Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information For

A germanimidoyl chloride: Synthesis, characterization and reactivity

By Tong Li,^{a†} Li Zhang,^{b†} Yuhao He,^a Yizhen Chen,^a Dongmin Wang,^a Jingjing Liu^{a*} and

Gengwen Tan^{a,c*}Corresponding authors: Jingjing Liu: jjliu@suda.edu.cn; Gengwen Tan:

gwtan@suda.edu.cn;

Content

Experimental Section	S2
Synthesis of M ^s Fluind ^{rBu} -Ge(Cl)=NMes (2)	S2
Synthesis of M ^s Fluind ^{rBu} -Ge(Cl)N ₄ Ar ₂ (3)	S3
Synthesis of [M ^s Fluind ^{rBu} -GeN ₄ Ar ₂][BAr ^F ₄] (4)	S3
Synthesis of M ^s Fluind ^{rBu} -Ge(Ar')=NMes (5)	S4
Synthesis of M ^s Fluind ^{rBu} -Ge(Me) ₂ -N(Mes)Li(thf) (6)	S4
Table S1. Crystal data and refinement of 2-4	S6
Table S2. Crystal data and refinement of 5-6	S7
Computational details	S8
Selected NMR spectra	S13
References	S20

Experimental Section

General considerations: All experiments were carried out under dry oxygen-free nitrogen using standard Schlenk techniques or in a N₂ filled-glove box. Solvents were dried by standard methods and stored in activated 4 Å molecule sieve in the glovebox. The NMR spectra were recorded on Bruker spectrometers (AV400) referenced to residual solvent signals as internal standards. The solutions of samples in the deuterated solvent were sealed off in a NMR tube under vacuum for measurements. Element analyses were performed on an Elementar Vario EL III instrument. For the single crystal X-ray structure analyses the crystals were each mounted on a glass capillary in perfluorinated oil and measured in a cold N₂ flow. The data for all compounds were collected on a Bruker D8 CMOS detector at low temperatures. The structures were solved by direct methods and all refined on F^2 with the SHELX-2014/3 software package.¹ The positions of the H atoms were calculated and considered isotropically according to a riding model. Platon SQUEEZE was used to remove the highly disordered solvent molecules in the crystal lattices.² Commercially available reagents were purchased from Energy Chemical and used as received. M⁶Fluind^{rBa}-GeCl (1),³ mesitylazide,⁴ 1-azido-4-(tert-butyl)benzene⁴ and 3,5-di-*tert*-phenyl lithium⁵ were synthesized according to reported procedures.

Synthesis of M^sFluind^{tBu}-Ge(Cl)=NMes (2)

To a solution of M^sFluind^{*H*Bu}-GeCl (1) (1.69 g, 2.00 mmol) in THF (30 mL), Mes-N₃ (0.36 g, 2.20 mmol) was added at room temperature. The suspension was stirred for 16 h and turned clear gradually. The color changed from yellow to orange red. The solvent was removed under vacuum, and the residue was washed with *n*-hexane (10 mL) to give an orange red powder (1.42 g, 73%). Orange crystals of **2** suitable for X-ray diffraction were obtained from THF/*n*-hexane solution at room temperature. ¹H NMR (C₆D₆, 400 MHz, 298 K): $\delta = 1.29$ (s, 36H, C(C<u>H</u>₃)₃), 1.54 (s, 12H, C(C<u>H</u>₃)₂), 1.60 (s, 6H, Mes-C<u>H</u>₃), 2.12 (s, 3H, Mes-C<u>H</u>₃), 2.49 (s, 4H, CC<u>H</u>₂C(CH₃)₂), 6.70 (s, 2H, Ar-<u>H</u>), 7.18 (m, 4H, Ar-<u>H</u>), 7.25 (m, 4H, Ar-<u>H</u>), 7.36 (m, 4H, Ar-<u>H</u>), 7.46 (s, 1H, Ar-<u>H</u>) ppm. ¹³C NMR (C₆D₆, 100 MHz, 298 K): $\delta = 21.0$ (Mes-<u>C</u>H₃), 21.8 (Mes-<u>C</u>H₃), 23.1 (C(<u>C</u>H₃)₃), 31.7 (<u>C</u>(CH₃)₃), 35.1 (C(<u>C</u>H₃)₂), 43.0 (<u>C</u>(CH₃)₂), 58.3 (C<u>C</u>H₂C(CH₃)₂), 64.9 (<u>C</u>CH₂C(CH₃)₂), 120.0, 120.7, 122.5, 126.0, 127.9, 128.2, 130.4, 131.2, 131.9, 147.3, 148.5, 150.8, 155.4, 155.8 ppm. Elemental analysis for C₆sH₇₆ClGeN (%): Cacld: C

