterization data 9
4. Mechanistic Investigations 26
5. Determination of the Quantum Yield 30
6. NMR spectra of products 33
References 87

General Information

All glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Thin-layer chromatography (TLC) plates were visualized by exposure to ultraviolet light and/or staining with phosphomolybdic acid followed by heating on a hot plate. Flash chromatography was carried out using silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a VARIAN Mercury plus $300 \mathrm{BB}(300 \mathrm{MHz})$ or Bruker AVANCE III HD 400 (400 MHz) , AVANCE NEO 600 (600 MHz). The spectra were recorded in CDCl_{3} as solvent at room temperature, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm relative to the residual solvent peak. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}=77.00 \mathrm{ppm}\right)$. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift $(\delta \mathrm{ppm})$, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet $)$, integration, coupling constant (Hz) and assignment. Data for ${ }^{13} \mathrm{C}$ NMR are reported as chemical shift. HRMS were performed on a Bruker Apex II mass instrument (ESI).

Experimental Procedures

1. Synthesis of photocatalyst

MANI and Cz-NI were prepared according to your previous reports, ${ }^{1}$ and $\mathbf{C z - N I}-\mathbf{P h}$ was synthesized according to the following procedure:

4-Bromo-1,8-naphthalic anhydride ($3.0 \mathrm{~g}, 10.83 \mathrm{mmol}$) was dissolved in distilled ethanol (150 mL). Aniline ($1.20 \mathrm{~mL}, 12.99 \mathrm{mmol}$) was added to the solution, and then
the solution was refluxed overnight under nitrogen. The solution was cooled and the precipitate was filtered with no further purification. The product was an ivory powder (2.8 g , yield 74%).
To a two-necked flask under nitrogen were added compounds 6-Bromo-2-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (1 mmol), carbazole (1.2 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(0.020 \mathrm{mmol})$, tri-tert-butyl phosphine $(0.04 \mathrm{mmol})$, and sodium tert-butoxide (1.5 $\mathrm{mmol})$. Toluene (10 ml) was then added to the flask via a syringe. The resulting mixture was stirred for 12 h at $120^{\circ} \mathrm{C}$. After cooling, to the mixture was added water (3 ml) and then ethyl acetate (20 ml). The organic layer was separated from the aqueous layer, washed with water and brine solution, and dried over anhydrous magnesium sulfate. Evaporated to afford the crude product which was purified by column chromatography on silica gel (n -Hexane/ethyl acetate $=20: 1-10: 1$) to afford yellow powder. Yield (232 $\mathrm{mg}, 53 \%) . \mathrm{Mp}=217-219^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.84(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 8.71 (dd, J = 7.2, 1.1 Hz, 1H), $8.27-8.17$ (m, 2H), $7.95(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (dd, $\mathrm{J}=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, \mathrm{J}=8.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}$, $1 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.10$, $163.69,141.71,140.66,135.21,132.40$, 131.97, 130.49, 130.08, 129.46, 129.19, $128.85,128.60,127.71,127.42,126.39,123.81,123.55,122.82,120.78,120.61$, 109.96.

Figure S1. Cyclic voltammograms measurements were performed with the three-electrode CHI660D potentio station by using a glassy carbon working electrode, a platinum wire counter electrode and a saturated calomel as reference electrode. The voltammograms were taken in a degassed MeCN solution $\left(\left[\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NBF}_{4}\right]=0.1 \mathrm{M},[\mathbf{C z - N I - P h}]=1 \mathrm{mM}\right.$. The scan rate was $0.1 \mathrm{~V} / \mathrm{s}$.

Figure S2. UV-vis spectrum of $\mathbf{C z}-\mathbf{N I}-\mathbf{P h}$ at different concentrations in toluene with a path length of 1 cm .

Figure S3. Beer-Lambert law of Cz-NI-Ph at the maximum wavelength of absorption.

Figure S4. Excitation and emission spectra of Cz-NI-Ph in toluene $\left(3 \times 10^{-4} \mathrm{M}\right)$.

Figure S5. Transient emission decay profiles of Cz-NI-Ph $\left(3 \times 10^{-4} \mathrm{M}\right)$.
${ }^{1} \mathrm{H}$ NMR of $\mathbf{C z}-\mathrm{NI}-\mathrm{Ph}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Cz-NI-Ph

${ }^{13} \mathbf{C}$ NMR of $\mathbf{C z}-\mathbf{N I}-\mathbf{P h}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2. Optimization of reaction conditions

Table S1: Condition optimization of aromatic amine with acyl chloride. ${ }^{[a]}$

