# Synergistic valence tautomerism and fluorescence emission in a two-dimensional coordination polymer 

Wen-Ting Liu, Jie-Sheng Hu, Meng Yu,* Jin-Peng Xue, Zhi-Kun Liu, Jia-Ping Wang and Jun Tao*

Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China

E-mail: mengyu@bit.edu.cn, taojun@bit.edu.cn

## Contents

1. Instruments and Methods ..... S4
2. Synthetic procedures ..... S6
3. Additional Tables ..... S8
Table S1. Crystal data and structural refinements for $\mathbf{1}$ ..... S8
Table S2. Selected bond lengths and angles for $\mathbf{1}$ ..... S8
Table S3. Selected calculated excitation energies, oscillator strengths $(f)$, and assignment of the
electronic transitions ..... S9
Table S4. Comparison of bond lengths between crystallographic data (298 K) and DFT ..... S12
Table S5. Relative energies for LS-Co ${ }^{\text {III }}(\mathrm{Cat})(\mathrm{Sq})(S=1 / 2)$ and $\mathrm{HS}-\mathrm{Co}^{\mathrm{II}}(\mathrm{Sq})_{2}(S=5 / 2)$electronic states obtained from DFT calculations .......................................................... 12
Table S6. Cartesian Coordinates of optimized structure of the LS-Co ${ }^{\text {III }}(\mathrm{Cat})(\mathrm{Sq})$ state ..... S12
Table S7. Cartesian Coordinates of optimized structure of $\mathrm{HS}-\mathrm{Co}^{\mathrm{II}}(\mathrm{Sq})_{2}$ state ..... S20
4. Additional Figures ..... S28
Fig. S1 Thermogravimetric analysis of $\mathbf{1}$ and other samples ..... S28
Fig. S2 Crystal structure of $\mathbf{1}$ ..... S28
Fig. S3 Voids in the framework of $\mathbf{1}$ viewed along the three crystallographic axes ..... S29
Fig. S4 Powder X-ray diffraction patterns for $\mathbf{1}$ and other samples ..... S29
Fig. S5 Temperature-dependent IR spectra of $\mathbf{1}$ ..... S30
Fig. S6 Variable-temperature EPR spectra of 1 ..... S30
Fig. S7 Temperature-dependent emission spectra of $\mathbf{1}$ ..... S31
Fig. S8 Temperature-dependent emission spectra of TPPE ..... S31
Fig. S9 Solid-state UV-vis absorption spectra of $\mathbf{1}$ at the room temperature ..... S32
Fig. S10 Solid-state UV-vis absorption spectra of TPPE at the room temperature ..... S32
Fig. S11 The calculate electronic absorption spectra of $\mathbf{1}$ ..... S33
Fig. S12 Difference density map of $\mathbf{1}$ in the LS-form for the absorption at 331 nm ..... S33
Fig. S13 Molecule-orbital contributions for the 651 nm transition for the LS-form of $\mathbf{1}$ ..... S33

Fig. S14 Molecule-orbital contributions for the 732 nm transition for the LS-form of $\mathbf{1} \cdots$. S33
Fig. S15 Molecule-orbital contributions for the 404 nm transition for the LS-form of $\mathbf{1} \cdots$. S34
Fig. S16 Molecule-orbital contributions for the 559 nm transition for the HS-form of $\mathbf{1} \cdots$. S34
Fig. S17 Difference density map of $\mathbf{1}$ in the LS-form for the absorption at $404 \mathrm{~nm} \cdot \cdots \cdots \cdots$ S34
Fig. S18 Difference density map of $\mathbf{1}$ in the LS-form for the absorption at $651 \mathrm{~nm} \cdot \cdots \cdots \cdots$. 335
Fig. S19 Difference density map of $\mathbf{1}$ in the LS-form for the absorption at $732 \mathrm{~nm} \cdot \cdots \cdots \cdots$ S35
Fig. S20 Difference density map of $\mathbf{1}$ in the HS-form for the absorption at $559 \mathrm{~nm} \cdots \cdots \cdots$. 335
Fig. S21 Difference density map of $\mathbf{1}$ in the HS-form for the absorption at $404 \mathrm{~nm} \cdot \cdots \cdots \cdots$ S36
Fig. S22 Difference density map of $\mathbf{1}$ in the HS-form for the absorption at $328 \mathrm{~nm} \cdots \cdots \cdots$ S36
Fig. S23 ${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ) recorded for ligand TPPE $\cdots \cdots \cdots \cdots \cdots$. 337
Fig. S24 IR spectra of $\mathbf{1}$ and TPPE at the room temperature ......................................S37
Fig. S25 $\mathrm{N}_{2}$ adsorption-desorption isotherms of $\mathbf{1}$................................................... 338
Fig. S26 $\chi_{M}{ }^{T}$ versus $T$ plots for desolvated $\mathbf{1} \ldots \ldots$


## 1. Instruments and Methods

Materials and Methods. All reagents and deuterated solvents were used as purchased without further purification. NMR spectra were recorded on a Bruker Advance 300 MHz spectrometer. Thermogravimetric analyses (TGA) were carried out from 298 to 773 K on a Hitachi TG-DTA 7200 instrument with a heating rate of $2 \mathrm{~K} \mathrm{~min}^{-1}$ under $\mathrm{N}_{2}$ flow. Fourier transform infrared (FTIR) spectra were recorded on a Bruker ALPHA FT-IR spectrometer in the range of 400-4000 $\mathrm{cm}^{-1}$. Solid-state UV-vis spectra were recorded on a TU-1901 dual-beam UV-vis spectrophotometer with $\mathrm{BaSO}_{4}$ as reference in the range of $280-800 \mathrm{~nm} . \mathrm{N}_{2}$ sorption isotherms were measured at 77 K using a Quantachrome Instrument ASiQMVH002-5 after pretreatment (samples were degassed at $80^{\circ} \mathrm{C}$ for 10 h ). X-band EPR spectra were recorded using a JNMECAE600 spectrometer. Powder X-ray diffraction (PXRD) patterns were collected on a Bruker D8 Advance $(40 \mathrm{kV}, 40 \mathrm{~mA})$ diffractometer with Cu radiation $(\lambda=1.54184 \AA)$ at room temperature. Simulated PXRD patterns were generated using Mercury 2021.1.0.

Single-Crystal X-ray Diffraction. SC-XRD analysis of 1 was performed on a Bruker D8 VENTURE X-ray diffractometer equipped with graphite-monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=$ $1.54178 \AA$ ). Crystallographic data of 1 were collected in a cooling $\mathrm{N}_{2}$ stream at 180 K . Because 1 is not sufficiently stable at room temperature and cannot be collected for a long time, the room temperature ( 298 K ) crystal data of 1 was collected with a Bruker/ARINAX MD2 diffractometer equipped with a MarCCD-300 detector $(\lambda=0.71073 \AA)$ at the BL17B beam line station of the Shanghai Synchrotron Radiation Facility (SSRF).

The structures were solved by direct methods and further refined by full-matrix least-squares techniques on $F^{2}$ with SHELX program. ${ }^{1}$ The hydrogen atom positions were fixed geometrically at calculated distances and allowed to ride on the parent atoms. Due to the instability of crystals at room temperature ( 298 K ) and its large porous structure, attempts to define the highly disordered solvent molecules at 298 K was unsuccessful. Therefore, the structure at 298 K was refined with the PLATON "SQUEEZE" procedure. ${ }^{2}$ CCDC 2204959-2204960 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/datarequest/cif.

Crystal data and selective bond lengths and angles are summarized in Tables S1 and S2.

Magnetic Susceptibility Measurements. Variable-temperature magnetic susceptibilities were
measured on a Quantum Design MPMS XL7 magnetometer under magnetic field of 5000 Oe at temperature range of $2-380 \mathrm{~K}$ with a sweeping rate of $2 \mathrm{~K} \mathrm{~min}^{-1}$. The samples used for the magnetic measurements of Fig. 2 were prepared from the standard method described above and soaked in acetone, cyclohexane and $n$-butanol, respectively, for three times within two days (their relative molecular masses were determined by TGA), while that for the magnetic measurement of Supplementary Fig. S8 was prepared by heating and evacuating the sample of $\mathbf{1}$ at 353 K overnight. The prepared samples were tightly wrapped with a drop of crystal oil by a plastic film $\left(2 \times 2 \mathrm{~cm}^{2}\right)$ and fixed in a straw, which were loaded in the SQUID chamber at 300 K .

Computational Methods. Density functional theory (DFT) calculations were performed using the ORCA quantum chemistry software version 4.2.1. ${ }^{3}$ Initial atomic coordinates of the simplified model complex were obtained from the crystal structure of $\mathbf{1}$ at 298 K . Then geometrical optimizations were carried out in the gas phase using B3LYP functional with a double-z basis set with polarization functions (def2-SVP) on all atoms except cobalt, for which a valence triple-z basis set (def2-TZVP) was used. The validity of structural solutions was checked by performing frequency calculations and no negative frequencies were observed. Single point energies for different spin states were calculated by OPBE, B3LYP*, and TPSSh functionals with def2-TZVP basis set applied for all the atoms. Note that both dispersion correction and relativistic effect tend to stabilize the lower spin state. The RI and RIJCOSX approximations ${ }^{4}$ combined with appropriate auxiliary basis sets ${ }^{5}$ were routinely employed to speed up the calculations. Grid-6 and TightSCF convergence criteria (energy: $1.0 \times 10^{-8} \mathrm{au}$ ) were used for all calculations.

TD-DFT. The time-dependent DFT calculations were conducted for $\mathbf{1}$ in both $\mathrm{HS}-\mathrm{Co}^{\mathrm{II}}(\mathrm{Sq})_{2}$ and LS-Co ${ }^{\text {III }}(\mathrm{Cat})(\mathrm{Sq})$ tautomeric forms. RIJCOSX approximation was employed to speed up the calculation. Geometries optimized with the spin-unrestricted B3LYP functional in gas phase were used for TD-DFT single-point calculation with the range separated hybrid CAM-B3LYP to take into account any possible charge transfer (CT) excitations. Calculations were done with the def2SVP basis set on all atoms except cobalt, oxygen, and nitrogen, for which a valence triple-z basis set (def2-TZVP) was used. Calculated UV-vis spectra were obtained using orca_mapspc program with a Gaussian peak width of $2500 \mathrm{~cm}^{-1}$ to obtain convoluted and deconvoluted spectra, respectively, and the stick spectra show the absorption wavelengths and oscillator strengths. Orbital transitions with major contributions are reported with an isovalue of $0.05 .{ }^{6}$

In the B3LYP optimized structure for $\operatorname{LS}-\mathrm{Co}^{\text {III }}(\mathrm{Cat})(\mathrm{Sq})$ isomer $(S=1 / 2)$, the coordinative environment around $\mathrm{Co}^{\text {III }}$ ion agrees quite well with the crystal structure, further corroborating the above $S=1 / 2$ spin assignment for 1 at 298 K based on crystal data (Table S3). The relative energies of $\mathrm{HS}-\mathrm{Co}^{\mathrm{II}}(\mathrm{Sq})_{2}(S=5 / 2)$ and $\mathrm{LS}-\mathrm{Co}^{\mathrm{III}}(\mathrm{Cat})(\mathrm{Sq})(S=1 / 2)$ electronic states were computed by the B3LYP*, OPBE, and TPSSh functionals as recent theoretical research on VT complexes revealed that these functionals correlate well with experimental observations. The calculated energies were summarized in Table S4. The B3LYP* functional predicts a close energy difference of $2.8 \mathrm{kcal} / \mathrm{mol}$ between the two energetic states, in accordance with the occurrence of VT transition at accessible temperatures. The OPBE and TPSSh functionals produce larger energy gaps between the electromers but these values fall within reasonable range for VT systems nevertheless. Note that the calculated structures are merely simplified models whereas other determining factors including intermolecular interactions in crystal lattice can have dramatic impact on the magnetic behaviors.