Synthesis of M^sFluind^{rBu}-Ge(Cl)N₄Ar₂ (3)

To a solution of **1** (0.85 g, 1.00 mmol) in THF (30 mL), 1-azido-4-(*tert*- butyl)benzene (ArN₃) (0.44 g, 2.50 mmol) was added at room temperature. The yellow suspension was stirred for 16 h and turned clear gradually. The solvent was removed under vacuum, and the residue was washed with *n*-hexane (10 mL) to give a light yellow powder (0.77 g, 65%). Colorless crystals of **3** suitable for X-ray diffraction were obtained from THF/*n*-hexane solution at room temperature. ¹H NMR (THF-d₈, 400 MHz, 298 K): $\delta = 1.03$ (s, 18H, C(C<u>H₃)₃</u>), 1.16 (s, 18H, C(C<u>H₃)₃</u>), 1.29 (s, 18H, C(C<u>H₃)₃</u>), 1.58 (s, 6H, C(C<u>H₃)₂</u>), 1.60 (s, 6H, C(C<u>H₃)₂</u>), 2.16 (s, 2H, CC<u>H₂C</u>(C(H₃)₂), 2.33 (s, 2H, CC<u>H₂C</u>(C(H₃)₂), 6.43-6.46 (m, 4H, Ar-<u>H</u>), 6.79 (s, 2H, Ar-<u>H</u>), 6.96-7.08 (m, 10H, Ar-<u>H</u>), 7.23-7.26 (m, 2H, Ar-<u>H</u>), 7.46-7.49 (m, 2H, Ar-<u>H</u>), 8.02 (s, 1H, Ar-<u>H</u>) ppm. ¹³C NMR (THF-d₈, 100 MHz, 298 K): $\delta = 31.7$ (C(CH₃)₃), 31.8 (C(CH₃)₃), 32.1 (C(CH₃)₃), 32.3 (C(CH₃)₂), 64.2 (CCH₃)₂), 64.6 (C(CH₃)₃), 35.0 (C(CH₃)₂), 68.8 (<u>C</u>CH₂C(CH₃)₂), 116.9, 117.0, 117.7, 119.7, 119.8, 119.8, 119.9, 120.6, 124.7, 124.9, 125.0, 125.4, 125.5, 126.1, 126.4, 137.6, 137.7, 137.9, 138.4, 141.8, 144.7, 149.9, 150.2, 150.7, 152.5, 156.4, 160.4, 161.5 ppm. Elemental analysis for C₇₆H₉₁ClGeN₄ (%): Cacld: C 78.11, H 7.85, N 4.79; Found: C 78.55, H 7.39, N 4.96.