 entry	Me^{+} II-2a	$\begin{gathered} \substack{\text { Condition A : } \\ \text { PC }(1 \mathrm{~mol} \%) ; \\ \text { PFNB(} 0.5 \mathrm{eq} .)} \\ \substack{\text { base }(1.0 \text { eq. }) \text {, solvent }(0.05 \mathrm{M}) \\ \mathrm{N}_{2}, 25^{\circ} \mathrm{C}, \text { White LED, } 6 \mathrm{~h}} \end{gathered}$		
	photocatalyst	solvent	base	
1	Cz-NI-Ph	DCM	KOAc	33
2	$\mathrm{Cz}-\mathrm{NI}-\mathrm{Ph}$	DCE	KOAc	64
3	Cz-NI-Ph	EA	KOAc	84
4	Cz-NI-Ph	CHCl_{3}	KOAc	56
5	$\mathrm{Cz}-\mathrm{NI}-\mathrm{Ph}$	Toluene	KOAc	75
6	Cz-NI-Ph	1,4-Dioxane	KOAc	39
7	Cz-NI-Ph	n-Hexane	KOAc	23
8	Cz-NI-Ph	EA	$\mathrm{K}_{2} \mathrm{CO}_{3}$	82
9	Cz-NI-Ph	EA	$\mathrm{KH}_{2} \mathrm{PO}_{4}$	69
10	Cz-NI-Ph	EA	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	89
11	$\mathrm{Cz}-\mathrm{NI}-\mathrm{Ph}$	EA	NaOAC	78
12	Cz-NI-Ph	EA	$\mathrm{PhCO}_{2} \mathrm{~K}$	58
13	Cz-NI-Ph	EA	KHCO_{3}	99
14	Cz-NI-Ph	EA	CsOAc	18
15	MANI	EA	KHCO_{3}	16
16	Cz-NI	EA	KHCO_{3}	84
17	4CzIPN	EA	KHCO_{3}	92
18	Eosin Y	EA	KHCO_{3}	60
19	Acr-Mes ${ }^{+} \mathrm{ClO}_{4}{ }^{-}$	EA	KHCO_{3}	31
20	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}$	EA	KHCO_{3}	61
21	$\operatorname{Ir}(\text { ppy })_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$	EA	KHCO_{3}	83
22	$\mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2}$	EA	KHCO_{3}	16
23	$\mathrm{Ir}\left(\mathrm{dFCF}_{3} \mathrm{ppy}\right)_{2}(\mathrm{dtbpy}) \mathrm{PF}_{6}$	EA	KHCO_{3}	84
$24^{\text {b }}$	Ph-Cz-NI	EA	KHCO_{3}	0
$25^{\text {c }}$	Ph-Cz-NI	EA	KHCO_{3}	16
26		EA	KHCO_{3}	11
27	Ph-Cz-NI	EA		85

${ }^{a}$ Reaction conditions: II-1a (0.1 mmol), II-2a (0.11 mmol), photocatalyst ($1 \mathrm{~mol} \%$), base (1.0 equiv., 0.1 mmol), PFNB (0.5 equiv., 0.05 mmol), white LEDs, at $25^{\circ} \mathrm{C}$ under nitrogen atmosphere for 6 h. Yields determined by ${ }^{1} \mathrm{H}$ NMR using toluene as standard. ${ }^{b}$ no light. ${ }^{c}$ no PFNB, FNB: Pentafluoronitrobenzene.

Table S2: Condition optimization of aliphatic amine with acyl chloride. ${ }^{[a]}$
Condition B :
Cz-NI-Ph (1 mol \%);
PFNB (0.5 eq.)
${ }^{a}$ Reaction conditions: II-1b (0.1 mmol), II-2a (0.15 mmol), Cz-NI-Ph ($1 \mathrm{~mol} \%$), base ($1.0-1.5$ equiv.), PFNB (0.5 equiv., 0.05 mmol), white LEDs, at $25^{\circ} \mathrm{C}$ under nitrogen atmosphere for 6 h . isolated yield. PFNB: Pentafluoronitrobenzene. ${ }^{b}$ addition of $\mathrm{H}_{2} \mathrm{O}$ (10 equiv., 1 mmol)

3. General procedure and characterization data

1a

2

$\mathrm{N}_{2}, 25^{\circ} \mathrm{C}$, White CFL, 6 h

3

General catalysis procedure A: A dried 10 mL reaction tube was charged with $\mathbf{C z}$ -NI-Ph ($0.44 \mathrm{mg}, 0.001 \mathrm{mmol}, 1 \mathrm{~mol} \%$) and $\mathrm{KHCO}_{3}(10.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) were weighed into an oven-dried 8 mL quartz cuvette with a magnetic stirring bar, and then EA ($0.05 \mathrm{M}, 2 \mathrm{~mL}$) was added. The aniline 1 ($0.1 \mathrm{mmol}, 1.0$ equiv.) and PFNB
($6.5 \mu \mathrm{~L}, 0.05 \mathrm{mmol}, 0.5$ equiv.) were added into the mixture via microsyringe. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the benzoyl chloride $\mathbf{2}(0.11 \mathrm{mmol}, 1.1$ equiv.) was added into the mixture via micro-syringe. After the mixture was thoroughly degassed, the vial was placed beside a white LED light. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 6 h . After completion of the reaction as checked by TLC. The reaction mixture was purified by silica gel flash column chromatography (petroleum ether/EtOAc) to give the corresponding product.

General catalysis procedure B: A dried 10 mL reaction tube was charged with $\mathbf{C z}-$ NI-Ph ($0.44 \mathrm{mg}, 0.001 \mathrm{mmol}, 1 \mathrm{~mol} \%$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(31.8 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv.) were weighed into an oven-dried 8 mL quartz cuvette with a magnetic stirring bar, and then $\mathrm{EA}(0.05 \mathrm{M}, 2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(18 \mu \mathrm{~L}, 10$ equiv.) was added. The amine $\mathbf{1}(0.1 \mathrm{mmol}$, 1.0 equiv.) and PFNB ($6.5 \mu \mathrm{~L}, 0.05 \mathrm{mmol}, 0.5$ equiv.) were added into the mixture via microsyringe. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the acyl chloride 2 ($0.15 \mathrm{mmol}, 1.5$ equiv.) was added into the mixture via micro-syringe. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the vial was placed beside a white LED light. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 6 h . After completion of the reaction as checked by TLC. The reaction mixture was purified by silica gel flash column chromatography (petroleum ether/EtOAc) to give the corresponding product.

N-methyl- N-phenylbenzamide (3aa).