## 2. Synthetic procedures

Synthesis of 1,1,2,2-tetrakis(4-bromophenyl)ethene. 1,1,2,2-tetrakis(4-bromophenyl)ethene was synthesized by a literature method. ${ }^{7}$


In an ice water bath, molecular bromine ( $38.4 \mathrm{~g}, 12.32 \mathrm{~mL}, 240 \mathrm{mmol}$ ) was added to the glacial acetic acid $(15 \mathrm{ml})$ and dichloromethane solution ( 60 ml ) of 1,1,2,2-tetraphenylethene ( $6.0 \mathrm{~g}, 30.0$ $\mathrm{mmol})$. The resulting mixture was then stirred at room temperature for 6 h , and poured into 400 ml ice water and then extracted three times with dichloromethane. The organic phase was washed with hydrogensulfite, water, and brine in turn, dried over $\mathrm{MgSO}_{4}$, finally the solvent was removed under reduced pressure. The crude product was recrystallized with cyclohexane to give 1,1,2,2-tetrakis(4-bromophenyl)ethene ( $10.4 \mathrm{~g}, 16.04 \mathrm{mmol}, 53 \%$ yield) as a colorless solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): ~ \delta 7.20-7.31(\mathrm{~m}, 8 \mathrm{H}), 6.76-6.91(\mathrm{~m}, 8 \mathrm{H})$.

Synthesis of 1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)ethene (TPPE). Ligand TPPE was synthesized according to the reference method. ${ }^{8}$


1,1,2,2-Tetrakis(4-bromophenyl)ethene ( $2.00 \mathrm{~g}, 3.08 \mathrm{mmol}$ ), 4-pyridinylboronic acid $(2.28 \mathrm{~g}$, $18.52 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(5.12 \mathrm{~g}, 18.52 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(720 \mathrm{mg}, 0.62 \mathrm{mmol})$ were added into a 500 mL round-bottom flask. Then toluene, methanol and water (4:1:1, 240 mL ) after being injected with nitrogen were added to the round-bottom flask. The whole system was degassed and purged with nitrogen by freeze-pump-thaw for 3 times. The mixture was refluxed at $85^{\circ} \mathrm{C}$ for 4 days. After cooling, the aqueous and organic phases were separated and then the aqueous phase was extracted with dichloromethane. Finally, the combined organic solvents of toluene and dichloromethane were removed under reduced pressure to give a crude product, which was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10: 1\right)$ to give product TPPE $(1.4 \mathrm{~g}$, $71 \%$ ) as a faint yellow solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ): $\delta 8.63$ (d, $J=5.7 \mathrm{~Hz}, 8 \mathrm{H}$ ), $7.44-7.53$ (m, 16H), 7.23 (d, $J=8.3 \mathrm{~Hz}, 8 \mathrm{H}$ ).

Synthesis of compound (1). A toluene/methanol solution (7:1, 2 mL ) of TPPE ( $0.0064 \mathrm{~g}, 0.01$ $\mathrm{mmol})$ and 3,5 -di-tert-butyl-1,2-catechol $(0.0089 \mathrm{~g}, 0.04 \mathrm{mmol})$ were put in the bottom of a test tube, upon which a buffer layer of toluene/methanol (2:1, 2 mL ) was added, then a methanol solution ( 2 $\mathrm{mL})$ of $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.005 \mathrm{~g}, 0.02 \mathrm{mmol})$ was carefully layered. After one week, dark green crystals were formed. The amount of solvent molecules contained in the crystal was determined on the basis of thermogravimetric and elemental analysis results (Fig. S1). Calcd for $1 \cdot 6 \mathrm{CH}_{3} \mathrm{OH} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\left(\mathrm{C}_{71} \mathrm{H}_{96} \mathrm{CoN}_{2} \mathrm{O}_{10}\right)$ : C, 71.27; H, 8.09; N, 2.34. Found: C, $75.28 ; \mathrm{H}, 6.65$; N, 2.85. Guest molecules estimated from CHN analysis were not fully consistent with the theoretical value of the solvent molecules, because the sample lost partial lattice solvent molecules and absorbed water molecules in air.

## 3. Additional Tables

Table S1. Crystal data and structural refinements for 1.

|  | $\mathbf{1}$ |  |
| :---: | :---: | :---: |
| $T / \mathrm{K}$ | 180 | 298 |
| Formula | $\mathrm{C}_{51} \mathrm{H}_{56} \mathrm{CoN}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}{ }^{\mathrm{a}}$ | $\mathrm{C}_{51} \mathrm{H}_{56} \mathrm{CoN}_{2} \mathrm{O}_{4}$ |
| $M_{\mathrm{r}} / \mathrm{g} \mathrm{mol}^{-1}$ | 1004.17 | 819.9 |
| Crystal system | Monoclinic |  |
| Space group | $C 2 / m$ |  |
| $a / \AA$ | $19.087(5)$ | $19.571(2)$ |
| $b / \AA$ | $34.674(5)$ | $34.924(4)$ |
| $c / \AA$ | $12.113(2)$ | $12.1538(12)$ |
| $\alpha /{ }^{\circ}$ | 90 | 90 |
| $\beta / \circ$ | $105.60(2)$ | $107.312(4)$ |
| $\gamma / \circ$ | 90 | 90 |
| $V / \AA^{3}$ | $7722(3)$ | $7930.8(15)$ |
| $Z$ |  | 4 |
| $\mu / \mathrm{mm}^{-1}$ | 2.033 | 0.242 |
| $F(000)$ | 2212.0 | 1740.0 |
| $R_{\text {int }} / \%$ | 5.17 | 6.12 |
| $R_{1}[I \geq 2 \sigma(I)]$ | 0.0643 | 0.1081 |
| $w R_{2}($ all data $)$ | 0.1964 | 0.2888 |
| $C C D C$ no. | 2204959 | 2204960 |

${ }^{a}$ The methanol solvent molecules were unable to identify due to the partial loss during the process of picking crystals and the disorder of methanol molecules.

Table S2. Selected bond lengths and angles for $\mathbf{1 .}$

|  |  | $\mathbf{1}$ |
| :---: | :---: | :---: |
| $T / \mathrm{K}$ | 180 | 298 |
| $\mathrm{Co} 1-\mathrm{O} 1 / \AA$ | $1.889(2)$ | $1.881(4)$ |
| $\mathrm{Co} 1-\mathrm{O} 2 / \AA$ | $1.8856(18)$ | $1.891(3)$ |
| $\mathrm{Co} 1-\mathrm{N} 1 / \AA$ | $1.9417(19)$ | $1.957(3)$ |
| $\mathrm{O} 1-\mathrm{C} 2 / \AA$ | $1.328(3)$ | $1.332(6)$ |
| $\mathrm{O} 2-\mathrm{C} 1 / \AA$ | $1.317(3)$ | $1.324(6)$ |
| $\mathrm{C} 1-\mathrm{C} 2 / \AA$ | $1.436(4)$ | $1.422(7)$ |
| $\mathrm{C} 2-\mathrm{C} 3 / \AA$ | $1.423(4)$ | $1.437(8)$ |
| $\mathrm{C} 3-\mathrm{C} 4 / \AA$ | $1.380(4)$ | $1.371(9)$ |
| $\mathrm{C} 4-\mathrm{C} 5 / \AA$ | $1.418(5)$ | $1.400(10)$ |
| $\mathrm{C} 5-\mathrm{C} 6 / \AA$ | $1.390(4)$ | $1.390(9)$ |
| $\mathrm{C} 6-\mathrm{C} 1 / \AA$ | $1.389(4)$ | $1.382(8)$ |
| $\mathrm{O} 2^{1}-\mathrm{Co} 1-\mathrm{N} 1^{1}$ | $89.47(8)$ | $89.82(15)$ |
| $\mathrm{O} 2^{1}-\mathrm{Co} 1-\mathrm{N} 1$ | $90.54(8)$ | $90.18(15)$ |
| $\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 1^{1}$ | $90.53(8)$ | $90.18(15)$ |


| O2-Col-N1 | 89.47(8) | 89.82(15) |
| :---: | :---: | :---: |
| $\mathrm{O} 1^{1}-\mathrm{Co} 1-\mathrm{O} 2$ | 92.56(8) | 92.96(16) |
| $\mathrm{O} 1^{1}-\mathrm{Co} 1-\mathrm{O} 2^{1}$ | 87.44(8) | 87.04(16) |
| O1-Co1-O2 ${ }^{1}$ | 92.56(8) | 92.96(16) |
| O1-Co1-O1 ${ }^{1}$ | 180.0 | 180.0 |
| O1-Co1-N1 ${ }^{1}$ | 89.30(8) | 89.57(16) |
| O1-Col-N1 | 90.70(8) | 90.44(16) |
| $\mathrm{O} 1^{1}-\mathrm{Co} 1-\mathrm{N} 1$ | 89.30(8) | 89.56(16) |
| $\mathrm{O} 1^{1}-\mathrm{Col} 1-\mathrm{N} 1^{1}$ | 90.70(8) | 90.44(16) |
| N1 ${ }^{1}-\mathrm{Co} 1-\mathrm{N} 1$ | 180.0 | 180.00(12) |
| C1-O1-Col | 109.91(17) | 110.8(3) |
| C2-O2-Co1 | 109.99(16) | 109.6(3) |
| $\Sigma / \operatorname{deg}^{\text {a }}$ | 15.1889 | 14.3785 |
| $\Theta / \operatorname{deg}^{\text {b }}$ | 47.9707 | 54.4246 |
| Diox MOS ${ }^{\text {c }}$ | -1.45 | -1.50 |
| Cobalt BVS ${ }^{\text {d }}$ | 3.04 | 3.01 |

180 K Symmetry code: 1 ) $-x+3 / 2,-y+1 / 2,-z+1$ for $180 K ;-x+3 / 2,-y+3 / 2,-z+1$ for 298 K .
${ }^{\text {a }}$ The sum of the deviation of 12 unique cis ligand-metal-ligand angles from $90^{\circ} .{ }^{\mathrm{b}}$ The sum of the deviation of 24 unique torsional angles between the ligand atoms on opposite triangular faces of the octahedron viewed along the
 uses a least-squares fitting of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond lengths to assign an apparent oxidation state: -1 for a semiquinonate ligand and -2 for a catecholate ligand. ${ }^{\mathrm{d}}$ The calculated bond valence sum (BVS).