Synthesis of [M^sFluind^{tBu}-GeN₄Ar₂][BAr^F₄] (4)

C₆H₅F (15 mL) was added to a mixture of **3** (0.24 g, 0.20 mmol) and NaBAr^F₄ (0.18 g, 0.20 mmol). After stirring for 16 h, the reaction mixture was filtered. The volatiles in the filtrate was removed under vacuum, and the residue was washed with *n*-hexane to give a red powder (0.22 g, 55%). Red crystals of **4** suitable for X-ray diffraction were obtained from C₆H₃F/*n*-hexane solution at room temperature. ¹H NMR (CD₂Cl₂, 400 MHz, 298 K): $\delta = 0.98$ (s, 36H, C(C<u>H</u>₃)₃), 1.36 (s, 18H, C(C<u>H</u>₃)₃), 1.80 (s, 12H, C(C<u>H</u>₃)₂), 2.67 (s, 4H, CC<u>H</u>₂C(CH₃)₂), 6.20-6.22 (m, 4H, Ar-<u>H</u>), 6.92 (s, 2H, Ar-<u>H</u>), 6.94 (s, 2H, Ar-<u>H</u>), 7.03-7.04 (m, 4H, Ar-<u>H</u>), 7.12-7.18 (m, 8H, Ar-<u>H</u>), 7.58 (s, 4H, Ar-<u>H</u>), 7.75 ((m, 8H, Ar-<u>H</u>), 7.93 (s, 1H, Ar-<u>H</u>) ppm. ¹¹B NMR (CD₂Cl₂, 128 MHz, 298 K): $\delta = -6.6$ ppm. ¹³C NMR (CD₂Cl₂, 100 MHz, 298 K): $\delta = 31.1$ (C(CH₃)₃), 31.4 (C(CH₃)₃), 33.1 (C(CH₃)₃), 35.0 (C(CH₃)₃), 35.3 (C(CH₃)₂), 45.1 (<u>C</u>(CH₃)₂), 55.0 (C<u>C</u>H₂C(CH₃)₂), 64.0 (<u>C</u>CH₂C(CH₃)₂), 117.9, 118.7, 121.4, 121.9, 123.7, 126.4, 127.0, 127.6, 129.3, 135.2, 137.7, 138.4, 150.6, 151.3, 151.4, 154.1, 158.5, 162.1 (q, B-C, ${}^{1}J_{BC} = 50$ Hz) ppm. ¹⁹F NMR (CD₂Cl₂, 376 MHz, 298 K): $\delta = -62.8$ ppm. Elemental analysis for C₁₀₈H₁₀₃BF₂₄GeN₄ (%): Cacld: C 64.98, H 5.20, N 2.81; Found: C 64.21, H 5.36, N 3.25.

Synthesis of M^sFluind^{tBu}-Ge(Ar')=NMes (5)

THF (15 mL) was added to a Schlenk containing **2** (0.98 g, 1.00 mmol) and 3,5-di-*tert*-phenyl lithium (Ar'Li) (0.21 g, 1.01 mmol). The reaction mixture was stirred for 16 h at room temperature and filtered afterwards. The volatiles in the filtrate was removed under vacuum, and the residue was washed with *n*-hexane (10 mL) to give an orange powder (0.74 g, 65%). Orange crystals of **5** suitable for X-ray diffraction were grown from THF/*n*-hexane solution at room temperature. ¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 0.98$ (s, 36H, C(C<u>H</u>₃)₃), 1.19 (s, 6H, Mes-C<u>H</u>₃), 1.23 (s, 18H, C(C<u>H</u>₃)₃), 1.67 (s, 12H, C(C<u>H</u>₃)₂), 2.16 (s, 3H, Mes-C<u>H</u>₃), 2.37 (s, 4H, CC<u>H</u>₂C(CH₃)₂), 6.38 (s, 2H, Ar-<u>H</u>), 6.79 (m, 4H, Ar-<u>H</u>), 6.95 (m, 5H, Ar-<u>H</u>), 7.08 (m, 5H, Ar-<u>H</u>), 7.24 (s, 1H, Ar-<u>H</u>), 7.55 (s, 1H, Ar-<u>H</u>) ppm. ¹³C NMR (CDCl₃, 100 MHz, 298 K): $\delta = 19.9$ (Mes-CH₃), 20.9 (Mes-CH₃), 31.6 (C(CH₃)₃), 31.7 (C(CH₃)₃), 33.3 (C(C(CH₃)₃), 34.7 (C(CH₃)₃), 34.9 (C(C(CH₃)₂), 42.5 (C(CH₃)₂), 58.3 (CCH₂C(CH₃)₂), 65.4 (CCH₂C(CH₃)₂), 119.4, 119.6, 121.9, 124.7, 124.8, 127.2, 127.6, 127.9, 130.8, 132.3, 141.6, 148.3, 148.6, 149.5, 149.7, 154.7 ppm. Elemental analysis for C₇₉H₉₇GeN (%): Cacld: C 83.73, H 8.63, N 1.24; Found: C 84.11, H 8.41, N 1.86.