Compound 3aa was obtained as a yellow oil in 99% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 7.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 2 \mathrm{H})$, $3.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.69,144.93,135.94,129.58,129.14$, 128.71, 127.72, 126.92, 126.48, 77.25, 38.40. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for [$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NONa}$, 234.0889; found, 234.0889.
$N, 4-$ Dimethyl- N-phenylbenzamide (3ba).

Compound 3ba was obtained as a brown liquid in 99% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.27-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.4 \mathrm{~Hz} 1 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 169.67,141.31,135.27,135.05,128.72,128.43,127.66,126.66,125.65$, 37.46, 19.91. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}\right]$, 226.1226; found, 226.1225.

N-(4-Chlorophenyl)- N-methylbenzamide (3ca).

Compound 3ca was obtained as a brown oil in 98% yield; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.33-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.01-6.93(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.62,143.50,135.57,132.09,129.86,129.33,128.65,128.07$, 127.94, 38.38. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClNO}\right], 246.0680$; found, 246.0678.

N-(4-Bromophenyl)- N-methylbenzamide (3da).

Compound 3da was obtained as a yellow oil in 97% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.57$, 144.02, 135.52, 132.31, 129.90, 128.68, 128.40, 127.97, 119.94, 38.35. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrNO}$], 290.0175; found, 290.0172.

N -(4-cyanophenyl)- N -methylbenzamide (3ea).

Compound 3ea was obtained as a yellow oil in 43% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H})$, $3.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.60,148.89,135.04,133.05,130.45$, 128.71, 128.20, 126.93, 118.16, 109.66, 38.04. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd for [$\left.\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}\right], 237.1022$; found, 237.1025.
N-methyl- N-(m-tolyl)benzamide (3fa).

Compound 3fa was obtained as a brown solid ($\mathrm{mp} 92^{\circ} \mathrm{C}-96^{\circ} \mathrm{C}$) in 93% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8,1 \mathrm{H})$, $3.48(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.68$, 144.83, 139.13, 136.04, 129.54, 128.85, 128.67, 127.68, 127.39, 127.26, 124.07, 38.44, 21.24. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}\right], 226.1226$; found, 226.1225.

N-(3-bromophenyl)- N-methylbenzamide (3ga).

Compound 3ga was obtained as a yellow oil in 92% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.93(\mathrm{~m}$, $1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.59,146.23,135.45,130.26$, 129.97, 129.70, 129.55, 128.64, 127.96, 125.76, 122.44, 38.37. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for [$\left.\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrNO}\right], 290.0175$; found, 290.0172 .
N-methyl- N-(o-tolyl)benzamide (3ha).

Compound 3ha was obtained as a yellow oil in 94% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.02(\mathrm{~m}, 6 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.21$
(s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.80,143.52,135.89,134.77,131.30,129.62$, 128.64, 128.27, 127.71, 127.54, 126.96, 37.52, 17.76. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}$], 226.1226; found, 226.1224.
N-(2-bromophenyl)- N-methylbenzamide (3ia).

Compound 3ia was obtained as a yellow solid (mp $\left.92^{\circ} \mathrm{C}-96^{\circ} \mathrm{C}\right)$ in 37% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.01,143.71,135.70,133.73,130.70,129.79,129.01,128.42,128.08$, 127.66, 122.76, 37.12. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\left.\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrNO}\right]$, 290.0175; found, 290.0173.
N-mesityl- N-methylbenzamide (3ja).

Compound $\mathbf{3 j a}$ was obtained as a yellow oil in 83% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 3.29$ $(\mathrm{s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.60, 139.72, 137.46, 135.84, 134.89, 129.76, 129.50, 128.53, 127.79, 127.44, 36.35, 20.88, 17.98. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}\right], 254.1539$; found, 2254.1537.

N-Ethyl- N-phenylbenzamide (3ka).

Compound 3ka was obtained as a sticky yellow liquid in 95% yield. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.04-$ $7.01(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.19,143.26,136.35,129.43,129.08,128.66,127.94,127.68,126.62$, 45.37, 12.96. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}\right]$, 226.1226; found, 226.1225.

N-phenyl- N-propylbenzamide (31a)

Compound 3la was obtained as a yellow oil in 94% yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.90-3.87(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.39,143.52,136.45,129.37,129.06,128.62,127.85,127.67,126.55$, 51.97, 20.94, 11.36. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}\right], 240.1383$; found, 240.1380.

N-(6-oxohexyl)- N-phenylbenzamide (3ma).

Compound 3ma was obtained as a sticky yellow liquid in 67% yield. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.75(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 3 \mathrm{H}) 7.02$ $-7.00(\mathrm{~m}, 2 \mathrm{H}), 3.93((\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.43$ $-1.35(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.55,170.39,143.39,136.25,129.47$, 129.14, 128.65, 127.80, 127.69, 126.66, 50.05, 43.73, 27.39, 26.39, 21.74. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}\right]$, 296.1645; found, 296.1645.

8-benzoyl-8-azabicyclo[3.2.1]octan-3-one (3na).

Compound 3na was obtained as a colourless oil in 68% yield. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H})$, $4.41(\mathrm{~s}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 2.53-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 2 \mathrm{H}), 1.77(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.51,168.95,135.56,130.61,128.68$, 127.13, 55.99, 51.47, 49.73,48.83,29.64, 28.86. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{2}$], 230.1176; found, 230.1174.

N-butyl- N-phenylbenzamide (3pa).