Table S3. Selected calculated excitation energies, corresponding oscillator strengths ( $f$ ), and assignment of the electronic transitions of $\mathrm{LS}-\mathrm{Co}^{\mathrm{III}}(\mathrm{Cat})(\mathrm{Sq})(S=1 / 2)$ and $\mathrm{HS}^{-\mathrm{Co}^{\mathrm{II}}(\mathrm{Sq})_{2}(S=5 / 2), ~}$ electronic states.

| LS-Co ${ }^{\text {III }}(\mathrm{Cat})(\mathrm{Sq})(S=1 / 2)$ |  |  |  | $\mathrm{HS}-\mathrm{Co}^{\mathrm{II}}(\mathrm{Sq})_{2}(S=5 / 2)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Excited states | $f$ | Major contributions | Assignment | Excited states | $f$ | Major contributions | Assignment |
| $\begin{gathered} 0.371 \\ \mathrm{eV} / 3343( \\ \text { ?) } \mathrm{nm} \end{gathered}$ | 0.1611 | $\begin{gathered} \operatorname{HOMO}(\beta) \rightarrow \\ \operatorname{LUMO}(\beta)(0.93) \end{gathered}$ | $\begin{gathered} \text { IVCT }\left(\mathrm{Cat}^{2-} \rightarrow\right. \\ \left.\mathrm{Sq}^{--}\right) \end{gathered}$ | $\begin{gathered} 2.219 \\ \mathrm{eV} / 559 \\ \mathrm{~nm} \end{gathered}$ | 0.0242 | HOMO-2 $(\beta) \rightarrow$ <br> LUMO( $\beta$ ) (0.50) <br> HOMO-3( $\beta$ ) $\rightarrow$ <br> LUMO +1 ( $\beta$ ) <br> (0.40) | $\mathrm{Sq}^{*} \pi \rightarrow \pi^{*}$ |
| $\begin{gathered} 1.694 \\ \mathrm{eV} / 732 \end{gathered}$ | 0.0042 | $\begin{aligned} & \operatorname{HOMO}(\beta) \rightarrow \\ & \operatorname{LUMO}+9(\beta) \end{aligned}$ | $\begin{gathered} \text { LMCT }\left(\mathrm{Cat}^{2-} \rightarrow\right. \\ \text { LS-Co } \left.{ }^{\text {III }} \mathrm{e}_{\mathrm{g}}{ }^{*}\right) \end{gathered}$ | $3.067$ <br> eV/404 | 0.1198 | $\begin{gathered} \operatorname{HOMO}-4(\beta) \rightarrow \\ \operatorname{LUMO}(\beta)(0.83) \end{gathered}$ | $\begin{gathered} \mathrm{MLCT}\left(\mathrm{HS}-\mathrm{Co}^{\mathrm{II}}\right. \\ \left.\mathrm{t}_{2 \mathrm{~g}} \rightarrow \mathrm{Sq}^{--}\right) \end{gathered}$ |


| nm |  | (0.83) |  | nm |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 1.904 \\ \mathrm{eV} / 651 \\ \mathrm{~nm} \end{gathered}$ | 0.0084 | $\begin{gathered} \operatorname{HOMO}-2(\beta) \rightarrow \\ \operatorname{LUMO}(\beta)(0.92) \end{gathered}$ | $\mathrm{Sq}^{*} \pi \rightarrow \pi^{*}$ | $\begin{gathered} 3.618 \\ \mathrm{eV} / 372 \\ \mathrm{~nm} \end{gathered}$ | 0.0024 | $\text { HOMO-5( } \beta \text { ) } \rightarrow$ <br> LUMO( $\beta$ ) (0.61) <br> HOMO-13( $\beta$ ) <br> $\rightarrow \mathrm{LUMO}(\beta)$ <br> (0.16) | MLCT (HS-Co ${ }^{\text {II }}$ $\left.\mathrm{e}_{\mathrm{g}}{ }^{*} \rightarrow \mathrm{Sq} q^{*}\right)$ <br> IL (ML eg <br> orbital $\rightarrow \mathrm{Sq}^{*}$ ) |
| $\begin{gathered} 3.073 \\ \mathrm{eV} / 404 \\ \mathrm{~nm} \end{gathered}$ | 0.0120 | $\begin{gathered} \text { HOMO- } 1(\alpha) \rightarrow \\ \text { LUMO }+8(\alpha) \\ (0.64) \end{gathered}$ | $\begin{gathered} \text { LMCT }\left(\mathrm{Cat}^{2-} \rightarrow\right. \\ \text { LS-Co } \left.{ }^{\text {III }} \mathrm{e}_{\mathrm{g}}{ }^{*}\right) \end{gathered}$ | $\begin{gathered} 3.618 \\ \mathrm{eV} / 343 \\ \mathrm{~nm} \end{gathered}$ | 0.0091 | $\operatorname{HOMO}(\alpha) \rightarrow$ <br> LUMO( $\alpha$ ) <br> (0.49) <br> $\operatorname{HOMO}(\alpha) \rightarrow$ <br> LUMO $+2(\alpha)$ <br> (0.35) | $\begin{gathered} \text { LL'CT }\left(\mathrm{Sq}^{-} \rightarrow\right. \\ \mathrm{TPPE}) \\ {\text { LL'CT }\left(\mathrm{Sq}^{-}-\rightarrow\right.}_{\mathrm{TPPE})} \end{gathered}$ |
| $\begin{gathered} 3.080 \\ \mathrm{eV} / 403 \\ \mathrm{~nm} \end{gathered}$ | 0.0022 | $\operatorname{HOMO}(\beta) \rightarrow$ <br> LUMO +13 ( $\beta$ ) <br> (0.59) <br> $\operatorname{HOMO}(\beta) \rightarrow$ <br> LUMO $+11(\beta)$ <br> (0.17) <br> $\operatorname{HOMO}(\beta) \rightarrow$ <br> LUMO+15( $\beta$ ) <br> (0.11) | $\begin{gathered} \text { LL'CT }\left(\mathrm{Cat}^{2-} \rightarrow\right. \\ \text { TPPE) } \\ {\text { LL'CT }\left(\mathrm{Cat}^{2-} \rightarrow\right.}_{\text {TPPE) }}^{\text {LL’CT }\left(\mathrm{Cat}^{2-} \rightarrow\right.} \\ \text { TPPE) } \end{gathered}$ | $\begin{gathered} 3.659 \\ \mathrm{eV} / 339 \\ \mathrm{~nm} \end{gathered}$ | 0.0158 | $\begin{gathered} \text { HOMO-34( } \beta \text { ) } \\ \rightarrow \text { LUMO+1( } \beta \text { ) } \\ (0.24) \\ \text { HOMO-40( } \beta \text { ) } \\ \rightarrow \text { LUMO( } \beta \text { ) } \\ (0.17) \\ \text { HOMO-34( } \beta \text { ) } \\ \rightarrow \text { LUMO( } \beta) \\ (0.12) \end{gathered}$ | $\begin{gathered} \text { IL }\left(\mathrm{ML} \mathrm{t}_{2 \mathrm{~g}}\right. \\ \text { orbital } \left.\rightarrow \mathrm{Sq}^{--}\right) \\ \text {IL }\left(\mathrm{ML} \mathrm{t}_{2 \mathrm{~g}}\right. \\ \text { orbital } \left.\rightarrow \mathrm{Sq}^{-}\right) \\ \text {IL }\left(\mathrm{ML} \mathrm{t}_{2 \mathrm{~g}}\right. \\ \text { orbital } \left.\rightarrow \mathrm{Sq}^{-}\right) \end{gathered}$ |
| $\begin{gathered} 3.090 \\ \mathrm{eV} / 401 \\ \mathrm{~nm} \end{gathered}$ | 0.0024 | $\begin{gathered} \mathrm{HOMO}(\alpha) \rightarrow \\ \text { LUMO }+11(\alpha) \\ (0.37) \\ \text { HOMO-1 }(\alpha) \rightarrow \\ \text { LUMO }+8(\alpha) \\ (0.10) \\ \text { HOMO- } 25(\beta) \rightarrow \\ \text { LUMO }+12(\beta) \\ (0.10) \end{gathered}$ | $\begin{gathered} \text { LMCT }\left(\mathrm{Sq}^{-} \rightarrow\right. \\ \text { LS-Co } \left.{ }^{\text {III }} \mathrm{e}_{\mathrm{g}}{ }^{*}\right) \\ \text { LMCT }\left(\mathrm{Cat}^{2-} \rightarrow\right. \\ \text { LS-Co } \left.{ }^{\text {III }} \mathrm{e}_{\mathrm{g}}{ }^{*}\right) \\ \mathrm{LMCT}\left(\mathrm{Cat}^{2-} /\right. \\ \mathrm{Sq}^{-} \rightarrow \mathrm{LS}^{-C o}{ }^{\text {III }} \\ \left.\mathrm{e}_{\mathrm{g}}{ }^{*}\right) \end{gathered}$ | $\begin{gathered} 3.659 \\ \mathrm{eV} / 339 \\ \mathrm{~nm} \end{gathered}$ | 0.0079 | HOMO-34( $\beta$ ) $\rightarrow$ LUMO $(\beta)$ $(0.23)$ HOMO $(\beta) \rightarrow$ LUMO $+1(\beta)$ $(0.12)$ HOMO-40( $\beta$ ) $\rightarrow$ LUMO $+1(\beta)$ $(0.11)$ HOMO-4 $(\beta) \rightarrow$ LUMO $+1(\beta)$ $(0.10)$ | $\begin{gathered} \text { IL }\left(\mathrm{ML} \mathrm{t}_{2 \mathrm{~g}}\right. \\ \text { orbital } \left.\rightarrow \mathrm{Sq}^{--}\right) \\ \text {L'LCT }(\mathrm{TPPE} \\ \left.\rightarrow \mathrm{Sq}^{\cdot-}\right) \\ \mathrm{IL}\left(\mathrm{ML}_{2 \mathrm{~g}}\right. \\ \text { orbital } \left.\rightarrow \mathrm{Sq}^{--}\right) \\ \text {MLCT }\left(\mathrm{HS}^{-\mathrm{Co}^{\mathrm{II}}}\right. \\ \left.\mathrm{t}_{2 \mathrm{~g}} \rightarrow \mathrm{Sq}^{\cdot-}\right) \end{gathered}$ |