Synthesis of M^sFluind^{tBu}-Ge(Me)₂-N(Mes)Li(thf) (6)

Methyllithium (0.55 mL, 1.10 mmol, 2 M in THF) was added to a pre-cooled (-30 °C) solution of **2** (0.49 g, 0.50 mmol) in THF (15 mL) *via* syringe. The suspension was allowed to warm up to room temperature and stirred for 16 h. The color changed from orange to light yellow. The mixture was filtered and the filtrate was concentrated to 2 mL and stored at -30 °C to yield a yellow powder (0.32 g, 60%). Yellow crystals of **6** suitable for X-ray diffraction were obtained from THF solution by layering *n*-hexane at room temperature. ¹H NMR (C₆D₆, 400 MHz, 298 K): $\delta = -0.54$ (s, 6H, Ge(C<u>H</u>₃)₂), 1.24 (br, 4H, C<u>H</u>₂CH₂O), 1.35 (s, 36H, C(C<u>H</u>₃)₃), 1.57 (s, 12H, C(C<u>H</u>₃)₂), 1.79 (s, 6H, Mes-C<u>H</u>₃), 2.33 (s, 3H, Mes-C<u>H</u>₃), 2.42 (s, 4H, CC<u>H</u>₂C(CH₃)₂), 3.16 (br, 4H, CH₂C<u>H</u>₂O), 6.63 (s, 2H, Ar-<u>H</u>), 7.16 (m, 5H,

Ar-<u>H</u>), 7.52 (m, 8H, Ar-<u>H</u>) ppm. ¹³C NMR (C₆D₆, 100 MHz, 298 K): $\delta = 8.4$ (Ge(<u>C</u>H₃)₂), 14.4 (Mes-C(<u>C</u>H₃)₃), 23.1 (Mes-C(<u>C</u>H₃)₃), 23.4 (C(<u>C</u>H₃)₃), 25.36 (<u>C</u>H₂CH₂O), 31.8 (<u>C</u>(CH₃)₃), 32.9 (C(<u>C</u>H₃)₂), 35.2 (<u>C</u>(CH₃)₂), 44.6 (C<u>C</u>H₂C(CH₃)₂), 64.1 (<u>C</u>CH₂C(CH₃)₂), 68.36 (CH₂<u>C</u>H₂O), 116.6, 118.23, 119.7, 124.7, 124.9, 129.8, 137.9, 149.8, 149.9, 150.7, 155.7, 157.0, 157.1, 157.9 ppm. Elemental analysis for C₇₁H₉₀GeNOLi (%): Cacld: C 80.98, H 8.61, N 1.33; Found: C 81.36, H 8.22, N 1.83.