Compound 3pa was obtained as a yellow oil in 37% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.09(\mathrm{~m}, 6 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.88(\mathrm{~m}, 2 \mathrm{H})$, $1.67-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 170.35,143.54,136.43,129.37,129.06,128.63,127.85,127.66,126.55$, 50.26, 29.83, 20.21, 13.86. HRMS (ESI): [M + H] ${ }^{+}$calcd for [$\left.\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}\right], 254.1539$; found, 254.1538.

N-isopropyl- N-phenylbenzamide (3qa).

Compound $\mathbf{3 q}$ a was obtained as a yellow oil in 67% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 1.20(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.72,139.59,137.28,130.65,128.91$, 128.61, 128.10, 127.58, 127.36, 47.72,21.12. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}$], 240.1383; found, 240.1381.
N-benzyl- N-phenylbenzamide (3ra).

Compound 3ra was obtained as a black solid (mp $76^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$) in 45% yield. ${ }^{1}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.19(\mathrm{~m}, 8 \mathrm{H}), 7.16-7.05(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.13$ (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.59,143.55,137.58,136.00,129.66,129.00$, 128.78, 128.49, 128.41, 127.75, 127.73, 127.38, 126.68, 53.88. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NONa}\right.$, 310.1202; found, 310.1200.
$N, 4$-Dimethyl- N-phenylbenzamide (3ab).

Compound 3ab was obtained as a yellow oil in 99% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 7.27-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 2H), 3.49 (s, 3H), 2.25 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.72, 145.20, 139.80, 132.93, 129.14, 128.90, 128.38, 126.88, 126.35, 38.50, 21.33. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for [$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}$], 226.1226; found, 226.1228.

4-(tert-butyl)- N -methyl- N -phenylbenzamide (3ac).

Compound 3ac was obtained as a sticky yellow liquid in 75% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.25-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H})$, 1.23 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.64,152.92,145.18,132.82,129.11$, 128.69, 126.85, 126.34, 124.63, 38.57, 34.68, 31.10. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}$], 268.1696; found, 268.1696.

4-Methoxy- N-methyl- N-phenylbenzamide (3ad).

Compound 3ad was obtained as a sticky yellow liquid in 81% yield. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.68-$ $6.64(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.28,160.59$, 145.46, 130.90, 129.19, 127.96, 126.85, 126.28, 112.97,55.18, 38.62. HRMS (ESI): [M $+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}\right]$, 242.1176; found, 242.1175.

4-Fluoro- N-methyl- N-phenylbenzamide (3ae).

Compound 3ae was obtained as a yellow oil in 97% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 2 \mathrm{H})$, $3.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.58,164.44,161.95,144.87,131.52(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 131.08\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}\right), 129.30,126.78\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}\right), 114.81\left(\mathrm{~d}, J_{\mathrm{C}-}\right.$ ${ }_{\mathrm{F}}=21.6 \mathrm{~Hz}$), 38.51. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-110.10.HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FNO}\right], 230.0976$; found, 230.0977.

4-Chloro- N -methyl- N -phenylbenzamide (3af).

Compound 3af was obtained as a yellow solid (mp $86^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}$) in 97% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 2 \mathrm{H})$, $3.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.49,144.65,135.69,134.28,130.25$, 129.36, 128.02, 126.88, 126.79, 38.48. HRMS (ESI): [M+H] calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClNO}\right.$], 246.0680; found, 246.0682 .

4-Bromo- N-methyl- N-phenylbenzamide (3ag).

Compound 3ag was obtained as a yellow solid (mp $60-66^{\circ} \mathrm{C}$) in 94% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 2 \mathrm{H})$, $3.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.54,144.63,134.75,130.98,130.45$, 129.38, 126.88, 126.81, 124.12, 77.24, 38.48. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrNO}$], 290.0175; found, 290.0180.

4-Cyano- N -methyl- N -phenylbenzamide (3ah).

Compound 3ah was obtained as a sticky yellow liquid in 85% yield. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H})$, $7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.66,143.92,140.32,131.64,129.53,129.21,127.28,126.93,118.14,113.18$, 38.34. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}\right]$, 237.1022; found, 237.1025.

N -methyl- N -phenyl-4-(trifluoromethyl)benzamide (3ai).

Compound 3ai was obtained as a yellow oil in 89% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 2 \mathrm{H})$,
$3.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.19,144.23,139.44,131.48,129.43$, $129.00,127.05,126.92,125.01,124.79\left(q, J_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}\right), 38.40 .{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, CDCl_{3}) δ-62.94.HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\left.\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}\right]$, 280.0944; found, 280.0944.

N-methyl- N-phenyl-4-(trifluoromethoxy)benzamide (3aj).

Compound 3aj was obtained as a yellow oil in 93% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~m}, 4 \mathrm{H}), 3.50(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.23,149.84,144.57,134.35,130.57,129.36$, $126.87\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.8 \mathrm{~Hz}\right), 121.54,119.87,118.98,38.49 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-57.78.HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{2}\right]$, 296.0893; found, 296.0895.
$N, 3$-dimethyl- N-phenylbenzamide (3ak).

Compound 3ak was obtained as a yellow oil in 84% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.5, \mathrm{~Hz}, 3 \mathrm{H}), 7.01-6.98(\mathrm{~m}$, 2 H), 3.49 ($\mathrm{s}, 3 \mathrm{H}$), $2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.87,145.00,137.54$, $135.85,130.32,129.44,129.09,127.44,126.89,126.43,125.76,38.40,21.22$. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}\right], 226.1226$; found, 226.1227.

3-methoxy-N-methyl- N -phenylbenzamide (3al).