| $\begin{gathered} 3.135 \\ \mathrm{eV} / 396 \\ \mathrm{~nm} \end{gathered}$ | 0.0019 | $\begin{gathered} \text { HOMO-1 }(\alpha) \rightarrow \\ \text { LUMO+11 }(\alpha) \\ (0.80) \end{gathered}$ | LMCT (Cat ${ }^{2-} \rightarrow$ $\text { LS-Co } \left.{ }^{\text {III }} \mathrm{e}_{\mathrm{g}}{ }^{*}\right)$ | $\begin{gathered} 3.769 \\ \mathrm{eV} / 329 \\ \mathrm{~nm} \end{gathered}$ | 0.0142 | $\begin{gathered} \text { HOMO-1 }(\alpha) \rightarrow \\ \text { LUMO }+1(\alpha) \\ (0.46) \\ \text { HOMO- } 1(\alpha) \rightarrow \\ \text { LUMO }+3(\alpha) \\ (0.34) \end{gathered}$ | $\begin{gathered} \text { LL'CT }\left(\mathrm{Sq}^{--} \rightarrow\right. \\ \mathrm{TPPE}) \\ \text { LL' }^{\prime} \mathrm{CT}\left(\mathrm{Sq}^{-} \rightarrow\right. \\ \mathrm{TPPE}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 3.245 \\ \mathrm{eV} / 382 \\ \mathrm{~nm} \end{gathered}$ | 0.0036 | $\begin{gathered} \operatorname{HOMO}(\alpha) \rightarrow \\ \operatorname{LUMO}(\alpha)(0.47) \\ \operatorname{HOMO}(\alpha) \rightarrow \\ \operatorname{LUMO}+2(\alpha) \\ (0.32) \end{gathered}$ | $\begin{gathered} \text { LL'CT }\left(\mathrm{Sq}^{-} \rightarrow\right. \\ \text { TPPE }) \\ {\text { LL'CT }\left(\mathrm{Sq}^{-} \rightarrow\right.}^{\mathrm{T}} \rightarrow \\ \text { TPPE) } \end{gathered}$ | $\begin{gathered} 3.779 \\ \mathrm{eV} / 328 \\ \mathrm{~nm} \end{gathered}$ | 1.9697 | $\begin{gathered} \text { HOMO-3( } \alpha) \rightarrow \\ \text { LUMO }+1(\alpha) \\ (0.21) \\ \text { HOMO-2 }(\alpha) \rightarrow \\ \text { LUMO }(\alpha) \\ (0.23) \\ \text { HOMO-1 }(\beta) \rightarrow \\ \text { LUMO }+3(\beta) \\ (0.22) \\ \text { HOMO }(\beta) \rightarrow \\ \text { LUMO }+2(\beta) \\ (0.22) \end{gathered}$ | TPPE $\pi \rightarrow \pi^{*}$ <br> TPPE $\pi \rightarrow \pi^{*}$ <br> TPPE $\pi \rightarrow \pi^{*}$ <br> TPPE $\pi \rightarrow \pi^{*}$ |
| $\begin{gathered} 3.575 \\ \mathrm{eV} / 347 \\ \mathrm{~nm} \end{gathered}$ | 0.0084 | $\begin{gathered} \text { HOMO-4( } \beta \text { ) } \rightarrow \\ \text { LUMO }(\beta)(0.94) \end{gathered}$ | L'LCT (TPPE $\rightarrow$ $\left.\mathrm{Sq}^{-}\right)$ | $\begin{gathered} 3.790 \\ \mathrm{eV} / 327 \\ \mathrm{~nm} \end{gathered}$ | 0.0084 | $\begin{gathered} \text { HOMO-3( } \alpha) \rightarrow \\ \text { LUMO }(\alpha) \\ (0.21) \\ \text { HOMO-2 }(\alpha) \rightarrow \\ \text { LUMO+1 }(\alpha) \\ (0.21) \\ \text { HOMO-1 }(\beta) \rightarrow \\ \text { LUMO+2( } \beta \text { ) } \\ (0.22) \\ \text { HOMO }(\beta) \rightarrow \\ \text { LUMO }+3(\beta) \\ (0.21) \end{gathered}$ | TPPE $\pi \rightarrow \pi^{*}$ <br> TPPE $\pi \rightarrow \pi^{*}$ <br> TPPE $\pi \rightarrow \pi^{*}$ <br> TPPE $\pi \rightarrow \pi^{*}$ |
| $\begin{gathered} 3.750 \\ \mathrm{eV} / 331 \\ \mathrm{~nm} \end{gathered}$ | 2.0615 | HOMO-3( $\alpha$ ) $\rightarrow$ <br> LUMO( $\alpha$ ) (0.22) <br> HOMO-2 $(\alpha) \rightarrow$ | TPPE $\pi \rightarrow \pi^{*}$ <br> TPPE $\pi \rightarrow \pi^{*}$ <br> TPPE $\pi \rightarrow \pi^{*}$ | $\begin{gathered} 4.180 \\ \mathrm{eV} / 297 \\ \mathrm{~nm} \end{gathered}$ | 0.0525 | $\begin{gathered} \text { HOMO- } 1(\alpha) \rightarrow \\ \text { LUMO }+31(\alpha) \\ (0.26) \end{gathered}$ | $\mathrm{Sq}^{-} \pi \rightarrow \pi^{*}$ <br> $\mathrm{Sq}^{-} \pi \rightarrow \pi^{*}$ |


|  |  | $\begin{gathered} \text { LUMO+1( } \alpha \text { ) } \\ (0.22) \\ \text { HOMO-4( } \beta \text { ) } \rightarrow \\ \text { LUMO+1 }(\beta) \\ (0.22) \\ \text { HOMO-3( } \beta) \rightarrow \\ \text { LUMO+2( } \beta \text { ) } \\ (0.22) \end{gathered}$ | TPPE $\pi \rightarrow \pi^{*}$ |  |  | $\begin{gathered} \operatorname{HOMO}(\alpha) \rightarrow \\ \text { LUMO }+33(\alpha) \\ (0.30) \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.782 <br> eV/328 <br> nm | 0.0114 | $\begin{gathered} \mathrm{HOMO}(\beta) \rightarrow \\ \mathrm{LUMO}+8(\beta) \\ (0.44) \end{gathered}$ | $\begin{gathered} {\text { LL'CT }\left(\mathrm{Cat}^{2-}\right.} \rightarrow \\ \text { TPPE) } \end{gathered}$ |  |  |  |  |

Table S4. Comparison of selected bond lengths between crystallographic data (298 K) and DFT (B3LYP) optimized structure LS-Co ${ }^{\text {III }}(\mathrm{Cat})(\mathrm{Sq})$.

|  | Calcd. / $\AA$ | Exptl. / $\AA$ |
| :---: | :---: | :---: |
| Co $^{\text {III }}-\mathrm{N}_{\mathrm{TPPE}}$ | $1.974,1.974$ | $1.957,1.957$ |
| $\mathrm{Co}^{\mathrm{III}}-\mathrm{O}_{\mathrm{Cat} \text { Sq }}$ | $1.889,1.893$ | $1.881,1.891$ |
| $\mathrm{Co}^{\mathrm{III}}-\mathrm{O}_{\mathrm{Cat} / \mathrm{Sq}}$ | $1.890,1.894$ | $1.881,1.891$ |

Table S5. Relative energies $E(\mathrm{kcal} / \mathrm{mol})$ for $\mathrm{LS}-\mathrm{Co}^{\text {III }}(\mathrm{Cat})(\mathrm{Sq})(S=1 / 2)$ and $\mathrm{HS}-\mathrm{Co}^{\mathrm{II}}(\mathrm{Sq})_{2}(S=$ $5 / 2$ ) electronic states obtained from DFT calculations.

|  | B3LYP* | OPBE | TPSSh |
| :---: | :---: | :---: | :---: |
| LS-CoIII(Cat)(Sq) | 0 | 0 | 0 |
| $S=5 / 2$ | 2.8 | 9.7 | 9.2 |

Table S6. Cartesian Coordinates of the optimized structure of $\mathbf{1}$ in the $\mathrm{LS}-\mathrm{Co}^{\text {III }}(\mathrm{Cat})(\mathrm{Sq})$ state.

| Atomic number | Element | Coordinates |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z |


| 1 | Co | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | O | 0 | 1.893311 | 0 |
| 3 | O | -1.879068 | 0.121488 | 0.156435 |
| 4 | N | 0.151523 | 0.012425 | 1.968077 |
| 5 | C | 0.350595 | 0.436181 | 9.096387 |
| 6 | C | 0.370639 | 0.548882 | 10.587136 |
| 7 | C | 0.30391 | 0.256012 | 6.251141 |
| 8 | C | -0.753213 | -0.633949 | 2.718355 |
| 9 | H | $-1.520058$ | $-1.181636$ | $2.168914$ |
| 10 | C | $-1.221721$ | $2.37038$ | $0.143877$ |
| $11$ | C | 0.269762 | $0.154346$ | $4.771405$ |
| 12 | C | $-0.723288$ | -0.590753 | 4.107694 |
| 13 | H | -1.472713 | -1.152698 | 4.666803 |
| 14 | C | -2.261506 | 1.381841 | 0.233005 |
| 15 | C | $-3.605159$ | $1.763019$ | 0.404581 |
| 16 | H | -4.345068 | 0.965647 | 0.472075 |
| 17 | C | $-1.549252$ | $3.756161$ | 0.219144 |
| 18 | C | 1.126606 | 0.708704 | 2.571261 |
| 19 | H | $1.839113$ | $1.198685$ | 1.906114 |
| 20 | C | $-0.88253$ | 0.186145 | 7.006526 |
| 21 | H | $-1.844908$ | $0.09131$ | 6.498979 |
| 22 | C | 1.215956 | 0.803589 | 3.956325 |
| 23 | H | $2.008336$ | 1.414923 | 4.39066 |
| 24 | C | $-0.859253$ | $0.272827$ | $8.396289$ |
| 25 | H | $-1.797414$ | 0.226332 | 8.952754 |
| 26 | C | $-2.899749$ | 4.073823 | 0.392248 |
| 27 | H | -3.174997 | 5.125134 | 0.459734 |
| 28 | C | -3.942277 | 3.113157 | 0.494423 |
| 29 | C | 1.513158 | 0.438931 | 6.949905 |
| 30 | H | 2.456897 | 0.480989 | 6.401355 |
| 31 | C | -0.450849 | 4.834494 | 0.120713 |
| 32 | C | -5.389023 | 3.592518 | 0.727658 |
| 33 | C | 1.534078 | 0.53831 | 8.340106 |