	2	3	4
formula	C ₆₅ H ₇₆ ClGeN	C76H91ClGeN4	C ₁₁₇ H ₁₂₄ BF ₂₄ GeN ₄
formula weight	979.30	1168.56	2125.59
crystal system	monoclinic	triclinic	triclinic
space group	$P2_{1}/c$	<i>P</i> -1	<i>P</i> -1
a/Å	15.0823(10)	10.4216(10)	10.8141(5)
b/Å	26.4574(17)	17.8327(16)	19.1127(10)
c/Å	14.7964(10)	21.2462(16)	27.1321(15)
α/deg		86.176(4)	93.952(2)
β /deg	108.586(3)	82.097(4)	96.523(2)
γ/deg		76.433(5)	96.935(2)
$V/Å^3$	5596.4(6)	3799.4(6)	5511.3(5)
Ζ	4	2	2
$ ho_{ m calcd}/ m g\cdot m cm^{-3}$	1.162	1.021	1.281
μ/mm^{-1}	0.963	0.760	0.736
<i>F</i> (000)	2088	1248	2214
crystal size/mm ³	$0.15 \times 0.12 \times 0.1$	$0.16 \times 0.14 \times 0.12$	$0.2\times0.18\times0.16$
θ range/deg	2.689-54.448	2.824-54.108	2.033-53.989
index ranges	$-18 \le h \le 18$	$-12 \le h \le 12$	$-13 \le h \le 12$
	$-31 \le k \le 26$	$-21 \le k \le 21$	$-23 \le k \le 23$
	$-17 \le l \le 16$	$-25 \le l \le 24$	$-32 \le l \le 32$
collected data	72960	58815	98139
unique data	10335	13849	20104
	$(R_{\rm int} = 0.0969)$	$(R_{\rm int} = 0.0587)$	$(R_{\rm int} = 0.0457)$
completeness to θ	99.9%	99.3%	99.6%
data/restraints/parameters	10335/115/642	13849/0/761	20104/409/1482
GOF on F^2	1.022	1.067	1.026
final R indices[$I \ge 2\sigma(I)$]	$R_1 = 0.0746$	$R_1 = 0.0431$	$R_1 = 0.0540$
	$wR_2 = 0.1972$	$wR_2 = 0.1179$	$wR_2 = 0.1466$
R indices (all data)	$R_1 = 0.1290$	$R_1 = 0.0563$	$R_1 = 0.0601$
	$wR_2 = 0.2277$	$wR_2 = 0.1250$	$wR_2 = 0.1512$
Largest diff peak/hole (e·Å ⁻ ³)	0.99/0.77	0.25/-0.61	0.99/-0.72

Table S1. Crystal data and refinement of 2-4

	5	6
formula	C ₇₉ H ₉₇ GeN	C71H90GeLiNO
formula weight	1133.16	1052.96
crystal system	triclinic	triclinic
space group	<i>P</i> -1	<i>P</i> -1
a/Å	10.9718(8)	12.7185(7)
b/Å	11.2149(9)	15.0410(9)
c/Å	27.474(2)	17.9978(10)
α/deg	93.954(4)	82.265(3)
β /deg	91.347(4)	73.454(2)
γ/deg	97.621(4)	80.240(2)
$V/\text{\AA}^3$	3340.9(5)	3239.0(3)
Ζ	2	2
$ ho_{ m calcd}/ m g\cdot m cm^{-3}$	1.126	1.080
μ/mm^{-1}	0.606	0.609
<i>F</i> (000)	1220	1132
crystal size/mm ³	$0.18 \times 0.14 \times 0.12$	$0.2\times0.14\times0.13$
heta range/deg	3.468-54.008	2.237-54.075
index ranges	$-12 \le h \le 13$	$-15 \le h \le 15$
	$-13 \le k \le 13$	$-18 \le k \le 18$
	$-33 \le l \le 32$	$-21 \le l \le 21$
collected data	60392	56006
unique data	12214	11882
	$(R_{\rm int} = 0.0647)$	$(R_{\rm int} = 0.0587)$
completeness to θ	99.6%	99.7%
data/restraints/parameters	12214/382/823	11882/126/715
GOF on F^2	1.056	1.042
final <i>R</i> indices[$I \ge 2\sigma(I)$]	$R_1 = 0.0576$	$R_1 = 0.0446$
	$wR_2 = 0.1529$	$wR_2 = 0.1155$
R indices (all data)	$R_1 = 0.0774$	$R_1 = 0.0608$
	$wR_2 = 0.1641$	$wR_2 = 0.1235$
Largest diff peak/hole (e·Å-3)	0.61/-0.60	0.37/-0.66