Compound 3al was obtained as a yellow oil in 87% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H})$, $6.79-6.77(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.41$, 158.92, 144.94, 137.09, 129.17, 128.76, 126.81, 126.54, 121.23, 116.08, 113.68, 55.19, 38.42. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}\right]$, 242.1176; found, 242.1177 .

N,2-dimethyl- N-phenylbenzamide (3am).

Compound 3am was obtained as a sticky yellow liquid in 89% yield. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.87-$ $6.83(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.76 \mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.40,158.93,144.95,137.10,129.17,128.76,126.82,126.54,121.24$, 116.08, 113.69, 55.19, 38.42. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}\right], 226.1226$; found, 226.1227.
$N, 3,5$-trimethyl- N-phenylbenzamide (3an).

Compound 3an was obtained as a sticky yellow liquid in 89% yield. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.89-$ $6.85(\mathrm{~m}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.04,145.04$, 137.20, 135.78, 131.18, 129.02, 126.84, 126.50, 126.37, 38.39, 21.08. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}\right], 240.1383$; found, 240.1384 .

3,5-dimethoxy- N-methyl- N-phenylbenzamide (3ao).

Compound 3ao was obtained as a yellow oil in 99% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 6 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.22,160.04,144.94,137.58,129.20,126.70,126.59,106.78$, 102.52, 55.31, 38.41. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{3}\right], 272.1281$; found, 272.1281 .

N-methyl- N-phenylacetamide (3ap).

Compound 3ap was obtained as a yellow solid (mp $86^{\circ} \mathrm{C}-92^{\circ} \mathrm{C}$) in 92% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.27(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.62,144.62$, 129.75, 127.73, 127.09, 37.17, 22.41. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NONa}\right]$, 172.0733; found, 172.0732.
N-methyl- N-phenylpropionamide (3aq).

Compound 3aq was obtained as a brown oil in 82% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.08$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.00$, 144.27, 129.74, 127.70, 127.31, 37.32, 27.52, 9.73. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NONa}$], 186.0889; found, 186.0887.

N -methyl- N -phenylacrylamide (3ar).

Compound 3ar was obtained as a yellow oil in 34% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.38-6.35(\mathrm{~m}$, $1 \mathrm{H}), 6.08(\mathrm{dd}, J=16.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=10.3,1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.75,143.45,129.60,128.52,127.61,127.38,127.30,37.42$. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\left.\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}\right], 162.0913$; found, 162.0912.
N-Methyl- N-phenylfuran-2-carboxamide (3as).

Compound 3as was obtained as a sticky yellow liquid in 94% yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.47-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.22(\mathrm{dd}$,
$J=3.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 159.42,147.08,144.24,144.18,129.60,127.83,127.40$, 116.31, 110.90, 38.47. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{2}\right]$, 202.0863; found, 202.0863.
N-Methyl- N-phenylthiophene-2-carboxamide (II-3at).

Compound II-3at was obtained as a brown solid (mp $68^{\circ} \mathrm{C}-72^{\circ} \mathrm{C}$) in 99% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{dd}, J=5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{dd}, \mathrm{J}=5.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, \mathrm{J}=3.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.74,144.28,138.17,132.09,130.48,129.78,128.14$, 128.06, 126.63, 39.06.HRMS (ESI): [M + H] ${ }^{+}$calcd for [$\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NOS}\right]$, 218.0634; found, 2218.0636.
N-methyl- N-(naphthalen-2-yl)benzamide (3au).

Compound 3au was obtained as a sticky yellow liquid in 99% yield. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-$ 7.40 (m, 2H), 7.32 (dd, $J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.19 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.12-7.07$ (m, $3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.61,144.95,133.56,133.28$, 132.42, 129.41, 129.23, 128.62, 127.57, 127.24, 127.11, 126.92, 126.52, 126.30, 125.50, 38.57. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}\right]$, 262.1226; found, 262.1227.

N, N-diethylbenzamide (4ba).

Compound 4ba was obtained as a yellow oil in 83% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.35(\mathrm{~m}, 5 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.05,137.09,128.86,128.17,126.04,43.06,49.00,14.00$, 12.70. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}\right], 178.1226$; found, 178.1227.

N, N-diethyl-p-methylbenzamide (4bb).

Compound $\mathbf{4 b b}$ was obtained as a colorless oil in 79% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 1.25-1.12(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.50,139.07,134.40$, 128.98, 126.36, 43.30, 39.29, 21.34. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}\right]$, 192.1383; found, 192.1383.

N, N-diethyl-4-fluorobenzamide (4bc).

Compound $\mathbf{4 b c}$ was obtained as a yellow oil in 73% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.13$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.40,162.57\left(\mathrm{~d}, J_{C-F}=97.2 \mathrm{~Hz}\right), 133.31(\mathrm{~d}$, $\left.J_{C-F}=3.3 \mathrm{~Hz}\right), 128.52\left(\mathrm{~d}, J_{C-F}=8.4 \mathrm{~Hz}\right), 115.47\left(\mathrm{~d}, J_{C-F}=21.5 \mathrm{~Hz}\right), 43.41,39.40,14.20$, 12.88. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-111.39.HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{FNO}$], 197.1132; found, 197.1133.

4-chloro- N, N-diethylbenzamide (4bd).

Compound 4bd was obtained as a yellow oil in 64% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.54$ (s, 2H), 3.24 (s, 2H), $1.27-$ $1.22(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.21,135.64,135.14$, $128.69,127.85,43.32,39.39,14.23,12.86$. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClNO}$], 212.0837; found, 212.0838.

4-bromo- N, N-diethylbenzamide (4be).