| 34 | H | 2.488754 | 0.677642 | 8.853432 |
| :---: | :---: | :---: | :---: | :---: |
| 35 | C | 0.273471 | 4.717892 | -1.241986 |
| 36 | H | 0.727976 | 3.725571 | -1.3643 |
| 37 | H | 1.071048 | 5.476819 | -1.31817 |
| 38 | H | -0.431324 | 4.883058 | -2.073797 |
| 39 | C | -6.391362 | 2.424132 | 0.755904 |
| 40 | H | -6.39167 | 1.861953 | -0.191292 |
| 41 | H | -7.411586 | 2.809463 | 0.914912 |
| 42 | H | -6.174099 | 1.716303 | 1.571155 |
| 43 | C | -5.815705 | 4.561097 | -0.400306 |
| 44 | H | -5.169563 | 5.450902 | -0.448161 |
| 45 | H | -6.849645 | 4.910209 | -0.238284 |
| 46 | H | -5.774105 | 4.064501 | -1.383229 |
| 47 | C | 0.57121 | 4.643441 | 1.267072 |
| 48 | H | 0.077265 | 4.731029 | 2.248983 |
| 49 | H | 1.357241 | 5.416017 | 1.212378 |
| 50 | H | 1.050181 | 3.657404 | 1.207104 |
| 51 | C | -1.021532 | 6.2608 | 0.231074 |
| 52 | H | -1.741561 | 6.483042 | -0.572586 |
| 53 | H | -0.201338 | 6.992314 | 0.149756 |
| 54 | H | -1.522058 | 6.433178 | 1.197318 |
| 55 | C | -5.468492 | 4.325136 | 2.088726 |
| 56 | H | -5.175189 | 3.653877 | 2.912153 |
| 57 | H | -6.496933 | 4.67519 | 2.282255 |
| 58 | H | -4.804099 | 5.202484 | 2.120944 |
| 59 | N | -3.157686 | -7.953027 | 8.361548 |
| 60 | C | -0.7539 | -1.676343 | 10.867957 |
| 61 | C | -0.256764 | -0.367975 | 11.392294 |
| 62 | C | -1.702649 | -4.184151 | 9.893082 |
| 63 | C | -2.307504 | -7.196454 | 7.662258 |
| 64 | H | -2.007388 | -7.578066 | 6.678577 |
| 65 | C | -2.200548 | -5.482266 | 9.370566 |
| 66 | C | -1.805859 | -5.972739 | 8.1126 |


| 67 | H | -1.132771 | -5.397037 | 7.473364 |
| :---: | :---: | :---: | :---: | :---: |
| 68 | C | -3.535508 | -7.494352 | 9.557869 |
| 69 | H | -4.229207 | -8.125249 | 10.127298 |
| 70 | C | -0.399902 | -3.73508 | 9.605292 |
| 71 | H | 0.273371 | -4.366206 | 9.020433 |
| 72 | C | -3.094505 | -6.285224 | 10.101567 |
| 73 | H | -3.429676 | -5.987011 | 11.09742 |
| 74 | C | 0.063507 | -2.51054 | 10.081697 |
| 75 | H | 1.083796 | -2.198156 | 9.850703 |
| $76$ | C | -2.514183 | -3.359335 | 10.695417 |
| 77 | H | -3.537346 | -3.666171 | 10.925249 |
| 78 | C | -2.04707 | -2.138767 | 11.180131 |
| 79 | H | -2.703879 | -1.521463 | 11.798054 |
| 80 | N | -1.806359 | 0.878368 | 19.829661 |
| 81 | C | -0.499156 | -0.135836 | 12.848048 |
| 82 | C | -1.026722 | 0.264171 | 15.623734 |
| 83 | C | -0.764428 | 0.154958 | 19.410993 |
| 84 | H | -0.116775 | -0.266851 | 20.189563 |
| 85 | C | -1.29712 | 0.473901 | 17.069444 |
| 86 | C | -0.468507 | -0.074758 | 18.065026 |
| 87 | H | 0.416929 | -0.656261 | 17.798421 |
| 88 | C | $-2.598533$ | 1.401499 | 18.889991 |
| 89 | H | -3.455432 | 1.988379 | 19.243461 |
| 90 | C | $-0.468385$ | $-0.939811$ | 15.15361 |
| 91 | H | -0.248736 | -1.745775 | 15.857732 |
| 92 | C | -2.393184 | 1.232877 | 17.518284 |
| 93 | H | -3.098119 | 1.672514 | 16.809185 |
| 94 | C | -0.223358 | -1.140163 | 13.796228 |
| 95 | H | 0.192028 | -2.094311 | 13.462705 |
| 96 | C | -1.324929 | 1.25896 | 14.673107 |
| 97 | H | -1.750171 | 2.210651 | 15.000534 |
| 98 | C | -1.063515 | 1.065374 | 13.317996 |
| 99 | H | -1.303356 | 1.859288 | 12.607896 |


| 100 | N | 4.763061 | 7.407886 | 13.548386 |
| :---: | :---: | :---: | :---: | :---: |
| 101 | C | 1.113224 | 1.729461 | 11.120641 |
| 102 | C | 2.5682 | 3.986612 | 12.084037 |
| 103 | C | 3.504005 | 7.519174 | 13.116355 |
| 104 | H | 3.058103 | 8.520644 | 13.160274 |
| 105 | C | 3.323536 | 5.162133 | 12.588264 |
| 106 | C | 2.750813 | 6.446055 | 12.633392 |
| 107 | H | 1.717511 | 6.608935 | 12.318892 |
| $108$ | C | 5.31332 | 6.191422 | 13.508973 |
| 109 | H | 6.349266 | 6.111063 | 13.860959 |
| 110 | C | 1.642965 | 4.111782 | 11.030214 |
| 111 | H | 1.489484 | 5.084678 | 10.55716 |
| 112 | C | 4.648907 | 5.052574 | 13.046589 |
| 113 | H | 5.172644 | 4.094208 | 13.022242 |
| $114$ | C | 0.942109 | 3.006463 | 10.550906 |
| $115$ | H | 0.246043 | 3.134966 | 9.718234 |
| 116 | C | 2.758459 | 2.705681 | 12.63617 |
| 117 | H | 3.461856 | 2.571457 | 13.461366 |
| $118$ | C | 2.045528 | 1.603657 | 12.168413 |
| $119$ | H | 2.215437 | 0.624623 | 12.620711 |
| $120$ | O | 0.000267 | -1.893873 | -0.000165 |
| 121 | O | 1.879496 | -0.122106 | -0.156537 |
| 122 | C | 1.221646 | -2.370865 | -0.145361 |
| 123 | C | 2.261602 | -1.382285 | -0.234461 |
| 124 | C | 3.605079 | -1.763566 | -0.407739 |
| 125 | H | 4.345055 | -0.966257 | -0.47517 |
| 126 | C | 1.548961 | -3.756689 | -0.222257 |
| 127 | C | 2.899223 | -4.074299 | -0.396724 |
| 128 | H | 3.17429 | -5.125568 | -0.465571 |
| 129 | C | 3.941856 | -3.113629 | -0.49904 |
| 130 | C | 0.450455 | -4.834972 | -0.124527 |
| 131 | C | 5.388245 | -3.593102 | -0.734158 |
| 132 | C | -0.273508 | -4.71951 | 1.238462 |


| 133 | H | -0.727745 | -3.727202 | 1.361884 |
| :---: | :---: | :---: | :---: | :---: |
| 134 | H | -1.071263 | -5.478303 | 1.314062 |
| 135 | H | 0.431418 | -4.885705 | 2.069955 |
| $136$ | C | 6.390775 | -2.424896 | -0.762776 |
| 137 | H | 6.392262 | -1.863306 | 0.184766 |
| $138$ | H | 7.410742 | -2.810337 | -0.923141 |
| $139$ | H | $6.172758$ | -1.716524 | -1.577354 |
| $140$ | C | 5.815923 | -4.562479 | 0.392754 |
| $141$ | H | 5.169667 | -5.452195 | 0.44072 |
| $142$ | H | 6.849629 | -4.911673 | 0.229431 |
| $143$ | H | $5.775447$ | $-4.066492$ | 1.376029 |
| $144$ | C | -0.571881 | -4.642869 | -1.270473 |
| $145$ | H | $-0.078193$ | -4.729606 | -2.252587 |
| $146$ | H | -1.357884 | -5.415501 | -1.216257 |
| $147$ | H | -1.050853 | -3.6569 | -1.209519 |
| $148$ | C | 1.020988 | -6.261227 | -0.23626 |
| $149$ | H | 1.74119 | -6.484248 | 0.56703 |
| $150$ | H | $0.200746$ | $-6.992733$ | $-0.155385$ |
| $151$ | H | 1.521267 | -6.432802 | -1.202777 |
| $152$ | C | $5.466062$ | -4.324871 | -2.095777 |
| $153$ | H | 5.172042 | -3.653018 | -2.918465 |
| $154$ | H | $6.494216$ | $-4.675024$ | -2.290617 |
| 155 | H | $4.801456$ | -5.202062 | -2.127863 |
| $156$ | N | $-0.151492$ | $-0.012942$ | -1.968017 |
| 157 | C | -0.351363 | -0.43725 | -9.096291 |
| $158$ | C | $-0.371707$ | $-0.549229$ | $-10.58707$ |
| 159 | C | -0.304326 | -0.25686 | -6.251086 |
| $160$ | C | $0.752559$ | $0.634147$ | -2.718505 |
| 161 | H | 1.518859 | 1.182815 | -2.169267 |
| $162$ | C | $-0.269975$ | -0.155223 | -4.77135 |
| 163 | C | 0.722401 | 0.590926 | -4.10783 |
| 164 | H | 1.47113 | $1.153668$ | -4.667076 |
| 165 | C | -1.125839 | -0.710422 | -2.571019 |


| 166 | H | -1.837838 | -1.200919 | -1.905719 |
| :---: | :---: | :---: | :---: | :---: |
| 167 | C | 0.881742 | -0.184363 | -7.006793 |
| 168 | H | 1.844068 | -0.087732 | -6.499482 |
| 169 | C | -1.215257 | -0.805548 | -3.956067 |
| 170 | H | -2.006992 | -1.41785 | -4.390194 |
| $171$ | C | 0.858295 | -0.271235 | -8.396542 |
| 172 | H | 1.796075 | -0.221301 | -8.953386 |
| 173 | C | -1.513459 | -0.441698 | -6.949569 |
| $174$ | H | -2.45699 | -0.485384 | -6.400805 |
| 175 | C | -1.534543 | -0.54112 | -8.339766 |
| $176$ | H | -2.489179 | -0.681422 | -8.852909 |
| 177 | N | 3.140182 | 7.958164 | -8.35662 |
| 178 | C | 0.748024 | 1.678454 | -10.866522 |
| 179 | C | 0.2532 | 0.369586 | -11.391822 |
| 180 | C | 1.692128 | 4.187372 | -9.890061 |
| 181 | C | 2.292163 | 7.199207 | -7.657286 |
| 182 | H | 1.992041 | 7.579359 | -6.673041 |
| $183$ | C | 2.18756 | 5.486189 | -9.366917 |
| 184 | C | 1.792822 | 5.974767 | -8.108225 |
| $185$ | H | 1.121512 | 5.397052 | -7.46894 |
| 186 | C | 3.518052 | 7.501282 | -9.553613 |
| 187 | H | 4.210025 | 8.134093 | -10.123018 |
| 188 | C | 0.390667 | 3.73513 | -9.601467 |
| 189 | H | -0.283364 | 4.364106 | -9.015168 |
| 190 | C | 3.079239 | 6.291644 | -10.097955 |
| 191 | H | 3.414305 | 5.994905 | -11.094286 |
| 192 | C | -0.070367 | 2.509894 | -10.078391 |
| 193 | H | -1.089752 | 2.195034 | -9.846756 |
| 194 | C | 2.5047 | 3.365206 | -10.69408 |
| 195 | H | 3.526871 | 3.674691 | -10.924776 |
| 196 | C | 2.039826 | 2.144094 | -11.179588 |
| 197 | H | 2.697514 | 1.5287 | -11.798479 |
| 198 | N | 1.803662 | -0.865516 | -19.830758 |