Table S2. Crystal data and refinement of 5-6

Computational details

All of the calculations were performed with the Gaussian 09 program.⁶ All the geometry optimizations were performed with the ω B97XD functional⁷ in conjunction with a 6-31G(d) basis set⁸ in the gas phase. Besides, the natural bond orbital (NBO) analysis⁹ was obtained at the same level. The quantum theory of atoms in molecules (QTAIM) analyses were performed using Multiwfn (Version 3.8).¹⁰ The wavefunction files for QTAIM were obtained from Gaussian 16 at the ω B97XD/6-31G(d) level of theory.

Fig. S1 Contour line diagrams of the Laplacian distribution $\nabla^2 \rho(r)$ in the C-Ge-N plane of **2**.

Coordinates of the studied molecule

2

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	32	0	-0.763279	-0.392135	-0.487910
2	17	0	-2.903375	-0.892185	-0.397720
3	7	0	0.526779	-0.798022	-1.481105
4	6	0	-0.430456	0.758428	1.002929
5	6	0	-0.688430	2.130086	0.997149
6	6	0	-0.538580	2.900541	2.145414
7	6	0	-0.143157	2.312017	3.342181
8	1	0	-0.061546	2.905425	4.251022
9	6	0	0.151544	0.954932	3.355427
10	6	0	0.041650	0.195739	2.189580
11	6	0	-1.247316	4.407948	0.403899
12	1	0	-0.655758	5.152337	-0.136710
13	1	0	-2.296548	4.697272	0.291630
14	6	0	-0.860675	4.363708	1.912734
15	6	0	0.358132	5.249630	2.210801
16	1	0	0.658427	5.166558	3.261555
17	1	0	1.216871	4.965447	1.593603
18	1	0	0.127219	6.301671	2.007681
19	6	0	-2.040337	4.804649	2.792411
20	1	0	-1.789126	4.735192	3.857054
21	1	0	-2.313505	5.844388	2.577826
22	1	0	-2.918088	4.174293	2.611723
23	6	0	0.617664	-1.318504	3.968284
24	1	0	-0.243678	-1.895401	4.319605
25	1	0	1.514835	-1.854884	4.289312
26	6	0	0.552148	0.120383	4.557612
27	6	0	-0.530056	0.204604	5.646111
28	1	0	-0.295523	-0.475845	6.473062
29	1	0	-0.603251	1.218629	6.055855
30	1	0	-1.511191	-0.068818	5.242991
31	6	0	1.892542	0.573171	5.155528
32	1	0	2.147463	-0.041555	6.026416
33	1	0	2.709463	0.487245	4.434602
34	1	0	1.840428	1.617516	5.484009
35	6	0	-1.029527	2.994632	-0.211110
36	6	0	0.098912	2.903536	-1.231549
37	6	0	1.426828	3.234514	-1.061651
38	1	0	1.756694	3.640491	-0.109543