Compound 4be was obtained as a yellow oil in 78% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 7.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 1.27-1.23$ ($\mathrm{m}, 3 \mathrm{H}$), $1.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.21,136.11,131.63,128.06$, 123.32, 43.29, 39.38, 14.20, 12.87. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrNO}\right]$, 256.0332; found, 256.0333.

4-cyano- N, N-diethylbenzamide (4bf).

Compound $\mathbf{4 b f}$ was obtained as a yellow oil in 52% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.20,141.59$, 132.40, 127.07, 118.18, 113.07, 43.25, 39.48, 14.20, 12.84. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for [$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$], 203.1179; found, 203.1180.

N, N-diethyl-m-methylbenzamide (4bg).

Compound $\mathbf{4} \mathbf{b g}$ was obtained as a yellow liquid in 66% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.49,138.22$, 137.29, 129.76, 128.21, 126.93, 123.16, 43.28, 39.19, 21.36, 14.19, 12.92.HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}\right]$, 192.1383; found, 192.1385.

N, N-diethyl-o-methylbenzamide (4bh).

Compound $\mathbf{4 b h}$ was obtained as a yellow oil in 64% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.15(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.85$, 137.17, 133.83, 130.27, 128.50, 125.77, 125.43, 42.58, 38.65, 18.79, 13.99, 12.88. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}\right]$, 192.1383; found, 192.1385 .

N, N-diethyl-3,5-dimethylbenzamide (4bi).

Compound $\mathbf{4 b i}$ was obtained as a yellow liquid in 76% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$, $1.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.67,138.02,137.29,130.57,123.85$, 43.21, 39.06, 21.28, 14.23, 12.95. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}\right]$, 206.1539; found, 206.1541.
N, N-diethyl-1-naphthylamide (4bj).

Compound 4bj was obtained as a yellow oil in 87% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H})$, $3.30(\mathrm{~s}, 2 \mathrm{H}), 1.28-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.33$, 134.64, 133.41, 132.80, 128.32, 128.28, 127.80, 126.78, 126.60, 125.76, 123.95, 43.41, 39.34, 21.28, 14.29, 13.03. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\left.\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}\right]$, 228.1383; found, 228.1383.
N, N-diethylthiophene-2-carboxamide (4bk).

Compound 4bk was obtained as a yellow liquid in 86% yield. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{dd}, J=5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=3.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=$ $5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.82,138.33,128.22,127.96,126.69,41.83,13.55$. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for [$\left.\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NOS}\right]$, 184.0791; found, 184.0790.

N,N-dibutylbenzamide (4bl).

S24

Compound $\mathbf{4 b l}$ was obtained as a yellow oil in 85% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{~s}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 2 \mathrm{H}), 1.48$ (s, 2H), 1.44-1.34 (m, 2H), 1.20-1.08 (m, 2H), $0.98(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,137.0,128.8,128.1,126.2,48.5,44.2,30.5,29.4,20.1,19.5$, 13.7, 13.4. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}\right], 234.1852$; found, 234.1850.

N,N-diisopropylbenzamide (4bm).

Compound $\mathbf{4 b m}$ was obtained as a yellow oil in 26% yield. H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~m}, 6 \mathrm{H})$, 1.14 (m, 6H). ${ }^{113} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,138.9,128.6,128.4,125.6,51.0$, 45.8, 20.7. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\left.\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}\right]$, 206.1539; found, 206.1538.
N-ethyl-N-isopropylbenzamide (4bn).

Compound $\mathbf{4 b n}$ was obtained as a yellow oil in 19% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 4.13-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.30(\mathrm{~m}, 2 \mathrm{H}), 1.33-$ $1.27(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.10(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,137.6,128.8$, 128.4, 126.0, 50.2, 35.2, 21.1, 14.8. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}\right]$, 192.1383; found, 192.1381 .

2-(N-ethylbenzamido)ethyl [1,1'-bi(cyclohexane)]-1-carboxylate (4bo).

Compound $\mathbf{4 b o}$ was obtained as a yellow oil in 31% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.31(\mathrm{~m}, 5 \mathrm{H}), 4.59-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.23-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.51(\mathrm{~m}, 8 \mathrm{H}), 1.40-0.8(\mathrm{~m}, 14 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $176.0,171.9,136.4,129.3,128.3,126.2,61.6,50.8,46.7,44.7,43.3,31.3,27.7,26.9$, 26.4, 25.8, 23.7, 14.0. HRMS (ESI): [M + H] ${ }^{+}$calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{NO}_{3}\right], 386.2690$; found, 386.2692 .

4. Mechanistic Investigations

4.1 Luminescence Quenching Experiments

Stern-Volmer experiments were conducted on an Agilent Technologies Cary Eclipse Fluorescence Spectrophotometer using the Cary Eclipse Scan Application. Rigorously purged (with nitrogen) solutions of each component were prepared prior to each set of experiments. Luminescence quenching experiments were run with CHCl_{3} as the solvent. The solutions were irradiated at 410 nm and the luminescence was measured from 440 nm to 700 nm (emission maximum is at 530 nm). The concentration of $\mathrm{Ph}-\mathrm{Cz}-\mathrm{NI}$ stock solution was 0.3 mM in EA. After being stirred with a thin glass rod, the emission spectrum was collected. Linear regression of I0/I against concentration is done in Origin.

Figure S6. Fluorescence quenching data with $\mathrm{Ph}-\mathrm{Cz}-\mathrm{NI}$ and N, N-dimethylaniline (1a).