| 199 | C | 0.495486 | 0.139104 | -12.847874 |
| :---: | :---: | :---: | :---: | :---: |
| 200 | C | 1.022866 | -0.257362 | -15.62412 |
| 201 | C | 0.760292 | -0.144636 | -19.411291 |
| 202 | H | 0.111761 | 0.276698 | -20.18939 |
| 203 | C | 1.293571 | -0.465122 | -17.070065 |
| 204 | C | 0.463897 | 0.082991 | -18.06507 |
| 205 | H | -0.422646 | 0.662543 | -17.797896 |
| 206 | C | 2.596865 | -1.38809 | -18.891653 |
| 207 | H | 3.454902 | -1.972929 | -19.245745 |
| 208 | C | 0.461994 | 0.944961 | -15.152743 |
| 209 | H | 0.240744 | 1.751248 | -15.855991 |
| 210 | C | 2.391164 | -1.221386 | -17.519764 |
| 211 | H | 3.097038 | -1.660359 | -16.811188 |
| 212 | C | 0.21726 | 1.143699 | -13.795066 |
| 213 | H | -0.200273 | 2.096577 | -13.46059 |
| 214 | C | 1.323106 | -1.252501 | -14.674504 |
| 215 | H | 1.750084 | -2.203084 | -15.002888 |
| 216 | C | 1.061738 | -1.060676 | -13.319127 |
| 217 | H | 1.303396 | -1.854761 | -12.609819 |
| 218 | N | -4.748682 | -7.417843 | -13.548916 |
| 219 | C | -1.111537 | -1.731407 | -11.120909 |
| 220 | C | -2.561047 | -3.991842 | -12.084761 |
| 221 | C | -3.489113 | -7.526304 | -13.117643 |
| 222 | H | -3.040897 | -8.526717 | -13.162082 |
| 223 | C | -3.31389 | -5.168991 | -12.588949 |
| 224 | C | -2.738158 | -6.451551 | -12.634824 |
| 225 | H | -1.704275 | -6.612072 | -12.321042 |
| 226 | C | -5.301726 | -6.202668 | -13.508942 |
| 227 | H | -6.338057 | -6.124632 | -13.860318 |
| 228 | C | -1.634996 | -4.115146 | -11.031422 |
| 229 | H | -1.478903 | -5.087838 | -10.55882 |
| 230 | C | -4.639726 | -5.062394 | -13.046611 |
| 231 | H | -5.165639 | -4.10523 | -13.021874 |


| 232 | C | -0.936666 | -3.008276 | -10.552011 |
| :--- | :--- | :--- | :--- | :--- |
| 233 | H | -0.239687 | -3.135397 | -9.719887 |
| 234 | C | -2.755152 | -2.711077 | -12.635923 |
| 235 | H | -3.459585 | -2.578205 | -13.460454 |
| 236 | C | -2.044735 | -1.607459 | -12.168074 |
| 237 | H | -2.217317 | -0.628661 | -12.619876 |

Table S7. Cartesian Coordinates of the optimized structure of $\mathbf{1}$ in the $\mathrm{HS}-\mathrm{Co}^{\mathrm{II}}(\mathrm{Sq})_{2}$ state.

| Atomic number | Element | Coordinates |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z |
| 1 | Co | 0 | 0 | 0 |
| 2 | O | 0 | 2.083541 | 0 |
| 3 | O | -2.030616 | 0.394366 | -0.11318 |
| 4 | N | -0.069626 | 0.085028 | 2.210013 |
| 5 | C | -0.540434 | 0.859187 | 9.312192 |
| 6 | C | -0.650961 | 1.037881 | 10.792743 |
| 7 | C | -0.334028 | 0.550665 | 6.483767 |
| 8 | C | -1.141407 | -0.351715 | 2.885824 |
| 9 | H | -1.935659 | -0.805555 | 2.28653 |
| 10 | C | -1.173722 | 2.593372 | -0.034923 |
| 11 | C | -0.23397 | 0.379125 | 5.012206 |
| 12 | C | -1.25949 | -0.234885 | 4.268667 |
| 13 | H | -2.147061 | -0.637105 | 4.759854 |
| 14 | C | -2.304382 | 1.6472 | -0.084352 |
| 15 | C | -3.638571 | 2.143419 | -0.095194 |
| 16 | H | -4.433287 | 1.398159 | -0.125564 |
| 17 | C | -1.442955 | 4.013557 | -0.015866 |
| 18 | C | 0.927848 | 0.654413 | 2.901049 |
| 19 | H | 1.787842 | 0.985887 | 2.313212 |
| 20 | C | -1.586409 | 0.667153 | 7.116886 |
| 21 | H | -2.499772 | 0.668457 | 6.518251 |
| 22 | C | 0.88436 | 0.825174 | 4.283048 |


| 23 | H | 1.714125 | 1.331127 | 4.779487 |
| :---: | :---: | :---: | :---: | :---: |
| 24 | C | -1.687348 | 0.813581 | 8.498579 |
| 25 | H | -2.673371 | 0.907165 | 8.958393 |
| 26 | C | -2.771029 | 4.405662 | -0.026668 |
| 27 | H | -2.995102 | 5.471114 | -0.004642 |
| 28 | C | -3.888568 | 3.502751 | -0.060325 |
| 29 | C | 0.814424 | 0.612883 | 7.297364 |
| 30 | H | 1.804683 | 0.509414 | 6.848275 |
| 31 | C | -0.277922 | 5.022174 | 0.024903 |
| 32 | C | -5.312608 | 4.088558 | -0.031511 |
| 33 | C | 0.713648 | 0.777346 | 8.677776 |
| 34 | H | 1.624187 | 0.821219 | 9.280748 |
| 35 | C | 0.612931 | 4.839126 | -1.227848 |
| 36 | H | 1.019286 | 3.820421 | -1.280132 |
| 37 | H | 1.456788 | 5.549576 | -1.201389 |
| 38 | H | 0.036964 | 5.033595 | -2.147978 |
| 39 | C | -6.39277 | 2.996043 | -0.127304 |
| 40 | H | -6.308034 | 2.417935 | -1.060862 |
| 41 | H | -7.393268 | 3.457514 | -0.110384 |
| 42 | H | -6.33886 | 2.29017 | 0.716167 |
| 43 | C | -5.508177 | 5.06163 | -1.2183 |
| 44 | H | $-4.798786$ | 5.902704 | -1.188875 |
| 45 | H | -6.525848 | 5.486497 | -1.200808 |
| 46 | H | $-5.373008$ | 4.542642 | -2.18099 |
| 47 | C | 0.566843 | 4.791209 | 1.301833 |
| 48 | H | -0.0493 | 4.923983 | 2.206726 |
| 49 | H | 1.395247 | 5.518629 | 1.346524 |
| 50 | H | 0.991233 | 3.779095 | 1.316796 |
| 51 | C | -0.772213 | 6.48069 | 0.043065 |
| 52 | H | -1.364301 | 6.730082 | -0.852078 |
| 53 | H | 0.093808 | 7.161604 | 0.064115 |
| 54 | H | -1.384668 | 6.700275 | 0.932405 |
| 55 | C | -5.517053 | 4.853145 | 1.298981 |


| 56 | H | -5.391827 | 4.178932 | 2.161613 |
| :---: | :---: | :---: | :---: | :---: |
| 57 | H | -6.532282 | 5.282259 | 1.34477 |
| 58 | H | -4.799516 | 5.680299 | 1.413969 |
| 59 | N | -4.770339 | -7.189083 | 8.544097 |
| 60 | C | -2.013927 | -1.053499 | 11.038121 |
| 61 | C | -1.440749 | 0.223121 | 11.563381 |
| 62 | C | -3.107875 | -3.503372 | 10.067388 |
| 63 | C | -3.789627 | -6.547562 | 7.90305 |
| 64 | H | -3.437106 | -7.000683 | 6.968305 |
| 65 | C | -3.678262 | -4.772484 | 9.54779 |
| 66 | C | -3.216886 | -5.355568 | 8.353601 |
| 67 | H | -2.434719 | -4.874801 | 7.761853 |
| 68 | C | -5.212417 | -6.641968 | 9.679703 |
| 69 | H | -6.013853 | -7.178852 | 10.202164 |
| 70 | C | -1.746858 | -3.190962 | 9.889828 |
| 71 | H | -1.086843 | -3.907767 | 9.39563 |
| 72 | C | -4.709825 | -5.454578 | 10.217846 |
| 73 | H | -5.106193 | -5.080567 | 11.164418 |
| 74 | C | -1.212694 | -1.994877 | 10.364187 |
| 75 | H | -0.149991 | -1.790154 | 10.221275 |
| 76 | C | -3.906208 | -2.570576 | 10.756682 |
| 77 | H | -4.971197 | -2.769887 | 10.897834 |
| 78 | C | -3.369455 | -1.378221 | 11.239697 |
| 79 | H | -4.017739 | -0.674676 | 11.767925 |
| 80 | N | -3.63841 | 1.991038 | 19.76035 |
| 81 | C | -1.794795 | 0.542199 | 12.979351 |
| 82 | C | -2.53562 | 1.115848 | 15.674651 |
| 83 | C | -2.635686 | 1.157293 | 19.471019 |
| 84 | H | -2.105754 | 0.714425 | 20.323425 |
| 85 | C | -2.916993 | 1.415679 | 17.078855 |
| 86 | C | -2.239802 | 0.840104 | 18.169237 |
| 87 | H | -1.392839 | 0.168739 | 18.010676 |
| 88 | C | -4.286914 | 2.540659 | 18.730034 |


| 89 | H | -5.113095 | 3.218805 | 18.977399 |
| :---: | :---: | :---: | :---: | :---: |
| 90 | C | -2.056157 | -0.155272 | 15.304899 |
| 91 | H | -1.982052 | -0.945203 | 16.056 |
| 92 | C | -3.972587 | 2.291342 | 17.391683 |
| 93 | H | -4.563777 | 2.760495 | 16.602113 |
| 94 | C | -1.707161 | -0.439281 | 13.985694 |
| 95 | H | -1.35779 | -1.442326 | 13.728702 |
| 96 | C | -2.647098 | 2.089499 | 14.66386 |
| 97 | H | -3.006317 | 3.090632 | 14.913781 |
| 98 | C | -2.281184 | 1.810813 | 13.348321 |
| 99 | H | -2.376377 | 2.590141 | 12.589578 |
| 100 | N | 4.093083 | 7.583825 | 13.915021 |
| $101$ | C | 0.151177 | 2.165911 | 11.352724 |
| 102 | C | 1.723367 | 4.318391 | 12.369804 |
| $103$ | C | 2.898498 | 7.792304 | 13.354854 |
| $104$ | H | 2.551046 | 8.832233 | 13.315598 |
| $105$ | C | 2.538734 | 5.440158 | 12.902028 |
| $106$ | C | 2.093421 | 6.772975 | 12.840165 |
| $107$ | H | 1.116325 | 7.016964 | 12.417181 |
| $108$ | C | 4.522298 | 6.320493 | 13.97754 |
| $109$ | H | 5.506635 | 6.159958 | 14.434544 |
| 110 | C | 0.923169 | 4.479226 | 11.222622 |
| 111 | H | 0.915266 | 5.437701 | 10.698071 |
| 112 | C | 3.796647 | 5.228411 | 13.494874 |
| 113 | H | 4.223436 | 4.22491 | 13.559615 |
| 114 | C | 0.165915 | 3.423532 | 10.718053 |
| 115 | H | -0.428634 | 3.57627 | 9.813924 |
| 116 | C | 1.729472 | 3.054054 | 12.988871 |
| 117 | H | 2.331786 | 2.894248 | 13.886344 |
| 118 | C | 0.958829 | 2.003545 | 12.494789 |
| 119 | H | 0.983976 | 1.036618 | 13.001095 |
| 120 | O | 0.000548 | -2.083931 | 0.000125 |
| 121 | O | 2.030722 | -0.394112 | 0.11291 |