39	6	0	2.345453	3.030712	-2.099313
40	6	0	1.874403	2.478712	-3.296340
41	1	0	2.561707	2.295075	-4.114648
42	6	0	0.540292	2.112398	-3.464618
43	1	0	0.216604	1.651382	-4.393108
44	6	0	-0.350081	2.334240	-2.427332
45	6	0	-1.784575	2.054316	-2.290809
46	6	0	-2.706621	1.489622	-3.166639
47	1	0	-2.400174	1.135501	-4.146831
48	6	0	-4.035753	1.406269	-2.774438
49	1	0	-4.750510	0.971311	-3.467119
50	6	0	-4.478502	1.851221	-1.516941
51	6	0	-3.530172	2.379896	-0.638794
52	1	0	-3.813554	2.705380	0.357093
53	6	0	-2.201661	2.471753	-1.022798
54	6	0	0.550923	-1.222148	2.410690
55	6	0	1.908804	-1.486716	1.749109
56	6	0	3.104168	-0.802545	1.913804
57	1	0	3.112680	0.118401	2.484591
58	6	0	4.285240	-1.298353	1.348228
59	6	0	4.208937	-2.469772	0.579853
60	1	0	5.109648	-2.874357	0.127975
61	6	0	3.006284	-3.125934	0.354533
62	1	0	2.972805	-4.007118	-0.279080
63	6	0	1.854063	-2.633134	0.952939
64	6	0	0.480246	-3.138492	0.951288
65	6	0	-0.105661	-4.216540	0.302703
66	1	0	0.467276	-4.835743	-0.381089
67	6	0	-1.446787	-4.493429	0.546877
68	1	0	-1.894951	-5.344076	0.041791
69	6	0	-2.232404	-3.711611	1.407287
70	6	0	-1.626425	-2.618016	2.033706
71	1	0	-2.196973	-1.964353	2.685977
72	6	0	-0.290433	-2.330414	1.795271
73	6	0	0.934085	-1.689077	-2.442962
74	6	0	2.316564	-1.661955	-2.751307
75	6	0	2.831490	-2.570463	-3.664928
76	1	0	3.898505	-2.546828	-3.882998
77	6	0	2.021994	-3.506729	-4.314375
78	6	0	0.661206	-3.498785	-4.026933
79	1	0	0.005633	-4.205892	-4.532916
80	6	0	0.101874	-2.608874	-3.109281
81	6	0	3.188501	-0.639204	-2.082653
82	1	0	2.974549	0.356857	-2.483276

83	1	0	2.978977	-0.586210	-1.011941	
84	1	0	4.251208	-0.858960	-2.231007	
85	6	0	2.614790	-4.487500	-5.295056	
86	1	0	1.837800	-5.091755	-5.773766	
87	1	0	3.173750	-3.974047	-6.086142	
88	1	0	3.312776	-5.174677	-4.801237	
89	6	0	-1.370111	-2.611866	-2.834366	
90	1	0	-1.587082	-2.911442	-1.801268	
91	1	0	-1.794759	-1.607282	-2.956875	
92	1	0	-1.901915	-3.295073	-3.503303	
93	6	0	3.815574	3.396937	-1.868449	
94	6	0	3.939375	4.925424	-1.725699	
95	1	0	3.325622	5.300011	-0.899153	
96	1	0	4.980304	5.209122	-1.529162	
97	1	0	3.613023	5.429960	-2.641727	
98	6	0	4.303587	2.720213	-0.572968	
99	1	0	3.810049	3.130388	0.314444	
100	1	0	4.098592	1.645174	-0.597569	
101	1	0	5.382574	2.867387	-0.445307	
102	6	0	4.722669	2.938257	-3.018236	
103	1	0	4.455115	3.419138	-3.965450	
104	1	0	5.760999	3.207623	-2.795993	
105	1	0	4.681485	1.852322	-3.156334	
106	6	0	-5.960989	1.720407	-1.147363	
107	6	0	-6.384556	0.240522	-1.217098	
108	1	0	-5.806876	-0.363318	-0.509700	
109	1	0	-7.447602	0.140501	-0.967646	
110	1	0	-6.234613	-0.181134	-2.215850	
111	6	0	-6.804803	2.544178	-2.138797	
112	1	0	-6.678900	2.193056	-3.168076	
113	1	0	-7.869312	2.467786	-1.887574	
114	1	0	-6.520014	3.601577	-2.107589	
115	6	0	-6.251563	2.229740	0.271059	
116	1	0	-5.697313	1.660114	1.025296	
117	1	0	-6.000413	3.290644	0.382292	
118	1	0	-7.319106	2.118266	0.489568	
119	6	0	5.650309	-0.638903	1.584954	
120	6	0	6.506067	-1.586233	2.448903	
121	1	0	6.660659	-2.550070	1.952719	
122	1	0	7.490585	-1.143454	2.642443	
123	1	0	6.020391	-1.778605	3.411912	
124	6	0	5.527893	0.702548	2.321284	
125	1	0	4.900725	1.411634	1.771348	
126	1	0	5.108906	0.577550	3.326286	