Figure S7. Stern-Volmer plot of $\mathrm{Ph}-\mathrm{Cz}-\mathrm{NI}$ and variable N, N-dimethylaniline (1a) (the intensity data was collected at 530 nm).

Figure S8. Fluorescence quenching data with $\mathrm{Ph}-\mathrm{Cz}-\mathrm{NI}$ and PFNB .

Figure S9. Stern-Volmer plot of $\mathrm{Ph}-\mathrm{Cz}-\mathrm{NI}$ and variable PFNB (the intensity data was collected at 530 nm).

Figure S10. Fluorescence quenching data with $\mathrm{Ph}-\mathrm{Cz}-\mathrm{NI}$ and benzoyl chloride (2a).

Figure S11. Stern-Volmer plot of $\mathrm{Ph}-\mathrm{Cz}-\mathrm{NI}$ and variable PhCOCl (2a) (the intensity data was collected at 530 nm).

Figure S12. Stern-Volmer quenching experiments of Cz-NI-Ph with different components (the intensity data was collected at 530 nm).

5. Determination of the Quantum Yield

1) Determination of the light intensity at $\mathbf{4 3 6} \mathbf{n m}$:

The photon flux of the spectrophotometer was determined by standard ferrioxalate actinometry. ${ }^{2-4}$ A 0.15 M solution of ferrioxalate was prepared by dissolving 1.84 g of potassium ferrioxalate hydrate in 25 mL of $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. A buffered solution of phenanthroline was prepared by dissolving 25 mg of phenanthroline and 5.63 g of sodium acetate in 25 mL of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. Both solutions were stored in the dark. To determine the photon flux of the spectrophotometer, 2.0 mL of the ferrioxalate solution was placed in a cuvette and irradiated for 90.0 seconds at $\lambda=420 \mathrm{~nm}$. After irradiation, 0.35 mL of the phenanthroline solution was added to the cuvette. The solution was then allowed to rest for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm . A nonirradiated sample was also prepared and the absorbance at 510 nm measured. Conversion was calculated using eq 1 .

$$
\begin{equation*}
\mathrm{mol} \mathrm{Fe}{ }^{2+}=\frac{V \cdot \Delta A}{l \cdot \varepsilon} \tag{eq.1}
\end{equation*}
$$

Where V is the total volume $(0.00235 \mathrm{~L})$ of the solution after addition of phenanthroline, $\Delta \mathrm{A}$ is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, l is the path length $(1.000 \mathrm{~cm})$, and ε is the molar absorptivity at $510 \mathrm{~nm}\left(11,100 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$.

The photon flux can be calculated using eq 2 .

$$
\begin{equation*}
\text { photon flux }=\frac{\operatorname{mol~Fe}^{2+}}{\Phi \bullet t \bullet f} \tag{eq.2}
\end{equation*}
$$

Where Φ is the quantum yield for the ferrioxalate actinometer (1.01 at $\lambda=436 \mathrm{~nm}),{ }^{5}$ t is the time $(90.0 \mathrm{~s}$), and f is the fraction of light absorbed at $\lambda=436 \mathrm{~nm}$ by the ferrioxalate actinometer. This value is calculated using eq. 3, where A436 nm is the absorbance of the ferrioxalate solution at 436 nm .

$$
\begin{equation*}
f=1-10^{-A_{436 n m}} \tag{eq.3}
\end{equation*}
$$

Sample calculation:

$$
\mathrm{mol} \mathrm{Fe}{ }^{2+}=\frac{V \cdot \Delta A}{l \cdot \varepsilon}=\frac{0.00235 \mathrm{~L} \cdot 1.244}{1.0 \mathrm{~cm} \cdot 11,100 \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}}=2.63 \times 10^{-7} \mathrm{~mol}
$$

An absorption spectrum gave an $\mathrm{A}(436 \mathrm{~nm})$ value of >3, indicating that the fraction of absorbed light (f) is about 1.0.

$$
f=1-10^{-A_{436 n m}} \approx 1.0
$$

Figure S5. The absorption spectrum of the ferrioxalate actinometer

$$
\text { photon flux }=\frac{\mathrm{mol} \mathrm{Fe}^{2+}}{\Phi \cdot t \cdot f}=\frac{2.63 \times 10^{-7} \mathrm{~mol}}{1.01 \cdot 90.0 \mathrm{~s} \cdot 1.0}=2.89 \times 10^{-9} \text { einstein } \cdot \mathrm{s}^{-1}
$$

2) Determination of the reaction quantum yield at 436 nm

Cz-NI-Ph ($0.44 \mathrm{mg}, 0.001 \mathrm{mmol}, 1 \mathrm{~mol} \%$) and $\mathrm{KHCO}_{3}(10.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) were weighed into an oven-dried 8 mL quartz cuvette with a magnetic stirring bar, and then EA ($0.05 \mathrm{M}, 2 \mathrm{~mL}$) was added. The N,N-dimethylaniline $\mathbf{1 a}$ ($12.6 \mu \mathrm{l}, 0.1$
mmol, 1.0 equiv.) and PFNB ($6.5 \mu \mathrm{~L}, 0.05 \mathrm{mmol}, 0.5$ equiv.) were added into the mixture via microsyringe. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the benzoyl chloride 2a (12.8 $\mu 1,15.5 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv.) was added into the mixture via micro-syringe. The mixture was stirred under nitrogen atmosphere at room temperature while irradiated by blue light ($\lambda=436 \mathrm{~nm}$) for 10 minutes (600 s). After irradiation, the yield of the product 3aa was determined by ${ }^{1} \mathrm{H}$ NMR based on a 1,3,5-trimethoxybenzene standard and the final yield was $6.06 \%\left(6.06 \cdot 10^{-6} \mathrm{~mol}\right)$.