| 122 | C | 1.174437 | -2.593352 | 0.034175 |
| :---: | :---: | :---: | :---: | :---: |
| 123 | C | 2.304854 | -1.646865 | 0.083649 |
| 124 | C | 3.639183 | -2.142724 | 0.093862 |
| $125$ | H | 4.433714 | -1.397273 | 0.124448 |
| 126 | C | 1.444098 | -4.013462 | 0.014026 |
| 127 | C | 2.772278 | -4.405188 | 0.024083 |
| 128 | H | 2.996657 | -5.47056 | 0.00133 |
| $129$ | C | 3.88956 | -3.501972 | 0.05802 |
| $130$ | C | 0.279342 | -5.022378 | -0.027034 |
| $131$ | C | 5.313747 | -4.087377 | 0.028245 |
| $132$ | C | -0.611197 | -4.840447 | 1.226099 |
| $133$ | H | -1.017831 | -3.821894 | 1.27919 |
| $134$ | H | -1.454859 | -5.551118 | 1.199397 |
| $135$ | H | -0.034904 | -5.035385 | 2.145928 |
| $136$ | C | 6.393666 | -2.994679 | $0.124664$ |
| $137$ | H | 6.309076 | -2.417413 | 1.058754 |
| $138$ | H | $7.394273$ | -3.455889 | 0.107026 |
| $139$ | H | 6.339327 | -2.288079 | -0.718172 |
| $140$ | C | 5.509949 | -5.06147 | 1.214091 |
| $141$ | H | 4.800761 | -5.902695 | 1.184136 |
| $142$ | H | 6.52772 | -5.486065 | 1.195881 |
| $143$ | H | $5.374966$ | -4.543384 | 2.177291 |
| $144$ | C | $-0.565834$ | -4.790794 | -1.303588 |
| $145$ | H | $0.050071$ | $-4.922998$ | -2.208727 |
| 146 | H | -1.394144 | -5.518312 | -1.348452 |
| $147$ | H | $-0.990371$ | -3.778728 | -1.317903 |
| 148 | C | 0.774049 | -6.480739 | -0.046307 |
| 149 | H | $1.36653$ | -6.730547 | 0.848462 |
| 150 | H | -0.091783 | -7.16189 | -0.067502 |
| 151 | H | 1.386251 | -6.69957 | -0.936006 |
| 152 | C | 5.517963 | -4.850723 | $-1.303001$ |
| 153 | H | 5.392252 | -4.175778 | -2.164992 |
| 154 | H | 6.5333 | -5.279503 | -1.349518 |


| 155 | H | 4.800627 | -5.677982 | -1.418489 |
| :---: | :---: | :---: | :---: | :---: |
| 156 | N | 0.07002 | -0.085112 | -2.209987 |
| 157 | C | 0.543965 | -0.85577 | -9.312159 |
| 158 | C | 0.654965 | -1.034579 | -10.79256 |
| 159 | C | 0.336428 | -0.548456 | -6.483765 |
| 160 | C | 1.145282 | 0.345657 | -2.884186 |
| 161 | H | 1.941535 | 0.79411 | -2.283508 |
| 162 | C | 0.235841 | -0.377902 | -5.012169 |
| $163$ | C | 1.264277 | 0.229151 | -4.266974 |
| 164 | H | 2.154776 | 0.626443 | -4.7569 |
| $165$ | C | -0.930037 | -0.647966 | -2.902625 |
| 166 | H | -1.792702 | -0.974634 | -2.315982 |
| $167$ | C | 1.588673 | -0.674215 | -7.115362 |
| 168 | H | 2.501199 | -0.683443 | -6.515499 |
| $169$ | C | -0.885979 | -0.817863 | -4.284724 |
| $170$ | H | -1.718151 | -1.318441 | -4.782618 |
| $171$ | C | 1.690192 | -0.820174 | -8.497061 |
| $172$ | H | 2.67602 | -0.921101 | -8.955757 |
| $173$ | C | -0.811461 | -0.600577 | -7.298835 |
| $174$ | H | -1.801413 | -0.489669 | -6.850813 |
| $175$ | C | -0.710234 | -0.764286 | -8.679291 |
| $176$ | H | -1.620334 | -0.80082 | -9.283411 |
| $177$ | N | 4.834488 | 7.15735 | -8.530731 |
| 178 | C | 2.035096 | 1.045519 | -11.034989 |
| 179 | C | 1.45235 | -0.22603 | -11.56187 |
| 180 | C | 3.146117 | 3.486429 | -10.061158 |
| 181 | C | 3.850895 | 6.520223 | -7.889717 |
| 182 | H | 3.502841 | 6.972975 | -6.953122 |
| 183 | C | 3.725409 | 4.750551 | -9.539249 |
| 184 | C | 3.269811 | 5.333159 | -8.342609 |
| 185 | H | 2.485883 | 4.855478 | -7.750678 |
| 186 | C | 5.271172 | 6.610607 | -9.668602 |
| 187 | H | 6.074981 | 7.143973 | -10.191022 |


| 188 | C | 1.783249 | 3.182739 | -9.882792 |
| :---: | :---: | :---: | :---: | :---: |
| 189 | H | 1.128539 | 3.902904 | -9.386421 |
| 190 | C | 4.760175 | 5.42791 | -10.209175 |
| 191 | H | 5.15272 | 5.053897 | -11.157342 |
| 192 | C | 1.240757 | 1.991047 | -10.358728 |
| $193$ | H | 0.176883 | 1.793008 | -10.214947 |
| 194 | C | 3.937474 | 2.549883 | -10.753431 |
| 195 | H | 5.003602 | 2.742465 | -10.895368 |
| 196 | C | 3.392449 | 1.36178 | -11.237723 |
| 197 | H | 4.035456 | 0.655129 | -11.768262 |
| 198 | N | 3.658223 | -2.016532 | -19.751794 |
| 199 | C | 1.806745 | -0.548645 | -12.976908 |
| 200 | C | 2.549497 | -1.130548 | -15.670004 |
| 201 | C | 2.664562 | -1.1708 | -19.465989 |
| 202 | H | 2.143806 | -0.720693 | -20.320248 |
| $203$ | C | 2.93252 | -1.434484 | -17.072876 |
| 204 | C | 2.266956 | -0.849935 | -18.165637 |
| $205$ | H | 1.427625 | -0.168369 | -18.010127 |
| 206 | C | 4.295469 | -2.575006 | -18.719234 |
| $207$ | H | 5.114261 | -3.263096 | -18.963679 |
| 208 | C | 2.081858 | 0.145458 | -15.301876 |
| 209 | H | 2.018258 | 0.93601 | -16.053275 |
| 210 | C | 3.978568 | -2.322846 | -17.38203 |
| 211 | H | 4.56082 | -2.79964 | -16.590421 |
| 212 | C | 1.732068 | 0.433417 | -13.983728 |
| 213 | H | 1.392146 | 1.440029 | -13.728012 |
| 214 | C | 2.647684 | -2.105112 | -14.65872 |
| 215 | H | 2.997253 | -3.109973 | -14.907293 |
| 216 | C | 2.281082 | -1.822285 | -13.34431 |
| 217 | H | 2.366154 | -2.602358 | -12.585151 |
| 218 | N | -4.149487 | -7.530166 | -13.926853 |
| 219 | C | -0.157142 | -2.154472 | -11.354532 |
| 220 | C | -1.749313 | -4.2902 | -12.375407 |


| 221 | C | -2.954216 | -7.750339 | -13.37265 |
| :---: | :---: | :---: | :---: | :---: |
| 222 | H | -2.614434 | -8.793024 | -13.339937 |
| 223 | C | -2.575188 | -5.403269 | -12.909599 |
| 224 | C | -2.139517 | -6.739609 | -12.856128 |
| 225 | H | -1.162426 | -6.992841 | -12.438588 |
| 226 | C | -4.569481 | -6.263382 | -13.981513 |
| 227 | H | -5.554494 | -6.09329 | -14.433578 |
| 228 | C | -0.948169 | -4.461616 | -11.230414 |
| 229 | H | -0.947089 | -5.421969 | -10.709226 |
| 230 | C | -3.833743 | -5.179145 | -13.496458 |
| 231 | H | -4.253063 | -4.172105 | -13.554797 |
| 232 | C | -0.181108 | -3.41396 | -10.723913 |
| 233 | H | 0.413783 | -3.574526 | -9.821354 |
| 234 | C | -1.746632 | -3.023669 | -12.989956 |
| 235 | H | -2.34967 | -2.85581 | -13.885483 |
| 236 | C | -0.965888 | -1.981415 | -12.494208 |
| 237 | H | -0.984045 | -1.01251 | -12.997056 |

## 4. Additional Figures



Fig. S1 Thermogravimetric analysis of $\mathbf{1}$ and other samples loaded with different solvent molecules. Solvent molecules are calculated based on thermogravimetric analysis : Pristine 1 (six methanol and two toluene molecules); $n$-Butanol@1 (five $n$-butanol molecules); Cyclohexane@1 (two cyclohexane molecules); Acetone@1 (two and half acetone molecules )


Fig. S2 Crystal structure of 1. (a) Coordination environment around the $\mathrm{Co}^{\mathrm{II}}$ center. (b) Viewed along the $b$ axis showing rhombic pores, hydrogen atoms are removed for clarity. (c) Interdigitation of adjacent layers
in ABAB type stacking (two layers are shown in different colors). (d) Intermolecular interactions of $\mathrm{C}-\mathrm{H} \cdots \pi$. tert-Butyl groups are removed for clarity.

(c)


Fig. S3 Voids in the framework of $\mathbf{1}$ viewed along the crystallographic $a$ (top panel), $b$ (middle panel) and $c$ (bottom panel) axes.


Fig. S4 Powder X-ray diffraction patterns for 1 and other samples loaded with different solvent molecules. For fresh sample of 1, the slight peak shifts might be due to the interlayer slipping caused by partial loss of solvent molecules under atmosphere. As for solvent exchanged samples, the slightly different PXRD patterns may indicate certain degree of structural rearrangement induced by guest
solvents. The desolvated sample is essentially featureless, which indicates complete loss of sample crystallinity.