127	1	0	6.520412	1.152034	2.434957
128	6	0	6.369899	-0.391232	0.245637
129	1	0	6.567068	-1.323712	-0.292159
130	1	0	5.776433	0.252918	-0.409210
131	1	0	7.335575	0.096991	0.422455
132	6	0	-3.699522	-4.088676	1.648341
133	6	0	-4.436274	-3.035551	2.488040
134	1	0	-4.005564	-2.939318	3.491098
135	1	0	-4.417345	-2.052313	2.005332
136	1	0	-5.484080	-3.331053	2.609554
137	6	0	-4.443071	-4.232574	0.306575
138	1	0	-4.405763	-3.299455	-0.263500
139	1	0	-4.017257	-5.024930	-0.316915
140	1	0	-5.494220	-4.486439	0.487212
141	6	0	-3.744884	-5.432294	2.401668
142	1	0	-4.783263	-5.729353	2.591571
143	1	0	-3.265851	-6.230958	1.825338
144	1	0	-3.227743	-5.356704	3.364596

Selected NMR spectra

Fig. S2 ¹H NMR spectrum in C₆D₆ solution at 298 K of the product from the reaction of **2** with MeLi (1:1 ratio). * The proton signal for the Ge-CH₃ group in M^sFluind^{*t*Bu}-Ge(Me)=NMes; # The proton signal for the Ge-(CH₃)₂ moiety in **6**.

Fig. S3 ¹H NMR spectrum of **2** in C_6D_6 at 298 K.

Fig. S4 ${}^{13}C{}^{1}H, {}^{13}C{}$ NMR spectrum of 2 in C₆D₆ at 298 K.

Fig. S5 ¹H NMR spectrum of 3 in THF-d₈ at 298 K.

Fig. S6 ${}^{13}C{ \{^{1}H, ^{13}C\}}$ NMR spectrum of 3 in THF-d₈ at 298 K.

Fig. S7 ¹H NMR spectrum of 4 in CD₂Cl₂ at 298 K.

Fig. S9 ${}^{13}C{}^{1}H, {}^{13}C{}$ NMR spectrum of 4 in CD₂Cl₂ at 298 K.

Fig. S10 $^{19}\mathrm{F}$ NMR spectrum of 4 in CD₂Cl₂ at 298 K.

Fig. S11 ¹H NMR spectrum of 5 in CDCl₃ at 298 K.

Fig. S12 ${}^{13}C{}^{1}H, {}^{13}C{}$ NMR spectrum of 5 in CDCl₃ at 298 K.

Fig. S13 ¹H NMR spectrum of 6 in C_6D_6 at 298 K.

References

1 G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.

2 A. Spek, Acta Cryst., 2015, C71, 9-18.

3 Y. He, C. Dai, D. Wang, J. Zhu and G. Tan, J. Am. Chem. Soc., 2022, 144, 5126-5135.

4 D. Xin, A. Qin and B. Z. Tang, Polymer Chemistry, 2019, 10, 4271-4278.

5 T. Heitkemper, L. Naß and C. P. Sindlinger, Dalton Trans., 2020, 49, 2706-2714.

6 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F.Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A.Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc.: Wallingford CT., 2019.

7 J. D. Chai and M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615–6620.

8 R. Ditchfield, W. J. Hehre and J. A Pople, Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules, *J. Chem. Phys.*, 1971, **54**, 724–728.

9 Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.

10 Lu, T.; Chen, F., Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.