The reaction quantum yield (Φ) was determined using eq. 4, where the photon flux is $2.89 \times 10^{-9} \mathrm{Ess}^{-1}$ (determined by actinometry as described above), t is the reaction time (1800 s) and f is the fraction of incident light absorbed by the reaction mixture, determined using eq. 3. An absorption spectrum of the reaction mixture gave an absorbance value of about 2 at 436 nm , indicating that essentially all the incident light $(f>0.999)$ is absorbed by the photocatalyst.

$$
\begin{array}{r}
f=1-10^{-A_{436 n m}}=1-10^{-2}=0.99 \\
\Phi=\frac{\text { mol of product formed }}{\text { photon flux } \cdot t \cdot f}=\frac{6.06 \times 10^{-6}}{2.89 \times 10^{-9} \times 600 \mathrm{~s} \times 0.99}=3.5 \tag{eq.4}
\end{array}
$$

The reaction quantum yield (Φ) was thus determined to be 3.5 .

6. NMR spectra of products

${ }^{1} \mathrm{H}$ NMR of 3aa in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3aa

${ }^{13} \mathrm{C}$ NMR of 3aa in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3aa

${ }^{1} \mathrm{H}$ NMR of 3ba in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ba in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ba

${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{3 c a}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ca in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of 3da in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3da in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3da
${ }^{1} \mathrm{H} \mathrm{NMR}$ of 3ea in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ea in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 f a}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 f a}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}$ of 3ga in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 g a}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{3} \mathbf{h a}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \mathrm{NMR}$ of 3ha in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 i a}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}^{\mathrm{NMR}}$ of 3ia in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3} \mathbf{j a}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}^{\mathrm{NMR}}$ of $\mathbf{3 j} \mathbf{j}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{3 k} \mathbf{k}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ka

${ }^{13} \mathrm{C}^{\mathrm{NMR}}$ of 3ka in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of 31a in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3la

${ }^{13} \mathrm{C}$ NMR of 3la in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| $\left.\right|_{\text {| }} ^{\text {| }}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 m a}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 m a}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{3 n a}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3na in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} N \mathrm{NRR}$ of 3pa in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}^{\mathrm{NMR}}$ of 3pa in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} N \mathrm{NR}$ of $\mathbf{3 q a}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 q a}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3}$ ra in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ra

${ }^{13} \mathrm{C}$ NMR of 3 ra in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{3} \mathbf{a b}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3} \mathbf{a b}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of 3ac in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a c}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a d}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3} \mathbf{a d}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a e}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a e}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR of 3ae in $\mathrm{CDCl}_{3}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}$ of 3af in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3} \mathbf{a f}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a g}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ag in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3} \mathbf{a h}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ah in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of 3ai in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ai in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR of 3ai in $\mathrm{CDCl}_{3}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ai

${ }^{1} \mathrm{H}$ NMR of 3aj in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3aj

${ }^{13} \mathrm{C}^{\mathrm{NMR}}$ of 3aj in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of 3aj in $\mathrm{CDCl}_{3}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3aj

${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{3 a k}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \mathrm{NMR}$ of 3ak in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a l}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}^{\text {NMR }}$ of $\mathbf{3}$ al in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3} \mathbf{a m}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \mathrm{NMR}^{2}$ of $\mathbf{3} \mathbf{a m}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}$ of 3an in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\infty}{\stackrel{\infty}{\infty}}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{of} \mathrm{3an} \mathrm{in} \mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of 3ao in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ao in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}$ of 3ap in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3ap in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{3 a q}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$3 a q$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{of} \mathrm{3aq} \mathrm{in} \mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3} \mathbf{a r}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


```
*)
```


${ }^{13} \mathrm{C}$ NMR of 3 ar in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of 3 as in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3as in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3}$ at in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}^{\text {NMR }}$ of 3at in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3at

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a u}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \mathrm{NMR}$ of 3au in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b a}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 4ba in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4} \mathbf{b b}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(
${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b b}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b c}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b c}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of $\mathbf{4 b c}$ in $\mathrm{CDCl}_{3}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b d}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b d}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{4 b e}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 4be in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b f}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b f}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4} \mathbf{b g}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b g}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4} \mathbf{b h}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4bh

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b h}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4bh
${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b i}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}^{\mathrm{NMR}}$ of $\mathbf{4 b i}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{4 b j}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b j}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4bj
${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b k}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4bk

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b k}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b l}$ in $\mathrm{CDCl}_{3}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b l}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4bl
${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{4 b m}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b m}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b n}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{4 b o}$ in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b o}$ in $\mathrm{CDCl}_{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

References

1. M.-J. Yi, H.-X. Zhang, T.-F. Xiao, J.-H. Zhang, Z.-T. Feng, L.-P. Wei, G.-Q. Xu and P.-F. Xu, ACS Catal., 2021, 11, 3466-3472.
2. Cismesiaa, M. A. and P. Yoon, T. P. Chem. Sci. 2015, 6, 6019-6019.
3. Hatchard, C. G.; Parker, C. A. Proc. Roy. Soc. (London) 1956, A235, 518-536.
4. (a) Kuhn, H. J.; Braslavsky, S. E.; Schmidt, R. Pure Appl. Chem. 2004, 76, 2105-2146. (b) Monalti, M. et. al. Chemical Actinometry. Handbook of Photochemistry, 3rd Ed; Taylor \& Francis Group, LLC. Boca Raton, FL, 2006, 601-616.