Fig. S5 Temperature-dependent IR spectra of 1. Upon temperature increasing, a slightly left shift of the IR spectra might be due to solvent loss. Infrared spectrum of $\mathbf{1}$ at room temperature exhibits a strong band at $1595 \mathrm{~cm}^{-1}$, which can be ascribed to the pyridine $\mathrm{C}-\mathrm{N}$ stretches of TPPE, and the band at ca. $1283 \mathrm{~cm}^{-1}$ of intermediate intensity is assigned to the catecholate $\mathrm{C}-\mathrm{O}$ stretching. ${ }^{9}$ The strong bands observed at $1400-1600 \mathrm{~cm}^{-1}$ are assigned to TPPE bond stretches, which obscure the characteristic semiquinone $\mathrm{C}=\mathrm{O}$ stretching band of relatively weak intensity. ${ }^{10}$


Fig. S6 Variable-temperature EPR spectra of 1. The X-band solid-state EPR spectrum of $\mathbf{1}$ at 300 K reveals a relatively isotropic EPR signal at $g=1.999$ with no resolved hyperfine features, which can be assigned to the ligand-based radical LS-Co ${ }^{\text {III }}(\mathrm{Cat})(\mathrm{Sq}) .{ }^{11}$ Upon warming up, the signal intensity
decreases drastically and becomes barely observable at 400 K . This can be rationalized by the fact that higher temperature increases the population of $\mathrm{HS}-\mathrm{Co}^{\mathrm{II}}(\mathrm{Sq})_{2}$ tautomer which is usually EPR silent due to extensive hyperfine interactions involving the paramagnetic $\mathrm{HS}-\mathrm{Co}^{\text {II }}$ ion and spin delocalization through metal-ligand covalency and/or spin-polarization effects, together with the rapid electronic relaxation of $\mathrm{HS}-\mathrm{Co}^{\mathrm{II}}$ ion arising from spin-orbit coupling resulting in rapid spin-relaxation faster than the EPR timescale. ${ }^{12}$


Fig. S7 Temperature-dependent emission spectra of 1 at $\lambda_{\text {ex }}=320 \mathrm{~nm}$.


Fig. S8 Temperature-dependent emission spectra of TPPE at $\lambda_{\mathrm{ex}}=320 \mathrm{~nm}$.


Fig. S9 Solid-state UV-vis absorption spectra of $\mathbf{1}$ at the room temperature.


Fig. S10 Solid-state UV-vis absorption spectra of TPPE at the room temperature.


Fig. S11 Electronic absorption spectra of 1 calculated for the $\mathrm{LS}-\mathrm{Co}^{\mathrm{III}}(\mathrm{Cat})(\mathrm{Sq})$ and $\mathrm{HS}-\mathrm{Co}^{\mathrm{II}}(\mathrm{Sq})_{2}$ tautomers (between 200 and 800 nm ) with CAM-B3LYP.


Fig. S12 Difference density map between excited and ground states of 1 LS-Co ${ }^{\text {III }}(\mathrm{Cat})(\mathrm{Sq})$ tautomeric form for the absorption at 331 nm . Yellow indicates increase of electron density, whereas cyan indicates loss of electron density. Isovalue $=0.001$ a.u.


Fig. S13 Dominant molecule-orbital contributions for the 651 nm transition for the $\mathrm{LS}-\mathrm{Co}^{\text {III }}(\mathrm{Cat})(\mathrm{Sq})$ tautomeric form of $\mathbf{1}$, corresponding to a $\mathrm{Sq}^{-} \pi \rightarrow \pi^{*}$ transition. Isovalue $=0.025$ a.u.


Fig. S14 Dominant molecule-orbital contributions for the 732 nm transition for the LS-Co ${ }^{\text {III }}(\mathrm{Cat})(\mathrm{Sq})$ tautomeric form of $\mathbf{1}$, corresponding to a LMCT $\left(\mathrm{Cat}^{2-} \rightarrow\right.$ LS-Co $\left.{ }^{\text {III }} \mathrm{e}_{\mathrm{g}}{ }^{*}\right)$ transition. Isovalue $=0.025$ a.u.


Fig. S15 Dominant molecular-orbital contributions for the 404 nm transition for the LS-Co ${ }^{\text {III }}(\mathrm{Cat})(\mathrm{Sq})$ tautomeric form of $\mathbf{1}$, corresponding to a LMCT $\left(\mathrm{Cat}^{2-} \rightarrow \mathrm{LS}-\mathrm{Co}^{\text {III }} \mathrm{e}_{\mathrm{g}}{ }^{*}\right)$ transition. Isovalue $=0.025$ a.u.


Fig. S16 Dominant molecular-orbital contributions for the 559 nm transition for the $\mathrm{HS}-\mathrm{Co}^{\mathrm{II}}(\mathrm{Sq})_{2}$ tautomeric form of $\mathbf{1}$, corresponding to $\mathrm{Sq}^{*} \pi \rightarrow \pi^{*}$ transitions. Isovalue $=0.025$ a.u.


Fig. S17 Difference density map between excited and ground states of $1 \mathrm{LS}-\mathrm{Co}^{\text {III }}(\mathrm{Cat})(\mathrm{Sq})$ tautomeric form for the absorption at 404 nm . Yellow indicates increase of electron density, whereas cyan indicates loss of electron density. Isovalue $=0.001$ a.u.


Fig. S18 Difference density map between excited and ground states of $1 \mathrm{LS}-\mathrm{Co}^{\mathrm{III}}(\mathrm{Cat})(\mathrm{Sq})$ tautomeric form for the absorption at 651 nm . Yellow indicates increase of electron density, whereas cyan indicates loss of electron density. Isovalue $=0.001$ a.u.


Fig. S19 Difference density map between excited and ground states of $1 \mathrm{LS}-\mathrm{Co}^{\mathrm{III}}(\mathrm{Cat})(\mathrm{Sq})$ tautomeric form for the absorption at 732 nm . Yellow indicates increase of electron density, whereas cyan indicates loss of electron density. Isovalue $=0.001$ a.u.


Fig. S20 Difference density map between excited and ground states of $1 \mathrm{HS}-\mathrm{Co}^{\mathrm{II}}(\mathrm{Sq})_{2}$ tautomeric form for the absorption at 559 nm . Yellow indicates increase of electron density, whereas cyan indicates loss of electron density. Isovalue $=0.001$ a.u.


Fig. S21 Difference density map between excited and ground states of $\mathbf{1} \mathrm{HS}-\mathrm{Co}^{\mathrm{II}}(\mathrm{Sq})_{2}$ tautomeric form for the absorption at 404 nm . Yellow indicates increase of electron density, whereas cyan indicates loss of electron density. Isovalue $=0.001$ a.u.


Fig. S22 Difference density map between excited and ground states of $\mathbf{1} \mathrm{HS}-\mathrm{Co}^{\mathrm{II}}(\mathrm{Sq})_{2}$ tautomeric form for the absorption at 328 nm . Yellow indicates increase of electron density, whereas cyan indicates loss of electron density. Isovalue $=0.001$ a.u.


Fig. S23 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ recorded for ligand TPPE.


Fig. S24 IR spectra of $\mathbf{1}$ and TPPE at the room temperature.


Fig. S25 (a) $\mathrm{N}_{2}$ adsorption-desorption isotherms of 1; (b) pore size distribution profiles of desolvated 1 at 77 K . According to TGA, $\mathbf{1}$ started to lose toluene molecules around 350 K , which coincides with the sudden increase of $\chi_{M}^{T}$ at around 350 K . As shown in Fig. S2, the toluene molecules are tightly wrapped by tetraphenylene and dioxolene ligands between adjacent layers to support the ABAB stacking structure by acting as an "anchor", leading to small motional freedom around the cobaltdioxolene units that hinders the expansion of cobalt coordination sphere for VT transition to occur. ${ }^{13}$ The removal of toluene molecules may destabilize the stacked 2D structure through interlayer slipping, alleviating the constraints around cobalt-dioxolene moieties that facilitates VT transition.


Fig. S26 $\chi_{M}{ }^{T}$ versus $T$ plots for desolvated $\mathbf{1}$ under applied field of 5000 Oe. In view of the fact that the abrupt VT transition of the fresh sample at 350 K , variable-temperature dc magnetization measurements were carried out on the sample heated and evacuated at $80^{\circ} \mathrm{C}$. It is obvious that a totally distinct magnetic behavior was observed. Upon cooling, the $\chi_{M}{ }^{T}$ value decreases gradually from $2.6 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ at 300 K to $0.92 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ at 2 K . During the heating process, the $\chi_{M} T$ value keeps growing until $3.15 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ at 380 K , higher than the theoretical value, which might attribute to the orbital contribution of the $\mathrm{HS}-\mathrm{Co}^{\mathrm{II}}$.

## 5. References

1. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C. 71, 3-8 (2015)
2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.K.; Puschmann, J. Appl.

Crystallogr. 2009, 42, 339-341.
3. F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73-78.
4. F. Neese, F. Wennmohs, A. Hansen and U. Becker, Chem. Phys., 2009, 356, 98-109.
5. a) K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, Theor. Chem. Accounts, 1997, 97, 119124; b) K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, Chem. Phys. Lett., 1995, 242, 652-660.
6. a) T. Soda, Y. Kitagawa, T. Onishi, Y. Takano, Y. Shigeta, H. Nagao, Y. Yoshioka and K. Yamaguchi, Chem. Phys. Lett., 2000, 319, 223-230; b) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
7. Y. Matt, I. Wessely, L. Gramespacher, M. Tsotsalas and S. Bräse, Eur. J. Org. Chem., 2021, 2021, 239-245.
8. C. Mu, Z. Zhang, Y. Hou, H. Liu, L. Ma, X. Li, S. Ling, G. He and M. Zhang, Angew. Chem. Int. Ed., 2021, 60, 12293-12297.
9. E. Evangelio, D. N. Hendrickson and D. Ruiz-Molina, Inorg. Chimica Acta, 2008, 361, 34033409.
10. A. Panja and A. Frontera, Eur. J. Inorg. Chem., 2018, 2018, 924-931.
11. D. M. Adams, A. Dei, A. L. Rheingold and D. N. Hendrickson, J. Am. Chem. Soc., 1993, 115, 8221-8229.
12. a) N. M. Bonanno, Z. Watts, C. Mauws, B. O. Patrick, C. R. Wiebe, Y. Shibano, K. Sugisaki, H. Matsuoka, D. Shiomi, K. Sato, T. Takui and M. T. Lemaire, Chem. Commun. (Camb), 2021, 57, 6213-6216; b) A. Witt, F. W. Heinemann and M. M. Khusniyarov, Chem. Sci., 2015, 6, 45994609.
13. E. Evangelio, C. Rodriguez-Blanco, Y. Coppel, D. N. Hendrickson, J. P. Sutter, J. Campo and D. Ruiz-Molina, Solid State Sci., 2009, 11, 793-800.

