Defect Engineering of molybdenum disulfide nanosheets boosting super Zn²⁺

storage from polyaniline intercalation cathode Supporting Information

Rui Sun, Siyang Dong, Jiekai Yang, Jing Xiong, Caihong Wang, Shengjun Lu*, Yufei Zhang* and Haosen Fan*

College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China

E-mail: hsfan@gzhu.edu.cn; sjlu@gzu.edu.cn; hsfan@gzhu.edu.cn

Experimental section

Chemicals

Ammonium molybdate and thiourea were purchased from Shanghai Macklin Biochemical Company Limited. Aniline, and isopropanol directly buy from Shanghai Aladdin Bio-Chem Technology Company Limited. The nitric acid comes from Sinopharm Chemical Reagent Company Limited. All chemicals were used as received.

Synthesis of MoO3 nanobelts

Typically, 3 g ammonium molybdate was dissolved in 60 mL deionized water with stirring for 20 mins and then adding 15 mL nitric acid to form a transparent solution. The solution was poured to a 100 mL Teflon autoclave and retention 180 °C for 24 h. After the solution cooling to room temperature, the product was obtained via filtration and drying.

Synthesis of peony-like MoS₂

685 mg thiourea dissolve in 60 mL deionized water with stirring for 20 mins. And the 100 mg MoO₃ was poured, followed by ultrasonication for 30 mins. Finally, the solution was transferred to a 100 mL Teflon autoclave and retention at 200 °C for 24 h. The resulting product is obtained by filtration and drying.

Synthesis of peony-like PA-MoS₂

In brief, 0.3 g MoS_2 was mixed with 30 mL isopropanol by ultrasonication. After stirring for 15 mins, 5 mL aniline was added to the solution to form an even solution with stirring for 30 mins, and then the solution was maintained at 60 °C for 90 mins. Finally, after the solution cooling to room temperature, the product was obtained via filtration and drying at 60 °C.

Materials characterization

Thermo Scientific K-Alpha was used to observe the structure characterized. Microstructure and the distribution of elements were observed via JEOL JEM-F200 and Talos F200x G2, respectively. X-ray photoelectron spectroscopy (XPS) was performed on the Thermo Scientific K-Alpha Nexsa system.

Electrochemical measurements

CR-2032 coin consisted of zinc foil, glass fiber membrane, and $3M \operatorname{Zn}(CF_3SO_3)_2$ served as an anode, separator, and electrolyte, respectively. Material, conductive carbon, and polyvinylidene fluoride were mixed with the radio of 7:2:1 to fabricate the uniform slurry when the 1-methyl-2-pyrrolidinone was used as a solution, which was painted in the carbon paper. And the carbon paper was moved to a blast dryer to move the 1-methyl-2-pyrrolidinone at 60 °C for 12 h. Electrochemistry performances and galvanostatic intermittent titration technique were tested on the NEWARE battery test system with the voltage window of 0.2-1.3 V (vs Zn/Zn^{2+}). The electrochemical workstation (CHI660A) was employed to test electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) curves.

Fig. S1 Schematic illustration of the intercalation/extraction process of Zn-ions during the cycle process.

Fig. S2 (a) XRD pattern, (b-c) SEM images of MoO₃.

Fig. S3 (a) XRD pattern, (b) SEM images of MoO₃.

Fig. S4 Elemental mapping of PA-MoS₂.

Fig. S6 SEM of PA-MoS₂ after cycling.

Fig. S7 Galvanostatic charge-discharge curves at 1 A g⁻¹.

Fig. S8 (a) Zn^{2+} diffusion coefficient of the discharge process, (b) the charge process at 0.1 A g⁻¹.

Fig. S9 (a) log(i) vs log(mv) plots at specific currents.

Materials	Electrolyte	Voltage window (V vs	Cyclic capacity (mAh g-	Ref.
		Zn/Zn^{2+})	¹ /th/A g ⁻¹)	
P-MST	3 M Zn(CF ₃ SO ₃) ₂	0.2-1.25	125/100/1;	1
			88/300/2	
MoS ₂ @CNTs	3 M Zn(CF ₃ SO ₃) ₂	0.3-1.2	92.2/500/1	2
TNC@MoS2NWS	2 M ZnSO ₄	0.3-1.3	ca. 65/100/0.5	3
MoS _{2-x} 250	3 M Zn(CF ₃ SO ₃) ₂	0.25-1.25	92.8/600/0.5	4
PA-MoS ₂	3 M Zn(CF ₃ SO ₃) ₂	0.2-1.3	157.7/80/0.1;	This
			77.8/750/1	work

	Table S1. comparison of the electrochemical	performance among	PA-MoS2 and other re-	eported Mo-based cathode m	naterials.
--	---	-------------------	-----------------------	----------------------------	------------

References

- 1. Z. Gan, L. Xia, J. Yin, Y. Gao, X. Feng, G. Meng, Y. Cheng and X. Xu, ACS Applied Energy Materials, 2022, 5, 15452-15462.
- 2. M. Huang, Y. Mai, L. Zhao, X. Liang, Z. Fang and X. Jie, ChemElectroChem, 2020, 7, 4218-4223.
- 3. X. Yao, C. Li, R. Xiao, J. Li, H. Yang, J. Deng and M. S. Balogun, Small, 2022, 18, 2204534.
- 4. W. Xu, C. Sun, K. Zhao, X. Cheng, S. Rawal, Y. Xu and Y. Wang, Energy Storage Materials, 2019, 16, 527-534.